An MPI parallel level-set algorithm for propagating front curvature dependent detonation shock fronts in complex geometries

We present a parallel, two-dimensional, grid-based algorithm for solving a level-set function PDE that arises in Detonation Shock Dynamics (DSD). In the DSD limit, the detonation shock propagates at a speed that is a function of the curvature of the shock surface, subject to a set of boundary condit...

Full description

Saved in:
Bibliographic Details
Published inCombustion theory and modelling Vol. 17; no. 1; pp. 109 - 141
Main Authors Hernández, Alberto, Bdzil, John B., Stewart, D. Scott
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.02.2013
Subjects
Online AccessGet full text
ISSN1364-7830
1741-3559
DOI10.1080/13647830.2012.725579

Cover

Loading…
Abstract We present a parallel, two-dimensional, grid-based algorithm for solving a level-set function PDE that arises in Detonation Shock Dynamics (DSD). In the DSD limit, the detonation shock propagates at a speed that is a function of the curvature of the shock surface, subject to a set of boundary conditions applied along the boundaries of the detonating explosive. Our method solves for the full level-set function field, φ(x, y, t), that locates the detonation shock with a modified level-set function PDE that continuously renormalises the level-set function to a distance function based off of the locus of the shock surface, φ(x, y, t)=0. The boundary conditions are applied with ghost nodes that are sorted according to their connectivity to the interior explosive nodes. This allows the boundary conditions to be applied via a local, direct evaluation procedure. We give an extension of this boundary condition application method to three dimensions. Our parallel algorithm is based on a domain-decomposition model which uses the Message-Passing Interface (MPI) paradigm. The computational order of the full level-set algorithm, which is O(N 4 ), where N is the number of grid points along a coordinate line, makes an MPI-based algorithm an attractive alternative. This parallel model partitions the overall explosive domain into smaller sub-domains which in turn get mapped onto processors that are topologically arranged into a two-dimensional rectangular grid. A comparison of our numerical solution with an exact solution to the problem of a detonation rate stick shows that our numerical solution converges at better than first-order accuracy as measured by an L1-norm. This represents an improvement over the convergence properties of narrow-band level-set function solvers, whose convergence is limited to a floor set by the width of the narrow band. The efficiency of the narrow-band method is recovered by using our parallel model.
AbstractList We present a parallel, two-dimensional, grid-based algorithm for solving a level-set function PDE that arises in Detonation Shock Dynamics (DSD). In the DSD limit, the detonation shock propagates at a speed that is a function of the curvature of the shock surface, subject to a set of boundary conditions applied along the boundaries of the detonating explosive. Our method solves for the full level-set function field, φ(x, y, t), that locates the detonation shock with a modified level-set function PDE that continuously renormalises the level-set function to a distance function based off of the locus of the shock surface, φ(x, y, t)=0. The boundary conditions are applied with ghost nodes that are sorted according to their connectivity to the interior explosive nodes. This allows the boundary conditions to be applied via a local, direct evaluation procedure. We give an extension of this boundary condition application method to three dimensions. Our parallel algorithm is based on a domain-decomposition model which uses the Message-Passing Interface (MPI) paradigm. The computational order of the full level-set algorithm, which is O(N 4 ), where N is the number of grid points along a coordinate line, makes an MPI-based algorithm an attractive alternative. This parallel model partitions the overall explosive domain into smaller sub-domains which in turn get mapped onto processors that are topologically arranged into a two-dimensional rectangular grid. A comparison of our numerical solution with an exact solution to the problem of a detonation rate stick shows that our numerical solution converges at better than first-order accuracy as measured by an L1-norm. This represents an improvement over the convergence properties of narrow-band level-set function solvers, whose convergence is limited to a floor set by the width of the narrow band. The efficiency of the narrow-band method is recovered by using our parallel model.
We present a parallel, two-dimensional, grid-based algorithm for solving a level-set function PDE that arises in Detonation Shock Dynamics (DSD). In the DSD limit, the detonation shock propagates at a speed that is a function of the curvature of the shock surface, subject to a set of boundary conditions applied along the boundaries of the detonating explosive. Our method solves for the full level-set function field, (x, y, t), that locates the detonation shock with a modified level-set function PDE that continuously renormalises the level-set function to a distance function based off of the locus of the shock surface, (x, y, t)=0. The boundary conditions are applied with ghost nodes that are sorted according to their connectivity to the interior explosive nodes. This allows the boundary conditions to be applied via a local, direct evaluation procedure. We give an extension of this boundary condition application method to three dimensions. Our parallel algorithm is based on a domain-decomposition model which uses the Message-Passing Interface (MPI) paradigm. The computational order of the full level-set algorithm, which is O(N 4), where N is the number of grid points along a coordinate line, makes an MPI-based algorithm an attractive alternative. This parallel model partitions the overall explosive domain into smaller sub-domains which in turn get mapped onto processors that are topologically arranged into a two-dimensional rectangular grid. A comparison of our numerical solution with an exact solution to the problem of a detonation rate stick shows that our numerical solution converges at better than first-order accuracy as measured by an L1-norm. This represents an improvement over the convergence properties of narrow-band level-set function solvers, whose convergence is limited to a floor set by the width of the narrow band. The efficiency of the narrow-band method is recovered by using our parallel model.
Author Hernández, Alberto
Bdzil, John B.
Stewart, D. Scott
Author_xml – sequence: 1
  givenname: Alberto
  surname: Hernández
  fullname: Hernández, Alberto
  organization: Department of Mechanical Science and Engineering , University of Illinois at Urbana-Champaign
– sequence: 2
  givenname: John B.
  surname: Bdzil
  fullname: Bdzil, John B.
  organization: Los Alamos National Laboratory
– sequence: 3
  givenname: D. Scott
  surname: Stewart
  fullname: Stewart, D. Scott
  organization: Department of Mechanical Science and Engineering , University of Illinois at Urbana-Champaign
BookMark eNqFkM1u1TAQRi1UJNrCG7Dwkk0uYzuJEzaoqvipVAQLWFtTZ3xrcOxg-xYqXp5cAhsWsJrR6HwjfeeMncQUibGnAnYCBnguVN_qQcFOgpA7LbtOjw_YqdCtaFTXjSfrviLNkXnEzkr5DABSy_aU_biI_N2HK75gxhAo8EB3FJpClWPYp-zr7cxdynzJacE9Vh_33OUUK7eHfIf1kIlPtFCcaL1NVFNcoRR5uU32y4YW7iO3aV4Cfed7SjPV7Kk8Zg8dhkJPfs9z9un1q4-Xb5vr92-uLi-uG6taqI21k5BOgLR6IgTnjr26XmpwahhbKRHwBtSEWrRiFNBLtETWDXYcYLjR6pw92_6uHb4eqFQz-2IpBIyUDsWIDnrVK9nCir7YUJtTKZmcsb7-6lMz-mAEmKNx88e4ORo3m_E13P4VXrKfMd__L_Zyi_m4ip7xW8phMhXvQ8ouY7S-GPXPDz8B0NibqQ
CitedBy_id crossref_primary_10_1002_prep_201600060
crossref_primary_10_1080_13647830_2018_1450525
crossref_primary_10_1080_13647830_2013_879208
crossref_primary_10_1017_jfm_2017_497
crossref_primary_10_1080_13647830_2019_1689299
crossref_primary_10_1017_jfm_2016_597
Cites_doi 10.1137/0729053
10.1007/978-3-642-22967-1_7
10.1006/jcph.1996.0145
10.1007/978-3-0348-8629-1
10.1146/annurev.fluid.38.050304.092049
10.1146/annurev.fluid.37.061903.175743
10.1063/1.2035310
10.1017/CBO9780511791253
10.1007/b98879
10.1016/0021-9991(88)90177-5
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2013
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2013
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
DOI 10.1080/13647830.2012.725579
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1741-3559
EndPage 141
ExternalDocumentID 10_1080_13647830_2012_725579
725579
GroupedDBID .7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
J9A
KYCEM
M4Z
NA5
O9-
P2P
RIG
RNANH
RNS
RO9
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UCJ
UT5
UU3
ZGOLN
~S~
5ZH
AAGCF
AAGDL
AAHIA
AAYXX
ABEFU
ACTTO
ADMLS
ADUMR
ADYSH
AEFHF
AETNG
AFBWG
AFION
AFRVT
AGVKY
AGWUF
AIYEW
ALRRR
AMPGV
BWMZZ
CAG
CITATION
COF
CYRSC
DAOYK
IHE
IOP
LAP
LJTGL
OPCYK
RIV
RKQ
ROL
XPP
ZMT
7TB
8FD
FR3
H8D
L7M
TASJS
ID FETCH-LOGICAL-c340t-ccd12f102c7dea0ff174156270f389422a0ab03da714191062aceecf8c9808b73
ISSN 1364-7830
IngestDate Fri Sep 05 11:18:51 EDT 2025
Tue Jul 01 01:27:44 EDT 2025
Thu Apr 24 22:52:51 EDT 2025
Wed Dec 25 09:04:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-ccd12f102c7dea0ff174156270f389422a0ab03da714191062aceecf8c9808b73
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1506363240
PQPubID 23500
PageCount 33
ParticipantIDs proquest_miscellaneous_1506363240
crossref_primary_10_1080_13647830_2012_725579
informaworld_taylorfrancis_310_1080_13647830_2012_725579
crossref_citationtrail_10_1080_13647830_2012_725579
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Combustion theory and modelling
PublicationYear 2013
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References LeVeque R. J. (CIT0011) 1992
Bdzil J. B. (CIT0014) 2006
CIT0012
LeVeque R. J. (CIT0017) 2002
Osher S. (CIT0008) 2003
Quinn M. J. (CIT0015) 2004
Bdzil J. B. (CIT0001) 2006
Sethian J. A. (CIT0007) 1999
Osher S. (CIT0010) 1988; 79
Horak V. (CIT0019) 2005
CIT0003
CIT0002
Bdzil J. B. (CIT0005) 2012
CIT0013
CIT0016
Wilkins M. L. (CIT0004) 1964
CIT0006
CIT0009
Bdzil J. B. (CIT0018) 2006
References_xml – ident: CIT0016
– ident: CIT0009
  doi: 10.1137/0729053
– volume-title: Theory of detonation shock dynamics
  year: 2012
  ident: CIT0005
  doi: 10.1007/978-3-642-22967-1_7
– ident: CIT0006
  doi: 10.1006/jcph.1996.0145
– volume-title: Numerical Methods for Conservation Laws
  year: 1992
  ident: CIT0011
  doi: 10.1007/978-3-0348-8629-1
– volume-title: Detonation front models: theories and methods
  year: 2006
  ident: CIT0001
– volume-title: Parallel Programming in C with MPI and OpenMP
  year: 2004
  ident: CIT0015
– volume-title: Tech. Rep. LA-14277
  year: 2006
  ident: CIT0018
– start-page: 37
  volume-title: Parallel Numerics ’05: Theory and Applications, papers presented at the ParNum05 workshop
  year: 2005
  ident: CIT0019
– ident: CIT0002
  doi: 10.1146/annurev.fluid.38.050304.092049
– volume-title: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
  year: 1999
  ident: CIT0007
– volume-title: Tech. Rep. LA-14336
  year: 2006
  ident: CIT0014
– ident: CIT0013
  doi: 10.1146/annurev.fluid.37.061903.175743
– ident: CIT0003
  doi: 10.1063/1.2035310
– volume-title: Finite Volume Methods for Hyperbolic Problems, Cambridge University Press,
  year: 2002
  ident: CIT0017
  doi: 10.1017/CBO9780511791253
– volume: 79
  start-page: 12
  volume-title: J. Comput. Phys.
  year: 1988
  ident: CIT0010
– start-page: 211
  volume-title: Methods in Computational Physics, Advances in Research and Applications
  year: 1964
  ident: CIT0004
– volume-title: Level Set Methods and Dynamic Implicit Surfaces
  year: 2003
  ident: CIT0008
  doi: 10.1007/b98879
– ident: CIT0012
  doi: 10.1016/0021-9991(88)90177-5
SSID ssj0002724
Score 1.9817218
Snippet We present a parallel, two-dimensional, grid-based algorithm for solving a level-set function PDE that arises in Detonation Shock Dynamics (DSD). In the DSD...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109
SubjectTerms Algorithms
computational physics
detonation shock dynamics
level sets
parallel computing
reactive flow
Title An MPI parallel level-set algorithm for propagating front curvature dependent detonation shock fronts in complex geometries
URI https://www.tandfonline.com/doi/abs/10.1080/13647830.2012.725579
https://www.proquest.com/docview/1506363240
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiKsYA2Qk3iIX59LYeQwMVJCGeOjExEsUO8k2qUvQkkpo-zn8Uc6xnTRVJy57iSLXiat-X48_Hx-fQ8gbUKwJV1qxOOQ5i5SIWaJ0wCqQv7KShc4Vnnc--hIvjqPPJ_OTyeTXKGpp3amZvrrxXMltUIU2wBVPyf4HssNLoQHuAV-4AsJw_SeM09o7-vrJw_TdsPxfeSuMAGKtceOeNrDsP7swYYRgJcFu5CbCucKMBZ5eoy8WNw_6Krgd3HWN9Q167RmYSdvVxMuawPPyp3daNhemBFc7FrVgUxQWBbP7Drhpj954U2Nn1c-Mxt16WZt9eb_3W6eYYKtrBpdAceU80hjO8242eH_QwWePFh3OwBo1XTd2VmDhiK3Aj-VO3ZCRi80a4DCOmJBur6a0baB6GOiiZMtqix12WhPs82Q0m_s2rdbORGEjK3E0HAxD_IKZgOWVSDYT4xCuaD-4Q_YCWIvwKdlLF4ffvw0TfiBc7WT31fsTmpK_vWmALQW0lR93Rw8YkbN8QO671QlNLdUekklZPyL3RjkrH5PrtKZAOtqTjg6kowPpKAxGR6Sjhkl0IB0dSEc3pKOGdLZrS89r6khHN6R7Qo4_fli-XzBXwYPpMOId07rwgwo0rBZFmfOqQihBcQtegVCOgiDnueJhkQvACYRrHOQg2nQldSK5VCJ8SqZ1U5fPCK3iJJ4HSoJEVlGk51JI7ReBwgoNQuhkn4T9r5ppl94eq6ysMt9lwe2xyBCLzGKxT9jw1A-b3uUv_eUYsKwzhK4sl7Pwz4--7sHNwITjvlxel826zTDJZ4hlE_jz27_-gNzd_OFekGl3uS5fgl7u1CvH19_pXL7N
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxUhGCVaF-qivmNbH5i45crAXGCWTWNzq703LtrEHQEG2qbTGXOHSZr65-WbR9Nq1ER3swACDHyc-eZwDkLvE2ItqHWWCE4Nya0UpLCOkZDgrwqqdMbCfeflSiyO809f5xObsB1plfANHQahiD5Ww-aGZPREifuQgei54hSYWWwmEyqWxV10b14ICe4NnK6ugzGTo6-tyAlUmW7P_aaVW6fTLe3SX2J1fwDtP0J26vrAOzmfddHO3NVPqo7_NbbHaHOEp3h3WE9P0B1fP0UPb4gWPkPfd2u8_HKAQTS8qnyFK-AdkdZHbKqTZn0WTy9wGhFOPU3RygCvGgfQScCugwxwt_Z48t6N6Sk2Q0YSt6cpOA9FW3xW457u7i_xiW8ueuOv9jk63v94tLcgo4UDcTynkThXZiwkEONk6Q0NIQMEI5ikISGlnDFDjaW8NDLL05cjFcykU9sF5QpFlZX8Bdqom9q_RDiIQsyZVQkj2Tx3cyWVy0pmQaJfSldsIT69Ou1GfXOw2ah0NsqgTlOrYWr1MLVbiFzX-jboe_ylvLq5KnTs8yphMEHR_M9V300rSKc9DD9mTO2brtWg8shBN59u_3vzb9H9xdHyUB8erD7voAest-0A2s0rtBHXnX-dwFO0b_rt8QNICA0D
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9UgGCU6E6MPzp9xuikmvnKl0Av0cVFvNnU3e3DJ3ghQ2JZ17XJLE6P_vHz9sdxpnIm-9QEI0I-PU3o4B6G3CbEW1DpLBKeG5FYKUljHSEjwVwVVOmPhvvPBUuwd5Z-O58drt_iBVgnf0GEQiuhzNSzuyzJMjLh3GWieK06BmMVmMoFiWdxGd0RCJxDXnC6vcjGTo62tyAlUmS7P_aGVa5vTNenS31J1v_8sNpGZej7QTs5nXbQz9_0XUcf_GdpD9GAEp3h3iKZH6JavH6P7a5KFT9CP3RofHO5jkAyvKl_hClhHpPURm-qkWZ3F0wucBoRTR1OuMsCqxgFUErDr4Py3W3k8Oe_G9BSb4TwSt6cpNQ9FW3xW457s7r_hE99c9LZf7VN0tPj49f0eGQ0ciOM5jcS5MmMhQRgnS29oCBngF8EkDQkn5YwZaizlpZFZnr4bqWAm7dkuKFcoqqzkz9BG3dT-OcJBFGLOrEoIyea5myupXFYyCwL9UrpiC_HpzWk3qpuDyUals1EEdZpaDVOrh6ndQuSq1uWg7vGX8mo9KHTsT1XCYIGi-c1V30wBpNMKht8ypvZN12rQeOSgmk9f_Hvzr9Hdww8L_WV_-fklusd6zw7g3Gyjjbjq_E5CTtG-6hfHTwQkC7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+MPI+parallel+level-set+algorithm+for+propagating+front+curvature+dependent+detonation+shock+fronts+in+complex+geometries&rft.jtitle=Combustion+theory+and+modelling&rft.au=Hern%C3%A1ndez%2C+Alberto&rft.au=Bdzil%2C+John+B.&rft.au=Stewart%2C+D.+Scott&rft.date=2013-02-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=1364-7830&rft.eissn=1741-3559&rft.volume=17&rft.issue=1&rft.spage=109&rft.epage=141&rft_id=info:doi/10.1080%2F13647830.2012.725579&rft.externalDocID=725579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-7830&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-7830&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-7830&client=summon