Effect of the Lode parameter in predicting shear cracking of 2024-T351 aluminum alloy Taylor rods
•A modified version of Johnson–Cook strength model was constructed and calibrated.•The Johnson–Cook and a Lode dependent fracture criterion were calibrated using a hybrid experimental–numerical method.•Taylor impact tests were conducted and shear cracking was identified.•FE simulations by using the...
Saved in:
Published in | International journal of impact engineering Vol. 120; pp. 185 - 201 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.10.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A modified version of Johnson–Cook strength model was constructed and calibrated.•The Johnson–Cook and a Lode dependent fracture criterion were calibrated using a hybrid experimental–numerical method.•Taylor impact tests were conducted and shear cracking was identified.•FE simulations by using the Lode dependent fracture criterion reasonably predicted the shear cracking.•FE simulations by using the Johnson–Cook fracture criterion failed to predict any fracture in the rod.
Recent investigations have shown that the ductility of a metal may depend on not only the stress triaxiality but also the Lode parameter, especially in the relatively low stress triaxiality range. However, applications using the Lode dependent fracture criterion are few and the value of incorporating the Lode parameter into a fracture criterion to predict impact related fracture is poorly understood. In the present paper, Taylor impact test by using 2024-T351 aluminum alloy rods of 5.95 mm diameter and 29.75 mm length was firstly conducted in a one-stage gas gun in the impact velocity range of 110.8–312.7 m/s. Mushrooming and shear cracking were observed in the test with increasing impact velocity. Subsequently, mechanical tests were conducted in a universal testing machine and a SHPB test facility. By using a hybrid experiment–numerical method, a modified version of Johnson–Cook strength model, a Lode-dependent fracture criterion as well as the Johnson–Cook (JC) fracture criterion were calibrated. Finally, 3D FE model corresponding to the test was built in ABAQUS and then was adopted to predict the shear cracking of the Taylor rods. It was found that FE simulations by using the Lode dependent fracture criterion give reasonable fracture pattern predictions while that using the Johnson–Cook fracture model obviously underestimates the fracture behavior. Detailed analysis shows that the dominant stress state of the material in the projectile's fracture region in the impact event is in the range where the Lode parameter has an obvious influence on the metal's ductility. FE simulations by using virtual metals also show that the Taylor impact fracture behavior prediction is much dependent on the effect of the Lode parameter on a material's ductility. |
---|---|
AbstractList | Recent investigations have shown that the ductility of a metal may depend on not only the stress triaxiality but also the Lode parameter, especially in the relatively low stress triaxiality range. However, applications using the Lode dependent fracture criterion are few and the value of incorporating the Lode parameter into a fracture criterion to predict impact related fracture is poorly understood. In the present paper, Taylor impact test by using 2024-T351 aluminum alloy rods of 5.95 mm diameter and 29.75 mm length was firstly conducted in a one-stage gas gun in the impact velocity range of 110.8–312.7 m/s. Mushrooming and shear cracking were observed in the test with increasing impact velocity. Subsequently, mechanical tests were conducted in a universal testing machine and a SHPB test facility. By using a hybrid experiment–numerical method, a modified version of Johnson–Cook strength model, a Lode-dependent fracture criterion as well as the Johnson–Cook (JC) fracture criterion were calibrated. Finally, 3D FE model corresponding to the test was built in ABAQUS and then was adopted to predict the shear cracking of the Taylor rods. It was found that FE simulations by using the Lode dependent fracture criterion give reasonable fracture pattern predictions while that using the Johnson–Cook fracture model obviously underestimates the fracture behavior. Detailed analysis shows that the dominant stress state of the material in the projectile's fracture region in the impact event is in the range where the Lode parameter has an obvious influence on the metal's ductility. FE simulations by using virtual metals also show that the Taylor impact fracture behavior prediction is much dependent on the effect of the Lode parameter on a material's ductility. •A modified version of Johnson–Cook strength model was constructed and calibrated.•The Johnson–Cook and a Lode dependent fracture criterion were calibrated using a hybrid experimental–numerical method.•Taylor impact tests were conducted and shear cracking was identified.•FE simulations by using the Lode dependent fracture criterion reasonably predicted the shear cracking.•FE simulations by using the Johnson–Cook fracture criterion failed to predict any fracture in the rod. Recent investigations have shown that the ductility of a metal may depend on not only the stress triaxiality but also the Lode parameter, especially in the relatively low stress triaxiality range. However, applications using the Lode dependent fracture criterion are few and the value of incorporating the Lode parameter into a fracture criterion to predict impact related fracture is poorly understood. In the present paper, Taylor impact test by using 2024-T351 aluminum alloy rods of 5.95 mm diameter and 29.75 mm length was firstly conducted in a one-stage gas gun in the impact velocity range of 110.8–312.7 m/s. Mushrooming and shear cracking were observed in the test with increasing impact velocity. Subsequently, mechanical tests were conducted in a universal testing machine and a SHPB test facility. By using a hybrid experiment–numerical method, a modified version of Johnson–Cook strength model, a Lode-dependent fracture criterion as well as the Johnson–Cook (JC) fracture criterion were calibrated. Finally, 3D FE model corresponding to the test was built in ABAQUS and then was adopted to predict the shear cracking of the Taylor rods. It was found that FE simulations by using the Lode dependent fracture criterion give reasonable fracture pattern predictions while that using the Johnson–Cook fracture model obviously underestimates the fracture behavior. Detailed analysis shows that the dominant stress state of the material in the projectile's fracture region in the impact event is in the range where the Lode parameter has an obvious influence on the metal's ductility. FE simulations by using virtual metals also show that the Taylor impact fracture behavior prediction is much dependent on the effect of the Lode parameter on a material's ductility. |
Author | Xiao, Xinke Lou, Yanshan Pan, Hao Mu, Zhongcheng |
Author_xml | – sequence: 1 givenname: Xinke surname: Xiao fullname: Xiao, Xinke email: xiaoxinke@foxmail.com organization: School of Civil Engineering, Nanyang Institute of Technology, 80 Changjiang Road, Wancheng District, Nanyang 473004, PR China – sequence: 2 givenname: Zhongcheng surname: Mu fullname: Mu, Zhongcheng organization: School of Aeronautics and Astronautics, Shanghai JiaoTong University, 800 DongChuan RD. Minhang District, ShangHai 200240, PR China – sequence: 3 givenname: Hao surname: Pan fullname: Pan, Hao organization: Lab of Solid and Structure Mechanics, Department of Mechanical and Aerospace Engineering, University of Central Florida (UCF). 4000 Central Florida Blvd, P.O. Box 162450, Orlando, FL 32816, USA – sequence: 4 givenname: Yanshan surname: Lou fullname: Lou, Yanshan organization: School of Mechanical Engineering, Xi′an Jiaotong University, Xi′an 710049, Shaanxi, China |
BookMark | eNqFkE1r3DAQhkVJoZu0f6EIcrY78odsQQ4JIWkDC71soTchy6NEri05kjaw_75atr3ksqd5B95nBp5LcuG8Q0K-MigZMP5tKu1klxXdc1kB60vgJUD_gWxY34mibkFckA10dVN0Tf37E7mMcQJgHbSwIerBGNSJekPTC9KtH5GuKqgFEwZqHV0DjlYn655pfEEVqA5K_zmuGamgaopd3TKq5v1i3X7JYfYHulOH2Qca_Bg_k49GzRG__JtX5Nfjw-7-R7H9-f3p_m5b6LqBVAxDrQUHgUJp1fNR8arVfBwQBY5GDLwxqsGq0sCMzgG4Nh3vGtPCILQY6ytyfbq7Bv-6x5jk5PfB5ZeyYgyqmjWszy1-aungYwxo5BrsosJBMpBHnXKS_3XKo04JXGadGbx5B2qbVLLepaDsfB6_PeGYFbxZDDJqi05nuSH7l6O35078BfvgmEA |
CitedBy_id | crossref_primary_10_1080_15376494_2024_2329310 crossref_primary_10_1016_j_ijimpeng_2023_104841 crossref_primary_10_1016_j_ijplas_2019_02_012 crossref_primary_10_1007_s12289_022_01730_3 crossref_primary_10_1016_j_jmrt_2023_05_186 crossref_primary_10_1016_j_ijimpeng_2023_104681 crossref_primary_10_1016_j_jmrt_2022_03_059 crossref_primary_10_3390_ma13235372 crossref_primary_10_1016_j_tws_2020_107240 crossref_primary_10_1016_j_ijimpeng_2021_104083 crossref_primary_10_1016_j_ijimpeng_2021_104082 crossref_primary_10_1111_ffe_14548 crossref_primary_10_1016_j_ijimpeng_2019_103498 crossref_primary_10_1007_s10704_021_00562_7 crossref_primary_10_1016_j_ijimpeng_2019_02_004 crossref_primary_10_1016_j_jallcom_2024_177005 crossref_primary_10_3390_met12010141 crossref_primary_10_1016_j_rinp_2024_107524 crossref_primary_10_3390_met11050713 crossref_primary_10_1016_j_mechmat_2020_103641 crossref_primary_10_1016_j_ijplas_2020_102788 crossref_primary_10_1080_15502287_2023_2185555 crossref_primary_10_1016_j_tafmec_2022_103677 crossref_primary_10_1007_s12206_022_0811_5 crossref_primary_10_1016_j_engfracmech_2023_109587 crossref_primary_10_1007_s00170_020_06177_x crossref_primary_10_1016_j_ijimpeng_2023_104493 crossref_primary_10_1016_j_ijsolstr_2025_113312 crossref_primary_10_1016_S1003_6326_22_66118_1 crossref_primary_10_1016_j_engfracmech_2022_108273 crossref_primary_10_1016_j_ijimpeng_2019_05_001 crossref_primary_10_1007_s10704_022_00661_z crossref_primary_10_3390_met13091609 crossref_primary_10_1016_j_ijmecsci_2020_105970 crossref_primary_10_1016_j_istruc_2022_01_071 crossref_primary_10_1016_j_ijimpeng_2021_103925 crossref_primary_10_2139_ssrn_3982868 crossref_primary_10_1080_15376494_2024_2364907 crossref_primary_10_1016_j_ijimpeng_2021_104021 crossref_primary_10_1016_j_engfracmech_2023_109634 crossref_primary_10_1016_j_ijhydene_2022_11_285 crossref_primary_10_1016_j_ijimpeng_2021_103972 crossref_primary_10_1016_j_ijimpeng_2022_104182 crossref_primary_10_1016_j_ijmecsci_2022_107506 crossref_primary_10_1016_j_intermet_2023_108029 crossref_primary_10_1016_j_jmrt_2024_04_202 crossref_primary_10_1016_j_ijsolstr_2023_112295 crossref_primary_10_1155_2019_8160283 crossref_primary_10_1016_j_ijimpeng_2020_103659 crossref_primary_10_1016_j_ijmecsci_2019_105027 crossref_primary_10_1007_s11665_024_10410_z crossref_primary_10_1016_j_euromechsol_2023_105030 crossref_primary_10_1016_j_ijimpeng_2018_09_015 crossref_primary_10_3390_met12020264 crossref_primary_10_1063_5_0069402 crossref_primary_10_3390_ma18061364 crossref_primary_10_1016_j_ijmecsci_2023_108643 crossref_primary_10_1007_s42405_023_00620_5 crossref_primary_10_1016_j_ijmecsci_2020_106241 |
Cites_doi | 10.1016/j.matdes.2012.07.032 10.1016/j.finel.2012.10.007 10.1016/j.ijimpeng.2016.05.017 10.1016/j.jmps.2017.06.016 10.1098/rspa.1948.0081 10.1016/S0734-743X(99)00011-1 10.1016/j.ijsolstr.2015.03.003 10.1016/j.ijsolstr.2015.02.024 10.1051/jp4:2006134051 10.1016/j.ijimpeng.2014.10.007 10.1016/j.ijsolstr.2012.02.030 10.1016/j.matdes.2010.05.027 10.1016/j.matdes.2011.01.016 10.1115/1.1755244 10.1016/0013-7944(85)90052-9 10.1016/j.ijplas.2015.08.004 10.1016/j.ijplas.2013.08.006 10.1016/j.ijimpeng.2014.10.004 10.1016/0022-5096(76)90024-7 10.1680/ijoti.1946.13699 10.1016/j.ijimpeng.2014.08.015 10.1016/j.ijplas.2014.01.003 10.1115/1.3225618 10.1088/0370-1301/62/11/302 10.1016/j.ijsolstr.2015.04.007 10.1007/s10704-009-9422-8 10.1016/j.ijmecsci.2005.03.003 10.1115/1.3129722 10.1016/j.ijimpeng.2004.06.004 10.1016/j.ijplas.2009.03.006 10.1016/j.ijimpeng.2017.09.009 10.1098/rspa.1948.0082 10.1177/1056789512439319 10.1016/j.ijimpeng.2014.01.007 10.1016/j.jcsr.2016.04.018 10.1016/j.ijsolstr.2004.09.039 10.1016/j.ijimpeng.2014.06.011 10.1016/j.matdes.2013.04.036 10.1016/j.ijmecsci.2004.02.006 10.1007/BF01139164 10.1016/j.ijimpeng.2011.03.006 10.1007/s11661-016-3825-8 10.1016/j.ijimpeng.2014.02.007 10.1016/j.ijplas.2009.07.006 10.1016/j.jmps.2015.06.004 10.1016/j.ijimpeng.2015.08.001 10.1016/j.engfracmech.2004.07.007 10.1016/j.ijimpeng.2014.02.010 10.1016/S0997-7538(01)01157-3 10.1016/j.ijimpeng.2014.12.006 10.1016/j.mechmat.2010.08.004 10.1016/j.ijplas.2010.02.005 10.1016/j.ijmecsci.2012.06.009 10.1016/j.ijsolstr.2013.11.008 10.1016/j.engfracmech.2015.08.007 10.1016/j.ijsolstr.2006.09.031 |
ContentType | Journal Article |
Copyright | 2018 Copyright Elsevier BV Oct 2018 |
Copyright_xml | – notice: 2018 – notice: Copyright Elsevier BV Oct 2018 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2018.06.008 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
EndPage | 201 |
ExternalDocumentID | 10_1016_j_ijimpeng_2018_06_008 S0734743X18300897 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c340t-bb3c9609e9aca86da625c6dbee9edf9b64fa4e22c01fc4e206cf7674f50b9c9d3 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Sun Jul 13 05:32:34 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Tue Jul 01 03:54:26 EDT 2025 Fri Feb 23 02:28:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fe simulation Shear cracking Lode parameter Taylor impact |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-bb3c9609e9aca86da625c6dbee9edf9b64fa4e22c01fc4e206cf7674f50b9c9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2110231418 |
PQPubID | 2045463 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2110231418 crossref_primary_10_1016_j_ijimpeng_2018_06_008 crossref_citationtrail_10_1016_j_ijimpeng_2018_06_008 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2018_06_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2018 2018-10-00 20181001 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Dolinski, Rittel (bib0016) 2015; 83 Li, Liao, Zhou, Askes (bib0034) 2016; 123 Fras, Roth, Mohr (bib0054) 2018; 111 Xue, Mock, Belytschko (bib0035) 2010; 42 Rakvåg, Børvik, Hopperstad (bib0047) 2014; 51 Johnson, Cook (bib0037) 1985; 21 Mirza, Barton, Church (bib0018) 1996; 31 Tiwari, Iqbal, Gupta, Gupta (bib0008) 2014; 74 Sung, Kim, Wagoner (bib0052) 2010; 26 Wierzbicki, Bao, Lee (bib0023) 2005; 47 Børvik, Hopperstad, Berstad, Langseth (bib0065) 2001; 20 Lou, Yoon, Huh (bib0040) 2014; 54 Bao, Wierzbicki (bib0020) 2004; 46 Rakvåg, Børvik, Westermann, Hopperstad (bib0046) 2013; 51 Xiao, Zhang, Wei, Mu, Guo (bib0021) 2011; 32 Barsoum, Faleskog (bib0024) 2007; 44 Zukas (bib0003) 1990 Chocron, Erice, Anderson (bib0038) 2011; 38 Erice, Pérez-Martín, Gálvez (bib0030) 2014; 69 Abaqus Analysis User's Guide. In: ABAQUS 6.14 documentation. Kpenyigba, Jankowiak, Rusinek, Pesci, Wang (bib0007) 2015; 79 Bai, Dodd (bib0056) 1992 . Johnson, Hoegfeldt, Lindholm, Nagy (bib0063) 1983; 105 Gilioli, Manes, Giglio, Wierzbicki (bib0012) 2015; 76 Gruben, Hopperstad, Børvik (bib0027) 2012; 62 Whiffin (bib0043) 1948; 194 Rittel, Zhang, Osovski (bib0058) 2017; 107 Roth, Mohr (bib0055) 2016; 79 Vershinin (bib0039) 2015; 67-68 Mohr, Marcadet (bib0033) 2015; 68-68 Wei, Zhang, Huang, Ye, Gao, Ni (bib0049) 2014; 73 Taylor (bib0042) 1948; 194 Algarni, Bai, Choi (bib0032) 2015; 147 Teng, Wierzbicki, Hiermaier, Rohr (bib0044) 2005; 42 Zukas, Nicholas, Swift (bib0001) 1982 Ludwik (bib0050) 1909 Gao, Zhang, Hayden, Roe (bib0025) 2009; 25 Mohr, Marcadet (bib0062) 2015; 67-68 Jankowiak, Rusinek, Wood (bib0006) 2013; 65 Manes, Serpellini, Pagani, Saponara, Giglio (bib0009) 2014; 69 Kane, Børvik, Hopperstad, Langseth (bib0014) 2009; 76 Hancock, Mackenzie (bib0017) 1976; 24 Johnson, Cook (bib0036) 1983 Børvik, Langseth, Hopperstad (bib0002) 1999; 22 Moćko, Janiszewski, Radziejewska, Grązka (bib0048) 2015; 75 MatchID Bridgman (bib0070) 1952 Iqbal, Senthil, Bhargava, Gupta (bib0011) 2015; 78 Lesuer (bib0064) 2000 Ghajar, Mirone, Keshavarz (bib0068) 2013; 43 Ravichandran, Rosakis, Hodowany, Rosakis (bib0057) 2002 Børvik, Dey, Hopperstad (bib0004) 2009 Fras, Colard, Lach, Rusinek, Reck (bib0010) 2015; 86 Anderson, Chocron, Nicholls (bib0013) 2006; 134 Bao, Wierzbicki (bib0066) 2004; 126 Lian, Sharaf, Archie, Muenstermann (bib0028) 2012; 22 Kolsky (bib0061) 1949; 62 Chen (bib0015) 2006 Bai, Wierzbicki (bib0026) 2010; 161 Ghosh, Kingstedt, Ravichandran (bib0059) 2017; 48 Roth, Mohr (bib0053) 2014; 56 Dey, Børvik, Hopperstad (bib0005) 2004; 30 Cao, Mazière, Danas, Besson (bib0031) 2015; 63 Taylor (bib0041) 1946; 26 Børvik, Hopperstad, Dey, Pizzinato, Langseth, Albertini (bib0019) 2005; 72 Xiao, Zhang, Wei, Mu (bib0045) 2010; 31 Mirone, Corallo (bib0069) 2010; 26 Voyiadjis, Hoseini, Farrahi (bib0029) 2012; 49 Voce (bib0051) 1948; 74 Iqbal, Senthil, Sharma, Gupta (bib0022) 2016; 96 Jankowiak (10.1016/j.ijimpeng.2018.06.008_bib0006) 2013; 65 Manes (10.1016/j.ijimpeng.2018.06.008_bib0009) 2014; 69 10.1016/j.ijimpeng.2018.06.008_bib0060 Iqbal (10.1016/j.ijimpeng.2018.06.008_bib0011) 2015; 78 Mohr (10.1016/j.ijimpeng.2018.06.008_bib0033) 2015; 68-68 Roth (10.1016/j.ijimpeng.2018.06.008_bib0053) 2014; 56 Teng (10.1016/j.ijimpeng.2018.06.008_bib0044) 2005; 42 10.1016/j.ijimpeng.2018.06.008_bib0067 Rakvåg (10.1016/j.ijimpeng.2018.06.008_bib0046) 2013; 51 Bridgman (10.1016/j.ijimpeng.2018.06.008_bib0070) 1952 Xue (10.1016/j.ijimpeng.2018.06.008_bib0035) 2010; 42 Moćko (10.1016/j.ijimpeng.2018.06.008_bib0048) 2015; 75 Fras (10.1016/j.ijimpeng.2018.06.008_bib0010) 2015; 86 Algarni (10.1016/j.ijimpeng.2018.06.008_bib0032) 2015; 147 Zukas (10.1016/j.ijimpeng.2018.06.008_bib0003) 1990 Chen (10.1016/j.ijimpeng.2018.06.008_bib0015) 2006 Kane (10.1016/j.ijimpeng.2018.06.008_bib0014) 2009; 76 Bai (10.1016/j.ijimpeng.2018.06.008_bib0026) 2010; 161 Gruben (10.1016/j.ijimpeng.2018.06.008_bib0027) 2012; 62 Xiao (10.1016/j.ijimpeng.2018.06.008_bib0021) 2011; 32 Lou (10.1016/j.ijimpeng.2018.06.008_bib0040) 2014; 54 Rakvåg (10.1016/j.ijimpeng.2018.06.008_bib0047) 2014; 51 Lesuer (10.1016/j.ijimpeng.2018.06.008_bib0064) 2000 Dolinski (10.1016/j.ijimpeng.2018.06.008_bib0016) 2015; 83 Bao (10.1016/j.ijimpeng.2018.06.008_bib0066) 2004; 126 Vershinin (10.1016/j.ijimpeng.2018.06.008_bib0039) 2015; 67-68 Johnson (10.1016/j.ijimpeng.2018.06.008_bib0063) 1983; 105 Johnson (10.1016/j.ijimpeng.2018.06.008_bib0036) 1983 Børvik (10.1016/j.ijimpeng.2018.06.008_bib0004) 2009 Tiwari (10.1016/j.ijimpeng.2018.06.008_bib0008) 2014; 74 Taylor (10.1016/j.ijimpeng.2018.06.008_bib0042) 1948; 194 Barsoum (10.1016/j.ijimpeng.2018.06.008_bib0024) 2007; 44 Lian (10.1016/j.ijimpeng.2018.06.008_bib0028) 2012; 22 Hancock (10.1016/j.ijimpeng.2018.06.008_bib0017) 1976; 24 Mohr (10.1016/j.ijimpeng.2018.06.008_bib0062) 2015; 67-68 Dey (10.1016/j.ijimpeng.2018.06.008_bib0005) 2004; 30 Erice (10.1016/j.ijimpeng.2018.06.008_bib0030) 2014; 69 Børvik (10.1016/j.ijimpeng.2018.06.008_bib0065) 2001; 20 Chocron (10.1016/j.ijimpeng.2018.06.008_bib0038) 2011; 38 Ludwik (10.1016/j.ijimpeng.2018.06.008_bib0050) 1909 Zukas (10.1016/j.ijimpeng.2018.06.008_bib0001) 1982 Børvik (10.1016/j.ijimpeng.2018.06.008_bib0019) 2005; 72 Voce (10.1016/j.ijimpeng.2018.06.008_bib0051) 1948; 74 Wierzbicki (10.1016/j.ijimpeng.2018.06.008_bib0023) 2005; 47 Iqbal (10.1016/j.ijimpeng.2018.06.008_bib0022) 2016; 96 Johnson (10.1016/j.ijimpeng.2018.06.008_bib0037) 1985; 21 Sung (10.1016/j.ijimpeng.2018.06.008_bib0052) 2010; 26 Ravichandran (10.1016/j.ijimpeng.2018.06.008_bib0057) 2002 Ghajar (10.1016/j.ijimpeng.2018.06.008_bib0068) 2013; 43 Bai (10.1016/j.ijimpeng.2018.06.008_bib0056) 1992 Børvik (10.1016/j.ijimpeng.2018.06.008_bib0002) 1999; 22 Gilioli (10.1016/j.ijimpeng.2018.06.008_bib0012) 2015; 76 Kolsky (10.1016/j.ijimpeng.2018.06.008_bib0061) 1949; 62 Li (10.1016/j.ijimpeng.2018.06.008_bib0034) 2016; 123 Wei (10.1016/j.ijimpeng.2018.06.008_bib0049) 2014; 73 Fras (10.1016/j.ijimpeng.2018.06.008_bib0054) 2018; 111 Anderson (10.1016/j.ijimpeng.2018.06.008_bib0013) 2006; 134 Voyiadjis (10.1016/j.ijimpeng.2018.06.008_bib0029) 2012; 49 Gao (10.1016/j.ijimpeng.2018.06.008_bib0025) 2009; 25 Rittel (10.1016/j.ijimpeng.2018.06.008_bib0058) 2017; 107 Cao (10.1016/j.ijimpeng.2018.06.008_bib0031) 2015; 63 Whiffin (10.1016/j.ijimpeng.2018.06.008_bib0043) 1948; 194 Kpenyigba (10.1016/j.ijimpeng.2018.06.008_bib0007) 2015; 79 Taylor (10.1016/j.ijimpeng.2018.06.008_bib0041) 1946; 26 Mirone (10.1016/j.ijimpeng.2018.06.008_bib0069) 2010; 26 Mirza (10.1016/j.ijimpeng.2018.06.008_bib0018) 1996; 31 Roth (10.1016/j.ijimpeng.2018.06.008_bib0055) 2016; 79 Ghosh (10.1016/j.ijimpeng.2018.06.008_bib0059) 2017; 48 Bao (10.1016/j.ijimpeng.2018.06.008_bib0020) 2004; 46 Xiao (10.1016/j.ijimpeng.2018.06.008_bib0045) 2010; 31 |
References_xml | – year: 1952 ident: bib0070 article-title: Studies in large plastic flow and fracture – start-page: 557 year: 2002 end-page: 562 ident: bib0057 article-title: On the conversion of plastic work into heat during high-strain-rate deformation publication-title: Proceedings of the shock compression of condensed matter – reference: MatchID – – volume: 54 start-page: 56 year: 2014 end-page: 80 ident: bib0040 article-title: Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality publication-title: Int J Plast – volume: 74 start-page: 536 year: 1948 end-page: 562 ident: bib0051 article-title: The relationship between stress and strain for homogeneous deformation publication-title: J Inst Met – volume: 134 start-page: 331 year: 2006 end-page: 337 ident: bib0013 article-title: Damage modeling for Taylor impact simulations publication-title: J Phys IV France – start-page: 541 year: 1983 end-page: 547 ident: bib0036 article-title: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures publication-title: Proceedings of the seventh international symposium on ballistics – volume: 76 year: 2009 ident: bib0014 article-title: Finite element analysis of plugging failure in steel plates struck by blunt projectiles publication-title: J Appl Mech – volume: 67-68 start-page: 40 year: 2015 end-page: 55 ident: bib0062 article-title: Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities publication-title: Int J Solids Struct – volume: 65 start-page: 39 year: 2013 end-page: 49 ident: bib0006 article-title: A numerical analysis of the dynamic behaviour of sheet steel perforated by a conical projectile under ballistic conditions publication-title: Finite Elem Anal Des – volume: 47 start-page: 719 year: 2005 end-page: 743 ident: bib0023 article-title: Calibration and evaluation of seven fracture models publication-title: Int J Mech Sci – volume: 44 start-page: 1768 year: 2007 end-page: 1786 ident: bib0024 article-title: Rupture mechanisms in combined tension and shear-experiments publication-title: Int J Solids Struct – volume: 194 start-page: 300 year: 1948 end-page: 322 ident: bib0043 article-title: The use of flat ended projectiles for determining yield stress II: tests on various metallic materials publication-title: Proc R Soc Lond A – volume: 86 start-page: 336 year: 2015 end-page: 353 ident: bib0010 article-title: Thick AA7020-t651 plates under ballistic impact of fragment-simulating projectiles publication-title: Int J Impact Eng – volume: 31 start-page: 453 year: 1996 end-page: 461 ident: bib0018 article-title: The effect of stress triaxiality and strain-rate on the fracture characteristics of ductile metals publication-title: J Mater Sci – volume: 62 start-page: 676 year: 1949 end-page: 700 ident: bib0061 article-title: An investigation of the mechanical properties of materials at very high rates of loading publication-title: Proc Phys Soc Lond Sect B – volume: 56 start-page: 19 year: 2014 end-page: 44 ident: bib0053 article-title: Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: experiments and modeling publication-title: Int J Plast – volume: 76 start-page: 207 year: 2015 end-page: 220 ident: bib0012 article-title: Predicting ballistic impact failure of aluminium 6061-T6 with the rate-independent Bao-Wierzbicki fracture model publication-title: Int J Impact Eng – volume: 111 start-page: 147 year: 2018 end-page: 164 ident: bib0054 article-title: Fracture of high-strength armor steel under impact loading publication-title: Int J Impact Eng – year: 2006 ident: bib0015 article-title: Numerical and experimental investigation on penetration effects of semi-armor-piercing warhead – volume: 63 start-page: 240 year: 2015 end-page: 263 ident: bib0031 article-title: A model for ductile damage prediction at low stress triaxialities incorporating void shape change and void rotation publication-title: Int J Solids Struct – volume: 42 start-page: 981 year: 2010 end-page: 1003 ident: bib0035 article-title: Penetration of DH-36 steel plates with and without polyurea coating publication-title: Mech Mater – volume: 21 start-page: 31 year: 1985 end-page: 48 ident: bib0037 article-title: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures publication-title: Eng Fract Mech – volume: 194 start-page: 289 year: 1948 end-page: 299 ident: bib0042 article-title: The use of flat ended projectiles for determining yield stress I: theoretical considerations publication-title: Proc R Soc Lond A – volume: 69 start-page: 11 year: 2014 end-page: 24 ident: bib0030 article-title: An experimental and numerical study of ductile failure under quasi-static and impact loadings of Inconel 718 nickel-base superalloy publication-title: Int J Impact Eng – year: 1909 ident: bib0050 article-title: Elemente der technologischen mechanik – volume: 46 start-page: 81 year: 2004 end-page: 98 ident: bib0020 article-title: On fracture locus in the equivalent strain and stress triaxiality space publication-title: Int J Mech Sci – volume: 79 start-page: 328 year: 2016 end-page: 354 ident: bib0055 article-title: Ductile fracture experiments with locally proportional loading histories publication-title: Int J Plast – volume: 75 start-page: 203 year: 2015 end-page: 213 ident: bib0048 article-title: Analysis of deformation history and damage initiation for 6082-T6 aluminium alloy loaded at classic and symmetric Taylor impact test conditions publication-title: Int J Impact Eng – volume: 105 start-page: 48 year: 1983 end-page: 53 ident: bib0063 article-title: Response of various metals to large torsional strains over a large range of strain rates—Part 2: less ductile metals publication-title: J Eng Mater Technol – volume: 20 start-page: 685 year: 2001 end-page: 712 ident: bib0065 article-title: A computational model of viscoplasticity and ductile damage for impact and penetration publication-title: Eur J Mech – volume: 79 start-page: 83 year: 2015 end-page: 94 ident: bib0007 article-title: Effect of projectile nose shape on ballistic resistance of interstitial-free steel sheets publication-title: Int J Impact Eng – volume: 51 start-page: 808 year: 2014 end-page: 821 ident: bib0047 article-title: A numerical study on the deformation and fracture modes of steel projectiles during Taylor bar impact tests publication-title: Int J Solids Struct – volume: 78 start-page: 98 year: 2015 end-page: 113 ident: bib0011 article-title: The characterization and ballistic evaluation of mild steel publication-title: Int J Impact Eng – volume: 26 start-page: 348 year: 2010 end-page: 371 ident: bib0069 article-title: A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening publication-title: Int J Plast – reference: Abaqus Analysis User's Guide. In: ABAQUS 6.14 documentation. – volume: 107 start-page: 96 year: 2017 end-page: 114 ident: bib0058 article-title: The dependence of the Taylor–Quinney coefficient on the dynamic loading mode publication-title: J Mech Phys Solids – volume: 42 start-page: 2929 year: 2005 end-page: 2948 ident: bib0044 article-title: Numerical prediction of fracture in the Taylor test publication-title: Int J Solids Struct – volume: 48 start-page: 14 year: 2017 end-page: 19 ident: bib0059 article-title: Plastic work to heat conversion during high-strain rate deformation of Mg and Mg alloy publication-title: Metallur Mater Trans A – volume: 72 start-page: 1071 year: 2005 end-page: 1087 ident: bib0019 article-title: Strength and ductility of Weldox 460 E steel at high strain rates, elevated temperatures and various stress triaxialities publication-title: Eng Fract Mech – volume: 30 start-page: 1005 year: 2004 end-page: 1038 ident: bib0005 article-title: The effect of target strength on the perforation of steel plates using three different projectile nose shapes publication-title: Int J Impact Eng – volume: 51 start-page: 242 year: 2013 end-page: 256 ident: bib0046 article-title: An experimental study on the deformation and fracture modes of steel projectiles during impact publication-title: Mater Des – volume: 126 start-page: 314 year: 2004 end-page: 324 ident: bib0066 article-title: A comparative study on various ductile crack formation publication-title: J Eng Mater Technol – volume: 49 start-page: 1541 year: 2012 end-page: 1556 ident: bib0029 article-title: Effects of stress invariants and reverse loading on ductile fracture initiation publication-title: Int J Solids Struct – volume: 147 start-page: 140 year: 2015 end-page: 157 ident: bib0032 article-title: A study of Inconel 718 dependency on stress triaxiality and Lode angle in plastic deformation and ductile fracture publication-title: Eng Fract Mech – volume: 96 start-page: 146 year: 2016 end-page: 164 ident: bib0022 article-title: An investigation of constitutive behaviour of armox 500T steel and armour piercing incendiary projectile material publication-title: Int J Impact Eng – year: 1990 ident: bib0003 article-title: High velocity impact dynamics – volume: 69 start-page: 39 year: 2014 end-page: 54 ident: bib0009 article-title: Perforation and penetration of aluminium target plates by armour piercing bullets publication-title: Int J Impact Eng – volume: 24 start-page: 147 year: 1976 end-page: 169 ident: bib0017 article-title: On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states publication-title: J Mech Phys Solids – year: 1992 ident: bib0056 article-title: Adiabatic shear localization: occurrence, theories and applications – year: 2000 ident: bib0064 article-title: Experimental investigations of material model for Ti-6Al-4V titanium and 2024-T3 aluminum – volume: 83 start-page: 1 year: 2015 end-page: 18 ident: bib0016 article-title: Experiments and modeling of ballistic penetration using an energy failure criterion publication-title: J Mech Phys Solids – volume: 22 start-page: 855 year: 1999 end-page: 886 ident: bib0002 article-title: Ballistic penetration of steel plates publication-title: Int J Impact Eng – volume: 123 start-page: 1 year: 2016 end-page: 17 ident: bib0034 article-title: Ductile fracture of Q460 steel: effects of stress triaxiality and Lode angle publication-title: J Constr Steel Res – volume: 67-68 start-page: 127 year: 2015 end-page: 138 ident: bib0039 article-title: Validation of metal plasticity and fracture models through numerical simulation of high velocity perforation publication-title: Int J Solids Struct – volume: 26 start-page: 486 year: 1946 end-page: 519 ident: bib0041 article-title: The testing of materials at high rates of loading publication-title: J Inst Civil Eng – volume: 43 start-page: 513 year: 2013 end-page: 525 ident: bib0068 article-title: Ductile failure of X100 pipeline steel – experiments and fractography publication-title: Mater Des – volume: 31 start-page: 4913 year: 2010 end-page: 4920 ident: bib0045 article-title: Effect of projectile hardness on deformation and fracture behavior in the Taylor impact test publication-title: Mater Des – volume: 25 start-page: 2366 year: 2009 end-page: 2382 ident: bib0025 article-title: Effects of the stress state on plasticity and ductile failure of an aluminum 5083 alloy publication-title: Int J Plast – volume: 26 start-page: 1746 year: 2010 end-page: 1771 ident: bib0052 article-title: A plastic constitutive equation incorporating strain, strain-rate, and temperature publication-title: Int J Plast – reference: . – year: 1982 ident: bib0001 article-title: Impact dynamics – volume: 38 start-page: 755 year: 2011 end-page: 764 ident: bib0038 article-title: A new plasticity and failure model for ballistic application publication-title: Int J Impact Eng – volume: 161 start-page: 1 year: 2010 end-page: 20 ident: bib0026 article-title: Application of extended Mohr-Coulomb criterion to ductile fracture publication-title: Int J Fract – volume: 68-68 start-page: 40 year: 2015 end-page: 55 ident: bib0033 article-title: Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities publication-title: Int J Solids Struct – volume: 73 start-page: 75 year: 2014 end-page: 90 ident: bib0049 article-title: Effect of strength and ductility on deformation and fracture of three kinds of aluminum alloys during Taylor tests publication-title: Int J Impact Eng – volume: 62 start-page: 133 year: 2012 end-page: 146 ident: bib0027 article-title: Evaluation of uncoupled ductile fracture criteria for the dual-phase steel Docol 600DL publication-title: Int J Mech Sci – volume: 32 start-page: 2663 year: 2011 end-page: 2674 ident: bib0021 article-title: Experimental and numerical investigation on the deformation and failure behavior in the Taylor test publication-title: Mater Des – volume: 74 start-page: 46 year: 2014 end-page: 56 ident: bib0008 article-title: The ballistic resistance of thin aluminium plates with varying degrees of fixity along the circumference publication-title: Int J Impact Eng – volume: 22 start-page: 188 year: 2012 end-page: 218 ident: bib0028 article-title: A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets publication-title: Int J Damage Mech – start-page: 189 year: 2009 end-page: 219 ident: bib0004 article-title: On the main mechanisms in ballistic perforation of steel plates at sub-ordnance impact velocities publication-title: Predictive modeling of dynamic processes – volume: 43 start-page: 513 year: 2013 ident: 10.1016/j.ijimpeng.2018.06.008_bib0068 article-title: Ductile failure of X100 pipeline steel – experiments and fractography publication-title: Mater Des doi: 10.1016/j.matdes.2012.07.032 – volume: 65 start-page: 39 year: 2013 ident: 10.1016/j.ijimpeng.2018.06.008_bib0006 article-title: A numerical analysis of the dynamic behaviour of sheet steel perforated by a conical projectile under ballistic conditions publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2012.10.007 – volume: 96 start-page: 146 year: 2016 ident: 10.1016/j.ijimpeng.2018.06.008_bib0022 article-title: An investigation of constitutive behaviour of armox 500T steel and armour piercing incendiary projectile material publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2016.05.017 – volume: 107 start-page: 96 year: 2017 ident: 10.1016/j.ijimpeng.2018.06.008_bib0058 article-title: The dependence of the Taylor–Quinney coefficient on the dynamic loading mode publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2017.06.016 – volume: 194 start-page: 289 year: 1948 ident: 10.1016/j.ijimpeng.2018.06.008_bib0042 article-title: The use of flat ended projectiles for determining yield stress I: theoretical considerations publication-title: Proc R Soc Lond A doi: 10.1098/rspa.1948.0081 – volume: 74 start-page: 536 year: 1948 ident: 10.1016/j.ijimpeng.2018.06.008_bib0051 article-title: The relationship between stress and strain for homogeneous deformation publication-title: J Inst Met – volume: 22 start-page: 855 year: 1999 ident: 10.1016/j.ijimpeng.2018.06.008_bib0002 article-title: Ballistic penetration of steel plates publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(99)00011-1 – volume: 63 start-page: 240 year: 2015 ident: 10.1016/j.ijimpeng.2018.06.008_bib0031 article-title: A model for ductile damage prediction at low stress triaxialities incorporating void shape change and void rotation publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2015.03.003 – volume: 67-68 start-page: 40 issue: 1 year: 2015 ident: 10.1016/j.ijimpeng.2018.06.008_bib0062 article-title: Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2015.02.024 – volume: 134 start-page: 331 year: 2006 ident: 10.1016/j.ijimpeng.2018.06.008_bib0013 article-title: Damage modeling for Taylor impact simulations publication-title: J Phys IV France doi: 10.1051/jp4:2006134051 – volume: 79 start-page: 83 year: 2015 ident: 10.1016/j.ijimpeng.2018.06.008_bib0007 article-title: Effect of projectile nose shape on ballistic resistance of interstitial-free steel sheets publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.10.007 – volume: 49 start-page: 1541 year: 2012 ident: 10.1016/j.ijimpeng.2018.06.008_bib0029 article-title: Effects of stress invariants and reverse loading on ductile fracture initiation publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2012.02.030 – volume: 31 start-page: 4913 year: 2010 ident: 10.1016/j.ijimpeng.2018.06.008_bib0045 article-title: Effect of projectile hardness on deformation and fracture behavior in the Taylor impact test publication-title: Mater Des doi: 10.1016/j.matdes.2010.05.027 – year: 1952 ident: 10.1016/j.ijimpeng.2018.06.008_bib0070 – volume: 32 start-page: 2663 year: 2011 ident: 10.1016/j.ijimpeng.2018.06.008_bib0021 article-title: Experimental and numerical investigation on the deformation and failure behavior in the Taylor test publication-title: Mater Des doi: 10.1016/j.matdes.2011.01.016 – start-page: 557 year: 2002 ident: 10.1016/j.ijimpeng.2018.06.008_bib0057 article-title: On the conversion of plastic work into heat during high-strain-rate deformation – volume: 126 start-page: 314 year: 2004 ident: 10.1016/j.ijimpeng.2018.06.008_bib0066 article-title: A comparative study on various ductile crack formation publication-title: J Eng Mater Technol doi: 10.1115/1.1755244 – volume: 21 start-page: 31 year: 1985 ident: 10.1016/j.ijimpeng.2018.06.008_bib0037 article-title: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures publication-title: Eng Fract Mech doi: 10.1016/0013-7944(85)90052-9 – volume: 79 start-page: 328 year: 2016 ident: 10.1016/j.ijimpeng.2018.06.008_bib0055 article-title: Ductile fracture experiments with locally proportional loading histories publication-title: Int J Plast doi: 10.1016/j.ijplas.2015.08.004 – year: 1909 ident: 10.1016/j.ijimpeng.2018.06.008_bib0050 – volume: 54 start-page: 56 year: 2014 ident: 10.1016/j.ijimpeng.2018.06.008_bib0040 article-title: Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality publication-title: Int J Plast doi: 10.1016/j.ijplas.2013.08.006 – volume: 76 start-page: 207 year: 2015 ident: 10.1016/j.ijimpeng.2018.06.008_bib0012 article-title: Predicting ballistic impact failure of aluminium 6061-T6 with the rate-independent Bao-Wierzbicki fracture model publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.10.004 – volume: 24 start-page: 147 year: 1976 ident: 10.1016/j.ijimpeng.2018.06.008_bib0017 article-title: On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(76)90024-7 – volume: 26 start-page: 486 year: 1946 ident: 10.1016/j.ijimpeng.2018.06.008_bib0041 article-title: The testing of materials at high rates of loading publication-title: J Inst Civil Eng doi: 10.1680/ijoti.1946.13699 – volume: 75 start-page: 203 year: 2015 ident: 10.1016/j.ijimpeng.2018.06.008_bib0048 article-title: Analysis of deformation history and damage initiation for 6082-T6 aluminium alloy loaded at classic and symmetric Taylor impact test conditions publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.08.015 – volume: 56 start-page: 19 year: 2014 ident: 10.1016/j.ijimpeng.2018.06.008_bib0053 article-title: Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: experiments and modeling publication-title: Int J Plast doi: 10.1016/j.ijplas.2014.01.003 – volume: 105 start-page: 48 year: 1983 ident: 10.1016/j.ijimpeng.2018.06.008_bib0063 article-title: Response of various metals to large torsional strains over a large range of strain rates—Part 2: less ductile metals publication-title: J Eng Mater Technol doi: 10.1115/1.3225618 – volume: 62 start-page: 676 year: 1949 ident: 10.1016/j.ijimpeng.2018.06.008_bib0061 article-title: An investigation of the mechanical properties of materials at very high rates of loading publication-title: Proc Phys Soc Lond Sect B doi: 10.1088/0370-1301/62/11/302 – volume: 67-68 start-page: 127 year: 2015 ident: 10.1016/j.ijimpeng.2018.06.008_bib0039 article-title: Validation of metal plasticity and fracture models through numerical simulation of high velocity perforation publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2015.04.007 – volume: 161 start-page: 1 year: 2010 ident: 10.1016/j.ijimpeng.2018.06.008_bib0026 article-title: Application of extended Mohr-Coulomb criterion to ductile fracture publication-title: Int J Fract doi: 10.1007/s10704-009-9422-8 – volume: 47 start-page: 719 year: 2005 ident: 10.1016/j.ijimpeng.2018.06.008_bib0023 article-title: Calibration and evaluation of seven fracture models publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2005.03.003 – volume: 76 year: 2009 ident: 10.1016/j.ijimpeng.2018.06.008_bib0014 article-title: Finite element analysis of plugging failure in steel plates struck by blunt projectiles publication-title: J Appl Mech doi: 10.1115/1.3129722 – volume: 30 start-page: 1005 year: 2004 ident: 10.1016/j.ijimpeng.2018.06.008_bib0005 article-title: The effect of target strength on the perforation of steel plates using three different projectile nose shapes publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2004.06.004 – volume: 25 start-page: 2366 year: 2009 ident: 10.1016/j.ijimpeng.2018.06.008_bib0025 article-title: Effects of the stress state on plasticity and ductile failure of an aluminum 5083 alloy publication-title: Int J Plast doi: 10.1016/j.ijplas.2009.03.006 – volume: 111 start-page: 147 year: 2018 ident: 10.1016/j.ijimpeng.2018.06.008_bib0054 article-title: Fracture of high-strength armor steel under impact loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2017.09.009 – volume: 194 start-page: 300 year: 1948 ident: 10.1016/j.ijimpeng.2018.06.008_bib0043 article-title: The use of flat ended projectiles for determining yield stress II: tests on various metallic materials publication-title: Proc R Soc Lond A doi: 10.1098/rspa.1948.0082 – volume: 22 start-page: 188 year: 2012 ident: 10.1016/j.ijimpeng.2018.06.008_bib0028 article-title: A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets publication-title: Int J Damage Mech doi: 10.1177/1056789512439319 – year: 2000 ident: 10.1016/j.ijimpeng.2018.06.008_bib0064 – ident: 10.1016/j.ijimpeng.2018.06.008_bib0067 – volume: 74 start-page: 46 year: 2014 ident: 10.1016/j.ijimpeng.2018.06.008_bib0008 article-title: The ballistic resistance of thin aluminium plates with varying degrees of fixity along the circumference publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.01.007 – volume: 123 start-page: 1 year: 2016 ident: 10.1016/j.ijimpeng.2018.06.008_bib0034 article-title: Ductile fracture of Q460 steel: effects of stress triaxiality and Lode angle publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2016.04.018 – volume: 42 start-page: 2929 year: 2005 ident: 10.1016/j.ijimpeng.2018.06.008_bib0044 article-title: Numerical prediction of fracture in the Taylor test publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2004.09.039 – volume: 73 start-page: 75 year: 2014 ident: 10.1016/j.ijimpeng.2018.06.008_bib0049 article-title: Effect of strength and ductility on deformation and fracture of three kinds of aluminum alloys during Taylor tests publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.06.011 – volume: 51 start-page: 242 year: 2013 ident: 10.1016/j.ijimpeng.2018.06.008_bib0046 article-title: An experimental study on the deformation and fracture modes of steel projectiles during impact publication-title: Mater Des doi: 10.1016/j.matdes.2013.04.036 – volume: 46 start-page: 81 year: 2004 ident: 10.1016/j.ijimpeng.2018.06.008_bib0020 article-title: On fracture locus in the equivalent strain and stress triaxiality space publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2004.02.006 – volume: 31 start-page: 453 year: 1996 ident: 10.1016/j.ijimpeng.2018.06.008_bib0018 article-title: The effect of stress triaxiality and strain-rate on the fracture characteristics of ductile metals publication-title: J Mater Sci doi: 10.1007/BF01139164 – volume: 38 start-page: 755 year: 2011 ident: 10.1016/j.ijimpeng.2018.06.008_bib0038 article-title: A new plasticity and failure model for ballistic application publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2011.03.006 – volume: 48 start-page: 14 year: 2017 ident: 10.1016/j.ijimpeng.2018.06.008_bib0059 article-title: Plastic work to heat conversion during high-strain rate deformation of Mg and Mg alloy publication-title: Metallur Mater Trans A doi: 10.1007/s11661-016-3825-8 – year: 1982 ident: 10.1016/j.ijimpeng.2018.06.008_bib0001 – start-page: 189 year: 2009 ident: 10.1016/j.ijimpeng.2018.06.008_bib0004 article-title: On the main mechanisms in ballistic perforation of steel plates at sub-ordnance impact velocities – year: 1990 ident: 10.1016/j.ijimpeng.2018.06.008_bib0003 – volume: 69 start-page: 11 year: 2014 ident: 10.1016/j.ijimpeng.2018.06.008_bib0030 article-title: An experimental and numerical study of ductile failure under quasi-static and impact loadings of Inconel 718 nickel-base superalloy publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.02.007 – volume: 26 start-page: 348 year: 2010 ident: 10.1016/j.ijimpeng.2018.06.008_bib0069 article-title: A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening publication-title: Int J Plast doi: 10.1016/j.ijplas.2009.07.006 – year: 2006 ident: 10.1016/j.ijimpeng.2018.06.008_bib0015 – volume: 83 start-page: 1 year: 2015 ident: 10.1016/j.ijimpeng.2018.06.008_bib0016 article-title: Experiments and modeling of ballistic penetration using an energy failure criterion publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2015.06.004 – volume: 86 start-page: 336 year: 2015 ident: 10.1016/j.ijimpeng.2018.06.008_bib0010 article-title: Thick AA7020-t651 plates under ballistic impact of fragment-simulating projectiles publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2015.08.001 – year: 1992 ident: 10.1016/j.ijimpeng.2018.06.008_bib0056 – volume: 72 start-page: 1071 year: 2005 ident: 10.1016/j.ijimpeng.2018.06.008_bib0019 article-title: Strength and ductility of Weldox 460 E steel at high strain rates, elevated temperatures and various stress triaxialities publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2004.07.007 – volume: 69 start-page: 39 year: 2014 ident: 10.1016/j.ijimpeng.2018.06.008_bib0009 article-title: Perforation and penetration of aluminium target plates by armour piercing bullets publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.02.010 – volume: 20 start-page: 685 year: 2001 ident: 10.1016/j.ijimpeng.2018.06.008_bib0065 article-title: A computational model of viscoplasticity and ductile damage for impact and penetration publication-title: Eur J Mech doi: 10.1016/S0997-7538(01)01157-3 – ident: 10.1016/j.ijimpeng.2018.06.008_bib0060 – volume: 78 start-page: 98 year: 2015 ident: 10.1016/j.ijimpeng.2018.06.008_bib0011 article-title: The characterization and ballistic evaluation of mild steel publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.12.006 – volume: 42 start-page: 981 year: 2010 ident: 10.1016/j.ijimpeng.2018.06.008_bib0035 article-title: Penetration of DH-36 steel plates with and without polyurea coating publication-title: Mech Mater doi: 10.1016/j.mechmat.2010.08.004 – volume: 26 start-page: 1746 year: 2010 ident: 10.1016/j.ijimpeng.2018.06.008_bib0052 article-title: A plastic constitutive equation incorporating strain, strain-rate, and temperature publication-title: Int J Plast doi: 10.1016/j.ijplas.2010.02.005 – volume: 62 start-page: 133 issue: 1 year: 2012 ident: 10.1016/j.ijimpeng.2018.06.008_bib0027 article-title: Evaluation of uncoupled ductile fracture criteria for the dual-phase steel Docol 600DL publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2012.06.009 – volume: 51 start-page: 808 issue: 3-4 year: 2014 ident: 10.1016/j.ijimpeng.2018.06.008_bib0047 article-title: A numerical study on the deformation and fracture modes of steel projectiles during Taylor bar impact tests publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2013.11.008 – volume: 68-68 start-page: 40 year: 2015 ident: 10.1016/j.ijimpeng.2018.06.008_bib0033 article-title: Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2015.02.024 – volume: 147 start-page: 140 year: 2015 ident: 10.1016/j.ijimpeng.2018.06.008_bib0032 article-title: A study of Inconel 718 dependency on stress triaxiality and Lode angle in plastic deformation and ductile fracture publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2015.08.007 – volume: 44 start-page: 1768 year: 2007 ident: 10.1016/j.ijimpeng.2018.06.008_bib0024 article-title: Rupture mechanisms in combined tension and shear-experiments publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2006.09.031 – start-page: 541 year: 1983 ident: 10.1016/j.ijimpeng.2018.06.008_bib0036 article-title: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures |
SSID | ssj0017050 |
Score | 2.514913 |
Snippet | •A modified version of Johnson–Cook strength model was constructed and calibrated.•The Johnson–Cook and a Lode dependent fracture criterion were calibrated... Recent investigations have shown that the ductility of a metal may depend on not only the stress triaxiality but also the Lode parameter, especially in the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 185 |
SubjectTerms | Aluminum base alloys Axial stress Computer simulation Cracking (fracturing) Cracks Criteria Ductility Engineering Fe simulation Finite element method Impact tests Impact velocity Lode parameter Mechanical tests Numerical methods Parameters Predictions Rods Shear Shear cracking Shear loading Stresses Taylor impact Three dimensional models |
Title | Effect of the Lode parameter in predicting shear cracking of 2024-T351 aluminum alloy Taylor rods |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2018.06.008 https://www.proquest.com/docview/2110231418 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaqssCAOEWhVB5Y01zO4bGqqMrVhVbqZtmOg1LRtOoxsPDbeS9HVRASA1sS-UXR88s77M_fI-SOpyqJJJQlzETSYtoHP-hpZrnItma4CiOFC_ovo3A4YY_TYNog_fosDMIqK99f-vTCW1dP7Eqb9jLL7FcwTgbxbwpGCYGM44lyxiK08u7nDuaBbDHFOgsMtnD03inhWTebZZCc5m8I8Sp5PLHN5O8B6oerLuLP4IQcV4kj7ZXfdkoaJj8jR3t0gudEllTEdJFSSOvo8yIxFKm95wh5oVlOlyvclkGgM11jJ2uqV1LjWjmKeBBHrbEfuFSCw8ry7ZzipvwHLYt6Cp52fUEmg_txf2hVLRQs7TNnYynla-SUM1xqGYeJhHJHh4kyhpskhalgqWTG87TjphounFCnSO-TBo7imif-JWnmi9xcEYqFGuRiQSh9H0YGKtaJ56WaG6ZiJaMWCWq9CV3xi2Obi3dRA8lmota3QH2LAlEXt4i9k1uWDBt_SvB6WsQ3WxEQBv6UbdfzKKq_dS2wCIY8l7nx9T9efUMO8a5E-rVJc7PamlvIWDaqU5hkhxz0Hp6Goy_6QOvQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYAB8RTl6YE1NE2ch8eqomqhdKGVulm246BUNK36GPj33DUJAoTEwBYlvig6X-5hf_4O4E6kOokUliXcRsrhxkc_6BnuNIltzQodRpoW9J8HYXfEH8fBeAva1VkYglWWvr_w6RtvXd5plNpszLOs8YLGyTH-jdEoMZCJaBt2iJ0qqMFOq_fUHXxuJkTuplErjXdI4MtB4cl9NskwP81fCeVVUHlSp8nfY9QPb70JQZ1DOChzR9YqPu8Itmx-DPtfGAVPQBVsxGyWMszsWH-WWEbs3lNCvbAsZ_MF7cwQ1pktqZk1MwtlaLmcRDwMpc7QD5pMoc_K8vWU0b78OyvqeobOdnkKo87DsN11yi4KjvG5u3K09g3RylmhjIrDRGHFY8JEWytskuJs8FRx63nGbaYGL9zQpMTwkwauFkYk_hnU8lluz4FRrYbpWBAq38eRgY5N4nmpEZbrWKuoDkGlN2lKinHqdPEmKyzZRFb6lqRvuQHVxXVofMrNC5KNPyVENS3ym7lIjAR_yl5V8yjLH3YpqQ7GVJc344t_vPoWdrvD577s9wZPl7BHTwrg3xXUVou1vcYEZqVvSgP9ABEG7oE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+the+Lode+parameter+in+predicting+shear+cracking+of+2024-T351+aluminum+alloy+Taylor+rods&rft.jtitle=International+journal+of+impact+engineering&rft.au=Xiao%2C+Xinke&rft.au=Mu%2C+Zhongcheng&rft.au=Pan%2C+Hao&rft.au=Lou%2C+Yanshan&rft.date=2018-10-01&rft.pub=Elsevier+Ltd&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=120&rft.spage=185&rft.epage=201&rft_id=info:doi/10.1016%2Fj.ijimpeng.2018.06.008&rft.externalDocID=S0734743X18300897 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |