Quickest Change Detection With Controlled Sensing
In the problem of quickest change detection, a change occurs at some unknown time in the distribution of a sequence of random vectors that are monitored in real time, and the goal is to detect this change as quickly as possible subject to a certain false alarm constraint. In this work we consider th...
Saved in:
Published in | IEEE journal on selected areas in information theory Vol. 5; pp. 1 - 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the problem of quickest change detection, a change occurs at some unknown time in the distribution of a sequence of random vectors that are monitored in real time, and the goal is to detect this change as quickly as possible subject to a certain false alarm constraint. In this work we consider this problem in the presence of parametric uncertainty in the post-change regime and controlled sensing. That is, the post-change distribution contains an unknown parameter, and the distribution of each observation, before and after the change, is affected by a control action. In this context, in addition to a stopping rule that determines the time at which it is declared that the change has occurred, one also needs to determine a sequential control policy, which chooses the control action at each time based on the already collected observations. We formulate this problem mathematically using Lorden's minimax criterion, and assuming that there are finitely many possible actions and post-change parameter values. We then propose a specific procedure for this problem that employs an adaptive CuSum statistic in which (i) the estimate of the parameter is based on a fixed number of the more recent observations, and (ii) each action is selected to maximize the Kullback-Leibler divergence of the next observation based on the current parameter estimate, apart from a small number of exploration times. We show that this procedure, which we call the Windowed Chernoff-CuSum (WCC), is first-order asymptotically optimal under Lorden's minimax criterion, for every possible value of the unknown post-change parameter, as the mean time to false alarm goes to infinity. We also provide simulation results to illustrate the performance of the WCC procedure. |
---|---|
AbstractList | In the problem of quickest change detection, a change occurs at some unknown time in the distribution of a sequence of random vectors that are monitored in real time, and the goal is to detect this change as quickly as possible subject to a certain false alarm constraint. In this work we consider this problem in the presence of parametric uncertainty in the post-change regime and controlled sensing. That is, the post-change distribution contains an unknown parameter, and the distribution of each observation, before and after the change, is affected by a control action. In this context, in addition to a stopping rule that determines the time at which it is declared that the change has occurred, one also needs to determine a sequential control policy, which chooses the control action at each time based on the already collected observations. We formulate this problem mathematically using Lorden's minimax criterion, and assuming that there are finitely many possible actions and post-change parameter values. We then propose a specific procedure for this problem that employs an adaptive CuSum statistic in which (i) the estimate of the parameter is based on a fixed number of the more recent observations, and (ii) each action is selected to maximize the Kullback-Leibler divergence of the next observation based on the current parameter estimate, apart from a small number of exploration times. We show that this procedure, which we call the Windowed Chernoff-CuSum (WCC), is first-order asymptotically optimal under Lorden's minimax criterion, for every possible value of the unknown post-change parameter, as the mean time to false alarm goes to infinity. We also provide simulation results to illustrate the performance of the WCC procedure. |
Author | Veeravalli, Venugopal V. Moustakides, George V. Fellouris, Georgios |
Author_xml | – sequence: 1 givenname: Venugopal V. orcidid: 0000-0001-5490-0037 surname: Veeravalli fullname: Veeravalli, Venugopal V. email: vvv@illinois.edu organization: ECE Department, University of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 2 givenname: Georgios orcidid: 0000-0001-6852-700X surname: Fellouris fullname: Fellouris, Georgios email: fellouri@illinois.edu organization: Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 3 givenname: George V. orcidid: 0000-0002-6498-5860 surname: Moustakides fullname: Moustakides, George V. email: moustaki@upatras.gr organization: ECE Department, University of Patras, Patras, Greece |
BookMark | eNp9kE1PwkAQhjcGExH5A8ZDE8_F_exuj6SKYkiMAeNxs12msFi3uF0O_nuLcCAePM17eJ-ZyXOJer7xgNA1wSNCcH73PB9PFyOKKR8xllFG-Rnq04yTVEmJeyf5Ag3bdoMxppRwqWQfkdedsx_QxqRYG7-C5B4i2Ogan7y7uE6KxsfQ1DUskzn41vnVFTqvTN3C8DgH6G3ysCie0tnL47QYz1LLOI6pNZJmVCkjqyynINhS5Aa4FSVTXFQ0x10WjJdcEQs2Z6UVFRjCsLAl2IoN0O1h7zY0X7vuQ71pdsF3JzXNmcJEdnTXUoeWDU3bBqi0ddHs_4_BuFoTrPeO9K8jvXekj446lP5Bt8F9mvD9P3RzgBwAnACcMk4I-wHiyHMw |
CODEN | IJSTL5 |
CitedBy_id | crossref_primary_10_1080_07474946_2024_2448819 crossref_primary_10_1214_24_AOS2382 crossref_primary_10_1109_TIT_2024_3475394 |
Cites_doi | 10.1109/ISIT50566.2022.9834351 10.1017/CBO9781316471104 10.1017/9781107185920 10.1214/aoms/1177704000 10.1109/TIT.2017.2778264 10.1080/00401706.2022.2054861 10.1214/aoms/1177697092 10.1214/aoms/1177704973 10.1109/ISIT.2019.8849555 10.1109/ISIT45174.2021.9517736 10.1080/07474946.2021.1912525 10.1109/ISIT44484.2020.9174081 10.1109/TSP.2019.2918981 10.1201/b17279 10.1007/BF02613905 10.1214/aoms/1177693055 10.1109/TSP.2015.2416674 10.1214/aoms/1177706205 10.1214/13-AOS1144 10.1109/TIT.2022.3177142 10.1109/18.737522 10.1214/aos/1176346503 10.1017/cbo9780511754678 10.1109/TIT.2021.3074961 10.1214/aop/1176992620 10.1109/TAC.2013.2261188 10.1080/07474946.2014.961864 10.1016/b978-0-12-411597-2.00006-0 10.1109/TIT.2023.3274646 10.1109/JSAIT.2021.3072962 10.1109/TSP.2020.2971438 10.1080/07474946.2023.2187417 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JSAIT.2024.3362324 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2641-8770 |
EndPage | 11 |
ExternalDocumentID | 10_1109_JSAIT_2024_3362324 10423411 |
Genre | orig-research |
GrantInformation_xml | – fundername: U.S. Army Research Laboratory grantid: W911NF-17-2-0196 funderid: 10.13039/100006754 – fundername: U.S. National Science Foundation grantid: ATD-1737962; ECCS-2033900; University of Illinois at Urbana–Champaign funderid: 10.13039/100000001 |
GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c340t-ca726288a7f692e53d59ae4c5b3845f2904c5534b481cec93bc5fea1305cbecf3 |
IEDL.DBID | RIE |
ISSN | 2641-8770 |
IngestDate | Mon Jun 30 03:48:27 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Tue Jul 01 03:37:28 EDT 2025 Wed Aug 27 01:59:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-ca726288a7f692e53d59ae4c5b3845f2904c5534b481cec93bc5fea1305cbecf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6852-700X 0000-0001-5490-0037 0000-0002-6498-5860 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10423411 |
PQID | 2938017534 |
PQPubID | 5075791 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_JSAIT_2024_3362324 ieee_primary_10423411 proquest_journals_2938017534 crossref_primary_10_1109_JSAIT_2024_3362324 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal on selected areas in information theory |
PublicationTitleAbbrev | JSAIT |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | Gopalan (ref7) ref13 ref35 ref12 ref34 ref15 ref14 ref31 ref30 ref33 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Bessler (ref10) 1960 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref9 ref4 ref3 Bessler (ref11) 1960 ref6 ref5 |
References_xml | – ident: ref1 doi: 10.1109/ISIT50566.2022.9834351 – ident: ref8 doi: 10.1017/CBO9781316471104 – ident: ref34 doi: 10.1017/9781107185920 – ident: ref13 doi: 10.1214/aoms/1177704000 – volume-title: Theory and applications of the sequential design of experiments, k-actions and infinitely many experiments, part-I Theory year: 1960 ident: ref10 – ident: ref23 doi: 10.1109/TIT.2017.2778264 – ident: ref6 doi: 10.1080/00401706.2022.2054861 – ident: ref35 doi: 10.1214/aoms/1177697092 – ident: ref12 doi: 10.1214/aoms/1177704973 – volume-title: Theory and applications of the sequential design of experiments, k-actions and infinitely many experiments, part II Applications year: 1960 ident: ref11 – ident: ref24 doi: 10.1109/ISIT.2019.8849555 – ident: ref29 doi: 10.1109/ISIT45174.2021.9517736 – ident: ref19 doi: 10.1080/07474946.2021.1912525 – ident: ref25 doi: 10.1109/ISIT44484.2020.9174081 – ident: ref21 doi: 10.1109/TSP.2019.2918981 – ident: ref3 doi: 10.1201/b17279 – ident: ref27 doi: 10.1007/BF02613905 – ident: ref33 doi: 10.1214/aoms/1177693055 – ident: ref20 doi: 10.1109/TSP.2015.2416674 – ident: ref9 doi: 10.1214/aoms/1177706205 – ident: ref17 doi: 10.1214/13-AOS1144 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref7 article-title: Bandit quickest changepoint detection – ident: ref26 doi: 10.1109/TIT.2022.3177142 – ident: ref31 doi: 10.1109/18.737522 – ident: ref15 doi: 10.1214/aos/1176346503 – ident: ref2 doi: 10.1017/cbo9780511754678 – ident: ref28 doi: 10.1109/TIT.2021.3074961 – ident: ref14 doi: 10.1214/aop/1176992620 – ident: ref16 doi: 10.1109/TAC.2013.2261188 – ident: ref18 doi: 10.1080/07474946.2014.961864 – ident: ref4 doi: 10.1016/b978-0-12-411597-2.00006-0 – ident: ref32 doi: 10.1109/TIT.2023.3274646 – ident: ref5 doi: 10.1109/JSAIT.2021.3072962 – ident: ref22 doi: 10.1109/TSP.2020.2971438 – ident: ref30 doi: 10.1080/07474946.2023.2187417 |
SSID | ssj0002214787 |
Score | 2.2954416 |
Snippet | In the problem of quickest change detection, a change occurs at some unknown time in the distribution of a sequence of random vectors that are monitored in... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Change detection Change detection algorithms Control charts Criteria CuSum test Delays Design for experiments Detection algorithms Distribution strategy Divergence experimental design False alarms Mathematical models Maximum likelihood estimation Minimax technique Minimax techniques Observability observation control Parameter estimation Real-time systems Sensors Sequences Sequential change detection Sequential control Statistical analysis Uncertainty |
Title | Quickest Change Detection With Controlled Sensing |
URI | https://ieeexplore.ieee.org/document/10423411 https://www.proquest.com/docview/2938017534 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwvlUUShIA9sKCGJ7TYZq0JVOlRCbUW3yHZsqKhSRJOFX8_ZTioeArF5sCPrzue7c767D6Erw30TZ0R7QhBIUJgOPE609hh4g0xRYXqkGbTFpDua0_GCLapidVsLo5Sy4DPlm6H9l5-tZWmeysDCwflTU8m7C5mbK9baPqhEhnEn7tWFMUFyM57272eQAkbUJ3BPk4h-cT6WTeXHFWz9yrCJJvWOHJzkxS8L4cv3b80a_73lA7RfRZi4747EIdpR-RFq1uwNuDLmYxQ-lEsw4U2BXYUBvlWFxWXl-HFZPOOBA7GvVIanBuWeP7XQfHg3G4y8ikDBk4QGhSd5LzJ0wrynu0mkGMlYwhWVTJAY1BIlAYwZoYLGoVQyIcJgzzi4NSZBt5qcoEa-ztUpwoRmhLsAjVAehrzLMwrRZpfGkdZUtVFYSzaVVXdxQ3KxSm2WESSp1UZqtJFW2mij6-2aV9db48_ZLSPeTzOdZNuoU2swrexvk0IQA64XUjF69suyc7Rnvu5eUzqoUbyV6gLii0Jc2nP1AYakylo |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDLBQHkUUCnhgQwlJbKfJWBWqtpRKqK3oFjmOAxVVimiy8Os520nFQyA2D7Zi3fn83Tl39yF0qbhvgoSkVhwTCFBY6licpKnFAA0SSWPVI01lW4z83pQOZmxWFqvrWhgppU4-k7Ya6n_5yVIU6qkMLBzAn6pK3i0Afuaacq31k4qnOHeCVlUa44TXg3G7P4Eg0KM2gZuaePQL_Gg-lR-XsEaWbg2Nqj2ZhJIXu8hjW7x_a9f4703vod3Sx8Rtcyj20YbMDlCt4m_ApTkfIvehmIMRr3Jsagzwjcx1ZlaGH-f5M-6YNPaFTPBY5blnT3U07d5OOj2rpFCwBKFObgne8hShMG-lfuhJRhIWckkFi0kAivFCB8aM0JgGrpAiJLHKPuMAbEyAdlNyhDazZSaPESY0Idy4aIRy1-U-Tyj4mz4NvDSlsoHcSrKRKPuLK5qLRaTjDCeMtDYipY2o1EYDXa3XvJruGn_OrivxfpppJNtAzUqDUWmBqwjcGABfCMboyS_LLtB2b3I_jIb90d0p2lFfMm8rTbSZvxXyDLyNPD7XZ-wDQ33Now |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quickest+Change+Detection+With+Controlled+Sensing&rft.jtitle=IEEE+journal+on+selected+areas+in+information+theory&rft.au=Veeravalli%2C+Venugopal+V.&rft.au=Fellouris%2C+Georgios&rft.au=Moustakides%2C+George+V.&rft.date=2024&rft.issn=2641-8770&rft.eissn=2641-8770&rft.volume=5&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FJSAIT.2024.3362324&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSAIT_2024_3362324 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2641-8770&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2641-8770&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2641-8770&client=summon |