Improved synergistic swarm optimization algorithm to optimize task scheduling problems in cloud computing
Cloud computing has emerged as a cornerstone technology for modern computational paradigms due to its scalability and flexibility. One critical aspect of cloud computing is efficient task scheduling, which directly impacts system performance and resource utilization. In this paper, we propose an enh...
Saved in:
Published in | Sustainable computing informatics and systems Vol. 43; p. 101012 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cloud computing has emerged as a cornerstone technology for modern computational paradigms due to its scalability and flexibility. One critical aspect of cloud computing is efficient task scheduling, which directly impacts system performance and resource utilization. In this paper, we propose an enhanced optimization algorithm tailored for task scheduling in cloud environments. Building upon the foundation of the Jaya algorithm and Synergistic Swarm Optimization (SSO), our approach integrates a Levy flight mechanism to enhance exploration-exploitation trade-offs and improve convergence speed. The Jaya algorithm's ability to exploit the current best solutions is complemented by the SSO's collaborative search strategy, resulting in a synergistic optimization framework. Moreover, the incorporation of Levy flights injects stochasticity into the search process, enabling the algorithm to escape local optima and navigate complex solution spaces more effectively. We evaluate the proposed algorithm against state-of-the-art approaches using benchmark task scheduling problems in cloud environments. Experimental results demonstrate the superiority of our method in terms of solution quality, convergence speed, and scalability. Overall, our proposed Improved Jaya Synergistic Swarm Optimization Algorithm offers a promising solution for optimizing TSCC (TSCC), contributing to enhanced resource utilization and system performance in cloud-based applications. The proposed method got 88 % accuracy overall and 10 % enhancement compared to the original method.
•JSSOA optimizes cloud task scheduling by integrating fitness-distance balance and Lévy flight.•Efficient cloud task scheduling is achieved with JSSOA.•JSSOA excels in empirical evaluations, outperforming Jaya and SSOA algorithms.•JSSOA showcases its prowess in advancing cloud computing efficiency. |
---|---|
AbstractList | Cloud computing has emerged as a cornerstone technology for modern computational paradigms due to its scalability and flexibility. One critical aspect of cloud computing is efficient task scheduling, which directly impacts system performance and resource utilization. In this paper, we propose an enhanced optimization algorithm tailored for task scheduling in cloud environments. Building upon the foundation of the Jaya algorithm and Synergistic Swarm Optimization (SSO), our approach integrates a Levy flight mechanism to enhance exploration-exploitation trade-offs and improve convergence speed. The Jaya algorithm's ability to exploit the current best solutions is complemented by the SSO's collaborative search strategy, resulting in a synergistic optimization framework. Moreover, the incorporation of Levy flights injects stochasticity into the search process, enabling the algorithm to escape local optima and navigate complex solution spaces more effectively. We evaluate the proposed algorithm against state-of-the-art approaches using benchmark task scheduling problems in cloud environments. Experimental results demonstrate the superiority of our method in terms of solution quality, convergence speed, and scalability. Overall, our proposed Improved Jaya Synergistic Swarm Optimization Algorithm offers a promising solution for optimizing TSCC (TSCC), contributing to enhanced resource utilization and system performance in cloud-based applications. The proposed method got 88 % accuracy overall and 10 % enhancement compared to the original method.
•JSSOA optimizes cloud task scheduling by integrating fitness-distance balance and Lévy flight.•Efficient cloud task scheduling is achieved with JSSOA.•JSSOA excels in empirical evaluations, outperforming Jaya and SSOA algorithms.•JSSOA showcases its prowess in advancing cloud computing efficiency. Cloud computing has emerged as a cornerstone technology for modern computational paradigms due to its scalability and flexibility. One critical aspect of cloud computing is efficient task scheduling, which directly impacts system performance and resource utilization. In this paper, we propose an enhanced optimization algorithm tailored for task scheduling in cloud environments. Building upon the foundation of the Jaya algorithm and Synergistic Swarm Optimization (SSO), our approach integrates a Levy flight mechanism to enhance exploration-exploitation trade-offs and improve convergence speed. The Jaya algorithm's ability to exploit the current best solutions is complemented by the SSO's collaborative search strategy, resulting in a synergistic optimization framework. Moreover, the incorporation of Levy flights injects stochasticity into the search process, enabling the algorithm to escape local optima and navigate complex solution spaces more effectively. We evaluate the proposed algorithm against state-of-the-art approaches using benchmark task scheduling problems in cloud environments. Experimental results demonstrate the superiority of our method in terms of solution quality, convergence speed, and scalability. Overall, our proposed Improved Jaya Synergistic Swarm Optimization Algorithm offers a promising solution for optimizing TSCC (TSCC), contributing to enhanced resource utilization and system performance in cloud-based applications. The proposed method got 88 % accuracy overall and 10 % enhancement compared to the original method. |
ArticleNumber | 101012 |
Author | Hussein, Ahmad MohdAziz Almomani, Mohammad H. Alwadain, Ayed Abualigah, Laith Zitar, Raed Abu Migdady, Hazem Alzahrani, Ahmed Ibrahim |
Author_xml | – sequence: 1 givenname: Laith surname: Abualigah fullname: Abualigah, Laith email: aligah.2020@gmail.com organization: Computer Science Department, Al al-Bayt University, Mafraq 25113, Jordan – sequence: 2 givenname: Ahmad MohdAziz surname: Hussein fullname: Hussein, Ahmad MohdAziz organization: Department of Computer Science, Faculty of Information Technology, Middle East University, Amman, Jordan – sequence: 3 givenname: Mohammad H. surname: Almomani fullname: Almomani, Mohammad H. organization: Department of Mathematics, Facility of Science, The Hashemite University, P.O box 330127, Zarqa 13133, Jordan – sequence: 4 givenname: Raed Abu surname: Zitar fullname: Zitar, Raed Abu organization: Sorbonne Center of Artificial Intelligence, Sorbonne University, Paris, France – sequence: 5 givenname: Hazem surname: Migdady fullname: Migdady, Hazem organization: CSMIS Department, Oman College of Management and Technology, 320 Barka, Oman – sequence: 6 givenname: Ahmed Ibrahim surname: Alzahrani fullname: Alzahrani, Ahmed Ibrahim organization: Computer Science Department, Community College, King Saud University, Riyadh, 11437, Saudi Arabia – sequence: 7 givenname: Ayed surname: Alwadain fullname: Alwadain, Ayed organization: Computer Science Department, Community College, King Saud University, Riyadh, 11437, Saudi Arabia |
BackLink | https://hal.science/hal-04942070$$DView record in HAL |
BookMark | eNqFkD1PwzAQhj2AxFf_AYNXhhY7sRPCgIQqoEiVWGC2nMulvZLEle0WlV9PSoCBAW456e6eV6fnhB10rkPGzqWYSCGzy9UkbAK4dpKIRO1HQiYH7DhJpBjrNC-O2CiElehLZ7JI1TGjx3bt3RYrHnYd-gWFSMDDm_Utd-tILb3bSK7jtlk4T3HZ8ui-N8ijDa88wBKrTUPdgvdZZYNt4NRxaNym4v03603sd2fssLZNwNFXP2Uv93fP09l4_vTwOL2djyFVIo4By1JbVZc2hRxUUedwVVnQWQG2zrDMRFllSkuVFCmikJBraTOtU5XJEnSRnrKLIXdpG7P21Fq_M86Smd3OzX4mVKESkYut7G_VcAveheCx_gGkMHujZmUGo2Zv1AxGe-z6FwYUPzVFb6n5D74ZYOwlbAm9CUDYAVbkEaKpHP0d8AH7JZtH |
CitedBy_id | crossref_primary_10_2478_amns_2025_0100 crossref_primary_10_1109_ACCESS_2024_3466529 |
Cites_doi | 10.1007/s10586-021-03291-7 10.1007/s10586-020-03075-5 10.1007/s00521-021-06002-w 10.1016/j.cma.2022.114570 10.1109/JSYST.2019.2960088 10.1007/s11227-021-04138-z 10.1007/978-3-030-56689-0_2 10.1002/cpe.4041 10.1002/dac.5633 10.1016/j.ejor.2008.07.025 10.1007/s40747-021-00528-1 10.1007/s00521-019-04119-7 10.1016/j.comnet.2023.110161 10.1007/s11227-022-04703-0 10.1016/j.jpdc.2023.104766 10.1016/j.jmsy.2022.08.004 10.1038/s41598-024-55619-z 10.1007/s00500-018-3515-0 10.1002/dac.4302 10.1016/j.engappai.2016.12.018 10.1016/j.eswa.2021.116158 10.1016/j.simpat.2021.102353 10.1007/s10586-020-03221-z 10.1109/ACCESS.2019.2948704 10.1007/s10922-019-09504-0 10.1890/08-0153.1 10.1080/17538947.2016.1239771 10.1007/s42235-023-00437-8 10.1016/j.eswa.2024.123554 10.1016/j.cma.2023.116582 10.1016/j.enconman.2017.02.068 10.1007/s10586-019-02983-5 10.1016/j.cma.2020.113609 10.1016/j.ins.2021.11.027 10.1007/s00521-022-07705-4 10.1016/j.cie.2017.06.028 10.1016/j.jss.2014.08.065 10.1109/TASE.2017.2693688 10.1016/j.knosys.2023.111081 10.1016/j.asoc.2021.107275 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. Copyright |
Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright |
DBID | AAYXX CITATION 1XC |
DOI | 10.1016/j.suscom.2024.101012 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | oai_HAL_hal_04942070v1 10_1016_j_suscom_2024_101012 S221053792400057X |
GroupedDBID | --K --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO AAYFN ABBOA ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BELTK BKOJK BLXMC EBS EFJIC EJD FDB FIRID FNPLU FYGXN GBLVA GBOLZ HZ~ J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSR SSV SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 1XC |
ID | FETCH-LOGICAL-c340t-cebb5a4fba3c7c49f7c8dac569caf6eb60bd64514293ee01c751a6553461bc593 |
IEDL.DBID | .~1 |
ISSN | 2210-5379 |
IngestDate | Fri May 09 12:11:03 EDT 2025 Tue Jul 01 01:35:21 EDT 2025 Thu Apr 24 23:03:04 EDT 2025 Sat Aug 24 15:41:17 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | Levy Flight Mechanism Cloud Computing Resource Utilization Task Scheduling Synergistic Swarm Optimization Jaya Algorithm |
Language | English |
License | Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-cebb5a4fba3c7c49f7c8dac569caf6eb60bd64514293ee01c751a6553461bc593 |
ParticipantIDs | hal_primary_oai_HAL_hal_04942070v1 crossref_primary_10_1016_j_suscom_2024_101012 crossref_citationtrail_10_1016_j_suscom_2024_101012 elsevier_sciencedirect_doi_10_1016_j_suscom_2024_101012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 2024-09 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationTitle | Sustainable computing informatics and systems |
PublicationYear | 2024 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Chen (bib26) 2020; 14 Zade, Mansouri, Javidi (bib45) 2022; 202 Ullah (bib20) 2024 Shirvani (bib12) 2020; 90 Abualigah (bib48) 2022; 191 Yang (bib1) 2017; 10 Behera, Sobhanayak (bib44) 2024; 183 Thapliyal, Kumar (bib16) 2024 Rojas-Morales, Rojas, Ureta (bib54) 2017; 110 Jang (bib41) 2012; 5 Reynolds, Rhodes (bib36) 2009; 90 Agushaka, Ezugwu, Abualigah (bib49) 2022; 391 Abualigah (bib19) 2024 Wei (bib28) 2020 Zhang, Zhou (bib5) 2017; 15 Khallouli, Huang (bib4) 2022; 78 Gunduz, Aslan (bib34) 2021; 105 Houssein, Gad, Wazery (bib13) 2021 Zade, Mansouri (bib24) 2022; 63 Ghasemi (bib50) 2024; 419 Maenhaut (bib3) 2020; 28 Alzoubi (bib14) 2023 Abualigah (bib47) 2021; 376 Abualigah, Diabat (bib27) 2021; 24 Wang (bib23) 2022; 65 Chen (bib6) 2015; 99 Huang (bib30) 2020; 23 Abualigah, Diabat, Elaziz (bib32) 2021; 24 Al-Maytami (bib42) 2019; 7 Asghari Alaie, Hosseini Shirvani, Rahmani (bib38) 2023; 79 Singh (bib9) 2021; 111 Bai (bib51) 2023; 282 Seifhosseini, Shirvani, Ramzanpoor (bib11) 2024; 240 Sun (bib53) 2019; 18 Tan (bib55) 2009; 197 Rodriguez, Buyya (bib7) 2017; 29 Fu (bib25) 2023; 26 Pirozmand (bib29) 2021; 33 Singh, Deep (bib56) 2019; 23 Guo (bib39) 2012; 7 Zhang (bib46) 2022; 583 Yiqiu, Xia, Junwei (bib40) 2019 Dubey, Sharma (bib33) 2021; 32 Rao, More (bib35) 2017; 140 Raj, Periasamy (bib2) 2011 Abu-Hashem (bib22) 2024; 41 Hosseini Shirvani, Noorian Talouki (bib37) 2022; 8 Akinola (bib15) 2022; 34 Amini Motlagh, Movaghar, Rahmani (bib17) 2020; 33 Tumula (bib21) 2024; 37 Ghasemi (bib52) 2024; 21 Ramezani (bib8) 2020 Gurusamy, Selvaraj (bib43) 2024 Farinelli (bib10) 2017; 59 Premkumar (bib18) 2024; 14 Zhou (bib31) 2020; 32 Ullah (10.1016/j.suscom.2024.101012_bib20) 2024 Sun (10.1016/j.suscom.2024.101012_bib53) 2019; 18 Zhang (10.1016/j.suscom.2024.101012_bib5) 2017; 15 Houssein (10.1016/j.suscom.2024.101012_bib13) 2021 Ghasemi (10.1016/j.suscom.2024.101012_bib52) 2024; 21 Zhou (10.1016/j.suscom.2024.101012_bib31) 2020; 32 Rodriguez (10.1016/j.suscom.2024.101012_bib7) 2017; 29 Behera (10.1016/j.suscom.2024.101012_bib44) 2024; 183 Abualigah (10.1016/j.suscom.2024.101012_bib47) 2021; 376 Tan (10.1016/j.suscom.2024.101012_bib55) 2009; 197 Agushaka (10.1016/j.suscom.2024.101012_bib49) 2022; 391 Huang (10.1016/j.suscom.2024.101012_bib30) 2020; 23 Alzoubi (10.1016/j.suscom.2024.101012_bib14) 2023 Chen (10.1016/j.suscom.2024.101012_bib6) 2015; 99 Guo (10.1016/j.suscom.2024.101012_bib39) 2012; 7 Reynolds (10.1016/j.suscom.2024.101012_bib36) 2009; 90 Raj (10.1016/j.suscom.2024.101012_bib2) 2011 Ghasemi (10.1016/j.suscom.2024.101012_bib50) 2024; 419 Ramezani (10.1016/j.suscom.2024.101012_bib8) 2020 Zhang (10.1016/j.suscom.2024.101012_bib46) 2022; 583 Akinola (10.1016/j.suscom.2024.101012_bib15) 2022; 34 Khallouli (10.1016/j.suscom.2024.101012_bib4) 2022; 78 Tumula (10.1016/j.suscom.2024.101012_bib21) 2024; 37 Fu (10.1016/j.suscom.2024.101012_bib25) 2023; 26 Seifhosseini (10.1016/j.suscom.2024.101012_bib11) 2024; 240 Premkumar (10.1016/j.suscom.2024.101012_bib18) 2024; 14 Zade (10.1016/j.suscom.2024.101012_bib24) 2022; 63 Wei (10.1016/j.suscom.2024.101012_bib28) 2020 Rao (10.1016/j.suscom.2024.101012_bib35) 2017; 140 Shirvani (10.1016/j.suscom.2024.101012_bib12) 2020; 90 Al-Maytami (10.1016/j.suscom.2024.101012_bib42) 2019; 7 Amini Motlagh (10.1016/j.suscom.2024.101012_bib17) 2020; 33 Gunduz (10.1016/j.suscom.2024.101012_bib34) 2021; 105 Rojas-Morales (10.1016/j.suscom.2024.101012_bib54) 2017; 110 Yang (10.1016/j.suscom.2024.101012_bib1) 2017; 10 Maenhaut (10.1016/j.suscom.2024.101012_bib3) 2020; 28 Chen (10.1016/j.suscom.2024.101012_bib26) 2020; 14 Asghari Alaie (10.1016/j.suscom.2024.101012_bib38) 2023; 79 Abualigah (10.1016/j.suscom.2024.101012_bib27) 2021; 24 Singh (10.1016/j.suscom.2024.101012_bib9) 2021; 111 Wang (10.1016/j.suscom.2024.101012_bib23) 2022; 65 Farinelli (10.1016/j.suscom.2024.101012_bib10) 2017; 59 Singh (10.1016/j.suscom.2024.101012_bib56) 2019; 23 Gurusamy (10.1016/j.suscom.2024.101012_bib43) 2024 Hosseini Shirvani (10.1016/j.suscom.2024.101012_bib37) 2022; 8 Bai (10.1016/j.suscom.2024.101012_bib51) 2023; 282 Abualigah (10.1016/j.suscom.2024.101012_bib19) 2024 Zade (10.1016/j.suscom.2024.101012_bib45) 2022; 202 Abu-Hashem (10.1016/j.suscom.2024.101012_bib22) 2024; 41 Dubey (10.1016/j.suscom.2024.101012_bib33) 2021; 32 Abualigah (10.1016/j.suscom.2024.101012_bib32) 2021; 24 Pirozmand (10.1016/j.suscom.2024.101012_bib29) 2021; 33 Abualigah (10.1016/j.suscom.2024.101012_bib48) 2022; 191 Thapliyal (10.1016/j.suscom.2024.101012_bib16) 2024 Yiqiu (10.1016/j.suscom.2024.101012_bib40) 2019 Jang (10.1016/j.suscom.2024.101012_bib41) 2012; 5 |
References_xml | – volume: 7 start-page: 547 year: 2012 ident: bib39 article-title: Task scheduling optimization in cloud computing based on heuristic algorithm publication-title: J. Netw. – start-page: 213 year: 2020 end-page: 255 ident: bib8 article-title: Task Scheduling in cloud environments: a survey of population-based evolutionary algorithms publication-title: Evolut. Comput. Sched. – volume: 282 year: 2023 ident: bib51 article-title: A sinh cosh optimizer publication-title: Knowl. - Based Syst. – volume: 5 start-page: 157 year: 2012 end-page: 162 ident: bib41 article-title: The study of genetic algorithm-based task scheduling for cloud computing publication-title: Int. J. Control Autom. – volume: 583 start-page: 56 year: 2022 end-page: 72 ident: bib46 article-title: An efficient interval many-objective evolutionary algorithm for cloud task scheduling problem under uncertainty publication-title: Inf. Sci. – volume: 240 year: 2024 ident: bib11 article-title: Multi-objective cost-aware bag-of-tasks scheduling optimization model for IoT applications running on heterogeneous fog environment publication-title: Comput. Netw. – volume: 78 start-page: 6898 year: 2022 end-page: 6943 ident: bib4 article-title: Cluster resource scheduling in cloud computing: literature review and research challenges publication-title: J. Supercomput. – volume: 197 start-page: 701 year: 2009 end-page: 713 ident: bib55 article-title: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization publication-title: Eur. J. Oper. Res. – volume: 18 start-page: 1 year: 2019 end-page: 11 ident: bib53 article-title: A new wolf colony search algorithm based on search strategy for solving travelling salesman problem publication-title: Int. J. Comput. Sci. Eng. – volume: 90 year: 2020 ident: bib12 article-title: A hybrid meta-heuristic algorithm for scientific workflow scheduling in heterogeneous distributed computing systems publication-title: Eng. Appl. Artif. Intell. – start-page: 1 year: 2020 end-page: 12 ident: bib28 article-title: Task scheduling optimization strategy using improved ant colony optimization algorithm in cloud computing publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 29 year: 2017 ident: bib7 article-title: A taxonomy and survey on scheduling algorithms for scientific workflows in IaaS cloud computing environments publication-title: Concurr. Comput.: Pract. Exp. – volume: 110 start-page: 424 year: 2017 end-page: 435 ident: bib54 article-title: A survey and classification of opposition-based metaheuristics publication-title: Comput. Ind. Eng. – volume: 34 start-page: 19751 year: 2022 end-page: 19790 ident: bib15 article-title: Multiclass feature selection with metaheuristic optimization algorithms: a review publication-title: Neural Comput. Appl. – volume: 65 start-page: 130 year: 2022 end-page: 145 ident: bib23 article-title: Dynamic scheduling of tasks in cloud manufacturing with multi-agent reinforcement learning publication-title: J. Manuf. Syst. – volume: 24 start-page: 2957 year: 2021 end-page: 2976 ident: bib32 article-title: Intelligent workflow scheduling for Big Data applications in IoT cloud computing environments publication-title: Clust. Comput. – start-page: 3 year: 2021 end-page: 24 ident: bib13 article-title: Jaya algorithm and applications: a comprehensive review publication-title: Metaheuristics Optim. Comput. Electr. Eng. – start-page: 1 year: 2024 end-page: 51 ident: bib20 article-title: Internet of things and cloud convergence for ehealth systems: concepts, opportunities, and challenges publication-title: Wirel. Pers. Commun. – volume: 14 start-page: 3117 year: 2020 end-page: 3128 ident: bib26 article-title: A WOA-based optimization approach for task scheduling in cloud computing systems publication-title: IEEE Syst. J. – volume: 183 year: 2024 ident: bib44 article-title: Task scheduling optimization in heterogeneous cloud computing environments: a hybrid GA-GWO approach publication-title: J. Parallel Distrib. Comput. – volume: 191 year: 2022 ident: bib48 article-title: Reptile Search Algorithm (RSA): a nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. – volume: 26 start-page: 2479 year: 2023 end-page: 2488 ident: bib25 article-title: Task scheduling of cloud computing based on hybrid particle swarm algorithm and genetic algorithm publication-title: Clust. Comput. – volume: 99 start-page: 20 year: 2015 end-page: 35 ident: bib6 article-title: Towards energy-efficient scheduling for real-time tasks under uncertain cloud computing environment publication-title: J. Syst. Softw. – volume: 24 start-page: 205 year: 2021 end-page: 223 ident: bib27 article-title: A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments publication-title: Clust. Comput. – year: 2024 ident: bib43 article-title: Resource allocation with efficient task scheduling in cloud computing using hierarchical auto-associative polynomial convolutional neural network publication-title: Expert Syst. Appl. – volume: 23 start-page: 9525 year: 2019 end-page: 9536 ident: bib56 article-title: Exploration–exploitation balance in Artificial Bee Colony algorithm: a critical analysis publication-title: Soft Comput. – volume: 37 year: 2024 ident: bib21 article-title: An opportunistic energy-efficient dynamic self-configuration clustering algorithm in WSN-based IoT networks publication-title: Int. J. Commun. Syst. – volume: 33 year: 2020 ident: bib17 article-title: Task scheduling mechanisms in cloud computing: a systematic review publication-title: Int. J. Commun. Syst. – volume: 419 year: 2024 ident: bib50 article-title: Optimization based on performance of lungs in body: Lungs performance-based optimization (LPO) publication-title: Comput. Methods Appl. Mech. Eng. – volume: 28 start-page: 197 year: 2020 end-page: 246 ident: bib3 article-title: Resource management in a containerized cloud: status and challenges publication-title: J. Netw. Syst. Manag. – volume: 15 start-page: 772 year: 2017 end-page: 783 ident: bib5 article-title: Dynamic cloud task scheduling based on a two-stage strategy publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 41 year: 2024 ident: bib22 article-title: Improved black widow optimization: an investigation into enhancing cloud task scheduling efficiency publication-title: Sustain. Comput.: Inform. Syst. – volume: 32 year: 2021 ident: bib33 article-title: A novel multi-objective CR-PSO task scheduling algorithm with deadline constraint in cloud computing publication-title: Sustain. Comput.: Inform. Syst. – volume: 21 start-page: 374 year: 2024 end-page: 408 ident: bib52 article-title: Geyser inspired algorithm: a new geological-inspired meta-heuristic for real-parameter and constrained engineering optimization publication-title: J. Bionic Eng. – start-page: 1 year: 2024 end-page: 62 ident: bib16 article-title: ASCAEO: accelerated sine cosine algorithm hybridized with equilibrium optimizer with application in image segmentation using multilevel thresholding publication-title: Evol. Syst. – year: 2023 ident: bib14 article-title: Synergistic Swarm Optimization Algorithm publication-title: CMES-Comput. Model. Eng. Sci. – volume: 32 start-page: 1531 year: 2020 end-page: 1541 ident: bib31 article-title: An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments publication-title: Neural Comput. Appl. – volume: 140 start-page: 24 year: 2017 end-page: 35 ident: bib35 article-title: Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm publication-title: Energy Convers. Manag. – volume: 202 year: 2022 ident: bib45 article-title: A two-stage scheduler based on New Caledonian Crow Learning Algorithm and reinforcement learning strategy for cloud environment publication-title: J. Netw. Comput. Appl. – volume: 90 start-page: 877 year: 2009 end-page: 887 ident: bib36 article-title: The Lévy flight paradigm: random search patterns and mechanisms publication-title: Ecology – volume: 105 year: 2021 ident: bib34 article-title: DJAYA: A discrete Jaya algorithm for solving traveling salesman problem publication-title: Appl. Soft Comput. – volume: 10 start-page: 13 year: 2017 end-page: 53 ident: bib1 article-title: Big Data and cloud computing: innovation opportunities and challenges publication-title: Int. J. Digit. Earth – volume: 7 start-page: 160916 year: 2019 end-page: 160926 ident: bib42 article-title: A task scheduling algorithm with improved makespan based on prediction of tasks computation time algorithm for cloud computing publication-title: IEEE Access – volume: 111 year: 2021 ident: bib9 article-title: Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: Analysis, performance evaluation, and future directions publication-title: Simul. Model. Pract. Theory – volume: 79 start-page: 1451 year: 2023 end-page: 1503 ident: bib38 article-title: A hybrid bi-objective scheduling algorithm for execution of scientific workflows on cloud platforms with execution time and reliability approach publication-title: J. Supercomput. – volume: 8 start-page: 1085 year: 2022 end-page: 1114 ident: bib37 article-title: Bi-objective scheduling algorithm for scientific workflows on cloud computing platform with makespan and monetary cost minimization approach publication-title: Complex Intell. Syst. – start-page: 1 year: 2024 end-page: 28 ident: bib19 article-title: Boosted aquila arithmetic optimization algorithm for multi-level thresholding image segmentation publication-title: Evol. Syst. – volume: 63 year: 2022 ident: bib24 article-title: Improved red fox optimizer with fuzzy theory and game theory for task scheduling in cloud environment publication-title: J. Comput. Sci. – volume: 391 year: 2022 ident: bib49 article-title: Dwarf mongoose optimization algorithm publication-title: Comput. Methods Appl. Mech. Eng. – year: 2019 ident: bib40 article-title: Cloud computing task scheduling algorithm based on improved genetic algorithm publication-title: 2019 IEEE 3rd information technology, networking, electronic and automation control conference (ITNEC) – start-page: 61 year: 2011 end-page: 87 ident: bib2 article-title: The convergence of enterprise architecture (EA) and cloud computing publication-title: Cloud Computing for Enterprise Architectures – volume: 23 start-page: 1137 year: 2020 end-page: 1147 ident: bib30 article-title: Task scheduling in cloud computing using particle swarm optimization with time varying inertia weight strategies publication-title: Clust. Comput. – volume: 14 start-page: 5434 year: 2024 ident: bib18 article-title: Augmented weighted K-means grey wolf optimizer: an enhanced metaheuristic algorithm for data clustering problems publication-title: Sci. Rep. – volume: 59 start-page: 170 year: 2017 end-page: 185 ident: bib10 article-title: A hierarchical clustering approach to large-scale near-optimal coalition formation with quality guarantees publication-title: Eng. Appl. Artif. Intell. – volume: 33 start-page: 13075 year: 2021 end-page: 13088 ident: bib29 article-title: Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing publication-title: Neural Comput. Appl. – volume: 376 year: 2021 ident: bib47 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Eng. – volume: 24 start-page: 2957 issue: 4 year: 2021 ident: 10.1016/j.suscom.2024.101012_bib32 article-title: Intelligent workflow scheduling for Big Data applications in IoT cloud computing environments publication-title: Clust. Comput. doi: 10.1007/s10586-021-03291-7 – volume: 24 start-page: 205 issue: 1 year: 2021 ident: 10.1016/j.suscom.2024.101012_bib27 article-title: A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments publication-title: Clust. Comput. doi: 10.1007/s10586-020-03075-5 – volume: 5 start-page: 157 issue: 4 year: 2012 ident: 10.1016/j.suscom.2024.101012_bib41 article-title: The study of genetic algorithm-based task scheduling for cloud computing publication-title: Int. J. Control Autom. – volume: 33 start-page: 13075 year: 2021 ident: 10.1016/j.suscom.2024.101012_bib29 article-title: Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06002-w – volume: 391 year: 2022 ident: 10.1016/j.suscom.2024.101012_bib49 article-title: Dwarf mongoose optimization algorithm publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.114570 – start-page: 61 year: 2011 ident: 10.1016/j.suscom.2024.101012_bib2 article-title: The convergence of enterprise architecture (EA) and cloud computing – volume: 18 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.suscom.2024.101012_bib53 article-title: A new wolf colony search algorithm based on search strategy for solving travelling salesman problem publication-title: Int. J. Comput. Sci. Eng. – volume: 14 start-page: 3117 issue: 3 year: 2020 ident: 10.1016/j.suscom.2024.101012_bib26 article-title: A WOA-based optimization approach for task scheduling in cloud computing systems publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2019.2960088 – volume: 78 start-page: 6898 issue: 5 year: 2022 ident: 10.1016/j.suscom.2024.101012_bib4 article-title: Cluster resource scheduling in cloud computing: literature review and research challenges publication-title: J. Supercomput. doi: 10.1007/s11227-021-04138-z – start-page: 3 year: 2021 ident: 10.1016/j.suscom.2024.101012_bib13 article-title: Jaya algorithm and applications: a comprehensive review publication-title: Metaheuristics Optim. Comput. Electr. Eng. doi: 10.1007/978-3-030-56689-0_2 – start-page: 1 year: 2024 ident: 10.1016/j.suscom.2024.101012_bib19 article-title: Boosted aquila arithmetic optimization algorithm for multi-level thresholding image segmentation publication-title: Evol. Syst. – volume: 29 issue: 8 year: 2017 ident: 10.1016/j.suscom.2024.101012_bib7 article-title: A taxonomy and survey on scheduling algorithms for scientific workflows in IaaS cloud computing environments publication-title: Concurr. Comput.: Pract. Exp. doi: 10.1002/cpe.4041 – start-page: 213 year: 2020 ident: 10.1016/j.suscom.2024.101012_bib8 article-title: Task Scheduling in cloud environments: a survey of population-based evolutionary algorithms publication-title: Evolut. Comput. Sched. – volume: 37 issue: 1 year: 2024 ident: 10.1016/j.suscom.2024.101012_bib21 article-title: An opportunistic energy-efficient dynamic self-configuration clustering algorithm in WSN-based IoT networks publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.5633 – volume: 197 start-page: 701 issue: 2 year: 2009 ident: 10.1016/j.suscom.2024.101012_bib55 article-title: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2008.07.025 – volume: 8 start-page: 1085 issue: 2 year: 2022 ident: 10.1016/j.suscom.2024.101012_bib37 article-title: Bi-objective scheduling algorithm for scientific workflows on cloud computing platform with makespan and monetary cost minimization approach publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00528-1 – volume: 32 start-page: 1531 year: 2020 ident: 10.1016/j.suscom.2024.101012_bib31 article-title: An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04119-7 – volume: 240 year: 2024 ident: 10.1016/j.suscom.2024.101012_bib11 article-title: Multi-objective cost-aware bag-of-tasks scheduling optimization model for IoT applications running on heterogeneous fog environment publication-title: Comput. Netw. doi: 10.1016/j.comnet.2023.110161 – volume: 79 start-page: 1451 issue: 2 year: 2023 ident: 10.1016/j.suscom.2024.101012_bib38 article-title: A hybrid bi-objective scheduling algorithm for execution of scientific workflows on cloud platforms with execution time and reliability approach publication-title: J. Supercomput. doi: 10.1007/s11227-022-04703-0 – volume: 183 year: 2024 ident: 10.1016/j.suscom.2024.101012_bib44 article-title: Task scheduling optimization in heterogeneous cloud computing environments: a hybrid GA-GWO approach publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2023.104766 – start-page: 1 year: 2020 ident: 10.1016/j.suscom.2024.101012_bib28 article-title: Task scheduling optimization strategy using improved ant colony optimization algorithm in cloud computing publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 65 start-page: 130 year: 2022 ident: 10.1016/j.suscom.2024.101012_bib23 article-title: Dynamic scheduling of tasks in cloud manufacturing with multi-agent reinforcement learning publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2022.08.004 – volume: 14 start-page: 5434 issue: 1 year: 2024 ident: 10.1016/j.suscom.2024.101012_bib18 article-title: Augmented weighted K-means grey wolf optimizer: an enhanced metaheuristic algorithm for data clustering problems publication-title: Sci. Rep. doi: 10.1038/s41598-024-55619-z – volume: 23 start-page: 9525 year: 2019 ident: 10.1016/j.suscom.2024.101012_bib56 article-title: Exploration–exploitation balance in Artificial Bee Colony algorithm: a critical analysis publication-title: Soft Comput. doi: 10.1007/s00500-018-3515-0 – volume: 33 issue: 6 year: 2020 ident: 10.1016/j.suscom.2024.101012_bib17 article-title: Task scheduling mechanisms in cloud computing: a systematic review publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.4302 – volume: 59 start-page: 170 year: 2017 ident: 10.1016/j.suscom.2024.101012_bib10 article-title: A hierarchical clustering approach to large-scale near-optimal coalition formation with quality guarantees publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.12.018 – volume: 191 year: 2022 ident: 10.1016/j.suscom.2024.101012_bib48 article-title: Reptile Search Algorithm (RSA): a nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: 111 year: 2021 ident: 10.1016/j.suscom.2024.101012_bib9 article-title: Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: Analysis, performance evaluation, and future directions publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2021.102353 – volume: 26 start-page: 2479 issue: 5 year: 2023 ident: 10.1016/j.suscom.2024.101012_bib25 article-title: Task scheduling of cloud computing based on hybrid particle swarm algorithm and genetic algorithm publication-title: Clust. Comput. doi: 10.1007/s10586-020-03221-z – volume: 7 start-page: 160916 year: 2019 ident: 10.1016/j.suscom.2024.101012_bib42 article-title: A task scheduling algorithm with improved makespan based on prediction of tasks computation time algorithm for cloud computing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2948704 – year: 2019 ident: 10.1016/j.suscom.2024.101012_bib40 article-title: Cloud computing task scheduling algorithm based on improved genetic algorithm – volume: 28 start-page: 197 year: 2020 ident: 10.1016/j.suscom.2024.101012_bib3 article-title: Resource management in a containerized cloud: status and challenges publication-title: J. Netw. Syst. Manag. doi: 10.1007/s10922-019-09504-0 – volume: 90 year: 2020 ident: 10.1016/j.suscom.2024.101012_bib12 article-title: A hybrid meta-heuristic algorithm for scientific workflow scheduling in heterogeneous distributed computing systems publication-title: Eng. Appl. Artif. Intell. – volume: 7 start-page: 547 issue: 3 year: 2012 ident: 10.1016/j.suscom.2024.101012_bib39 article-title: Task scheduling optimization in cloud computing based on heuristic algorithm publication-title: J. Netw. – volume: 90 start-page: 877 issue: 4 year: 2009 ident: 10.1016/j.suscom.2024.101012_bib36 article-title: The Lévy flight paradigm: random search patterns and mechanisms publication-title: Ecology doi: 10.1890/08-0153.1 – year: 2023 ident: 10.1016/j.suscom.2024.101012_bib14 article-title: Synergistic Swarm Optimization Algorithm publication-title: CMES-Comput. Model. Eng. Sci. – volume: 10 start-page: 13 issue: 1 year: 2017 ident: 10.1016/j.suscom.2024.101012_bib1 article-title: Big Data and cloud computing: innovation opportunities and challenges publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2016.1239771 – volume: 21 start-page: 374 issue: 1 year: 2024 ident: 10.1016/j.suscom.2024.101012_bib52 article-title: Geyser inspired algorithm: a new geological-inspired meta-heuristic for real-parameter and constrained engineering optimization publication-title: J. Bionic Eng. doi: 10.1007/s42235-023-00437-8 – volume: 63 year: 2022 ident: 10.1016/j.suscom.2024.101012_bib24 article-title: Improved red fox optimizer with fuzzy theory and game theory for task scheduling in cloud environment publication-title: J. Comput. Sci. – year: 2024 ident: 10.1016/j.suscom.2024.101012_bib43 article-title: Resource allocation with efficient task scheduling in cloud computing using hierarchical auto-associative polynomial convolutional neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.123554 – volume: 419 year: 2024 ident: 10.1016/j.suscom.2024.101012_bib50 article-title: Optimization based on performance of lungs in body: Lungs performance-based optimization (LPO) publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116582 – volume: 140 start-page: 24 year: 2017 ident: 10.1016/j.suscom.2024.101012_bib35 article-title: Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.02.068 – volume: 23 start-page: 1137 issue: 2 year: 2020 ident: 10.1016/j.suscom.2024.101012_bib30 article-title: Task scheduling in cloud computing using particle swarm optimization with time varying inertia weight strategies publication-title: Clust. Comput. doi: 10.1007/s10586-019-02983-5 – volume: 376 year: 2021 ident: 10.1016/j.suscom.2024.101012_bib47 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113609 – volume: 41 year: 2024 ident: 10.1016/j.suscom.2024.101012_bib22 article-title: Improved black widow optimization: an investigation into enhancing cloud task scheduling efficiency publication-title: Sustain. Comput.: Inform. Syst. – start-page: 1 year: 2024 ident: 10.1016/j.suscom.2024.101012_bib20 article-title: Internet of things and cloud convergence for ehealth systems: concepts, opportunities, and challenges publication-title: Wirel. Pers. Commun. – volume: 583 start-page: 56 year: 2022 ident: 10.1016/j.suscom.2024.101012_bib46 article-title: An efficient interval many-objective evolutionary algorithm for cloud task scheduling problem under uncertainty publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.11.027 – volume: 34 start-page: 19751 issue: 22 year: 2022 ident: 10.1016/j.suscom.2024.101012_bib15 article-title: Multiclass feature selection with metaheuristic optimization algorithms: a review publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07705-4 – start-page: 1 year: 2024 ident: 10.1016/j.suscom.2024.101012_bib16 article-title: ASCAEO: accelerated sine cosine algorithm hybridized with equilibrium optimizer with application in image segmentation using multilevel thresholding publication-title: Evol. Syst. – volume: 110 start-page: 424 year: 2017 ident: 10.1016/j.suscom.2024.101012_bib54 article-title: A survey and classification of opposition-based metaheuristics publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.06.028 – volume: 99 start-page: 20 year: 2015 ident: 10.1016/j.suscom.2024.101012_bib6 article-title: Towards energy-efficient scheduling for real-time tasks under uncertain cloud computing environment publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2014.08.065 – volume: 15 start-page: 772 issue: 2 year: 2017 ident: 10.1016/j.suscom.2024.101012_bib5 article-title: Dynamic cloud task scheduling based on a two-stage strategy publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2017.2693688 – volume: 282 year: 2023 ident: 10.1016/j.suscom.2024.101012_bib51 article-title: A sinh cosh optimizer publication-title: Knowl. - Based Syst. doi: 10.1016/j.knosys.2023.111081 – volume: 202 year: 2022 ident: 10.1016/j.suscom.2024.101012_bib45 article-title: A two-stage scheduler based on New Caledonian Crow Learning Algorithm and reinforcement learning strategy for cloud environment publication-title: J. Netw. Comput. Appl. – volume: 32 year: 2021 ident: 10.1016/j.suscom.2024.101012_bib33 article-title: A novel multi-objective CR-PSO task scheduling algorithm with deadline constraint in cloud computing publication-title: Sustain. Comput.: Inform. Syst. – volume: 105 year: 2021 ident: 10.1016/j.suscom.2024.101012_bib34 article-title: DJAYA: A discrete Jaya algorithm for solving traveling salesman problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107275 |
SSID | ssj0000561934 |
Score | 2.3351662 |
Snippet | Cloud computing has emerged as a cornerstone technology for modern computational paradigms due to its scalability and flexibility. One critical aspect of cloud... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 101012 |
SubjectTerms | Cloud Computing Computer Science Jaya Algorithm Levy Flight Mechanism Resource Utilization Synergistic Swarm Optimization Task Scheduling |
Title | Improved synergistic swarm optimization algorithm to optimize task scheduling problems in cloud computing |
URI | https://dx.doi.org/10.1016/j.suscom.2024.101012 https://hal.science/hal-04942070 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9tJLKaVVC7RaVVxNbO-uH8coahSgzaVEys3aJzEkcRU7IC78dmbsdaQeqkocvU9rdjzfzHoehHw0zujcOBYI6zgYKJkLpNQ8MMAwQmXKxW2e7vtZMp3zLwuxGJBxHwuDbpVe9ncyvZXWvmXoqTl8LMvhQwzWimBpjl6QoHUsMIKdp8jln_5G-3sW1JDz9ucyjg9wQh9B17p51bsa3UZiwCpsCqP4OYR6tezvWlvsmZyQY6800lH3Xm_IwG5Oyeu-IAP13-dbUnZXBNbQ-g_G9LVJmGn9W27XtALZsPZBl1SuvlfbslmuaVP1PZY2sv5JwdoF9MEgdeqLzdS03FC9qnaG6nZL6Dsj88ntt_E08LUUAs142ATaKiUkd0oynWqeu1RnRmqR5Fq6xKokVCbhoD0B_FsbRjoVkUyEYDyJlBY5OycHm2pjLwjlwmTSmRSwHpYGBU8xYZnh3MpIpGF8SVhPv0L7RONY72JV9B5lP4qO6gVSveiofkmC_azHLtHGC-PT_miKJwxTABa8MPMGTnK_CebXno7uCmzDZDkxCMFf0bv_Xv49OcKnzg_tAzlotjt7BYpLo65bzrwmh6PPX6ezfyRf75o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCba9NBd9uqGdY9WGHo1YluSHR-DYoXbprmsBXIT9Fy9JXEROxv270fZcoAehgK9SqZkUDL5SSY_ApwZZ3RhHI24dQwPKBMXSalZZHDDcDVRLu14um_mWXnHrhZ8sQfnQy6MD6sMtr-36Z21Di3joM3xQ1WNv6d4WuE0L3wUJKKOxT4ceHYqPoKD6eV1Od9dtXiQXHT_l71I5GWGJLou0qvZNj5yJEV35ZviJP2fk9q_H65bO_dz8RpeBtxIpv2rvYE9u34Lr4aaDCR8okdQ9bcE1pDmr0_r63iYSfNHblakRvOwCnmXRC5_1JuqvV-Rth56LGll84vggRcdkM9TJ6HeTEOqNdHLemuI7qbEvndwd_Ht9ryMQjmFSFMWt5G2SnHJnJJU55oVLtcTIzXPCi1dZlUWK5MxBFCIAKyNE53zRGacU5YlSvOCvofRul7bD0AYNxPpTI7uHodGjKcot9QwZmXC8zg9BjroT-jANe5LXizFEFT2U_RaF17rotf6MUQ7qYeea-OJ5_NhacSjPSPQHTwh-RVXcjeJp9gupzPh2zxfTop28Hfy8dnDn8JheXszE7PL-fUneOF7-rC0zzBqN1v7BXFMq07CPv0HWXXySw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+synergistic+swarm+optimization+algorithm+to+optimize+task+scheduling+problems+in+cloud+computing&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=Abualigah%2C+Laith&rft.au=Hussein%2C+Ahmad+Mohdaziz&rft.au=Almomani%2C+Mohammad&rft.au=Zitar%2C+Raed+Abu&rft.date=2024-09-01&rft.pub=Elsevier&rft.issn=2210-5379&rft.volume=43&rft_id=info:doi/10.1016%2Fj.suscom.2024.101012&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04942070v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon |