Toward Development of a Face Recognition System for Watchlist Surveillance

The interest in face recognition is moving toward real-world applications and uncontrolled sensing environments. An important application of interest is automated surveillance, where the objective is to recognize and track people who are on a watchlist. For this open world application, a large numbe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 33; no. 10; pp. 1925 - 1937
Main Authors Kamgar-Parsi, B., Lawson, W.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The interest in face recognition is moving toward real-world applications and uncontrolled sensing environments. An important application of interest is automated surveillance, where the objective is to recognize and track people who are on a watchlist. For this open world application, a large number of cameras that are increasingly being installed at many locations in shopping malls, metro systems, airports, etc., will be utilized. While a very large number of people will approach or pass by these surveillance cameras, only a small set of individuals must be recognized. That is, the system must reject every subject unless the subject happens to be on the watchlist. While humans routinely reject previously unseen faces as strangers, rejection of previously unseen faces has remained a difficult aspect of automated face recognition. In this paper, we propose an approach motivated by human perceptual ability of face recognition which can handle previously unseen faces. Our approach is based on identifying the decision region(s) in the face space which belong to the target person(s). This is done by generating two large sets of borderline images, projecting just inside and outside of the decision region. For each person on the watchlist, a dedicated classifier is trained. Results of extensive experiments support the effectiveness of our approach. In addition to extensive experiments using our algorithm and prerecorded images, we have conducted considerable live system experiments with people in realistic environments.
AbstractList The interest in face recognition is moving toward real-world applications and uncontrolled sensing environments. An important application of interest is automated surveillance, where the objective is to recognize and track people who are on a watchlist. For this open world application, a large number of cameras that are increasingly being installed at many locations in shopping malls, metro systems, airports, etc., will be utilized. While a very large number of people will approach or pass by these surveillance cameras, only a small set of individuals must be recognized. That is, the system must reject every subject unless the subject happens to be on the watchlist. While humans routinely reject previously unseen faces as strangers, rejection of previously unseen faces has remained a difficult aspect of automated face recognition. In this paper, we propose an approach motivated by human perceptual ability of face recognition which can handle previously unseen faces. Our approach is based on identifying the decision region(s) in the face space which belong to the target person(s). This is done by generating two large sets of borderline images, projecting just inside and outside of the decision region. For each person on the watchlist, a dedicated classifier is trained. Results of extensive experiments support the effectiveness of our approach. In addition to extensive experiments using our algorithm and prerecorded images, we have conducted considerable live system experiments with people in realistic environments.The interest in face recognition is moving toward real-world applications and uncontrolled sensing environments. An important application of interest is automated surveillance, where the objective is to recognize and track people who are on a watchlist. For this open world application, a large number of cameras that are increasingly being installed at many locations in shopping malls, metro systems, airports, etc., will be utilized. While a very large number of people will approach or pass by these surveillance cameras, only a small set of individuals must be recognized. That is, the system must reject every subject unless the subject happens to be on the watchlist. While humans routinely reject previously unseen faces as strangers, rejection of previously unseen faces has remained a difficult aspect of automated face recognition. In this paper, we propose an approach motivated by human perceptual ability of face recognition which can handle previously unseen faces. Our approach is based on identifying the decision region(s) in the face space which belong to the target person(s). This is done by generating two large sets of borderline images, projecting just inside and outside of the decision region. For each person on the watchlist, a dedicated classifier is trained. Results of extensive experiments support the effectiveness of our approach. In addition to extensive experiments using our algorithm and prerecorded images, we have conducted considerable live system experiments with people in realistic environments.
The interest in face recognition is moving toward real-world applications and uncontrolled sensing environments. An important application of interest is automated surveillance, where the objective is to recognize and track people who are on a watchlist. For this open world application, a large number of cameras that are increasingly being installed at many locations in shopping malls, metro systems, airports, etc., will be utilized. While a very large number of people will approach or pass by these surveillance cameras, only a small set of individuals must be recognized. That is, the system must reject every subject unless the subject happens to be on the watchlist. While humans routinely reject previously unseen faces as strangers, rejection of previously unseen faces has remained a difficult aspect of automated face recognition. In this paper, we propose an approach motivated by human perceptual ability of face recognition which can handle previously unseen faces. Our approach is based on identifying the decision region(s) in the face space which belong to the target person(s). This is done by generating two large sets of borderline images, projecting just inside and outside of the decision region. For each person on the watchlist, a dedicated classifier is trained. Results of extensive experiments support the effectiveness of our approach. In addition to extensive experiments using our algorithm and prerecorded images, we have conducted considerable live system experiments with people in realistic environments.
Author Kamgar-Parsi, B.
Lawson, W.
Author_xml – sequence: 1
  givenname: B.
  surname: Kamgar-Parsi
  fullname: Kamgar-Parsi, B.
  organization: Naval Res. Lab., Washington, DC, USA
– sequence: 2
  givenname: W.
  surname: Lawson
  fullname: Lawson, W.
  organization: Naval Res. Lab., Washington, DC, USA
– sequence: 3
  givenname: B.
  surname: Kamgar-Parsi
  fullname: Kamgar-Parsi, B.
  organization: US Office of Naval Res., Arlington, VA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21422493$$D View this record in MEDLINE/PubMed
BookMark eNp10U1PFTEUBuDGYOSCLl2ZmIaVm7mefsxHlwQBMRCNXOOyaTtntGRmem07GP49M15gQeKqm6enb897QPbGMCIhbxmsGQP1cfPt-OpizYGxddW8ICvOKigUV3yPrIBVvGga3uyTg5RuAJgsQbwi-5xJzqUSK_JlE_6a2NJPeIt92A44Zho6auiZcUi_owu_Rp99GOn1Xco40C5E-tNk97v3KdPrKd6i73szOnxNXnamT_jm4TwkP85ONyefi8uv5xcnx5eFExJyYedwqrJgS8VF16EE29qqqp1rmbFWcIDWWDnHaytoDDOKCQcG5n9wZYwQh-TDbu42hj8TpqwHnxwuITBMSbOasVLUUDYzPXpGb8IUxzmdbhrZCFFLNqP3D2iyA7Z6G_1g4p1-XNIMxA64GFKK2Gnns1mWkqPxvWaglyr0vyr0UoWulreLZ7ceB__Pv9t5j4hPtqwlKF6Ke4Z4kXE
CODEN ITPIDJ
CitedBy_id crossref_primary_10_12720_jait_11_2_103_108
crossref_primary_10_1049_iet_bmt_2017_0036
crossref_primary_10_1007_s00500_022_06931_1
crossref_primary_10_1016_j_patcog_2024_110574
crossref_primary_10_1007_s00521_024_10234_x
crossref_primary_10_1049_iet_cvi_2014_0084
crossref_primary_10_1109_JIOT_2024_3383673
crossref_primary_10_1007_s10489_023_04619_z
crossref_primary_10_1016_j_cviu_2015_03_005
crossref_primary_10_1007_s00138_015_0697_7
crossref_primary_10_1016_j_ins_2014_07_005
crossref_primary_10_1049_bme2_12024
crossref_primary_10_1017_ATSIP_2020_27
crossref_primary_10_1186_s13640_015_0078_1
crossref_primary_10_1007_s00521_018_3649_0
crossref_primary_10_1016_j_inffus_2013_11_001
crossref_primary_10_1109_TPAMI_2015_2481396
crossref_primary_10_3389_fnhum_2015_00590
crossref_primary_10_1142_S0218348X17500256
crossref_primary_10_1016_j_patcog_2015_08_002
crossref_primary_10_1049_iet_bmt_2014_0045
crossref_primary_10_1142_S021812662050022X
crossref_primary_10_1016_j_patcog_2022_108580
crossref_primary_10_1016_j_compeleceng_2017_11_011
crossref_primary_10_1049_iet_cvi_2014_0375
crossref_primary_10_1007_s00371_021_02102_9
crossref_primary_10_1007_s42979_021_00719_0
crossref_primary_10_1186_s13635_024_00174_3
crossref_primary_10_1186_s13640_017_0188_z
crossref_primary_10_1109_TIP_2020_3024026
crossref_primary_10_1016_j_inffus_2014_05_006
crossref_primary_10_14201_14698
crossref_primary_10_32604_cmc_2021_015417
crossref_primary_10_1109_ACCESS_2021_3107626
crossref_primary_10_1142_S0219691319400022
crossref_primary_10_1007_s00138_016_0820_4
crossref_primary_10_1016_j_riit_2016_06_010
crossref_primary_10_1016_j_patcog_2017_04_014
crossref_primary_10_3390_s18093040
Cites_doi 10.1109/ICIP.2002.1038171
10.1016/j.cviu.2005.05.005
10.1109/TPAMI.2005.224
10.1109/ICIP.2004.1419763
10.1109/TPAMI.2008.79
10.1109/CVPR.2005.268
10.1007/978-0-387-38464-1
10.1109/34.927467
10.1109/34.927464
10.1162/jocn.1991.3.1.71
10.1109/34.879790
10.1007/978-3-540-88693-8_37
10.1109/ICPR.2010.661
10.1016/S0031-3203(99)00179-X
10.1109/ICIG.2009.9
10.1109/TPAMI.2007.1007
10.1109/34.977564
10.1109/AFGR.2002.1004130
10.1109/ijcnn.2003.1223762
10.1145/1553374.1553380
10.1049/ic:20000471
10.1109/TPAMI.2007.70784
10.1109/CVPR.2001.990517
10.3758/BF03213272
10.1109/ICCV.2009.5459250
10.1109/JPROC.2006.884093
10.1007/3-540-44887-X_49
10.1109/5.381842
10.1007/BF00977785
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2011.68
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1937
ExternalDocumentID 2433293761
21422493
10_1109_TPAMI_2011_68
5740925
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c340t-b92996b0b5923ffe40bdb667ccd1abb3200dab4249d608a1a913c0a088229aa33
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Sun Aug 24 04:06:07 EDT 2025
Sun Jun 29 16:26:29 EDT 2025
Wed Feb 19 02:26:44 EST 2025
Tue Jul 01 05:24:15 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Tue Aug 26 17:18:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-b92996b0b5923ffe40bdb667ccd1abb3200dab4249d608a1a913c0a088229aa33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 21422493
PQID 884833741
PQPubID 85458
PageCount 13
ParticipantIDs proquest_journals_884833741
ieee_primary_5740925
proquest_miscellaneous_1711537058
pubmed_primary_21422493
crossref_citationtrail_10_1109_TPAMI_2011_68
crossref_primary_10_1109_TPAMI_2011_68
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2011
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
Fahlman (ref6)
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref5
Kamgar-Parsi (ref11) 2010
References_xml – ident: ref15
  doi: 10.1109/ICIP.2002.1038171
– ident: ref2
  doi: 10.1016/j.cviu.2005.05.005
– ident: ref14
  doi: 10.1109/TPAMI.2005.224
– ident: ref27
  doi: 10.1109/ICIP.2004.1419763
– ident: ref30
  doi: 10.1109/TPAMI.2008.79
– ident: ref20
  doi: 10.1109/CVPR.2005.268
– ident: ref29
  doi: 10.1007/978-0-387-38464-1
– ident: ref5
  doi: 10.1109/34.927467
– ident: ref7
  doi: 10.1109/34.927464
– ident: ref24
  doi: 10.1162/jocn.1991.3.1.71
– ident: ref19
  doi: 10.1109/34.879790
– ident: ref17
  doi: 10.1007/978-3-540-88693-8_37
– ident: ref8
  doi: 10.1109/ICPR.2010.661
– ident: ref18
  doi: 10.1016/S0031-3203(99)00179-X
– ident: ref31
  doi: 10.1109/ICIG.2009.9
– ident: ref3
  doi: 10.1109/TPAMI.2007.1007
– ident: ref9
  doi: 10.1109/34.977564
– ident: ref22
  doi: 10.1109/AFGR.2002.1004130
– ident: ref28
  doi: 10.1109/ijcnn.2003.1223762
– ident: ref1
  doi: 10.1145/1553374.1553380
– ident: ref21
  doi: 10.1049/ic:20000471
– ident: ref16
  doi: 10.1109/TPAMI.2007.70784
– ident: ref26
  doi: 10.1109/CVPR.2001.990517
– ident: ref6
  publication-title: An Empirical Study of Learning Speed in Back-Propagation Networks
– ident: ref25
  doi: 10.3758/BF03213272
– ident: ref12
  doi: 10.1109/ICCV.2009.5459250
– ident: ref23
  doi: 10.1109/JPROC.2006.884093
– ident: ref10
  doi: 10.1007/3-540-44887-X_49
– ident: ref4
  doi: 10.1109/5.381842
– year: 2010
  ident: ref11
  article-title: Methods of Facial Recognition
– ident: ref13
  doi: 10.1007/BF00977785
SSID ssj0014503
Score 2.3445625
Snippet The interest in face recognition is moving toward real-world applications and uncontrolled sensing environments. An important application of interest is...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1925
SubjectTerms Airports
automatic surveillance
Automation
Biometric Identification - methods
biometrics
Cameras
Experiments
Face
Face - anatomy & histology
Face recognition
human-like classification
Humans
Image Processing, Computer-Assisted - methods
Machine vision
morphing facial images
open world face recognition
Probes
Studies
Surveillance
Terrorism
Watches
Title Toward Development of a Face Recognition System for Watchlist Surveillance
URI https://ieeexplore.ieee.org/document/5740925
https://www.ncbi.nlm.nih.gov/pubmed/21422493
https://www.proquest.com/docview/884833741
https://www.proquest.com/docview/1711537058
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58rK_6IoJ4smu7eWx7FHHRhRXRFfdWkjRFUFrRrQd_vZP04QMXvBWapk1mpvNNMvkG4Cjg6FYw8PEl7WufCU19i1p9ZjIeioxhSGHPO4-uxeU9G074ZA5O2rMwxhiXfGa69tLt5aeFLu1SGQbv-GiPz8M8Bm7VWa12x4BxVwUZEQxaOIYRX3yap-Obs9FVxdYpIsf-y9BxxfSHK3K1VWbDTOduBiswaj60yjJ56pZT1dUfvzgc_zuSVViucSc5qxRlDeZM3oGVpqYDqU28A0vfCArXYTh2WbXkW2oRKTIiyUBqQ26b5KMiJxXzOUEITB7w7_74jOpD7srXd2PLGmHXG3A_uBifX_p19QVfUxZMfYXAKRYqUBwxYJYZFqhUCdHXOg2lUhTNK5WK4USmIohkKOOQ6kBayN6LpaR0ExbyIjfbQBBVhBz7i2QcsUwxyW3uaSxVLFOjuPHgpBFEomtqclsh4zlxIUoQJ06EiRVhIiIPjtvmLxUnx6yG63bq20b1rHuw20g5qS32LYkiFlGK-MqDw_YumprdP5G5Kcq3JOzjMGgf1duDrUo52q4bndr5-5W7sNhrkgfDPViYvpZmH9HMVB04Nf4ESZLudA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOACH8iykFDBS1RNZkvVjkyNCXS2PRQgWwc2yHUeVQAmCDYf--o6dB1AViVukOE7smcl8Y4-_AfgRcXQrGPiEig5MyIShoUOtIbM5j0XOMKRw553HF2J0w07v-N0MHHRnYay1PvnM9tyl38vPSlO5pTIM3vHRPp-FefT7PK5Pa3V7Boz7OsiIYdDGMZB4ZdQ8nFwejU9qvk6ReP5fhq4rpe-cka-u8jHQ9A5nuAzj9lPrPJP7XjXVPfPnHxbHz45lBb40yJMc1aqyCjO2WIPltqoDaYx8DZbeUBSuw-nE59WSN8lFpMyJIkNlLLlq04_KgtTc5wRBMLnF__vvB1Qgcl09vVhX2Ai73oCb4a_J8Shs6i-EhrJoGmqETqnQkeaIAvPcskhnWoiBMVmstKZoYJnSDCcyE1GiYpXG1ETKgfZ-qhSlX2GuKAu7BQRxRcyxv0SlCcs1U9xln6ZKpyqzmtsADlpBSNOQk7saGQ_SBylRKr0IpROhFEkAP7vmjzUrx0cN193Ud42aWQ9gu5WybGz2WSYJSyhFhBXAfncXjc3toKjCltWzjAc4DDpABQ9gs1aOrutWp779_5V7sDCajM_l-cnF2TYs9ttUwvg7zE2fKruD2Gaqd71K_wXfh_G9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Development+of+a+Face+Recognition+System+for+Watchlist+Surveillance&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Kamgar-Parsi%2C+Behrooz&rft.au=Lawson%2C+Wallace&rft.au=Kamgar-Parsi%2C+Behzad&rft.date=2011-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=33&rft.issue=10&rft.spage=1925&rft_id=info:doi/10.1109%2FTPAMI.2011.68&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2433293761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon