A game-based approximate verification of deep neural networks with provable guarantees
Despite the improved accuracy of deep neural networks, the discovery of adversarial examples has raised serious safety concerns. In this paper, we study two variants of pointwise robustness, the maximum safe radius problem, which for a given input sample computes the minimum distance to an adversari...
Saved in:
Published in | Theoretical computer science Vol. 807; pp. 298 - 329 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
06.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the improved accuracy of deep neural networks, the discovery of adversarial examples has raised serious safety concerns. In this paper, we study two variants of pointwise robustness, the maximum safe radius problem, which for a given input sample computes the minimum distance to an adversarial example, and the feature robustness problem, which aims to quantify the robustness of individual features to adversarial perturbations. We demonstrate that, under the assumption of Lipschitz continuity, both problems can be approximated using finite optimisation by discretising the input space, and the approximation has provable guarantees, i.e., the error is bounded. We then show that the resulting optimisation problems can be reduced to the solution of two-player turn-based games, where the first player selects features and the second perturbs the image within the feature. While the second player aims to minimise the distance to an adversarial example, depending on the optimisation objective the first player can be cooperative or competitive. We employ an anytime approach to solve the games, in the sense of approximating the value of a game by monotonically improving its upper and lower bounds. The Monte Carlo tree search algorithm is applied to compute upper bounds for both games, and the Admissible A⁎ and the Alpha-Beta Pruning algorithms are, respectively, used to compute lower bounds for the maximum safety radius and feature robustness games. When working on the upper bound of the maximum safe radius problem, our tool demonstrates competitive performance against existing adversarial example crafting algorithms. Furthermore, we show how our framework can be deployed to evaluate pointwise robustness of neural networks in safety-critical applications such as traffic sign recognition in self-driving cars. |
---|---|
AbstractList | Despite the improved accuracy of deep neural networks, the discovery of adversarial examples has raised serious safety concerns. In this paper, we study two variants of pointwise robustness, the maximum safe radius problem, which for a given input sample computes the minimum distance to an adversarial example, and the feature robustness problem, which aims to quantify the robustness of individual features to adversarial perturbations. We demonstrate that, under the assumption of Lipschitz continuity, both problems can be approximated using finite optimisation by discretising the input space, and the approximation has provable guarantees, i.e., the error is bounded. We then show that the resulting optimisation problems can be reduced to the solution of two-player turn-based games, where the first player selects features and the second perturbs the image within the feature. While the second player aims to minimise the distance to an adversarial example, depending on the optimisation objective the first player can be cooperative or competitive. We employ an anytime approach to solve the games, in the sense of approximating the value of a game by monotonically improving its upper and lower bounds. The Monte Carlo tree search algorithm is applied to compute upper bounds for both games, and the Admissible A⁎ and the Alpha-Beta Pruning algorithms are, respectively, used to compute lower bounds for the maximum safety radius and feature robustness games. When working on the upper bound of the maximum safe radius problem, our tool demonstrates competitive performance against existing adversarial example crafting algorithms. Furthermore, we show how our framework can be deployed to evaluate pointwise robustness of neural networks in safety-critical applications such as traffic sign recognition in self-driving cars. |
Author | Wu, Min Wicker, Matthew Ruan, Wenjie Huang, Xiaowei Kwiatkowska, Marta |
Author_xml | – sequence: 1 givenname: Min surname: Wu fullname: Wu, Min email: min.wu@cs.ox.ac.uk organization: Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK – sequence: 2 givenname: Matthew surname: Wicker fullname: Wicker, Matthew email: matthew.wicker@cs.ox.ac.uk organization: Department of Computer Science, University of Georgia Boyd Research Center, Parks Road D.W. Brooks Drive Athens, GA 30602-7415, USA – sequence: 3 givenname: Wenjie surname: Ruan fullname: Ruan, Wenjie email: wenjie.ruan@cs.ox.ac.uk organization: Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK – sequence: 4 givenname: Xiaowei surname: Huang fullname: Huang, Xiaowei email: xiaowei.huang@liverpool.ac.uk organization: Department of Computer Science, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, UK – sequence: 5 givenname: Marta surname: Kwiatkowska fullname: Kwiatkowska, Marta email: marta.kwiatkowska@cs.ox.ac.uk organization: Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK |
BookMark | eNp9kMtOwzAQRS1UJNrCB7DzDyTYiR3HYlVVvKRKbICt5Tjj4pImke228Pe4wIpFZ3M3c0ZzzwxN-qEHhK4pySmh1c0mjybkBaEyJzwnrDpDU1oLmRWFZBM0JSVhWSkFv0CzEDYkDRfVFL0t8FpvIWt0gBbrcfTDp9vqCHgP3llndHRDjweLW4AR97DzuksRD4P_CPjg4jtOzF43HeD1TnvdR4Bwic6t7gJc_eUcvd7fvSwfs9Xzw9NyscpMyUjMDDNtUUtGRcUrwXRdW1IyAVZwzWpTSCgaTWzdNtrKhrSWGm0rwglIytNyOUfi967xQwgerDIu_rwcvXadokQd9aiNSnrUUY8iXCU9iaT_yNGn4v7rJHP7y0CqtHfgVTAOegOt82Ciagd3gv4GPsSBrg |
CitedBy_id | crossref_primary_10_1007_s00165_021_00548_1 crossref_primary_10_1109_TVT_2024_3394699 crossref_primary_10_1109_TSG_2020_3009401 crossref_primary_10_1007_s10462_024_10824_0 crossref_primary_10_3233_AIC_220128 crossref_primary_10_1109_JIOT_2024_3349381 crossref_primary_10_1007_s40747_022_00790_x crossref_primary_10_1016_j_ifacol_2024_07_330 crossref_primary_10_1145_3607835 crossref_primary_10_1109_OJCOMS_2021_3112939 crossref_primary_10_1145_3563212 crossref_primary_10_1007_s10994_023_06306_z crossref_primary_10_1109_MSP_2020_2983666 crossref_primary_10_1007_s10878_021_00827_w crossref_primary_10_1109_TASE_2023_3334332 crossref_primary_10_1007_s11424_022_0208_7 crossref_primary_10_1093_imamat_hxad027 crossref_primary_10_3390_a16030165 crossref_primary_10_1016_j_jlamp_2023_100941 crossref_primary_10_3390_e24040550 crossref_primary_10_1109_TASE_2024_3412239 crossref_primary_10_3390_robotics10020067 crossref_primary_10_1002_int_23072 crossref_primary_10_1007_s10515_022_00337_x crossref_primary_10_1109_ACCESS_2020_3048047 crossref_primary_10_1109_TAI_2024_3351798 crossref_primary_10_1038_s41598_021_87557_5 crossref_primary_10_1016_j_asoc_2024_111733 crossref_primary_10_1016_j_tcs_2020_12_002 crossref_primary_10_1109_ACCESS_2020_3024197 crossref_primary_10_1109_TASLP_2023_3302230 crossref_primary_10_1016_j_neucom_2024_127643 crossref_primary_10_1016_j_sysarc_2022_102582 crossref_primary_10_3390_info14070397 crossref_primary_10_1016_j_apenergy_2023_121405 crossref_primary_10_1016_j_cosrev_2020_100270 crossref_primary_10_1016_j_inffus_2023_101805 |
Cites_doi | 10.1142/S1793005708001094 10.1007/s11263-007-0056-x 10.1023/B:VISI.0000029664.99615.94 10.1038/nature14539 10.1109/5.726791 10.1016/j.neunet.2012.02.016 10.1016/j.cviu.2007.09.014 10.1145/3290354 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tcs.2019.05.046 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1879-2294 |
EndPage | 329 |
ExternalDocumentID | 10_1016_j_tcs_2019_05_046 S0304397519304426 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPC SPCBC SSV SSW SSZ T5K TN5 WH7 YNT ZMT ~G- 29Q AAEDT AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BNPGV CITATION EJD FGOYB G-2 HZ~ R2- RIG SEW SSH TAE WUQ XJT ZY4 |
ID | FETCH-LOGICAL-c340t-c4cd28941765674a88f0347ef75a48c29e2ba0f8dbaf9b0df1caf6050e91588f3 |
IEDL.DBID | IXB |
ISSN | 0304-3975 |
IngestDate | Thu Apr 24 22:57:12 EDT 2025 Tue Jul 01 03:18:01 EDT 2025 Fri Feb 23 02:49:01 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Two-player game Adversarial examples Deep neural networks Automated verification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-c4cd28941765674a88f0347ef75a48c29e2ba0f8dbaf9b0df1caf6050e91588f3 |
OpenAccessLink | https://doi.org/10.1016/j.tcs.2019.05.046 |
PageCount | 32 |
ParticipantIDs | crossref_citationtrail_10_1016_j_tcs_2019_05_046 crossref_primary_10_1016_j_tcs_2019_05_046 elsevier_sciencedirect_doi_10_1016_j_tcs_2019_05_046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-06 |
PublicationDateYYYYMMDD | 2020-02-06 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-06 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | Theoretical computer science |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sun, Wu, Ruan, Huang, Kwiatkowska, Kroening (br0280) 2018 Carlini, Wagner (br0110) 2017 Goodfellow, Shlens, Szegedy (br0090) 2015 Biggio, Corona, Maiorca, Nelson, Šrndić, Laskov, Giacinto, Roli (br0070) 2013 Carlini, Katz, Barrett, Dill (br0430) Burg (br0340) Papernot, McDaniel, Goodfellow, Jha, Celik, Swami (br0450) 2017 Wong, Kolter (br0400) 2018; vol. 80 Singh, Gehr, Püschel, Vechev (br0420) 2019; 3 Hull, Ward, Zakrzewski (br0150) 2002; vol. 6 Lowe (br0180) 2004; 60 Weng, Zhang, Chen, Song, Hsieh, Daniel, Boning, Dhillon (br0320) 2018 Zakrzewski (br0140) 2001 Nexar (br0220) Ryan, Lin, Miikkulainen (br0020) 1998 Katz, Barrett, Dill, Julian, Kochenderfer (br0120) 2017 Pulina, Tacchella (br0370) 2010 Melis, Demontis, Biggio, Brown, Fumera, Roli (br0360) 2017 Carlsson, Ishkhanov, de Silva, Zomorodian (br0250) 2008; 76 Sermanet, LeCun (br0050) 2011 Wicker, Huang, Kwiatkowska (br0230) 2018 Zhang, Weng, Chen, Hsieh, Daniel (br0330) 2018 Narodytska, Kasiviswanathan (br0460) 2017 Wei, Yen (br0310) 2015; 6 Dahl, Stokes, Deng, Yu (br0010) 2013 LeCun, Bottou, Bengio, Haffner (br0190) 1998; 86 Chaslot, Winands, Uiterwijk, van den Herik, Bouzy (br0290) 2008; 4 Bojarski, Del Testa, Dworakowski, Firner, Flepp, Goyal, Jackel, Monfort, Muller, Zhang (br0030) Mirman, Gehr, Vechev (br0390) 2018; vol. 80 LeCun, Bengio, Hinton (br0060) 2015; 521 Bay, Ess, Tuytelaars, Van Gool (br0470) 2008; 110 Tjeng, Xiao, Tedrake (br0440) Huang, Kwiatkowska, Wang, Wu (br0130) 2017 Kocsis, Szepesvári (br0300) 2006 Moosavi-Dezfooli, Fawzi, Fawzi, Frossard (br0350) 2017 Ruan, Wu, Sun, Huang, Kroening, Kwiatkowska (br0170) 2019 Wang, Simoncelli, Bovik (br0240) 2003; vol. 2 Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus (br0080) 2014 Krizhevsky, Hinton (br0200) 2009 Gopinath, Katz, Păsăreanu, Barrett (br0380) 2018 Ruan, Huang, Kwiatkowska (br0160) 2018 Lundberg, Lee (br0270) 2017 Stallkamp, Schlipsing, Salmen, Igel (br0210) 2012; 32 Bittel, Kaiser, Teichmann, Thoma (br0040) Ribeiro, Singh, Guestrin (br0260) 2016 Wong, Schmidt, Metzen, Kolter (br0410) 2018 Papernot, McDaniel, Jha, Fredrikson, Celik, Swami (br0100) 2016 Chaslot (10.1016/j.tcs.2019.05.046_br0290) 2008; 4 Zhang (10.1016/j.tcs.2019.05.046_br0330) 2018 Ruan (10.1016/j.tcs.2019.05.046_br0170) 2019 Ruan (10.1016/j.tcs.2019.05.046_br0160) 2018 Szegedy (10.1016/j.tcs.2019.05.046_br0080) 2014 Papernot (10.1016/j.tcs.2019.05.046_br0100) 2016 Katz (10.1016/j.tcs.2019.05.046_br0120) 2017 Lundberg (10.1016/j.tcs.2019.05.046_br0270) 2017 Carlini (10.1016/j.tcs.2019.05.046_br0430) Singh (10.1016/j.tcs.2019.05.046_br0420) 2019; 3 Carlini (10.1016/j.tcs.2019.05.046_br0110) 2017 LeCun (10.1016/j.tcs.2019.05.046_br0190) 1998; 86 Sun (10.1016/j.tcs.2019.05.046_br0280) 2018 Goodfellow (10.1016/j.tcs.2019.05.046_br0090) 2015 Bittel (10.1016/j.tcs.2019.05.046_br0040) LeCun (10.1016/j.tcs.2019.05.046_br0060) 2015; 521 Narodytska (10.1016/j.tcs.2019.05.046_br0460) 2017 Sermanet (10.1016/j.tcs.2019.05.046_br0050) 2011 Nexar (10.1016/j.tcs.2019.05.046_br0220) Kocsis (10.1016/j.tcs.2019.05.046_br0300) 2006 Ryan (10.1016/j.tcs.2019.05.046_br0020) 1998 Biggio (10.1016/j.tcs.2019.05.046_br0070) 2013 Hull (10.1016/j.tcs.2019.05.046_br0150) 2002; vol. 6 Carlsson (10.1016/j.tcs.2019.05.046_br0250) 2008; 76 Huang (10.1016/j.tcs.2019.05.046_br0130) 2017 Wei (10.1016/j.tcs.2019.05.046_br0310) 2015; 6 Weng (10.1016/j.tcs.2019.05.046_br0320) 2018 Moosavi-Dezfooli (10.1016/j.tcs.2019.05.046_br0350) 2017 Pulina (10.1016/j.tcs.2019.05.046_br0370) 2010 Wong (10.1016/j.tcs.2019.05.046_br0400) 2018; vol. 80 Burg (10.1016/j.tcs.2019.05.046_br0340) Krizhevsky (10.1016/j.tcs.2019.05.046_br0200) 2009 Dahl (10.1016/j.tcs.2019.05.046_br0010) 2013 Melis (10.1016/j.tcs.2019.05.046_br0360) 2017 Zakrzewski (10.1016/j.tcs.2019.05.046_br0140) 2001 Lowe (10.1016/j.tcs.2019.05.046_br0180) 2004; 60 Wang (10.1016/j.tcs.2019.05.046_br0240) 2003; vol. 2 Bay (10.1016/j.tcs.2019.05.046_br0470) 2008; 110 Bojarski (10.1016/j.tcs.2019.05.046_br0030) Tjeng (10.1016/j.tcs.2019.05.046_br0440) Wicker (10.1016/j.tcs.2019.05.046_br0230) 2018 Stallkamp (10.1016/j.tcs.2019.05.046_br0210) 2012; 32 Ribeiro (10.1016/j.tcs.2019.05.046_br0260) 2016 Wong (10.1016/j.tcs.2019.05.046_br0410) 2018 Papernot (10.1016/j.tcs.2019.05.046_br0450) 2017 Gopinath (10.1016/j.tcs.2019.05.046_br0380) 2018 Mirman (10.1016/j.tcs.2019.05.046_br0390) 2018; vol. 80 |
References_xml | – start-page: 109 year: 2018 end-page: 119 ident: br0280 article-title: Concolic testing for deep neural networks publication-title: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering – start-page: 1135 year: 2016 end-page: 1144 ident: br0260 article-title: “Why should I trust you?”: explaining the predictions of any classifier publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16 – start-page: 8400 year: 2018 end-page: 8409 ident: br0410 article-title: Scaling provable adversarial defenses publication-title: Advances in Neural Information Processing Systems 31 – start-page: 5273 year: 2018 end-page: 5282 ident: br0320 article-title: Towards fast computation of certified robustness for ReLU networks publication-title: International Conference on Machine Learning – year: 2015 ident: br0090 article-title: Explaining and harnessing adversarial examples publication-title: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings – volume: vol. 80 start-page: 5286 year: 2018 end-page: 5295 ident: br0400 article-title: Provable defenses against adversarial examples via the convex outer adversarial polytope publication-title: Proceedings of the 35th International Conference on Machine Learning – volume: 60 start-page: 91 year: 2004 end-page: 110 ident: br0180 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. – start-page: 4765 year: 2017 end-page: 4774 ident: br0270 article-title: A unified approach to interpreting model predictions publication-title: Advances in Neural Information Processing Systems – volume: 6 start-page: 77 year: 2015 end-page: 86 ident: br0310 article-title: Superpixels generating from the pixel-based k-means clustering publication-title: J. Multimedia Process. Technol. – start-page: 2651 year: 2018 end-page: 2659 ident: br0160 article-title: Reachability analysis of deep neural networks with provable guarantees publication-title: Proceedings of the 27th International Joint Conference on Artificial Intelligence – volume: 521 start-page: 436 year: 2015 ident: br0060 article-title: Deep learning publication-title: Nature – start-page: 372 year: 2016 end-page: 387 ident: br0100 article-title: The limitations of deep learning in adversarial settings publication-title: European Symposium on Security and Privacy (EuroS&P) – start-page: 3 year: 2018 end-page: 19 ident: br0380 article-title: Deepsafe: a data-driven approach for assessing robustness of neural networks publication-title: International Symposium on Automated Technology for Verification and Analysis – ident: br0430 article-title: Provably minimally-distorted adversarial examples – start-page: 3 year: 2017 end-page: 29 ident: br0130 article-title: Safety verification of deep neural networks publication-title: Computer Aided Verification – volume: 3 start-page: 41 year: 2019 ident: br0420 article-title: An abstract domain for certifying neural networks publication-title: Proc. ACM Program. Lang. – start-page: 943 year: 1998 end-page: 949 ident: br0020 article-title: Intrusion detection with neural networks publication-title: Advances in Neural Information Processing Systems (NIPS) – start-page: 282 year: 2006 end-page: 293 ident: br0300 article-title: Bandit based Monte-Carlo planning publication-title: European Conference on Machine Learning – start-page: 751 year: 2017 end-page: 759 ident: br0360 article-title: Is deep learning safe for robot vision? Adversarial examples against the icub humanoid publication-title: Proceedings of the IEEE International Conference on Computer Vision – ident: br0440 article-title: Evaluating robustness of neural networks with mixed integer programming – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: br0190 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – start-page: 39 year: 2017 end-page: 57 ident: br0110 article-title: Towards evaluating the robustness of neural networks publication-title: Symposium on Security and Privacy (SP) – start-page: 97 year: 2017 end-page: 117 ident: br0120 article-title: Reluplex: an efficient SMT solver for verifying deep neural networks publication-title: Computer Aided Verification – start-page: 2809 year: 2011 end-page: 2813 ident: br0050 article-title: Traffic sign recognition with multi-scale convolutional networks publication-title: International Joint Conference on Neural Networks – start-page: 1765 year: 2017 end-page: 1773 ident: br0350 article-title: Universal adversarial perturbations publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2019 ident: br0170 article-title: Global robustness evaluation of deep neural networks with provable guarantees for the Hamming distance publication-title: International Joint Conference on Artificial Intelligence – start-page: 1310 year: 2017 end-page: 1318 ident: br0460 article-title: Simple black-box adversarial attacks on deep neural networks publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) – volume: vol. 80 start-page: 3578 year: 2018 end-page: 3586 ident: br0390 article-title: Differentiable abstract interpretation for provably robust neural networks publication-title: Proceedings of the 35th International Conference on Machine Learning – start-page: 1657 year: 2001 end-page: 1662 ident: br0140 article-title: Verification of a trained neural network accuracy publication-title: IJCNN'01, International Joint Conference on Neural Networks, Proceedings (Cat. No. 01CH37222), vol. 3 – start-page: 3422 year: 2013 end-page: 3426 ident: br0010 article-title: Large-scale malware classification using random projections and neural networks publication-title: International Conference on Acoustics, Speech and Signal Processing – volume: 32 start-page: 323 year: 2012 end-page: 332 ident: br0210 article-title: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition publication-title: Neural Netw. – volume: 4 start-page: 343 year: 2008 end-page: 359 ident: br0290 article-title: Progressive strategies for Monte-Carlo tree search publication-title: New Math. Nat. Comput. – start-page: 243 year: 2010 end-page: 257 ident: br0370 article-title: An abstraction-refinement approach to verification of artificial neural networks publication-title: International Conference on Computer Aided Verification – start-page: 387 year: 2013 end-page: 402 ident: br0070 article-title: Evasion attacks against machine learning at test time publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases – volume: vol. 6 start-page: 4789 year: 2002 end-page: 4794 ident: br0150 article-title: Verification and validation of neural networks for safety-critical applications publication-title: Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301) – ident: br0340 article-title: Deep learning traffic lights model for Nexar competition – volume: 76 start-page: 1 year: 2008 end-page: 12 ident: br0250 article-title: On the local behavior of spaces of natural images publication-title: Int. J. Comput. Vis. – start-page: 408 year: 2018 end-page: 426 ident: br0230 article-title: Feature-guided black-box safety testing of deep neural networks publication-title: International Conference on Tools and Algorithms for the Construction and Analysis of Systems – volume: 110 start-page: 346 year: 2008 end-page: 359 ident: br0470 article-title: Speeded-up robust features (SURF) publication-title: Comput. Vis. Image Underst. – ident: br0030 article-title: End to end learning for self-driving cars – start-page: 506 year: 2017 end-page: 519 ident: br0450 article-title: Practical black-box attacks against machine learning publication-title: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security – year: 2014 ident: br0080 article-title: Intriguing properties of neural networks publication-title: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings – start-page: 4939 year: 2018 end-page: 4948 ident: br0330 article-title: Efficient neural network robustness certification with general activation functions publication-title: Advances in Neural Information Processing Systems (NIPS) – volume: vol. 2 start-page: 1398 year: 2003 end-page: 1402 ident: br0240 article-title: Multiscale structural similarity for image quality assessment publication-title: The Thirty-Seventh Asilomar Conference on Signals – ident: br0040 article-title: Pixel-wise segmentation of street with neural networks – ident: br0220 article-title: Using deep learning for traffic light recognition – year: 2009 ident: br0200 article-title: Learning Multiple Layers of Features from Tiny Images – start-page: 408 year: 2018 ident: 10.1016/j.tcs.2019.05.046_br0230 article-title: Feature-guided black-box safety testing of deep neural networks – volume: vol. 2 start-page: 1398 year: 2003 ident: 10.1016/j.tcs.2019.05.046_br0240 article-title: Multiscale structural similarity for image quality assessment – start-page: 4765 year: 2017 ident: 10.1016/j.tcs.2019.05.046_br0270 article-title: A unified approach to interpreting model predictions – start-page: 1135 year: 2016 ident: 10.1016/j.tcs.2019.05.046_br0260 article-title: “Why should I trust you?”: explaining the predictions of any classifier – volume: 4 start-page: 343 issue: 3 year: 2008 ident: 10.1016/j.tcs.2019.05.046_br0290 article-title: Progressive strategies for Monte-Carlo tree search publication-title: New Math. Nat. Comput. doi: 10.1142/S1793005708001094 – start-page: 5273 year: 2018 ident: 10.1016/j.tcs.2019.05.046_br0320 article-title: Towards fast computation of certified robustness for ReLU networks – volume: 76 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.tcs.2019.05.046_br0250 article-title: On the local behavior of spaces of natural images publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-007-0056-x – start-page: 39 year: 2017 ident: 10.1016/j.tcs.2019.05.046_br0110 article-title: Towards evaluating the robustness of neural networks – start-page: 943 year: 1998 ident: 10.1016/j.tcs.2019.05.046_br0020 article-title: Intrusion detection with neural networks – start-page: 109 year: 2018 ident: 10.1016/j.tcs.2019.05.046_br0280 article-title: Concolic testing for deep neural networks – start-page: 1310 year: 2017 ident: 10.1016/j.tcs.2019.05.046_br0460 article-title: Simple black-box adversarial attacks on deep neural networks – volume: vol. 80 start-page: 5286 year: 2018 ident: 10.1016/j.tcs.2019.05.046_br0400 article-title: Provable defenses against adversarial examples via the convex outer adversarial polytope – ident: 10.1016/j.tcs.2019.05.046_br0340 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 10.1016/j.tcs.2019.05.046_br0180 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – start-page: 1765 year: 2017 ident: 10.1016/j.tcs.2019.05.046_br0350 article-title: Universal adversarial perturbations – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.tcs.2019.05.046_br0060 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 387 year: 2013 ident: 10.1016/j.tcs.2019.05.046_br0070 article-title: Evasion attacks against machine learning at test time – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.tcs.2019.05.046_br0190 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – start-page: 751 year: 2017 ident: 10.1016/j.tcs.2019.05.046_br0360 article-title: Is deep learning safe for robot vision? Adversarial examples against the icub humanoid – year: 2014 ident: 10.1016/j.tcs.2019.05.046_br0080 article-title: Intriguing properties of neural networks – start-page: 506 year: 2017 ident: 10.1016/j.tcs.2019.05.046_br0450 article-title: Practical black-box attacks against machine learning – volume: 32 start-page: 323 year: 2012 ident: 10.1016/j.tcs.2019.05.046_br0210 article-title: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition publication-title: Neural Netw. doi: 10.1016/j.neunet.2012.02.016 – year: 2019 ident: 10.1016/j.tcs.2019.05.046_br0170 article-title: Global robustness evaluation of deep neural networks with provable guarantees for the Hamming distance – ident: 10.1016/j.tcs.2019.05.046_br0030 – year: 2015 ident: 10.1016/j.tcs.2019.05.046_br0090 article-title: Explaining and harnessing adversarial examples – start-page: 372 year: 2016 ident: 10.1016/j.tcs.2019.05.046_br0100 article-title: The limitations of deep learning in adversarial settings – volume: 110 start-page: 346 issue: 3 year: 2008 ident: 10.1016/j.tcs.2019.05.046_br0470 article-title: Speeded-up robust features (SURF) publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2007.09.014 – start-page: 3422 year: 2013 ident: 10.1016/j.tcs.2019.05.046_br0010 article-title: Large-scale malware classification using random projections and neural networks – ident: 10.1016/j.tcs.2019.05.046_br0040 – volume: 3 start-page: 41 year: 2019 ident: 10.1016/j.tcs.2019.05.046_br0420 article-title: An abstract domain for certifying neural networks publication-title: Proc. ACM Program. Lang. doi: 10.1145/3290354 – start-page: 1657 year: 2001 ident: 10.1016/j.tcs.2019.05.046_br0140 article-title: Verification of a trained neural network accuracy – start-page: 243 year: 2010 ident: 10.1016/j.tcs.2019.05.046_br0370 article-title: An abstraction-refinement approach to verification of artificial neural networks – year: 2009 ident: 10.1016/j.tcs.2019.05.046_br0200 – start-page: 2809 year: 2011 ident: 10.1016/j.tcs.2019.05.046_br0050 article-title: Traffic sign recognition with multi-scale convolutional networks – start-page: 2651 year: 2018 ident: 10.1016/j.tcs.2019.05.046_br0160 article-title: Reachability analysis of deep neural networks with provable guarantees – ident: 10.1016/j.tcs.2019.05.046_br0440 – start-page: 282 year: 2006 ident: 10.1016/j.tcs.2019.05.046_br0300 article-title: Bandit based Monte-Carlo planning – volume: 6 start-page: 77 issue: 3 year: 2015 ident: 10.1016/j.tcs.2019.05.046_br0310 article-title: Superpixels generating from the pixel-based k-means clustering publication-title: J. Multimedia Process. Technol. – start-page: 3 year: 2018 ident: 10.1016/j.tcs.2019.05.046_br0380 article-title: Deepsafe: a data-driven approach for assessing robustness of neural networks – ident: 10.1016/j.tcs.2019.05.046_br0220 – start-page: 97 year: 2017 ident: 10.1016/j.tcs.2019.05.046_br0120 article-title: Reluplex: an efficient SMT solver for verifying deep neural networks – volume: vol. 6 start-page: 4789 year: 2002 ident: 10.1016/j.tcs.2019.05.046_br0150 article-title: Verification and validation of neural networks for safety-critical applications – start-page: 4939 year: 2018 ident: 10.1016/j.tcs.2019.05.046_br0330 article-title: Efficient neural network robustness certification with general activation functions – volume: vol. 80 start-page: 3578 year: 2018 ident: 10.1016/j.tcs.2019.05.046_br0390 article-title: Differentiable abstract interpretation for provably robust neural networks – start-page: 3 year: 2017 ident: 10.1016/j.tcs.2019.05.046_br0130 article-title: Safety verification of deep neural networks – ident: 10.1016/j.tcs.2019.05.046_br0430 – start-page: 8400 year: 2018 ident: 10.1016/j.tcs.2019.05.046_br0410 article-title: Scaling provable adversarial defenses |
SSID | ssj0000576 |
Score | 2.5768013 |
Snippet | Despite the improved accuracy of deep neural networks, the discovery of adversarial examples has raised serious safety concerns. In this paper, we study two... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 298 |
SubjectTerms | Adversarial examples Automated verification Deep neural networks Two-player game |
Title | A game-based approximate verification of deep neural networks with provable guarantees |
URI | https://dx.doi.org/10.1016/j.tcs.2019.05.046 |
Volume | 807 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4XODAY4B4TjlwQipLt3RJjwOBBgguMLRblaTJNARjYkPixG_HTtsBEnDg2iZq5Tif7dj5DHBoUqPzJtdRbPMkEuiCR8YnPlLKKiljL9qh3dv1TbvbE5f9pD8Hp9VdGCqrLLG_wPSA1uWTRinNxng4bNxSUg-tKbkgXKChQRxuCRUu8fVPPtE4kUW-kjIAOLrKbIYar6klxu44DeSd5AP_ZJu-2JvzNVgpHUXWKf5lHebcqAarVRMGVu7JGixfz4hXJxtw32ED_eQiMk45C4Thb0N86RiqLFUFhYVgz57lzo0ZsVniR0ZFLfiE0akso1MGulDFBqg-JHg32YTe-dndaTcqWydEtiX4NLLC5hhKiViivyaFVsrzlpDOy0QLZZupaxrNvcqN9qnhuY-t9hjZcJfGCQ5ubcHC6HnktoFJZbnw0rQdxpJciTRW2mBYKAMaCLEDvBJaZktecWpv8ZhVBWQPGco5IzlnPMlQzjtwNJsyLkg1_hosqpXIvmlGhqD_-7Td_03bg6UmRdRUl93eh4Xpy6s7QLdjauowf_we12Gxc3HVvakHLfsAgLTXxQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYGHIADb8SbHDghVUu3dEmPgJgGbFwYaLcoSRM0BGNiQ-LnY_fBQwIOXNtErRzH_hw7nwGObGpN1uAmil2WRAIheGRDEiKlnJIyDqKVt3vrXbc6t-JykAxqcFbdhaGyytL2FzY9t9blk3opzfp4OKzfUFIPvSlBEC7Q0czAHKIBSf0bLgann-Y4kUXCklIAOLxKbeZFXlNHlN1xmrN3Egj-yTl9cTjtFVgqkSI7KX5mFWp-tAbLVRcGVm7KNVjsfTCvTtbh7oTdmycfkXfKWM4Y_jbEl56hzlJZUL4S7DmwzPsxIzpL_MioKAafMDqWZXTMQDeq2D3qD0neTzbgtn3eP-tEZe-EyDUFn0ZOuAxjKRFLBGxSGKUCbwrpg0yMUK6R-oY1PKjMmpBanoXYmYChDfdpnODg5ibMjp5HfguYVI6LIG3LYzDJlUhjZSzGhTI3B0JsA6-Epl1JLE79LR51VUH2oFHOmuSseaJRzttw_DFlXLBq_DVYVCuhv6mGRqv_-7Sd_007hPlOv9fV3Yvrq11YaFB4TUXarT2Ynb68-n3EIFN7kOvYO4pv2Fg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+game-based+approximate+verification+of+deep+neural+networks+with+provable+guarantees&rft.jtitle=Theoretical+computer+science&rft.au=Wu%2C+Min&rft.au=Wicker%2C+Matthew&rft.au=Ruan%2C+Wenjie&rft.au=Huang%2C+Xiaowei&rft.date=2020-02-06&rft.issn=0304-3975&rft.volume=807&rft.spage=298&rft.epage=329&rft_id=info:doi/10.1016%2Fj.tcs.2019.05.046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2019_05_046 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon |