Oxidised charcoal: an efficient support for NiFe layered double hydroxide to improve electrochemical oxygen evolution
We report the facile synthesis of oxidised charcoal supported NiFeLDH (NiFeLDH/OC) at room temperature. It showed unprecedented activity in the oxygen evolution reaction with an overpotential of 240 mV at 10 mA cm −2 , which is ∼115 mV less than pure NiFeLDH. The electronic enrichment at the metal s...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 56; no. 62; pp. 877 - 8773 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
04.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report the facile synthesis of oxidised charcoal supported NiFeLDH (NiFeLDH/OC) at room temperature. It showed unprecedented activity in the oxygen evolution reaction with an overpotential of 240 mV at 10 mA cm
−2
, which is ∼115 mV less than pure NiFeLDH. The electronic enrichment at the metal sites and enhanced surface area of NiFeLDH/OC are reasons for the improved activity.
NiFeLDH/oxidised charcoal showed excellent activity in the oxygen evolution reaction with an overpotential of 240 mV at 10 mA cm
−2
, which is ∼115 mV less than that of NiFeLDH. |
---|---|
AbstractList | We report the facile synthesis of oxidised charcoal supported NiFeLDH (NiFeLDH/OC) at room temperature. It showed unprecedented activity in the oxygen evolution reaction with an overpotential of 240 mV at 10 mA cm
−2
, which is ∼115 mV less than pure NiFeLDH. The electronic enrichment at the metal sites and enhanced surface area of NiFeLDH/OC are reasons for the improved activity.
NiFeLDH/oxidised charcoal showed excellent activity in the oxygen evolution reaction with an overpotential of 240 mV at 10 mA cm
−2
, which is ∼115 mV less than that of NiFeLDH. We report the facile synthesis of oxidised charcoal supported NiFeLDH (NiFeLDH/OC) at room temperature. It showed unprecedented activity in the oxygen evolution reaction with an overpotential of 240 mV at 10 mA cm−2, which is ∼115 mV less than pure NiFeLDH. The electronic enrichment at the metal sites and enhanced surface area of NiFeLDH/OC are reasons for the improved activity. We report the facile synthesis of oxidised charcoal supported NiFeLDH (NiFeLDH/OC) at room temperature. It showed unprecedented activity in the oxygen evolution reaction with an overpotential of 240 mV at 10 mA cm −2 , which is ∼115 mV less than pure NiFeLDH. The electronic enrichment at the metal sites and enhanced surface area of NiFeLDH/OC are reasons for the improved activity. |
Author | Kumar, Ashok Saha, Jony PM, Anjana Jakhad, Vikash |
AuthorAffiliation | Department of Chemistry Central University of Rajasthan School of Chemical Sciences and Pharmacy |
AuthorAffiliation_xml | – name: School of Chemical Sciences and Pharmacy – name: Central University of Rajasthan – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Jony surname: Saha fullname: Saha, Jony – sequence: 2 givenname: Ashok surname: Kumar fullname: Kumar, Ashok – sequence: 3 givenname: Anjana surname: PM fullname: PM, Anjana – sequence: 4 givenname: Vikash surname: Jakhad fullname: Jakhad, Vikash |
BookMark | eNp90cFLHDEUBvBQLFTXXnovRHophdGXyWQ201tZtUpFLy30NmTevHSj2cmYzIj73zd2i0IPzeXl8OPj8b4DtjeEgRh7J-BYgGxOekCEUmu4e8X2hayrQlX6597TXzXFUlbqDTtI6RbyE0rvs_nm0fUuUc9xbSIG4z9zM3Cy1qGjYeJpHscQJ25D5NfunLg3W4rZ92HuPPH1to8hZxCfAnebMYYH4uQJpxhwTRuHxvPwuP1FOfUh-HlyYThkr63xid7-nQv24_zs--qiuLr5ern6clWgrGAq0FRa16hq01sEErWSteoaRdrqRuiqVIDKLKlB6Guyy46UqEWlrGg6W3ZaLtjHXW5e636mNLUbl5C8NwOFObVlVUK-Ui0h0w__0NswxyFvl5UEaErIbsE-7RTGkFIk247RbUzctgLapwbaU1it_jTwLeOjHY4Jn91LQ-3Y22ze_8_I35ONkUE |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2023_131501 crossref_primary_10_1021_acsanm_4c00492 crossref_primary_10_1039_D3MA00324H crossref_primary_10_1021_acsanm_4c01018 crossref_primary_10_1021_acs_inorgchem_0c02618 crossref_primary_10_1021_acs_langmuir_4c01023 crossref_primary_10_1039_D1RA04175D crossref_primary_10_1021_acsanm_1c04341 crossref_primary_10_1021_acssuschemeng_2c06708 |
Cites_doi | 10.1039/C9NR02357G 10.1021/acs.chemmater.5b03404 10.1039/C3CS60248F 10.1111/anae.14407 10.1021/acscatal.9b02936 10.1126/science.aad4998 10.1002/smll.201800294 10.1039/C8EE03282C 10.1039/C9NR09959J 10.1021/acs.jpcc.6b01555 10.1002/chem.201700882 10.1039/C8CC08817A 10.1002/anie.201809689 10.1002/open.201900190 10.1038/ncomms7616 10.1039/C8TA01605D 10.1039/C9CC02845E 10.1002/adma.201903909 10.1039/C6RA28311J 10.1039/C7RA02750H 10.1039/C3EE43525C 10.1039/C8CC03112F 10.1002/smll.201700610 10.1002/aenm.201600621 10.1002/celc.201600116 10.1021/jp301090d 10.1039/C8NH00027A 10.1002/anie.201509054 10.1039/C8TA07976E 10.1039/C8NR04402C 10.1039/C7CC04611A 10.1039/C7CC09117F 10.1021/acs.jpcc.5b01322 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d0cc02880k |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 8773 |
ExternalDocumentID | 10_1039_D0CC02880K d0cc02880k |
GroupedDBID | - 0-7 0R 1TJ 29B 4.4 53G 5GY 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO H13 HZ H~N IDZ IH2 J3I JG M4U N9A O9- P2P R7B R7C R7D RCNCU RIG RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 VQA WH7 X X7L --- -DZ -JG -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACBEA ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AGEGJ AGRSR AHGCF ANUXI APEMP CITATION GGIMP HZ~ RAOCF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c340t-ca4886c56adfc0e165365b95e8f89184250c5a7e9c0d6ef7be516145f19bf2b83 |
ISSN | 1359-7345 |
IngestDate | Thu Oct 24 23:58:27 EDT 2024 Thu Oct 10 18:59:36 EDT 2024 Fri Aug 23 01:34:15 EDT 2024 Sat Jan 08 03:53:02 EST 2022 Wed Nov 11 00:27:41 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 62 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c340t-ca4886c56adfc0e165365b95e8f89184250c5a7e9c0d6ef7be516145f19bf2b83 |
Notes | Electronic supplementary information (ESI) available: Experimental details (S2-S4), additional figures (S5-S13), electrochemical analysis, literature reports (S14-S19), and XPS analysis (S20). See DOI 10.1039/d0cc02880k ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7049-9148 |
PQID | 2430092066 |
PQPubID | 2047502 |
PageCount | 4 |
ParticipantIDs | crossref_primary_10_1039_D0CC02880K proquest_miscellaneous_2420136630 rsc_primary_d0cc02880k proquest_journals_2430092066 |
PublicationCentury | 2000 |
PublicationDate | 20200804 |
PublicationDateYYYYMMDD | 2020-08-04 |
PublicationDate_xml | – month: 8 year: 2020 text: 20200804 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Dionigi (D0CC02880K-(cit28)/*[position()=1]) 2016; 6 Qiu (D0CC02880K-(cit8)/*[position()=1]) 2019; 12 Seh (D0CC02880K-(cit33)/*[position()=1]) 2017; 355 Zou (D0CC02880K-(cit10)/*[position()=1]) 2015; 27 Reddy (D0CC02880K-(cit23)/*[position()=1]) 2012; 116 Feng (D0CC02880K-(cit31)/*[position()=1]) 2020; 12 Kuang (D0CC02880K-(cit4)/*[position()=1]) 2018; 54 Chen (D0CC02880K-(cit6)/*[position()=1]) 2019; 31 Wang (D0CC02880K-(cit17)/*[position()=1]) 2019; 7 Li (D0CC02880K-(cit5)/*[position()=1]) 2019; 55 Guivar (D0CC02880K-(cit16)/*[position()=1]) 2017; 7 Wang (D0CC02880K-(cit1)/*[position()=1]) 2014; 43 Bilmen (D0CC02880K-(cit11)/*[position()=1]) 2019; 74 Koilraj (D0CC02880K-(cit15)/*[position()=1]) 2018; 6 Singh (D0CC02880K-(cit12)/*[position()=1]) 2015; 119 Li (D0CC02880K-(cit25)/*[position()=1]) 2017; 13 Zhou (D0CC02880K-(cit7)/*[position()=1]) 2019; 58 Sevilla (D0CC02880K-(cit13)/*[position()=1]) 2014; 7 Bayer (D0CC02880K-(cit21)/*[position()=1]) 2016; 120 Sun (D0CC02880K-(cit30)/*[position()=1]) 2018; 14 Ossonon (D0CC02880K-(cit14)/*[position()=1]) 2017; 7 Li (D0CC02880K-(cit9)/*[position()=1]) 2019; 8 Lu (D0CC02880K-(cit32)/*[position()=1]) 2015; 6 Miao (D0CC02880K-(cit3)/*[position()=1]) 2019; 55 Takashima (D0CC02880K-(cit2)/*[position()=1]) 2019; 9 Liu (D0CC02880K-(cit19)/*[position()=1]) 2019; 11 Liu (D0CC02880K-(cit20)/*[position()=1]) 2016; 3 Kuang (D0CC02880K-(cit24)/*[position()=1]) 2018; 3 Singh (D0CC02880K-(cit18)/*[position()=1]) 2016; 55 Huang (D0CC02880K-(cit26)/*[position()=1]) 2018; 10 Saha (D0CC02880K-(cit29)/*[position()=1]) 2017; 23 Wang (D0CC02880K-(cit27)/*[position()=1]) 2017; 53 Xing (D0CC02880K-(cit22)/*[position()=1]) 2018; 54 |
References_xml | – volume: 11 start-page: 9896 year: 2019 ident: D0CC02880K-(cit19)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR02357G contributor: fullname: Liu – volume: 27 start-page: 8011 year: 2015 ident: D0CC02880K-(cit10)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03404 contributor: fullname: Zou – volume: 43 start-page: 7746 year: 2014 ident: D0CC02880K-(cit1)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60248F contributor: fullname: Wang – volume: 74 start-page: 13 year: 2019 ident: D0CC02880K-(cit11)/*[position()=1] publication-title: Anaesthesia doi: 10.1111/anae.14407 contributor: fullname: Bilmen – volume: 9 start-page: 9212 year: 2019 ident: D0CC02880K-(cit2)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b02936 contributor: fullname: Takashima – volume: 355 start-page: eaad4998 year: 2017 ident: D0CC02880K-(cit33)/*[position()=1] publication-title: Science doi: 10.1126/science.aad4998 contributor: fullname: Seh – volume: 14 start-page: 1800294 year: 2018 ident: D0CC02880K-(cit30)/*[position()=1] publication-title: Small doi: 10.1002/smll.201800294 contributor: fullname: Sun – volume: 12 start-page: 572 year: 2019 ident: D0CC02880K-(cit8)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03282C contributor: fullname: Qiu – volume: 12 start-page: 4426 year: 2020 ident: D0CC02880K-(cit31)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR09959J contributor: fullname: Feng – volume: 120 start-page: 22571 year: 2016 ident: D0CC02880K-(cit21)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b01555 contributor: fullname: Bayer – volume: 23 start-page: 12519 year: 2017 ident: D0CC02880K-(cit29)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201700882 contributor: fullname: Saha – volume: 55 start-page: 1442 year: 2019 ident: D0CC02880K-(cit3)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC08817A contributor: fullname: Miao – volume: 58 start-page: 736 year: 2019 ident: D0CC02880K-(cit7)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201809689 contributor: fullname: Zhou – volume: 8 start-page: 1027 year: 2019 ident: D0CC02880K-(cit9)/*[position()=1] publication-title: ChemistryOpen doi: 10.1002/open.201900190 contributor: fullname: Li – volume: 6 start-page: 6616 year: 2015 ident: D0CC02880K-(cit32)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7616 contributor: fullname: Lu – volume: 6 start-page: 10008 year: 2018 ident: D0CC02880K-(cit15)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01605D contributor: fullname: Koilraj – volume: 55 start-page: 8744 year: 2019 ident: D0CC02880K-(cit5)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC02845E contributor: fullname: Li – volume: 31 start-page: 1903909 year: 2019 ident: D0CC02880K-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201903909 contributor: fullname: Chen – volume: 7 start-page: 27224 year: 2017 ident: D0CC02880K-(cit14)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA28311J contributor: fullname: Ossonon – volume: 7 start-page: 28763 year: 2017 ident: D0CC02880K-(cit16)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA02750H contributor: fullname: Guivar – volume: 7 start-page: 1250 year: 2014 ident: D0CC02880K-(cit13)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43525C contributor: fullname: Sevilla – volume: 54 start-page: 7046 year: 2018 ident: D0CC02880K-(cit22)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC03112F contributor: fullname: Xing – volume: 13 start-page: 1700610 year: 2017 ident: D0CC02880K-(cit25)/*[position()=1] publication-title: Small doi: 10.1002/smll.201700610 contributor: fullname: Li – volume: 6 start-page: 1600621 year: 2016 ident: D0CC02880K-(cit28)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600621 contributor: fullname: Dionigi – volume: 3 start-page: 906 year: 2016 ident: D0CC02880K-(cit20)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201600116 contributor: fullname: Liu – volume: 116 start-page: 11019 year: 2012 ident: D0CC02880K-(cit23)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp301090d contributor: fullname: Reddy – volume: 3 start-page: 317 year: 2018 ident: D0CC02880K-(cit24)/*[position()=1] publication-title: Nanoscale Horiz. doi: 10.1039/C8NH00027A contributor: fullname: Kuang – volume: 55 start-page: 2032 year: 2016 ident: D0CC02880K-(cit18)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201509054 contributor: fullname: Singh – volume: 7 start-page: 172 year: 2019 ident: D0CC02880K-(cit17)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07976E contributor: fullname: Wang – volume: 10 start-page: 13638 year: 2018 ident: D0CC02880K-(cit26)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR04402C contributor: fullname: Huang – volume: 53 start-page: 11556 year: 2017 ident: D0CC02880K-(cit27)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC04611A contributor: fullname: Wang – volume: 54 start-page: 264 year: 2018 ident: D0CC02880K-(cit4)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC09117F contributor: fullname: Kuang – volume: 119 start-page: 11382 issue: 21 year: 2015 ident: D0CC02880K-(cit12)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b01322 contributor: fullname: Singh |
SSID | ssj0000158 |
Score | 2.4464436 |
Snippet | We report the facile synthesis of oxidised charcoal supported NiFeLDH (NiFeLDH/OC) at room temperature. It showed unprecedented activity in the oxygen... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Publisher |
StartPage | 877 |
SubjectTerms | Charcoal Electrochemical analysis Iron compounds Nickel compounds Oxygen evolution reactions Room temperature X ray photoelectron spectroscopy |
Title | Oxidised charcoal: an efficient support for NiFe layered double hydroxide to improve electrochemical oxygen evolution |
URI | https://www.proquest.com/docview/2430092066 https://search.proquest.com/docview/2420136630 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QFeELeJjoGM4K3KcOJceavKplHYQKJDfYscx1lLp6RqG7TyJ_jLHF_iZDAk4CWK7Fxany_nHNvnfAehVxH388yluSP8InT8mAQOyyPiFFGW8Ii5WaQy5M7Ow9MLfzwNpr3ej07UUr3Jjvj3W_NK_keq0AZylVmy_yBZ-1BogHOQLxxBwnD8Kxl_vJ7LDZZcpu-ueMWuVOpyKYM05irRcbCul9LBVsGE5_MTMbhiW1mdc5BXtcyZmm3zVQVPUQU05mqBQQxMaRzecAlU19tLWQzgm_kzXYfWEg7wbqaJWsq16WBK3-piIZ2Fh89M7zWNq9Iu69uA7-F6Vtkcok9nOvTyKyutERmzxUyj88t8wdaz7uqFp2Pn_I7CpUHiRFRTSh4J0xb6Dsykpl0trenHDRqNAl8bgx3dMN-6NMpvpoFQyayaE87BpYrJojWANiyx7dxBex5oLlCZe8PjybsPHUYyVfLV_uyG8ZYmr9u7b_o47cRlZ9VUlVHey-Q-umemHXioMfQA9UT5EN0ZNdX-HqG6wRJusPQGsxJbJGGDJAxIwhJJ2CAJayRhiyS8qbBBEv4FSVgjCVskPUYXJ8eT0aljSnI4nPpk40gO_DjkQcjyghPhhgENgywJRFzEiSu3dAkPWCQSTvJQwAcvAphS-EHhJlnhZTHdR7tlVYonCMNIgbudgInhmc88wkKe0yiJXVH4NKO0j142g5guNfNKqiImaJK-JaORGur3fXTYjG9qvsx16vlUcomBN91HL2w3DKjcDGOlqGp5jSfpCkNK-mgf5GLf0Yqxjw5u70iXeXHwp7ueorst0A_R7mZVi2fguG6y5wZMPwH3Kp2q |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidised+charcoal%3A+an+efficient+support+for+NiFe+layered+double+hydroxide+to+improve+electrochemical+oxygen+evolution&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Saha%2C+Jony&rft.au=Kumar%2C+Ashok&rft.au=PM%2C+Anjana&rft.au=Jakhad%2C+Vikash&rft.date=2020-08-04&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=56&rft.issue=62&rft.spage=877&rft.epage=8773&rft_id=info:doi/10.1039%2Fd0cc02880k&rft.externalDocID=d0cc02880k |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |