Genome-wide identification and expression analysis reveal the role of histone methyltransferase and demethylase genes in heat stress response in potato (Solanum tuberosum L.)

Potato (Solanum tuberosum L.), the third most important non-cereal crop, is sensitive to high temperature. Histone modifications have been known to regulate various abiotic stress responses. However, the role of histone methyltransferases and demethylases remain unexplored in potato under heat stres...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1868; no. 1; p. 130507
Main Authors Mali, Surbhi, Zinta, Gaurav
Format Journal Article
LanguageEnglish
Published Netherlands 01.01.2024
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2023.130507

Cover

Loading…
Abstract Potato (Solanum tuberosum L.), the third most important non-cereal crop, is sensitive to high temperature. Histone modifications have been known to regulate various abiotic stress responses. However, the role of histone methyltransferases and demethylases remain unexplored in potato under heat stress. Potato genome database was used for genome-wide analysis of StPRMT and StHDMA gene families, which were further characterized by analyzing gene structure, conserved motif, domain organization, sub-cellular localization, promoter region and phylogenetic relationships. Additionally, expression profiling under high-temperature stress in leaf and stolon tissue of heat contrasting potato genotypes was done to study their role in response to high temperature stress. The genome-wide analysis led to identification of nine StPRMT and eleven StHDMA genes. Structural analysis, including conserved motifs, exon/intron structure and phylogenetic relationships classified StPRMT and StHDMA gene families into two classes viz. Class I and Class II. A variety of cis-regulatory elements were explored in the promoter region associated with light, developmental, hormonal and stress responses. Prediction of sub-cellular localization of StPRMT proteins revealed their occurrence in nucleus and cytoplasm, whereas StHDMA proteins were observed in different sub-cellular compartments. Furthermore, expression profiling of StPRMT and StHDMA gene family members revealed genes responding to heat stress. Heat-inducible expression of StPRMT1, StPRMT3, StPRMT4 and StPRMT5 in leaf and stolon tissues of HS and HT cultivar indicated them as probable candidates for enhancing thermotolerance in potato. However, StHDMAs responded dynamically in leaf and stolon tissue of heat contrasting genotypes under high temperature. The current study presents a detailed analysis of histone modifiers in potato and indicates their role as an important epigenetic regulators modulating heat tolerance. Understanding epigenetic mechanisms underlying heat tolerance in potato will contribute towards breeding of thermotolerant potato varieties.
AbstractList Potato (Solanum tuberosum L.), the third most important non-cereal crop, is sensitive to high temperature. Histone modifications have been known to regulate various abiotic stress responses. However, the role of histone methyltransferases and demethylases remain unexplored in potato under heat stress.BACKGROUNDPotato (Solanum tuberosum L.), the third most important non-cereal crop, is sensitive to high temperature. Histone modifications have been known to regulate various abiotic stress responses. However, the role of histone methyltransferases and demethylases remain unexplored in potato under heat stress.Potato genome database was used for genome-wide analysis of StPRMT and StHDMA gene families, which were further characterized by analyzing gene structure, conserved motif, domain organization, sub-cellular localization, promoter region and phylogenetic relationships. Additionally, expression profiling under high-temperature stress in leaf and stolon tissue of heat contrasting potato genotypes was done to study their role in response to high temperature stress.METHODSPotato genome database was used for genome-wide analysis of StPRMT and StHDMA gene families, which were further characterized by analyzing gene structure, conserved motif, domain organization, sub-cellular localization, promoter region and phylogenetic relationships. Additionally, expression profiling under high-temperature stress in leaf and stolon tissue of heat contrasting potato genotypes was done to study their role in response to high temperature stress.The genome-wide analysis led to identification of nine StPRMT and eleven StHDMA genes. Structural analysis, including conserved motifs, exon/intron structure and phylogenetic relationships classified StPRMT and StHDMA gene families into two classes viz. Class I and Class II. A variety of cis-regulatory elements were explored in the promoter region associated with light, developmental, hormonal and stress responses. Prediction of sub-cellular localization of StPRMT proteins revealed their occurrence in nucleus and cytoplasm, whereas StHDMA proteins were observed in different sub-cellular compartments. Furthermore, expression profiling of StPRMT and StHDMA gene family members revealed genes responding to heat stress. Heat-inducible expression of StPRMT1, StPRMT3, StPRMT4 and StPRMT5 in leaf and stolon tissues of HS and HT cultivar indicated them as probable candidates for enhancing thermotolerance in potato. However, StHDMAs responded dynamically in leaf and stolon tissue of heat contrasting genotypes under high temperature.RESULTSThe genome-wide analysis led to identification of nine StPRMT and eleven StHDMA genes. Structural analysis, including conserved motifs, exon/intron structure and phylogenetic relationships classified StPRMT and StHDMA gene families into two classes viz. Class I and Class II. A variety of cis-regulatory elements were explored in the promoter region associated with light, developmental, hormonal and stress responses. Prediction of sub-cellular localization of StPRMT proteins revealed their occurrence in nucleus and cytoplasm, whereas StHDMA proteins were observed in different sub-cellular compartments. Furthermore, expression profiling of StPRMT and StHDMA gene family members revealed genes responding to heat stress. Heat-inducible expression of StPRMT1, StPRMT3, StPRMT4 and StPRMT5 in leaf and stolon tissues of HS and HT cultivar indicated them as probable candidates for enhancing thermotolerance in potato. However, StHDMAs responded dynamically in leaf and stolon tissue of heat contrasting genotypes under high temperature.The current study presents a detailed analysis of histone modifiers in potato and indicates their role as an important epigenetic regulators modulating heat tolerance.CONCLUSIONThe current study presents a detailed analysis of histone modifiers in potato and indicates their role as an important epigenetic regulators modulating heat tolerance.Understanding epigenetic mechanisms underlying heat tolerance in potato will contribute towards breeding of thermotolerant potato varieties.GENERAL SIGNIFICANCEUnderstanding epigenetic mechanisms underlying heat tolerance in potato will contribute towards breeding of thermotolerant potato varieties.
Potato (Solanum tuberosum L.), the third most important non-cereal crop, is sensitive to high temperature. Histone modifications have been known to regulate various abiotic stress responses. However, the role of histone methyltransferases and demethylases remain unexplored in potato under heat stress. Potato genome database was used for genome-wide analysis of StPRMT and StHDMA gene families, which were further characterized by analyzing gene structure, conserved motif, domain organization, sub-cellular localization, promoter region and phylogenetic relationships. Additionally, expression profiling under high-temperature stress in leaf and stolon tissue of heat contrasting potato genotypes was done to study their role in response to high temperature stress. The genome-wide analysis led to identification of nine StPRMT and eleven StHDMA genes. Structural analysis, including conserved motifs, exon/intron structure and phylogenetic relationships classified StPRMT and StHDMA gene families into two classes viz. Class I and Class II. A variety of cis-regulatory elements were explored in the promoter region associated with light, developmental, hormonal and stress responses. Prediction of sub-cellular localization of StPRMT proteins revealed their occurrence in nucleus and cytoplasm, whereas StHDMA proteins were observed in different sub-cellular compartments. Furthermore, expression profiling of StPRMT and StHDMA gene family members revealed genes responding to heat stress. Heat-inducible expression of StPRMT1, StPRMT3, StPRMT4 and StPRMT5 in leaf and stolon tissues of HS and HT cultivar indicated them as probable candidates for enhancing thermotolerance in potato. However, StHDMAs responded dynamically in leaf and stolon tissue of heat contrasting genotypes under high temperature. The current study presents a detailed analysis of histone modifiers in potato and indicates their role as an important epigenetic regulators modulating heat tolerance. Understanding epigenetic mechanisms underlying heat tolerance in potato will contribute towards breeding of thermotolerant potato varieties.
Potato (Solanum tuberosum L.), the third most important non-cereal crop, is sensitive to high temperature. Histone modifications have been known to regulate various abiotic stress responses. However, the role of histone methyltransferases and demethylases remain unexplored in potato under heat stress. Potato genome database was used for genome-wide analysis of StPRMT and StHDMA gene families, which were further characterized by analyzing gene structure, conserved motif, domain organization, sub-cellular localization, promoter region and phylogenetic relationships. Additionally, expression profiling under high-temperature stress in leaf and stolon tissue of heat contrasting potato genotypes was done to study their role in response to high temperature stress. The genome-wide analysis led to identification of nine StPRMT and eleven StHDMA genes. Structural analysis, including conserved motifs, exon/intron structure and phylogenetic relationships classified StPRMT and StHDMA gene families into two classes viz. Class I and Class II. A variety of cis-regulatory elements were explored in the promoter region associated with light, developmental, hormonal and stress responses. Prediction of sub-cellular localization of StPRMT proteins revealed their occurrence in nucleus and cytoplasm, whereas StHDMA proteins were observed in different sub-cellular compartments. Furthermore, expression profiling of StPRMT and StHDMA gene family members revealed genes responding to heat stress. Heat-inducible expression of StPRMT1, StPRMT3, StPRMT4 and StPRMT5 in leaf and stolon tissues of HS and HT cultivar indicated them as probable candidates for enhancing thermotolerance in potato. However, StHDMAs responded dynamically in leaf and stolon tissue of heat contrasting genotypes under high temperature. The current study presents a detailed analysis of histone modifiers in potato and indicates their role as an important epigenetic regulators modulating heat tolerance. Understanding epigenetic mechanisms underlying heat tolerance in potato will contribute towards breeding of thermotolerant potato varieties.
ArticleNumber 130507
Author Zinta, Gaurav
Mali, Surbhi
Author_xml – sequence: 1
  givenname: Surbhi
  surname: Mali
  fullname: Mali, Surbhi
– sequence: 2
  givenname: Gaurav
  surname: Zinta
  fullname: Zinta, Gaurav
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37925032$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1vFSEUJabGvlb_gTEs62JGPubTnWm0mryki9Y1geHi42UGRmCq70_1N5bXaTcuLAnh3ss5JwfOGTpx3gFC7ykpKaHNp32plPwFrmSE8ZJyUpP2FdrQrmVFR0hzgjaEk6qoaFOforMY9ySvuq_foFPe9qwmnG3Q_RU4P0Hxx2rAebtkjR1kst5h6TSGv3OAGNdWjodoIw5wB3LEaQc4-BGwN3hnY8r28ARpdxhTkC4aCDLCo4iGdX7ss2OI2Dq8A5lwTEf1rBhn7_Jtns8-yeTxxY0fpVsmnBYFwcdcbcuPb9FrI8cI757Oc_Tz29fby-_F9vrqx-WXbTHwiqRi0G3Fq6Y2DDqllOl7BW0j9VBDp4E2tKW9MtJktDZ6ML00hGWS7kBS0nJ-ji5W3Tn43wvEJCYbBxizJfBLFJzWFe2anvYvQlnXNZz1bVVl6Icn6KIm0GIOdpLhIJ7jyIDPK2DIL44BjBhsegwjf6kdBSXimL3YizV7ccxerNlncvUP-Vn_v7QHu6q6Hg
CitedBy_id crossref_primary_10_3390_plants13212996
crossref_primary_10_1016_j_bbagen_2024_130708
Cites_doi 10.3390/ijms232112793
10.1093/nar/28.1.231
10.1002/tcr.201800082
10.1038/sj.emboj.7601647
10.1186/s12864-021-08245-2
10.3389/fpls.2022.933740
10.1093/plphys/kiab409
10.1093/plphys/kiad493
10.1186/s12870-018-1388-0
10.1105/tpc.107.052373
10.3389/fpls.2023.1151057
10.1111/j.0031-9317.2004.0273.x
10.1093/bioinformatics/btu817
10.3390/plants11162077
10.1038/sj.embor.7401111
10.3389/fpls.2016.01800
10.1093/pcp/pcv098
10.1007/s00344-022-10761-8
10.1111/j.1365-313X.2011.04534.x
10.1186/1471-2164-14-57
10.1006/meth.2001.1262
10.3389/fpls.2017.00639
10.1007/s13258-021-01147-3
10.1186/s13059-017-1235-x
10.1104/pp.19.00416
10.1080/15592324.2021.1950445
10.3390/plants9111617
10.3389/fpls.2015.00607
10.3389/fbinf.2022.818619
10.1016/S0960-9822(03)00243-4
10.1016/j.molcel.2005.04.003
10.1093/molbev/msw054
10.1038/nature04433
10.1002/mrd.22024
10.1371/journal.pone.0022664
10.1186/s13059-019-1731-2
10.1007/s00018-006-6274-5
10.1080/07388551.2016.1274876
10.3390/plants11030322
10.1093/nar/30.1.325
10.1146/annurev.arplant.043008.091939
10.3389/fpls.2019.00800
10.1016/j.cell.2007.02.005
10.1016/j.cell.2004.12.012
10.1038/s41438-021-00619-7
10.1016/j.bbapap.2006.08.008
10.1093/jxb/eraa468
10.4061/2011/163827
10.1104/pp.108.124727
10.1104/pp.19.00596
10.3389/fpls.2018.01228
10.1007/s00709-019-01364-4
10.1093/nar/gkg563
10.1590/1678-4685-gmb-2018-0141
10.1210/er.2004-0008
10.1104/pp.107.099531
10.1186/s12870-021-03332-8
10.1186/s12870-020-02618-7
10.1105/tpc.110.081356
ContentType Journal Article
Copyright Copyright © 2023. Published by Elsevier B.V.
Copyright_xml – notice: Copyright © 2023. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2023.130507
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 37925032
10_1016_j_bbagen_2023_130507
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CITATION
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AACTN
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c340t-cd743465f2e8bbbf99be76adc5e8de161719bfafc34dfdcf9af02cd7d8ea10733
ISSN 0304-4165
1872-8006
IngestDate Tue Aug 05 09:28:35 EDT 2025
Fri Jul 11 05:31:41 EDT 2025
Thu Apr 03 07:00:34 EDT 2025
Thu Apr 24 23:09:07 EDT 2025
Tue Jul 01 00:22:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Epigenetics
Climate change
Potato
Thermotolerance
Histone methylation and demethylation
High temperature stress
Language English
License Copyright © 2023. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-cd743465f2e8bbbf99be76adc5e8de161719bfafc34dfdcf9af02cd7d8ea10733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37925032
PQID 2886329744
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3154186919
proquest_miscellaneous_2886329744
pubmed_primary_37925032
crossref_citationtrail_10_1016_j_bbagen_2023_130507
crossref_primary_10_1016_j_bbagen_2023_130507
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-00
2024-Jan
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-00
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2024
References Qian (10.1016/j.bbagen.2023.130507_bb0020) 2006; 63
Ling (10.1016/j.bbagen.2023.130507_bb0265) 2022; 23
Malankar (10.1016/j.bbagen.2023.130507_bb0350) 2023
Meller (10.1016/j.bbagen.2023.130507_bb0195) 2018; 9
Livak (10.1016/j.bbagen.2023.130507_bb0250) 2001; 25
Panara (10.1016/j.bbagen.2023.130507_bb0255) 2022; 11
Pajoro (10.1016/j.bbagen.2023.130507_bb0340) 2017; 18
Lopez (10.1016/j.bbagen.2023.130507_bb0125) 2022; 11
Chen (10.1016/j.bbagen.2023.130507_bb0225) 2018; 289660
Goel (10.1016/j.bbagen.2023.130507_bb0310) 2023; 14
Zhang (10.1016/j.bbagen.2023.130507_bb0085) 2011; 23
Borchetia (10.1016/j.bbagen.2023.130507_bb0110) 2023; 42
Alvarez-Venegas (10.1016/j.bbagen.2023.130507_bb0325) 2003; 13
Zhang (10.1016/j.bbagen.2023.130507_bb0305) 2020; 9
Kondhare (10.1016/j.bbagen.2023.130507_bb0170) 2021; 187
Hung (10.1016/j.bbagen.2023.130507_bb0270) 2018; 46
Jing (10.1016/j.bbagen.2023.130507_bb0330) 2019; 181
Han (10.1016/j.bbagen.2023.130507_bb0010) 2016; 7
Dutta (10.1016/j.bbagen.2023.130507_bb0160) 2023
Dutt (10.1016/j.bbagen.2023.130507_bb0155) 2017; 37
Huang (10.1016/j.bbagen.2023.130507_bb0280) 2019; 10
Mazzoleni (10.1016/j.bbagen.2023.130507_bb0260) 2015; 56
Gasteiger (10.1016/j.bbagen.2023.130507_bb0215) 2003; 31
Blackwell (10.1016/j.bbagen.2023.130507_bb0060) 2012; 79
Kumar (10.1016/j.bbagen.2023.130507_bb0345) 2020; 182
Lescot (10.1016/j.bbagen.2023.130507_bb0235) 2002; 30
Davis (10.1016/j.bbagen.2023.130507_bb0245) 2022; 2
Ding (10.1016/j.bbagen.2023.130507_bb0335) 2011; 66
Zeng (10.1016/j.bbagen.2023.130507_bb0190) 2019; 20
Bedford (10.1016/j.bbagen.2023.130507_bb0050) 2005; 18
Kumar (10.1016/j.bbagen.2023.130507_bb0230) 2016; 33
Hou (10.1016/j.bbagen.2023.130507_bb0320) 2019; 256
Zhou (10.1016/j.bbagen.2023.130507_bb0135) 2022; 23
Mali (10.1016/j.bbagen.2023.130507_bb0185) 2023
Mali (10.1016/j.bbagen.2023.130507_bb0275) 2023; 34
Mali (10.1016/j.bbagen.2023.130507_bb0150) 2022
Wang (10.1016/j.bbagen.2023.130507_bb0080) 2007; 26
Yu (10.1016/j.bbagen.2023.130507_bb0240) 2014; 9
Niu (10.1016/j.bbagen.2023.130507_bb0090) 2007; 8
David Law (10.1016/j.bbagen.2023.130507_bb0200) 2004; 120
Fan (10.1016/j.bbagen.2023.130507_bb0115) 2018; 18
Xu (10.1016/j.bbagen.2023.130507_bb0130) 2015; 6
Liang (10.1016/j.bbagen.2023.130507_bb0300) 2021; 43
Kouzarides (10.1016/j.bbagen.2023.130507_bb0005) 2007; 128
Pahlich (10.1016/j.bbagen.2023.130507_bb0055) 2006; 1764
Hirsch (10.1016/j.bbagen.2023.130507_bb0205) 2014; 7
Tsukada (10.1016/j.bbagen.2023.130507_bb0035) 2006; 439
Lee (10.1016/j.bbagen.2023.130507_bb0070) 2005; 26
Fulton (10.1016/j.bbagen.2023.130507_bb0045) 2018; 18
Wang (10.1016/j.bbagen.2023.130507_bb0295) 2020; 20
Ai (10.1016/j.bbagen.2023.130507_bb0175) 2021; 8
Liu (10.1016/j.bbagen.2023.130507_bb0015) 2010; 61
Peng (10.1016/j.bbagen.2023.130507_bb0145) 2017; 8
Shao (10.1016/j.bbagen.2023.130507_bb0315) 2023
Jiang (10.1016/j.bbagen.2023.130507_bb0095) 2007; 19
Li (10.1016/j.bbagen.2023.130507_bb0140) 2020; 43
Shi (10.1016/j.bbagen.2023.130507_bb0040) 2004; 119
Ahmad (10.1016/j.bbagen.2023.130507_bb0025) 2011; 6
Kumar (10.1016/j.bbagen.2023.130507_bb0180) 2021; 72
Schultz (10.1016/j.bbagen.2023.130507_bb0210) 2000; 28
Luo (10.1016/j.bbagen.2023.130507_bb0030) 2014; 32
Niu (10.1016/j.bbagen.2023.130507_bb0100) 2008; 148
Aiese Cigliano (10.1016/j.bbagen.2023.130507_bb0120) 2013; 14
Yu (10.1016/j.bbagen.2023.130507_bb0065) 2011; 2011
Hu (10.1016/j.bbagen.2023.130507_bb0220) 2015; 31
Dutta (10.1016/j.bbagen.2023.130507_bb0165) 2022; 13
Pei (10.1016/j.bbagen.2023.130507_bb0075) 2007; 144
Saidi (10.1016/j.bbagen.2023.130507_bb0290) 2019; 27
Yamaguchi (10.1016/j.bbagen.2023.130507_bb0355) 2021; 16
Zheng (10.1016/j.bbagen.2023.130507_bb0105) 2021; 21
Wang (10.1016/j.bbagen.2023.130507_bb0285) 2016; 7
References_xml – volume: 23
  start-page: 12793
  year: 2022
  ident: 10.1016/j.bbagen.2023.130507_bb0265
  article-title: Genome-wide identification of maize protein arginine methyltransferase genes and functional analysis of ZmPRMT1 reveal essential roles in Arabidopsis flowering regulation and abiotic stress tolerance
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms232112793
– volume: 28
  start-page: 231
  year: 2000
  ident: 10.1016/j.bbagen.2023.130507_bb0210
  article-title: SMART: a web-based tool for the study of genetically mobile domains
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.231
– volume: 18
  start-page: 1792
  year: 2018
  ident: 10.1016/j.bbagen.2023.130507_bb0045
  article-title: Mechanisms and inhibitors of histone arginine methylation
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201800082
– volume: 26
  start-page: 1934
  year: 2007
  ident: 10.1016/j.bbagen.2023.130507_bb0080
  article-title: SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601647
– volume: 23
  start-page: 1
  year: 2022
  ident: 10.1016/j.bbagen.2023.130507_bb0135
  article-title: Identification and expression analysis of histone modification gene (HM) family during somatic embryogenesis of oil palm
  publication-title: BMC Genomics
  doi: 10.1186/s12864-021-08245-2
– volume: 13
  year: 2022
  ident: 10.1016/j.bbagen.2023.130507_bb0165
  article-title: The interplay of DNA methyltransferases and demethylases with tuberization genes in potato (Solanum tuberosum L.) genotypes under high temperature
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.933740
– volume: 187
  start-page: 1071
  year: 2021
  ident: 10.1016/j.bbagen.2023.130507_bb0170
  article-title: Development of aerial and belowground tubers in potato is governed by photoperiod and epigenetic mechanism
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiab409
– year: 2023
  ident: 10.1016/j.bbagen.2023.130507_bb0350
  article-title: The phasiRNA siRD29 (−) regulates GIBBERELLIN 3-OXIDASE 3 during stolon-to-tuber transitions in potato
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiad493
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.bbagen.2023.130507_bb0115
  article-title: Identification and characterization of histone modification gene family reveal their critical responses to flower induction in apple
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1388-0
– start-page: 1
  year: 2023
  ident: 10.1016/j.bbagen.2023.130507_bb0160
  article-title: Transcriptional and post-transcriptional regulation of Tuberization in potato (Solanum tuberosum L.)
  publication-title: J. Plant Growth Regul.
– volume: 7
  start-page: 7
  year: 2016
  ident: 10.1016/j.bbagen.2023.130507_bb0285
  article-title: Genome-wide identification and comparative analysis of cytosine-5 DNA methyltransferase and demethylase families in wild and cultivated peanut
  publication-title: Front. Plant Sci.
– volume: 19
  start-page: 2975
  year: 2007
  ident: 10.1016/j.bbagen.2023.130507_bb0095
  article-title: Arabidopsis relatives of the human lysine-specific Demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.052373
– volume: 14
  start-page: 1151057
  year: 2023
  ident: 10.1016/j.bbagen.2023.130507_bb0310
  article-title: Functional divergence of heat shock factors (Hsfs) during heat stress and recovery at the tissue and developmental scales in C4 grain amaranth (Amaranthus hypochondriacus)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2023.1151057
– volume: 120
  start-page: 642
  year: 2004
  ident: 10.1016/j.bbagen.2023.130507_bb0200
  article-title: Changes in histone H3 and H4 multi-acetylation during natural and forced dormancy break in potato tubers
  publication-title: Physiol. Plant.
  doi: 10.1111/j.0031-9317.2004.0273.x
– volume: 31
  start-page: 1296
  year: 2015
  ident: 10.1016/j.bbagen.2023.130507_bb0220
  article-title: GSDS 2.0: an upgraded gene feature visualization server
  publication-title: Bioinform.
  doi: 10.1093/bioinformatics/btu817
– volume: 11
  start-page: 2077
  year: 2022
  ident: 10.1016/j.bbagen.2023.130507_bb0255
  article-title: Genome-wide identification and spatial expression analysis of histone modification gene families in the rubber dandelion Taraxacum kok-saghyz
  publication-title: Plants
  doi: 10.3390/plants11162077
– volume: 8
  start-page: 1190
  year: 2007
  ident: 10.1016/j.bbagen.2023.130507_bb0090
  article-title: Regulation of flowering time by the protein arginine methyltransferase AtPRMT10
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7401111
– volume: 7
  start-page: 1800
  year: 2016
  ident: 10.1016/j.bbagen.2023.130507_bb0010
  article-title: Genome-wide analysis of soybean JmjC domain-containing proteins suggests evolutionary conservation following whole-genome duplication
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01800
– volume: 56
  start-page: 1697
  year: 2015
  ident: 10.1016/j.bbagen.2023.130507_bb0260
  article-title: Dual targeting of the protein methyltransferase PrmA contributes to both chloroplastic and mitochondrial ribosomal protein L11 methylation in Arabidopsis
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcv098
– volume: 42
  start-page: 2960
  year: 2023
  ident: 10.1016/j.bbagen.2023.130507_bb0110
  article-title: Genome-wide identification of histone modification (HM) gene family and their expression patterns under abiotic stress and different developmental stages of tea (Camellia assamica)
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-022-10761-8
– volume: 66
  start-page: 735
  year: 2011
  ident: 10.1016/j.bbagen.2023.130507_bb0335
  article-title: The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04534.x
– volume: 14
  start-page: 1
  year: 2013
  ident: 10.1016/j.bbagen.2023.130507_bb0120
  article-title: Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-57
– volume: 25
  start-page: 402
  year: 2001
  ident: 10.1016/j.bbagen.2023.130507_bb0250
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 8
  start-page: 639
  year: 2017
  ident: 10.1016/j.bbagen.2023.130507_bb0145
  article-title: Genome-wide identification of histone modifiers and their expression patterns during fruit abscission in litchi
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00639
– volume: 43
  start-page: 1445
  year: 2021
  ident: 10.1016/j.bbagen.2023.130507_bb0300
  article-title: Identification of HvLRX, a new dehydration and light responsive gene in Tibetan hulless barley (Hordeum vulgare var. nudum)
  publication-title: Genes Genom.
  doi: 10.1007/s13258-021-01147-3
– volume: 7
  year: 2014
  ident: 10.1016/j.bbagen.2023.130507_bb0205
  article-title: Spud DB: a resource for mining sequences, genotypes, and phenotypes to accelerate potato breeding, plant
  publication-title: Genome
– volume: 18
  start-page: 1
  year: 2017
  ident: 10.1016/j.bbagen.2023.130507_bb0340
  article-title: Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1235-x
– volume: 182
  start-page: 185
  year: 2020
  ident: 10.1016/j.bbagen.2023.130507_bb0345
  article-title: PcG proteins MSI1 and BMI1 function upstream of miR156 to regulate aerial tuber formation in potato
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.00416
– volume: 16
  start-page: 1950445
  year: 2021
  ident: 10.1016/j.bbagen.2023.130507_bb0355
  article-title: Expression profiling of H3K27me3 demethylase genes during plant development and in response to environmental stress in Arabidopsis
  publication-title: Plant Signal. Behav.
  doi: 10.1080/15592324.2021.1950445
– volume: 9
  start-page: 1617
  year: 2020
  ident: 10.1016/j.bbagen.2023.130507_bb0305
  article-title: Characterization and stress response of the JmjC domain-containing histone demethylase gene family in the allotetraploid cotton species Gossypium hirsutum
  publication-title: Plants
  doi: 10.3390/plants9111617
– volume: 27
  start-page: 95
  year: 2019
  ident: 10.1016/j.bbagen.2023.130507_bb0290
  article-title: Characterization of cis-elements in hormonal stress-responsive genes in Oryza sativa, Asia Pac
  publication-title: J. Mol. Biol. Biotechnol.
– volume: 6
  start-page: 607
  year: 2015
  ident: 10.1016/j.bbagen.2023.130507_bb0130
  article-title: Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00607
– volume: 2
  year: 2022
  ident: 10.1016/j.bbagen.2023.130507_bb0245
  article-title: ApE, a plasmid editor: a freely available DNA manipulation and visualization program
  publication-title: Front. Bioinform.
  doi: 10.3389/fbinf.2022.818619
– volume: 13
  start-page: 627
  year: 2003
  ident: 10.1016/j.bbagen.2023.130507_bb0325
  article-title: ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(03)00243-4
– volume: 18
  start-page: 263
  year: 2005
  ident: 10.1016/j.bbagen.2023.130507_bb0050
  article-title: Arginine methylation: an emerging regulator of protein function
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.04.003
– volume: 33
  start-page: 1870
  year: 2016
  ident: 10.1016/j.bbagen.2023.130507_bb0230
  article-title: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msw054
– volume: 439
  start-page: 811
  year: 2006
  ident: 10.1016/j.bbagen.2023.130507_bb0035
  article-title: Histone demethylation by a family of JmjC domain-containing proteins
  publication-title: Nature
  doi: 10.1038/nature04433
– volume: 46
  start-page: 10669
  year: 2018
  ident: 10.1016/j.bbagen.2023.130507_bb0270
  article-title: The Arabidopsis LDL1/2-HDA6 histone modification complex is functionally associated with CCA1/LHY in regulation of circadian clock genes
  publication-title: Nucleic Acids Res.
– volume: 32
  start-page: 558
  year: 2014
  ident: 10.1016/j.bbagen.2023.130507_bb0030
  article-title: Histone lysine demethylases and their functions in plants, plant Mol. Biol
  publication-title: Report.
– year: 2023
  ident: 10.1016/j.bbagen.2023.130507_bb0315
– volume: 79
  start-page: 163
  year: 2012
  ident: 10.1016/j.bbagen.2023.130507_bb0060
  article-title: Arginine methylation of RNA-binding proteins regulates cell function and differentiation
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.22024
– start-page: 1
  year: 2022
  ident: 10.1016/j.bbagen.2023.130507_bb0150
  article-title: Genome editing advancements in potato (Solanum tuberosum L.): operational challenges and solutions
  publication-title: J. Plant Biochem. Biotechnol.
– volume: 6
  year: 2011
  ident: 10.1016/j.bbagen.2023.130507_bb0025
  article-title: Characterization of the PRMT gene family in rice reveals conservation of arginine methylation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022664
– volume: 20
  start-page: 1
  year: 2019
  ident: 10.1016/j.bbagen.2023.130507_bb0190
  article-title: Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1731-2
– start-page: 1
  year: 2023
  ident: 10.1016/j.bbagen.2023.130507_bb0185
  article-title: High temperature triggers differential expression of JUMONJI C (JmjC) domain-containing histone demethylase genes in leaf and stolon tissues of potato (Solanum tuberosum L.) Genotypes
  publication-title: J. Plant Growth Regul.
– volume: 63
  start-page: 2755
  year: 2006
  ident: 10.1016/j.bbagen.2023.130507_bb0020
  article-title: SET domain protein lysine methyltransferases: structure, specificity and catalysis
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-006-6274-5
– volume: 37
  start-page: 942
  year: 2017
  ident: 10.1016/j.bbagen.2023.130507_bb0155
  article-title: Key players associated with tuberization in potato: potential candidates for genetic engineering
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388551.2016.1274876
– volume: 289660
  year: 2018
  ident: 10.1016/j.bbagen.2023.130507_bb0225
  article-title: TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface
  publication-title: BioRxiv
– volume: 11
  start-page: 322
  year: 2022
  ident: 10.1016/j.bbagen.2023.130507_bb0125
  article-title: Genome-wide identification of histone modification gene families in the model legume Medicago truncatula and their expression analysis in nodules
  publication-title: Plants
  doi: 10.3390/plants11030322
– volume: 30
  start-page: 325
  year: 2002
  ident: 10.1016/j.bbagen.2023.130507_bb0235
  article-title: PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.1.325
– volume: 61
  start-page: 395
  year: 2010
  ident: 10.1016/j.bbagen.2023.130507_bb0015
  article-title: Histone methylation in higher plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.043008.091939
– volume: 10
  start-page: 800
  year: 2019
  ident: 10.1016/j.bbagen.2023.130507_bb0280
  article-title: Mechanisms of ROS regulation of plant development and stress responses
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00800
– volume: 128
  start-page: 693
  year: 2007
  ident: 10.1016/j.bbagen.2023.130507_bb0005
  article-title: Chromatin modifications and their function
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.005
– volume: 119
  start-page: 941
  year: 2004
  ident: 10.1016/j.bbagen.2023.130507_bb0040
  article-title: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.012
– volume: 8
  year: 2021
  ident: 10.1016/j.bbagen.2023.130507_bb0175
  article-title: DNA methylation affects photoperiodic tuberization in potato (Solanum tuberosum L.) by mediating the expression of genes related to the photoperiod and GA pathways
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-021-00619-7
– volume: 9
  year: 2014
  ident: 10.1016/j.bbagen.2023.130507_bb0240
  article-title: CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation
  publication-title: PLoS One
– volume: 1764
  start-page: 1890
  year: 2006
  ident: 10.1016/j.bbagen.2023.130507_bb0055
  article-title: Protein arginine methylation: cellular functions and methods of analysis
  publication-title: Biochim. Biophys. Acta, Proteins Proteomics
  doi: 10.1016/j.bbapap.2006.08.008
– volume: 72
  start-page: 426
  year: 2021
  ident: 10.1016/j.bbagen.2023.130507_bb0180
  article-title: The Polycomb group methyltransferase StE(z)2 and deposition of H3K27me3 and H3K4me3 regulate the expression of tuberization genes in potato
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eraa468
– volume: 2011
  year: 2011
  ident: 10.1016/j.bbagen.2023.130507_bb0065
  article-title: The role of protein arginine methylation in mRNP dynamics
  publication-title: Mol. Biol. Int.
  doi: 10.4061/2011/163827
– volume: 148
  start-page: 490
  year: 2008
  ident: 10.1016/j.bbagen.2023.130507_bb0100
  article-title: Redundant requirement for a pair of PROTEIN ARGININE METHYLTRANSFERASE4 homologs for the proper regulation of Arabidopsis flowering time
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.124727
– volume: 181
  start-page: 656
  year: 2019
  ident: 10.1016/j.bbagen.2023.130507_bb0330
  article-title: The chromatin-remodeling factor PICKLE antagonizes polycomb repression of FT to promote flowering
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.00596
– volume: 9
  start-page: 1228
  year: 2018
  ident: 10.1016/j.bbagen.2023.130507_bb0195
  article-title: BABA-primed histone modifications in potato for intergenerational resistance to Phytophthora infestans
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01228
– volume: 256
  start-page: 1245
  year: 2019
  ident: 10.1016/j.bbagen.2023.130507_bb0320
  article-title: Dynamic changes in histone modification are associated with upregulation of Hsf and rRNA genes during heat stress in maize seedlings
  publication-title: Protoplasma
  doi: 10.1007/s00709-019-01364-4
– volume: 31
  start-page: 3784
  year: 2003
  ident: 10.1016/j.bbagen.2023.130507_bb0215
  article-title: ExPASy: the proteomics server for in-depth protein knowledge and analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg563
– volume: 43
  year: 2020
  ident: 10.1016/j.bbagen.2023.130507_bb0140
  article-title: Identification of histone methylation modifiers and their expression patterns during somatic embryogenesis in Hevea brasiliensis
  publication-title: Genet. Mol. Biol.
  doi: 10.1590/1678-4685-gmb-2018-0141
– volume: 34
  year: 2023
  ident: 10.1016/j.bbagen.2023.130507_bb0275
  article-title: Genome wide identification and expression profiling of early responsive to dehydration 6 (ERD6)-like gene family in chickpea (Cicer arietinum L.), plant
  publication-title: Gene
– volume: 26
  start-page: 147
  year: 2005
  ident: 10.1016/j.bbagen.2023.130507_bb0070
  article-title: Role of protein methylation in regulation of transcription
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2004-0008
– volume: 144
  start-page: 1913
  year: 2007
  ident: 10.1016/j.bbagen.2023.130507_bb0075
  article-title: Mutations in the type II protein arginine methyltransferase AtPRMT5 result in pleiotropic developmental defects in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.099531
– volume: 21
  start-page: 1
  year: 2021
  ident: 10.1016/j.bbagen.2023.130507_bb0105
  article-title: Genome-wide identification of Gramineae histone modification genes and their potential roles in regulating wheat and maize growth and stress responses
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-021-03332-8
– volume: 20
  start-page: 1
  year: 2020
  ident: 10.1016/j.bbagen.2023.130507_bb0295
  article-title: Bioinformatics and expression analysis of histone modification genes in grapevine predict their involvement in seed development, powdery mildew resistance, and hormonal signaling
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-020-02618-7
– volume: 23
  start-page: 396
  year: 2011
  ident: 10.1016/j.bbagen.2023.130507_bb0085
  article-title: Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.081356
SSID ssj0000595
Score 2.4484842
Snippet Potato (Solanum tuberosum L.), the third most important non-cereal crop, is sensitive to high temperature. Histone modifications have been known to regulate...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 130507
SubjectTerms class
cultivars
cytoplasm
domain
epigenetics
exons
family
genome-wide association study
heat
heat shock response
heat stress
heat tolerance
histones
introns
leaves
methyltransferases
phylogeny
potatoes
prediction
promoter regions
Solanum tuberosum
temperature
Title Genome-wide identification and expression analysis reveal the role of histone methyltransferase and demethylase genes in heat stress response in potato (Solanum tuberosum L.)
URI https://www.ncbi.nlm.nih.gov/pubmed/37925032
https://www.proquest.com/docview/2886329744
https://www.proquest.com/docview/3154186919
Volume 1868
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIIXBONWbjISD6AoUeNcmjyiaRehbjyslfoW2YnNMo2kyhJgPPDC_-E3ck4cp6m2icFL1Li2E_X7ap9zfC6EvA2UxMMwZnu-imxfxrAOShHbnLNpm_FKBhjvfHgUHiz8j8tgORr9GngtNbVw0h9XxpX8D6rQBrhilOw_INtPCg3wGfCFKyAM1xthvC-L8ou0v-WZtPKs8_vRiKI9XH7vvFzxtss9ghmb0L984FjYphwGWROLSV-c1a0kKyvY3dpJMqnb8f4zLoxoIcEV3ISZVNrLtk0-siprrCUDUusxqMzoZF836JECP4o1c4zVwZwh52V6kmO6AkvWlshLbWXhmN-DOyYhtnXeCLQV9bL_IdcR3cdNJU7y3vCdF1oO3udNxb8OjRnMHxgzuiCuiW-DjBhsLtBhNKSitcIa1iDI2lfuAdocceoIASsyprhlXtd_veeZc_6jT8neYjZL5rvL-S1ym4GugWUwnJ9rPyGQPwN9FKXfzMRftk6Cl5-xKd9co7S0wsv8AbnfaR30g6bQQzKSxTa5o-uQXmyTuzum7N8j8ntAKrpJKgp8oGtSUUMqqklFgVQUSUVLRTtS0UukaicZkIq2pKJ5QZFUVJOKGlJhuyYVfddRivaUojPn_WOy2Nud7xzYXVEPO_X8SW2nGcisfhgoJiMhhIpjIachz9JARplEbduNheIKemcqS1XM1YTBoCyS3MUKo0_IVgHv_4xQV8HXXuxyP5j4qWRRkHp4qp4FSoUqSsfEM1AkaZfxHguvnCXGtfE00QAmCGCiARwTux-10hlf_tL_jUE5AajwvI0XsmzOExZFocdAYfev7-OBCoNV4dx4TJ5qivRP9aYxKCgee36D0S_IvfX_6SXZqqtGvgJxuRavWzr_ATzmytk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+identification+and+expression+analysis+reveal+the+role+of+histone+methyltransferase+and+demethylase+genes+in+heat+stress+response+in+potato+%28Solanum+tuberosum+L.%29&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Mali%2C+Surbhi&rft.au=Zinta%2C+Gaurav&rft.date=2024-01-01&rft.issn=0304-4165&rft.volume=1868&rft.issue=1+p.130507-&rft_id=info:doi/10.1016%2Fj.bbagen.2023.130507&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon