The conservation and diversity of the exons encoding the glycine and arginine rich domain of the fibrillarin gene in vertebrates, with special focus on reptiles and birds

•A nine-exon configuration of the fibrillarin gene is conserved in vertebrates.•Internal exons are of the same lengths except exon 2 and 3 encoding the GAR domain.•Reptiles have shorter exon 2 but longer exon 3 compared with other tetrapods.•Song birds have the shortest exon 2 and highly evolved exo...

Full description

Saved in:
Bibliographic Details
Published inGene Vol. 866; p. 147345
Main Authors Wang, Yi-Chun, Chang, Chien-Ping, Lai, Yu-Chuan, Chan, Chi-Ho, Ou, Shan-Chia, Wang, Sue-Hong, Li, Chuan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 25.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A nine-exon configuration of the fibrillarin gene is conserved in vertebrates.•Internal exons are of the same lengths except exon 2 and 3 encoding the GAR domain.•Reptiles have shorter exon 2 but longer exon 3 compared with other tetrapods.•Song birds have the shortest exon 2 and highly evolved exon 3. The nucleolar rRNA 2′-O-methyltransferase fibrillarin (FBL) contains a highly conserved methyltransferase domain at the C-terminus and a diverse glycine arginine-rich (GAR) domain at the N-terminus in eukaryotes. We found that a nine-exon configuration of fbl and exon 2–3 encoded GAR domain are conserved and specific in vertebrates. All internal exons except exon 2 and 3 are of the same lengths in different vertebrate lineages. The lengths of exon 2 and 3 vary in different vertebrate species but the ones with longer exon 2 usually have shorter exon 3 complementarily, limiting lengths of the GAR domain within a certain range. In tetrapods except for reptiles, exon 2 appears to be longer than exon 3. We specifically analyzed different lineages of reptiles for their GAR sequences and exon lengths. The lengths of exon 2 in reptiles are around 80–130-nt shorter and the lengths of exon 3 in reptiles are around 50–90 nt longer than those in other tetrapods, all in the GAR-coding regions. An FSPR sequence is present at the beginning of the GAR domain encoded by exon 2 in all vertebrates, and a specific FXSP/G element (X can be K, R, Q, N, and H) exist in the middle of GAR with phenylalanine as the 3rd exon 3-encoded amino acid residue starting from jawfish. Snakes, turtles, and songbirds contain shorter exon 2 compared with lizards, indicating continuous deletions in exon 2 and insertions/duplications in exon 3 in these lineages. Specifically, we confirmed the presence the fbl gene in chicken and validated the RNA expression. Our analyses of the GAR-encoding exons of fbl in vertebrates and reptiles should provide the basis for further evolutionary analyses of more GAR domain encoding proteins.
AbstractList The nucleolar rRNA 2′-O-methyltransferase fibrillarin (FBL) contains a highly conserved methyltransferase domain at the C-terminus and a diverse glycine arginine-rich (GAR) domain at the N-terminus in eukaryotes. We found that a nine-exon configuration of fbl and exon 2–3 encoded GAR domain are conserved and specific in vertebrates. All internal exons except exon 2 and 3 are of the same lengths in different vertebrate lineages. The lengths of exon 2 and 3 vary in different vertebrate species but the ones with longer exon 2 usually have shorter exon 3 complementarily, limiting lengths of the GAR domain within a certain range. In tetrapods except for reptiles, exon 2 appears to be longer than exon 3. We specifically analyzed different lineages of reptiles for their GAR sequences and exon lengths. The lengths of exon 2 in reptiles are around 80–130-nt shorter and the lengths of exon 3 in reptiles are around 50–90 nt longer than those in other tetrapods, all in the GAR-coding regions. An FSPR sequence is present at the beginning of the GAR domain encoded by exon 2 in all vertebrates, and a specific FXSP/G element (X can be K, R, Q, N, and H) exist in the middle of GAR with phenylalanine as the 3rd exon 3-encoded amino acid residue starting from jawfish. Snakes, turtles, and songbirds contain shorter exon 2 compared with lizards, indicating continuous deletions in exon 2 and insertions/duplications in exon 3 in these lineages. Specifically, we confirmed the presence the fbl gene in chicken and validated the RNA expression. Our analyses of the GAR-encoding exons of fbl in vertebrates and reptiles should provide the basis for further evolutionary analyses of more GAR domain encoding proteins.
The nucleolar rRNA 2'-O-methyltransferase fibrillarin (FBL) contains a highly conserved methyltransferase domain at the C-terminus and a diverse glycine arginine-rich (GAR) domain at the N-terminus in eukaryotes. We found that a nine-exon configuration of fbl and exon 2-3 encoded GAR domain are conserved and specific in vertebrates. All internal exons except exon 2 and 3 are of the same lengths in different vertebrate lineages. The lengths of exon 2 and 3 vary in different vertebrate species but the ones with longer exon 2 usually have shorter exon 3 complementarily, limiting lengths of the GAR domain within a certain range. In tetrapods except for reptiles, exon 2 appears to be longer than exon 3. We specifically analyzed different lineages of reptiles for their GAR sequences and exon lengths. The lengths of exon 2 in reptiles are around 80-130-nt shorter and the lengths of exon 3 in reptiles are around 50-90 nt longer than those in other tetrapods, all in the GAR-coding regions. An FSPR sequence is present at the beginning of the GAR domain encoded by exon 2 in all vertebrates, and a specific FXSP/G element (X can be K, R, Q, N, and H) exist in the middle of GAR with phenylalanine as the 3rd exon 3-encoded amino acid residue starting from jawfish. Snakes, turtles, and songbirds contain shorter exon 2 compared with lizards, indicating continuous deletions in exon 2 and insertions/duplications in exon 3 in these lineages. Specifically, we confirmed the presence the fbl gene in chicken and validated the RNA expression. Our analyses of the GAR-encoding exons of fbl in vertebrates and reptiles should provide the basis for further evolutionary analyses of more GAR domain encoding proteins.The nucleolar rRNA 2'-O-methyltransferase fibrillarin (FBL) contains a highly conserved methyltransferase domain at the C-terminus and a diverse glycine arginine-rich (GAR) domain at the N-terminus in eukaryotes. We found that a nine-exon configuration of fbl and exon 2-3 encoded GAR domain are conserved and specific in vertebrates. All internal exons except exon 2 and 3 are of the same lengths in different vertebrate lineages. The lengths of exon 2 and 3 vary in different vertebrate species but the ones with longer exon 2 usually have shorter exon 3 complementarily, limiting lengths of the GAR domain within a certain range. In tetrapods except for reptiles, exon 2 appears to be longer than exon 3. We specifically analyzed different lineages of reptiles for their GAR sequences and exon lengths. The lengths of exon 2 in reptiles are around 80-130-nt shorter and the lengths of exon 3 in reptiles are around 50-90 nt longer than those in other tetrapods, all in the GAR-coding regions. An FSPR sequence is present at the beginning of the GAR domain encoded by exon 2 in all vertebrates, and a specific FXSP/G element (X can be K, R, Q, N, and H) exist in the middle of GAR with phenylalanine as the 3rd exon 3-encoded amino acid residue starting from jawfish. Snakes, turtles, and songbirds contain shorter exon 2 compared with lizards, indicating continuous deletions in exon 2 and insertions/duplications in exon 3 in these lineages. Specifically, we confirmed the presence the fbl gene in chicken and validated the RNA expression. Our analyses of the GAR-encoding exons of fbl in vertebrates and reptiles should provide the basis for further evolutionary analyses of more GAR domain encoding proteins.
•A nine-exon configuration of the fibrillarin gene is conserved in vertebrates.•Internal exons are of the same lengths except exon 2 and 3 encoding the GAR domain.•Reptiles have shorter exon 2 but longer exon 3 compared with other tetrapods.•Song birds have the shortest exon 2 and highly evolved exon 3. The nucleolar rRNA 2′-O-methyltransferase fibrillarin (FBL) contains a highly conserved methyltransferase domain at the C-terminus and a diverse glycine arginine-rich (GAR) domain at the N-terminus in eukaryotes. We found that a nine-exon configuration of fbl and exon 2–3 encoded GAR domain are conserved and specific in vertebrates. All internal exons except exon 2 and 3 are of the same lengths in different vertebrate lineages. The lengths of exon 2 and 3 vary in different vertebrate species but the ones with longer exon 2 usually have shorter exon 3 complementarily, limiting lengths of the GAR domain within a certain range. In tetrapods except for reptiles, exon 2 appears to be longer than exon 3. We specifically analyzed different lineages of reptiles for their GAR sequences and exon lengths. The lengths of exon 2 in reptiles are around 80–130-nt shorter and the lengths of exon 3 in reptiles are around 50–90 nt longer than those in other tetrapods, all in the GAR-coding regions. An FSPR sequence is present at the beginning of the GAR domain encoded by exon 2 in all vertebrates, and a specific FXSP/G element (X can be K, R, Q, N, and H) exist in the middle of GAR with phenylalanine as the 3rd exon 3-encoded amino acid residue starting from jawfish. Snakes, turtles, and songbirds contain shorter exon 2 compared with lizards, indicating continuous deletions in exon 2 and insertions/duplications in exon 3 in these lineages. Specifically, we confirmed the presence the fbl gene in chicken and validated the RNA expression. Our analyses of the GAR-encoding exons of fbl in vertebrates and reptiles should provide the basis for further evolutionary analyses of more GAR domain encoding proteins.
ArticleNumber 147345
Author Chang, Chien-Ping
Wang, Yi-Chun
Li, Chuan
Lai, Yu-Chuan
Chan, Chi-Ho
Wang, Sue-Hong
Ou, Shan-Chia
Author_xml – sequence: 1
  givenname: Yi-Chun
  surname: Wang
  fullname: Wang, Yi-Chun
  organization: Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
– sequence: 2
  givenname: Chien-Ping
  surname: Chang
  fullname: Chang, Chien-Ping
  organization: Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
– sequence: 3
  givenname: Yu-Chuan
  surname: Lai
  fullname: Lai, Yu-Chuan
  organization: Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
– sequence: 4
  givenname: Chi-Ho
  surname: Chan
  fullname: Chan, Chi-Ho
  organization: Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
– sequence: 5
  givenname: Shan-Chia
  surname: Ou
  fullname: Ou, Shan-Chia
  organization: Department of Veterinary Medicine, Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
– sequence: 6
  givenname: Sue-Hong
  surname: Wang
  fullname: Wang, Sue-Hong
  organization: Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
– sequence: 7
  givenname: Chuan
  surname: Li
  fullname: Li, Chuan
  email: cli@csmu.edu.tw
  organization: Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36893875$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9uEzEQxi1URNPCC3BAPnJgg_-sd70SF1RRQKrEpZwtrz2bTLSxg71JySvxlPUmLUfwZeTR7_s0M98VuQgxACFvOVtyxpuPm-UKAiwFE3LJ61bW6gVZcN12FWNSX5AFk62uOOfdJbnKecPKU0q8Ipey0Z3UrVqQP_droC6GDOlgJ4yB2uCpxwOkjNORxoFOhYDfBaEQXPQYVqfWajw6DHDibVphmD8J3Zr6uLUYnqUD9gnH0abSmuelpRb3CfpkJ8gf6ANOa5p34NCOdIhun2kZI8FuwhHyyb_H5PNr8nKwY4Y3T_Wa_Lz9cn_zrbr78fX7zee7ysmaTZWDTlg2gHaqZ8o7wYFpX6tO1GxorLO-VUz3de87Bl43ird1xxnwRjZWOS-vyfuz7y7FX3vIk9lidlBWCBD32QgtayFk3an_o61uSlRFUNB3T-i-34I3u4Rbm47mOYoCiDPgUsw5wfAX4czMeZuNme9n5rzNOe8i-nQWQTnIASGZ7LDEBB4TuMn4iP-SPwKKabWC
Cites_doi 10.1074/jbc.M106161200
10.1074/jbc.271.25.15034
10.1126/science.1251385
10.1016/j.molcel.2019.08.014
10.1111/j.1742-4658.2012.08490.x
10.1021/bi00343a001
10.1023/A:1021394903025
10.1371/journal.pone.0185042
10.1016/S0960-9822(01)00316-5
10.1093/nar/gki574
10.1016/j.molcel.2008.12.013
10.1016/j.jmb.2019.11.006
10.1186/s13059-014-0565-1
10.1186/s13059-015-0724-z
10.1371/journal.pcbi.1008318
10.1128/jb.176.7.2124-2127.1994
10.1083/jcb.151.3.653
10.1261/rna.068312.118
10.1016/0092-8674(93)90120-F
10.1038/nature12819
10.1002/2211-5463.12323
10.1073/pnas.0905128106
10.1016/j.molcel.2016.11.003
10.1016/j.ympev.2014.12.002
10.1093/jb/mvh131
10.1073/pnas.87.12.4576
10.1016/j.gene.2020.144684
10.1074/jbc.M305604200
10.3390/genes14020330
10.7717/peerj.9029
10.3390/cells9051143
10.1016/S0021-9258(17)38718-5
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier B.V.
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.gene.2023.147345
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Biology
EISSN 1879-0038
ExternalDocumentID 36893875
10_1016_j_gene_2023_147345
S0378111923001865
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
WH7
~G-
.55
.GJ
29H
53G
AAQXK
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACRPL
ADIYS
ADMUD
ADNMO
ADVLN
AGQPQ
AGRDE
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
R2-
RIG
SBG
SEW
SSH
VH1
WUQ
X7M
XOL
XPP
Y6R
ZGI
~KM
AACTN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c340t-ce92a0fe8c5b05dc21e08d459240f6acad7508b4bd90ed865174910e1636a5cd3
IEDL.DBID .~1
ISSN 0378-1119
1879-0038
IngestDate Fri Jul 11 15:58:52 EDT 2025
Fri Jul 11 08:39:41 EDT 2025
Thu Apr 03 07:12:34 EDT 2025
Thu Jul 10 10:11:40 EDT 2025
Sat Aug 09 17:31:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Reptiles
Exon length
DFC
PBS
aa
SDMA
Glycine arginine rich (GAR) domain
rRNA
nt
myr
EST
MTase
ADMA
PRMT
snoRNA
FBL
RGG
SNP
RG
SMN
Fibrillarin
GAR
snoRNP
Language English
License Copyright © 2023. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-ce92a0fe8c5b05dc21e08d459240f6acad7508b4bd90ed865174910e1636a5cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36893875
PQID 2786101834
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2834223495
proquest_miscellaneous_2786101834
pubmed_primary_36893875
crossref_primary_10_1016_j_gene_2023_147345
elsevier_sciencedirect_doi_10_1016_j_gene_2023_147345
PublicationCentury 2000
PublicationDate 2023-05-25
PublicationDateYYYYMMDD 2023-05-25
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-25
  day: 25
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Gene
PublicationTitleAlternate Gene
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Amiri (b0010) 1994; 176
Lin, Huang, Hsieh, Pollard, Li (b0050) 2002; 21
Ye, Jia, Lin, Ju, Peng, Xu, Zhang (b0155) 2009; 106
Wang, Wang, Chen, Chen, Li (b0130) 2015; 84
Russell, Watanabe, Charette, Gray (b0085) 2005; 33
Jones, Gorzynski, Hales, Fischer, Badbanchi, Terns, Terns (b0045) 2001; 276
Tessarz, Santos-Rosa, Robson, Sylvestersen, Nelson, Nielsen, Kouzarides (b0105) 2014; 505
Shubina, Arifulin, Sorokin, Sosina, Tikhomirova, Serebryakova, Smirnova, Sokolov, Musinova, Sheval (b0090) 2020; 8
Pereira-Santana, Gamboa-Tuz, Zhao, Schranz, Vinuesa, Bayona, Rodríguez-Zapata, Castano (b0080) 2020; 16
Lischwe, Ochs, Reddy, Cook, Yeoman, Tan, Reichlin, Busch (b0065) 1985; 260
Snaar, Wiesmeijer, Jochemsen, Tanke, Dirks (b0100) 2000; 151
Yanagida, Hayano, Yamauchi, Shinkawa, Natsume, Isobe, Takahashi (b0140) 2004; 279
Lin, Gary, Yang, Clarke, Herschman (b0055) 1996; 271
Wang, Huang, Chang, Li (b0150) 2023; 14
Zhang, Li, Li, Li, Larkin, Lee, Storz, Antunes, Greenwold, Meredith, Odeen, Cui, Zhou, Xu, Pan, Wang, Jin, Zhang, Hu, Yang, Hu, Xiao, Yang, Liu, Xie, Yu, Lian, Wen, Zhang, Li, Zeng, Xiong, Liu, Zhou, Huang, An, Wang, Zheng, Xiong, Wang, Wang, Wang, Fan, da Fonseca, Alfaro-Nunez, Schubert, Orlando, Mourier, Howard, Ganapathy, Pfenning, Whitney, Rivas, Hara, Smith, Farre, Narayan, Slavov, Romanov, Borges, Machado, Khan, Springer, Gatesy, Hoffmann, Opazo, Hastad, Sawyer, Kim, Kim, Kim, Cho, Li, Huang, Bruford, Zhan, Dixon, Bertelsen, Derryberry, Warren, Wilson, Li, Ray, Green, O'Brien, Griffin, Johnson, Haussler, Ryder, Willerslev, Graves, Alstrom, Fjeldsa, Mindell, Edwards, Braun, Rahbek, Burt, Houde, Zhang, Yang, Wang, Jarvis, Gilbert, Wang (b0165) 2014; 346
Woese, Kandler, Wheelis (b0135) 1990; 87
Ai, Lin, Hsieh, Li (b0005) 1999; 23
Pellizzoni, Baccon, Charroux, Dreyfuss (b0075) 2001; 11
Bedford, Clarke (b0015) 2009; 33
Guillen-Chable F, Corona UR, Pereira-Santana A, Bayona A, Rodríguez-Zapata LC, Aquino C, Šebestová L, Vitale N, Hozak P, Castano E (2020) Fibrillarin Ribonuclease Activity is Dependent on the GAR Domain and Modulated by Phospholipids. Cells 9.
Wang, Chang, Tsai, Lee, Li (b0120) 2020; 747
Yu, Zhao, Li (b0160) 2018; 24
Tollervey, Lehtonen, Jansen, Kern, Hurt (b0110) 1993; 72
Wang, Li (b0115) 2012; 279
Yao, Xu, Wang, Shan, Luan, Wang, Wu, Yang, Xing, Yang, Chen (b0145) 2019
Blanc, Richard (b0025) 2017; 65
Smith, Erce, Lai, Tomasetig, Hart-Smith, Hamey, Wilkins (b0095) 2020; 432
Lischwe, Ahn, Yeoman, Busch, Cook (b0060) 1985; 24
Lischwe (10.1016/j.gene.2023.147345_b0065) 1985; 260
Shubina (10.1016/j.gene.2023.147345_b0090) 2020; 8
Wang (10.1016/j.gene.2023.147345_b0120) 2020; 747
Blanc (10.1016/j.gene.2023.147345_b0025) 2017; 65
Wang (10.1016/j.gene.2023.147345_b0115) 2012; 279
Ye (10.1016/j.gene.2023.147345_b0155) 2009; 106
Amiri (10.1016/j.gene.2023.147345_b0010) 1994; 176
Wang (10.1016/j.gene.2023.147345_b0130) 2015; 84
Lin (10.1016/j.gene.2023.147345_b0050) 2002; 21
Lischwe (10.1016/j.gene.2023.147345_b0060) 1985; 24
Snaar (10.1016/j.gene.2023.147345_b0100) 2000; 151
Wang (10.1016/j.gene.2023.147345_b0150) 2023; 14
Yao (10.1016/j.gene.2023.147345_b0145) 2019
Lovell (10.1016/j.gene.2023.147345_b0070) 2014; 15
Lin (10.1016/j.gene.2023.147345_b0055) 1996; 271
Hron (10.1016/j.gene.2023.147345_b0040) 2015; 16
10.1016/j.gene.2023.147345_b0035
Wang (10.1016/j.gene.2023.147345_b0125) 2017; 12
Russell (10.1016/j.gene.2023.147345_b0085) 2005; 33
Bedford (10.1016/j.gene.2023.147345_b0015) 2009; 33
Tessarz (10.1016/j.gene.2023.147345_b0105) 2014; 505
Chen (10.1016/j.gene.2023.147345_b0030) 2004; 136
Ai (10.1016/j.gene.2023.147345_b0005) 1999; 23
Yanagida (10.1016/j.gene.2023.147345_b0140) 2004; 279
Yu (10.1016/j.gene.2023.147345_b0160) 2018; 24
Pellizzoni (10.1016/j.gene.2023.147345_b0075) 2001; 11
Jones (10.1016/j.gene.2023.147345_b0045) 2001; 276
Smith (10.1016/j.gene.2023.147345_b0095) 2020; 432
Tollervey (10.1016/j.gene.2023.147345_b0110) 1993; 72
Berberich (10.1016/j.gene.2023.147345_b0020) 2017; 7
Woese (10.1016/j.gene.2023.147345_b0135) 1990; 87
Zhang (10.1016/j.gene.2023.147345_b0165) 2014; 346
Pereira-Santana (10.1016/j.gene.2023.147345_b0080) 2020; 16
References_xml – volume: 276
  start-page: 38645
  year: 2001
  end-page: 38651
  ident: b0045
  article-title: Direct interaction of the spinal muscular atrophy disease protein SMN with the small nucleolar RNA-associated protein fibrillarin
  publication-title: J. Biol. Chem
– volume: 279
  start-page: 932
  year: 2012
  end-page: 945
  ident: b0115
  article-title: Evolutionarily conserved protein arginine methyltransferases in non-mammalian animal systems
  publication-title: FEBS. Journal
– volume: 14
  start-page: 330
  year: 2023
  ident: b0150
  article-title: Identification and Characterization of Glycine- and Arginine-Rich Motifs in Proteins by a Novel GAR Motif Finder Program
  publication-title: Genes
– volume: 11
  start-page: 1079
  year: 2001
  end-page: 1088
  ident: b0075
  article-title: The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1
  publication-title: Curr. Biol
– reference: Guillen-Chable F, Corona UR, Pereira-Santana A, Bayona A, Rodríguez-Zapata LC, Aquino C, Šebestová L, Vitale N, Hozak P, Castano E (2020) Fibrillarin Ribonuclease Activity is Dependent on the GAR Domain and Modulated by Phospholipids. Cells 9.
– volume: 279
  start-page: 1607
  year: 2004
  end-page: 1614
  ident: b0140
  article-title: Human fibrillarin forms a sub-complex with splicing factor 2-associated p32, protein arginine methyltransferases, and tubulins alpha 3 and beta 1 that is independent of its association with preribosomal ribonucleoprotein complexes
  publication-title: J. Biol. Chem
– volume: 24
  start-page: 6025
  year: 1985
  end-page: 6028
  ident: b0060
  article-title: Clustering of Glycine and NG, NG-Dimethylarginine in Nucleolar Protein C23
  publication-title: Biochemistry
– volume: 16
  start-page: e1008318
  year: 2020
  ident: b0080
  article-title: Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin
  publication-title: PLoS. Comput. Biol
– volume: 21
  start-page: 447
  year: 2002
  end-page: 453
  ident: b0050
  article-title: Arginine methylation of recombinant murine fibrillarin by protein arginine methyltransferase
  publication-title: J. Protein. Chem
– volume: 72
  start-page: 443
  year: 1993
  end-page: 457
  ident: b0110
  article-title: Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly
  publication-title: Cell
– volume: 151
  start-page: 653
  year: 2000
  end-page: 662
  ident: b0100
  article-title: Mutational analysis of fibrillarin and its mobility in living human cells
  publication-title: J. Cell. Biol
– volume: 176
  start-page: 2124
  year: 1994
  end-page: 2127
  ident: b0010
  article-title: Fibrillarin-like proteins occur in the domain Archaea
  publication-title: J. Bacteriol
– volume: 87
  start-page: 4576
  year: 1990
  end-page: 4579
  ident: b0135
  article-title: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 33
  start-page: 2781
  year: 2005
  end-page: 2791
  ident: b0085
  article-title: Unusual features of fibrillarin cDNA and gene structure in Euglena gracilis: evolutionary conservation of core proteins and structural predictions for methylation-guide box C/D snoRNPs throughout the domain Eucarya
  publication-title: Nucleic. Acids. Res
– volume: 23
  start-page: 175
  year: 1999
  end-page: 180
  ident: b0005
  article-title: Arginine methylation of a glycine and arginine rich peptide derived from sequences of human FMRP and fibrillarin
  publication-title: Proc. Natl. Sci. Counc. Repub. China. B
– volume: 271
  start-page: 15034
  year: 1996
  end-page: 15044
  ident: b0055
  article-title: The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase
  publication-title: J. Biol. Chem
– volume: 106
  start-page: 13808
  year: 2009
  end-page: 13813
  ident: b0155
  article-title: Structural organization of box C/D RNA-guided RNA methyltransferase
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– year: 2019
  ident: b0145
  article-title: Nascent Pre-rRNA Sorting via Phase Separation Drives the Assembly of Dense Fibrillar Components in the Human Nucleolus
  publication-title: Mol. Cell
– volume: 84
  start-page: 101
  year: 2015
  end-page: 111
  ident: b0130
  article-title: A novel BLAST-Based Relative Distance (BBRD) method can effectively group members of protein arginine methyltransferases and suggest their evolutionary relationship
  publication-title: Mol. Phylogenet. Evol
– volume: 432
  start-page: 448
  year: 2020
  end-page: 466
  ident: b0095
  article-title: Crosstalk of Phosphorylation and Arginine Methylation in Disordered SRGG Repeats of Saccharomycescerevisiae Fibrillarin and Its Association with Nucleolar Localization
  publication-title: J. Mol. Biol
– volume: 8
  start-page: e9029
  year: 2020
  ident: b0090
  article-title: The GAR domain integrates functions that are necessary for the proper localization of fibrillarin (FBL) inside eukaryotic cells
  publication-title: PeerJ
– volume: 260
  start-page: 14304
  year: 1985
  end-page: 14310
  ident: b0065
  article-title: Purification and partial characterization of a nucleolar scleroderma antigen (Mr = 34,000; pI, 8.5) rich in NG
  publication-title: NG-dimethylarginine. J. Biol. Chem
– volume: 24
  start-page: 1625
  year: 2018
  end-page: 1633
  ident: b0160
  article-title: The multistructural forms of box C/D ribonucleoprotein particles
  publication-title: Rna
– volume: 65
  start-page: 8
  year: 2017
  end-page: 24
  ident: b0025
  article-title: Arginine Methylation: The Coming of Age
  publication-title: Mol. Cell
– volume: 747
  year: 2020
  ident: b0120
  article-title: Alternative 3' splice site selection of intron 5 within the prmt8 gene results in a novel variant widely distributed in vertebrates and specifically abundant in Aves
  publication-title: Gene
– volume: 346
  start-page: 1311
  year: 2014
  end-page: 1320
  ident: b0165
  article-title: Comparative genomics reveals insights into avian genome evolution and adaptation
  publication-title: Science
– volume: 505
  start-page: 564
  year: 2014
  end-page: 568
  ident: b0105
  article-title: Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification
  publication-title: Nature
– volume: 33
  start-page: 1
  year: 2009
  end-page: 13
  ident: b0015
  article-title: Protein Arginine Methylation in Mammals: Who, What, and Why
  publication-title: Molecular. Cell
– volume: 276
  start-page: 38645
  year: 2001
  ident: 10.1016/j.gene.2023.147345_b0045
  article-title: Direct interaction of the spinal muscular atrophy disease protein SMN with the small nucleolar RNA-associated protein fibrillarin
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M106161200
– volume: 271
  start-page: 15034
  year: 1996
  ident: 10.1016/j.gene.2023.147345_b0055
  article-title: The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.271.25.15034
– volume: 346
  start-page: 1311
  year: 2014
  ident: 10.1016/j.gene.2023.147345_b0165
  article-title: Comparative genomics reveals insights into avian genome evolution and adaptation
  publication-title: Science
  doi: 10.1126/science.1251385
– year: 2019
  ident: 10.1016/j.gene.2023.147345_b0145
  article-title: Nascent Pre-rRNA Sorting via Phase Separation Drives the Assembly of Dense Fibrillar Components in the Human Nucleolus
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.08.014
– volume: 279
  start-page: 932
  year: 2012
  ident: 10.1016/j.gene.2023.147345_b0115
  article-title: Evolutionarily conserved protein arginine methyltransferases in non-mammalian animal systems
  publication-title: FEBS. Journal
  doi: 10.1111/j.1742-4658.2012.08490.x
– volume: 24
  start-page: 6025
  year: 1985
  ident: 10.1016/j.gene.2023.147345_b0060
  article-title: Clustering of Glycine and NG, NG-Dimethylarginine in Nucleolar Protein C23
  publication-title: Biochemistry
  doi: 10.1021/bi00343a001
– volume: 21
  start-page: 447
  year: 2002
  ident: 10.1016/j.gene.2023.147345_b0050
  article-title: Arginine methylation of recombinant murine fibrillarin by protein arginine methyltransferase
  publication-title: J. Protein. Chem
  doi: 10.1023/A:1021394903025
– volume: 12
  start-page: e0185042
  year: 2017
  ident: 10.1016/j.gene.2023.147345_b0125
  article-title: Identification, chromosomal arrangements and expression analyses of the evolutionarily conserved prmt1 gene in chicken in comparison with its vertebrate paralogue prmt8
  publication-title: PLoS. One
  doi: 10.1371/journal.pone.0185042
– volume: 11
  start-page: 1079
  year: 2001
  ident: 10.1016/j.gene.2023.147345_b0075
  article-title: The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1
  publication-title: Curr. Biol
  doi: 10.1016/S0960-9822(01)00316-5
– volume: 33
  start-page: 2781
  year: 2005
  ident: 10.1016/j.gene.2023.147345_b0085
  article-title: Unusual features of fibrillarin cDNA and gene structure in Euglena gracilis: evolutionary conservation of core proteins and structural predictions for methylation-guide box C/D snoRNPs throughout the domain Eucarya
  publication-title: Nucleic. Acids. Res
  doi: 10.1093/nar/gki574
– volume: 33
  start-page: 1
  year: 2009
  ident: 10.1016/j.gene.2023.147345_b0015
  article-title: Protein Arginine Methylation in Mammals: Who, What, and Why
  publication-title: Molecular. Cell
  doi: 10.1016/j.molcel.2008.12.013
– volume: 432
  start-page: 448
  year: 2020
  ident: 10.1016/j.gene.2023.147345_b0095
  article-title: Crosstalk of Phosphorylation and Arginine Methylation in Disordered SRGG Repeats of Saccharomycescerevisiae Fibrillarin and Its Association with Nucleolar Localization
  publication-title: J. Mol. Biol
  doi: 10.1016/j.jmb.2019.11.006
– volume: 15
  start-page: 565
  year: 2014
  ident: 10.1016/j.gene.2023.147345_b0070
  article-title: Conserved syntenic clusters of protein coding genes are missing in birds
  publication-title: Genome. Biol
  doi: 10.1186/s13059-014-0565-1
– volume: 16
  start-page: 164
  year: 2015
  ident: 10.1016/j.gene.2023.147345_b0040
  article-title: Hidden genes in birds
  publication-title: Genome. Biol
  doi: 10.1186/s13059-015-0724-z
– volume: 16
  start-page: e1008318
  year: 2020
  ident: 10.1016/j.gene.2023.147345_b0080
  article-title: Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin
  publication-title: PLoS. Comput. Biol
  doi: 10.1371/journal.pcbi.1008318
– volume: 176
  start-page: 2124
  year: 1994
  ident: 10.1016/j.gene.2023.147345_b0010
  article-title: Fibrillarin-like proteins occur in the domain Archaea
  publication-title: J. Bacteriol
  doi: 10.1128/jb.176.7.2124-2127.1994
– volume: 151
  start-page: 653
  year: 2000
  ident: 10.1016/j.gene.2023.147345_b0100
  article-title: Mutational analysis of fibrillarin and its mobility in living human cells
  publication-title: J. Cell. Biol
  doi: 10.1083/jcb.151.3.653
– volume: 24
  start-page: 1625
  year: 2018
  ident: 10.1016/j.gene.2023.147345_b0160
  article-title: The multistructural forms of box C/D ribonucleoprotein particles
  publication-title: Rna
  doi: 10.1261/rna.068312.118
– volume: 72
  start-page: 443
  year: 1993
  ident: 10.1016/j.gene.2023.147345_b0110
  article-title: Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90120-F
– volume: 505
  start-page: 564
  year: 2014
  ident: 10.1016/j.gene.2023.147345_b0105
  article-title: Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification
  publication-title: Nature
  doi: 10.1038/nature12819
– volume: 7
  start-page: 1909
  year: 2017
  ident: 10.1016/j.gene.2023.147345_b0020
  article-title: Identification and in silico structural analysis of Gallus gallus protein arginine methyltransferase 4 (PRMT4)
  publication-title: FEBS. Open. Bio
  doi: 10.1002/2211-5463.12323
– volume: 106
  start-page: 13808
  year: 2009
  ident: 10.1016/j.gene.2023.147345_b0155
  article-title: Structural organization of box C/D RNA-guided RNA methyltransferase
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.0905128106
– volume: 65
  start-page: 8
  year: 2017
  ident: 10.1016/j.gene.2023.147345_b0025
  article-title: Arginine Methylation: The Coming of Age
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.11.003
– volume: 84
  start-page: 101
  year: 2015
  ident: 10.1016/j.gene.2023.147345_b0130
  article-title: A novel BLAST-Based Relative Distance (BBRD) method can effectively group members of protein arginine methyltransferases and suggest their evolutionary relationship
  publication-title: Mol. Phylogenet. Evol
  doi: 10.1016/j.ympev.2014.12.002
– volume: 136
  start-page: 371
  year: 2004
  ident: 10.1016/j.gene.2023.147345_b0030
  article-title: Effects of adenosine dialdehyde treatment on in vitro and in vivo stable protein methylation in HeLa cells
  publication-title: J. Biochem
  doi: 10.1093/jb/mvh131
– volume: 87
  start-page: 4576
  year: 1990
  ident: 10.1016/j.gene.2023.147345_b0135
  article-title: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.87.12.4576
– volume: 747
  year: 2020
  ident: 10.1016/j.gene.2023.147345_b0120
  article-title: Alternative 3' splice site selection of intron 5 within the prmt8 gene results in a novel variant widely distributed in vertebrates and specifically abundant in Aves
  publication-title: Gene
  doi: 10.1016/j.gene.2020.144684
– volume: 279
  start-page: 1607
  year: 2004
  ident: 10.1016/j.gene.2023.147345_b0140
  article-title: Human fibrillarin forms a sub-complex with splicing factor 2-associated p32, protein arginine methyltransferases, and tubulins alpha 3 and beta 1 that is independent of its association with preribosomal ribonucleoprotein complexes
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M305604200
– volume: 14
  start-page: 330
  year: 2023
  ident: 10.1016/j.gene.2023.147345_b0150
  article-title: Identification and Characterization of Glycine- and Arginine-Rich Motifs in Proteins by a Novel GAR Motif Finder Program
  publication-title: Genes
  doi: 10.3390/genes14020330
– volume: 8
  start-page: e9029
  year: 2020
  ident: 10.1016/j.gene.2023.147345_b0090
  article-title: The GAR domain integrates functions that are necessary for the proper localization of fibrillarin (FBL) inside eukaryotic cells
  publication-title: PeerJ
  doi: 10.7717/peerj.9029
– ident: 10.1016/j.gene.2023.147345_b0035
  doi: 10.3390/cells9051143
– volume: 23
  start-page: 175
  year: 1999
  ident: 10.1016/j.gene.2023.147345_b0005
  article-title: Arginine methylation of a glycine and arginine rich peptide derived from sequences of human FMRP and fibrillarin
  publication-title: Proc. Natl. Sci. Counc. Repub. China. B
– volume: 260
  start-page: 14304
  year: 1985
  ident: 10.1016/j.gene.2023.147345_b0065
  article-title: Purification and partial characterization of a nucleolar scleroderma antigen (Mr = 34,000; pI, 8.5) rich in NG
  publication-title: NG-dimethylarginine. J. Biol. Chem
  doi: 10.1016/S0021-9258(17)38718-5
SSID ssj0000552
Score 2.4109938
Snippet •A nine-exon configuration of the fibrillarin gene is conserved in vertebrates.•Internal exons are of the same lengths except exon 2 and 3 encoding the GAR...
The nucleolar rRNA 2'-O-methyltransferase fibrillarin (FBL) contains a highly conserved methyltransferase domain at the C-terminus and a diverse glycine...
The nucleolar rRNA 2′-O-methyltransferase fibrillarin (FBL) contains a highly conserved methyltransferase domain at the C-terminus and a diverse glycine...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 147345
SubjectTerms Animals
Arginine
Birds
chickens
domain
eukaryotic cells
Exon length
exons
Exons - genetics
Fibrillarin
Glycine
Glycine arginine rich (GAR) domain
Methyltransferases
phenylalanine
Reptiles
Reptiles - genetics
RNA
species
Vertebrates - genetics
Title The conservation and diversity of the exons encoding the glycine and arginine rich domain of the fibrillarin gene in vertebrates, with special focus on reptiles and birds
URI https://dx.doi.org/10.1016/j.gene.2023.147345
https://www.ncbi.nlm.nih.gov/pubmed/36893875
https://www.proquest.com/docview/2786101834
https://www.proquest.com/docview/2834223495
Volume 866
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUhwqKAFugWqQUJcIKw3tvM4LhXVAqIXqNSb5fhRFrVJtQ-pvfCD-is7kwcPCXrgtNmsnXUyk5lv7G_GAC_lxDk5iVniyVsnqtJ5Uom8SrKQUo8oXOk53_nzUTY7Vh9P9MkGHAy5MEyr7G1_Z9Nba92fGfdPc3wxn4-_CMlZkoxQeGe5jBPNlcpZy9_--EXzEFp3KwkcLVHrPnGm43iRjLhUZirJYOSSU5r-7pz-BT5bJ3T4ALZ69IjTboAPYSPU27AzrSlyPr_CV9jyOduJ8m24-244uv9b0cEduCbNQMck6n46Fm3t0Q_8DGwiEijEcElNkMtcsndrT52eXfEyfNveLk55a4mAZEe_oW_O7bweukZOIyD1ov9DvnekT972mdeoCdm-QZ78Rc7xJOXH2Lj1EmkYCybYnIVle_1qvvDLR3B8-P7rwSzpd2xInFRilbhQplbEUDhdCe1dOgmi8EpTkCdiZp31BFCKSlW-FMGTzCgeIrwSCBRmVjsvH8Nm3dRhF7C0KWEllxek6srrWPi8cCKURQyOripG8HoQlbnoCnOYgbH23fDNGRas6QQ7Aj1I0_yhXoY8x639XgyiN_Te8WKKrUOzXpo0LzKudibVLW3oV4JfFIOO4EmnNz_HKjNCihQs7v3nyJ7CPf7GRIZUP4PN1WIdnhM-WlX77QuwD3emHz7Njm4A9DcR8w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9VAEJ4AxoAPREHxCOqYGF60nj3dbi-PSCRHBV6EhLfNdi94DLTkXBJ58Qf5K5npxUuCPPjUpt1tt53ZmW925wLwWo6slaOQRo60dZSUKotKkZVR6mPqEYQtHMc7Hx2n49Pk05k6W4L9PhaG3So72d_K9EZad1eG3d8cXk0mwy9CcpQkIxSuLJeqZbiX0PTlMgbvfvz28xBKtVsJbC5R8y5ypnXyIiJxrsxYksTIJMc03a6d_oU-Gy108BDWO_iIe-0IH8GSrzZgc68i0_nyGnexcehsVso34P77_uzBH1kHN-EnsQZa9qLu1mPRVA5d76CBdUBChei_UxPkPJes3ppL5xfXvA_ftDfTc64t4ZEE6Vd09aWZVH3XwHEExF_0PuRvRzpy3WfepCZo-xZ59Rc5yJO4H0NtFzOkYUzZw-bCz5rnl5Opmz2G04MPJ_vjqCvZEFmZiHlkfREbEXxuVSmUs_HIi9wliqw8EVJjjSOEkpdJ6QrhHRGNDCICLJ5QYWqUdfIJrFR15Z8CFiYmsGSznHg9cSrkLsut8EUevKWnigG86Umlr9rMHLp3Wfum-eM0E1a3hB2A6qmp_-IvTarjzn6vetJrmni8m2IqXy9mOs7ylNOdyeSONnSX8BcZoQPYavnm11hlSlCRrMVn_zmyl7A6Pjk61Icfjz9vwxrfYa-GWO3Ayny68M8JLM3LF81kuAEPwBOB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+conservation+and+diversity+of+the+exons+encoding+the+glycine+and+arginine+rich+domain+of+the+fibrillarin+gene+in+vertebrates%2C+with+special+focus+on+reptiles+and+birds&rft.jtitle=Gene&rft.au=Wang%2C+Yi-Chun&rft.au=Chang%2C+Chien-Ping&rft.au=Lai%2C+Yu-Chuan&rft.au=Chan%2C+Chi-Ho&rft.date=2023-05-25&rft.issn=0378-1119&rft.volume=866&rft.spage=147345&rft_id=info:doi/10.1016%2Fj.gene.2023.147345&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gene_2023_147345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1119&client=summon