Higher spin mapping class groups and strata of Abelian differentials over Teichmüller space

For g≥5, we give a complete classification of the connected components of strata of abelian differentials over Teichmüller space, establishing an analogue of Kontsevich and Zorich's classification of their components over moduli space. Building on work of the first author [2], we find that the...

Full description

Saved in:
Bibliographic Details
Published inAdvances in mathematics (New York. 1965) Vol. 389; p. 107926
Main Authors Calderon, Aaron, Salter, Nick
Format Journal Article
LanguageEnglish
Published Elsevier Inc 08.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For g≥5, we give a complete classification of the connected components of strata of abelian differentials over Teichmüller space, establishing an analogue of Kontsevich and Zorich's classification of their components over moduli space. Building on work of the first author [2], we find that the non-hyperelliptic components are classified by an invariant known as an r–spin structure. This is accomplished by computing a certain monodromy group valued in the mapping class group. To do this, we determine explicit finite generating sets for all r–spin stabilizer subgroups of the mapping class group, completing a project begun by the second author in [18]. Some corollaries in flat geometry and toric geometry are obtained from these results.
AbstractList For g≥5, we give a complete classification of the connected components of strata of abelian differentials over Teichmüller space, establishing an analogue of Kontsevich and Zorich's classification of their components over moduli space. Building on work of the first author [2], we find that the non-hyperelliptic components are classified by an invariant known as an r–spin structure. This is accomplished by computing a certain monodromy group valued in the mapping class group. To do this, we determine explicit finite generating sets for all r–spin stabilizer subgroups of the mapping class group, completing a project begun by the second author in [18]. Some corollaries in flat geometry and toric geometry are obtained from these results.
ArticleNumber 107926
Author Salter, Nick
Calderon, Aaron
Author_xml – sequence: 1
  givenname: Aaron
  surname: Calderon
  fullname: Calderon, Aaron
  email: aaron.calderon@yale.edu
  organization: Department of Mathematics, Yale University, 10 Hillhouse Ave, New Haven, CT 06511, United States of America
– sequence: 2
  givenname: Nick
  surname: Salter
  fullname: Salter, Nick
  email: nsalter@nd.edu
  organization: Department of Mathematics, University of Notre Dame, 255 Hurley Bldg, Notre Dame, IN 46556, United States of America
BookMark eNp9kM1KAzEUhYNUsK0-gLu8wNSbzJgmuCpFrVBwU3dCyCR32pT5IxkLvps7X8zUce3qcLh8h8s3I5O2a5GQWwYLBkzcHRfGNwsOnKW-VFxckCkDBRkHySdkCgAsk0uQV2QW4zFVVTA1Je8bvz9goLH3LW1Mn2JPbW1ipPvQffSRmtbROAQzGNpVdFVi7U1Lna8qDNgO3tSRdqc0sUNvD833V13_7hmL1-SySme8-cs5eXt63K032fb1-WW92mY2L2DISqmEtCg5B1cKc-9AIUCRl4YvwRlVCGE5M4UruMtVhdxa4ZzkJXBQAmU-J2zctaGLMWCl--AbEz41A33Wo4866dFnPXrUk5iHkcH02Mlj0NF6bC06H9AO2nX-H_oHodlwrQ
CitedBy_id crossref_primary_10_1515_crelle_2023_0102
crossref_primary_10_1515_crelle_2024_0005
Cites_doi 10.1016/S1874-575X(02)80015-7
10.1016/0040-9383(85)90049-7
10.1090/bull/1513
10.1515/crll.1941.183.148
10.1007/BF01363897
10.1007/BF01428050
10.4171/CMH/491
10.1007/s00222-003-0303-x
10.1007/BF01475756
10.1090/S0002-9939-1986-0840639-5
10.1112/plms/s3-58.2.366
10.1112/jtopol/jtt029
10.1007/s11856-015-1248-7
10.1007/s00222-018-0845-6
10.1007/s10711-013-9845-2
10.1112/jlms/s2-22.2.365
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.aim.2021.107926
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1090-2082
ExternalDocumentID 10_1016_j_aim_2021_107926
S0001870821003650
GrantInformation_xml – fundername: NSF
  grantid: DGE-1122492
  funderid: https://doi.org/10.13039/100000001
– fundername: NSF
  grantid: DMS-1703181; DMS-2003984
  funderid: https://doi.org/10.13039/100000001
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABCQX
ABJNI
ABLJU
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
UPT
WH7
ZMT
~G-
0SF
1RT
5VS
6I.
AAEDT
AAQFI
AAQXK
AAXKI
AAYXX
ABEFU
ABFNM
ABVKL
ABXDB
ADFGL
ADIYS
ADMUD
ADVLN
AEXQZ
AFJKZ
AGHFR
AKRWK
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FGOYB
G-2
HX~
HZ~
MVM
NCXOZ
OHT
R2-
RIG
SEW
XOL
XPP
ZCG
ZKB
ID FETCH-LOGICAL-c340t-b8968ce8220db6a5d09e0043ba270da9466c21a4d42d39fe2cc6dd82b02096e83
IEDL.DBID AIKHN
ISSN 0001-8708
IngestDate Thu Sep 26 16:13:14 EDT 2024
Fri Feb 23 02:42:46 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Translation surfaces
Higher spin structures
Mapping class groups
Abelian differentials
Strata
Monodromy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-b8968ce8220db6a5d09e0043ba270da9466c21a4d42d39fe2cc6dd82b02096e83
OpenAccessLink http://manuscript.elsevier.com/S0001870821003650/pdf/S0001870821003650.pdf
ParticipantIDs crossref_primary_10_1016_j_aim_2021_107926
elsevier_sciencedirect_doi_10_1016_j_aim_2021_107926
PublicationCentury 2000
PublicationDate 2021-10-08
PublicationDateYYYYMMDD 2021-10-08
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-08
  day: 08
PublicationDecade 2020
PublicationTitle Advances in mathematics (New York. 1965)
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Chillingworth (br0040) 1972; 196
Calderon (br0020) 2020; 95
Kawazumi (br0110) 2017
Sipe (br0200) 1986; 97
Randal-Williams (br0170) 2013; 7
Arf (br0010) 1941; 183
Kontsevich, Zorich (br0120) 2003; 153
Johnson (br0100) 1985; 24
Johnson (br0090) 1980; 22
Johnson (br0080) 1980; 249
Sipe (br0190) 1982; 260
Looijenga, Mondello (br0140) 2014; 169
Masur, Tabachnikov (br0150) 2002; vol. 1A
Calderon, Salter (br0030) 2020
Gutiérrez-Romo (br0060) 2018
Lindsey (br0130) 2015; 210
Humphries, Johnson (br0070) 1989; 58
Wright (br0210) 2016; 53
D. Margalit, R. Winarski, The Birman–Hilden theory, preprint, pp. 1–20.
Salter (br0180) 2019; 216
Zorich (br0220) 2006
Farb, Margalit (br0050) 2011
Calderon (10.1016/j.aim.2021.107926_br0020) 2020; 95
Lindsey (10.1016/j.aim.2021.107926_br0130) 2015; 210
Randal-Williams (10.1016/j.aim.2021.107926_br0170) 2013; 7
Chillingworth (10.1016/j.aim.2021.107926_br0040) 1972; 196
Salter (10.1016/j.aim.2021.107926_br0180) 2019; 216
Masur (10.1016/j.aim.2021.107926_br0150) 2002; vol. 1A
Looijenga (10.1016/j.aim.2021.107926_br0140) 2014; 169
Humphries (10.1016/j.aim.2021.107926_br0070) 1989; 58
Zorich (10.1016/j.aim.2021.107926_br0220) 2006
Sipe (10.1016/j.aim.2021.107926_br0200) 1986; 97
10.1016/j.aim.2021.107926_br0160
Johnson (10.1016/j.aim.2021.107926_br0100) 1985; 24
Sipe (10.1016/j.aim.2021.107926_br0190) 1982; 260
Johnson (10.1016/j.aim.2021.107926_br0090) 1980; 22
Kawazumi (10.1016/j.aim.2021.107926_br0110)
Johnson (10.1016/j.aim.2021.107926_br0080) 1980; 249
Arf (10.1016/j.aim.2021.107926_br0010) 1941; 183
Calderon (10.1016/j.aim.2021.107926_br0030)
Gutiérrez-Romo (10.1016/j.aim.2021.107926_br0060) 2018
Wright (10.1016/j.aim.2021.107926_br0210) 2016; 53
Farb (10.1016/j.aim.2021.107926_br0050) 2011
Kontsevich (10.1016/j.aim.2021.107926_br0120) 2003; 153
References_xml – volume: 210
  start-page: 125
  year: 2015
  end-page: 146
  ident: br0130
  article-title: Counting invariant components of hyperelliptic translation surfaces
  publication-title: Isr. J. Math.
  contributor:
    fullname: Lindsey
– volume: 196
  start-page: 218
  year: 1972
  end-page: 249
  ident: br0040
  article-title: Winding numbers on surfaces, I
  publication-title: Math. Ann.
  contributor:
    fullname: Chillingworth
– volume: 58
  start-page: 366
  year: 1989
  end-page: 386
  ident: br0070
  article-title: A generalization of winding number functions on surfaces
  publication-title: Proc. Lond. Math. Soc.
  contributor:
    fullname: Johnson
– volume: 97
  start-page: 515
  year: 1986
  end-page: 524
  ident: br0200
  article-title: Some finite quotients of the mapping class group of a surface
  publication-title: Proc. Am. Math. Soc.
  contributor:
    fullname: Sipe
– year: 2017
  ident: br0110
  article-title: The mapping class group orbits in the framings of compact surfaces
  contributor:
    fullname: Kawazumi
– volume: 183
  start-page: 148
  year: 1941
  end-page: 167
  ident: br0010
  article-title: Untersuchungen über quadratische formen in körpern der charakteristik 2, I
  publication-title: J. Reine Angew. Math.
  contributor:
    fullname: Arf
– volume: 7
  start-page: 155
  year: 2013
  end-page: 186
  ident: br0170
  article-title: Homology of the moduli spaces and mapping class groups of framed,
  publication-title: J. Topol.
  contributor:
    fullname: Randal-Williams
– volume: 53
  start-page: 41
  year: 2016
  end-page: 56
  ident: br0210
  article-title: From rational billiards to dynamics on moduli space
  publication-title: Bull. Am. Math. Soc.
  contributor:
    fullname: Wright
– volume: 249
  start-page: 225
  year: 1980
  end-page: 242
  ident: br0080
  article-title: An abelian quotient of the mapping class group
  publication-title: Math. Ann.
  contributor:
    fullname: Johnson
– volume: 169
  start-page: 109
  year: 2014
  end-page: 128
  ident: br0140
  article-title: The fine structure of the moduli space of abelian differentials in genus 3
  publication-title: Geom. Dedic.
  contributor:
    fullname: Mondello
– volume: 153
  start-page: 631
  year: 2003
  end-page: 678
  ident: br0120
  article-title: Connected components of the moduli spaces of Abelian differentials with prescribed singularities
  publication-title: Invent. Math.
  contributor:
    fullname: Zorich
– volume: 260
  start-page: 67
  year: 1982
  end-page: 92
  ident: br0190
  article-title: Roots of the canonical bundle of the universal Teichmüller curve and certain subgroups of the mapping class group
  publication-title: Math. Ann.
  contributor:
    fullname: Sipe
– start-page: 1
  year: 2018
  end-page: 38
  ident: br0060
  article-title: Classification of Rauzy-Veech groups: proof of the Zorich conjecture
  publication-title: Invent. Math.
  contributor:
    fullname: Gutiérrez-Romo
– year: 2020
  ident: br0030
  article-title: Framed mapping class groups and the monodromy of strata of Abelian differentials
  contributor:
    fullname: Salter
– volume: 24
  start-page: 113
  year: 1985
  end-page: 126
  ident: br0100
  article-title: The structure of the Torelli group II: a characterization of the group generated by twists on bounding curves
  publication-title: Topology
  contributor:
    fullname: Johnson
– volume: 95
  start-page: 361
  year: 2020
  end-page: 420
  ident: br0020
  article-title: Connected components of strata of Abelian differentials over Teichmüller space
  publication-title: Comment. Math. Helv.
  contributor:
    fullname: Calderon
– year: 2011
  ident: br0050
  article-title: A Primer on Mapping Class Groups
  contributor:
    fullname: Margalit
– start-page: 439
  year: 2006
  end-page: 586
  ident: br0220
  article-title: Flat surfaces
  publication-title: Frontiers in Number Theory, Physics, and Geometry I
  contributor:
    fullname: Zorich
– volume: vol. 1A
  start-page: 1015
  year: 2002
  end-page: 1089
  ident: br0150
  article-title: Rational billiards and flat structures
  publication-title: Handb. Dyn. Syst.
  contributor:
    fullname: Tabachnikov
– volume: 216
  start-page: 153
  year: 2019
  end-page: 213
  ident: br0180
  article-title: Monodromy and vanishing cycles in toric surfaces
  publication-title: Invent. Math.
  contributor:
    fullname: Salter
– volume: 22
  start-page: 365
  year: 1980
  end-page: 373
  ident: br0090
  article-title: Spin structures and quadratic forms on surfaces
  publication-title: J. Lond. Math. Soc. (2)
  contributor:
    fullname: Johnson
– volume: vol. 1A
  start-page: 1015
  year: 2002
  ident: 10.1016/j.aim.2021.107926_br0150
  article-title: Rational billiards and flat structures
  doi: 10.1016/S1874-575X(02)80015-7
  contributor:
    fullname: Masur
– volume: 24
  start-page: 113
  issue: 2
  year: 1985
  ident: 10.1016/j.aim.2021.107926_br0100
  article-title: The structure of the Torelli group II: a characterization of the group generated by twists on bounding curves
  publication-title: Topology
  doi: 10.1016/0040-9383(85)90049-7
  contributor:
    fullname: Johnson
– start-page: 439
  year: 2006
  ident: 10.1016/j.aim.2021.107926_br0220
  article-title: Flat surfaces
  contributor:
    fullname: Zorich
– volume: 53
  start-page: 41
  issue: 1
  year: 2016
  ident: 10.1016/j.aim.2021.107926_br0210
  article-title: From rational billiards to dynamics on moduli space
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/bull/1513
  contributor:
    fullname: Wright
– volume: 183
  start-page: 148
  year: 1941
  ident: 10.1016/j.aim.2021.107926_br0010
  article-title: Untersuchungen über quadratische formen in körpern der charakteristik 2, I
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1941.183.148
  contributor:
    fullname: Arf
– volume: 249
  start-page: 225
  year: 1980
  ident: 10.1016/j.aim.2021.107926_br0080
  article-title: An abelian quotient of the mapping class group Ig
  publication-title: Math. Ann.
  doi: 10.1007/BF01363897
  contributor:
    fullname: Johnson
– ident: 10.1016/j.aim.2021.107926_br0110
  contributor:
    fullname: Kawazumi
– volume: 196
  start-page: 218
  year: 1972
  ident: 10.1016/j.aim.2021.107926_br0040
  article-title: Winding numbers on surfaces, I
  publication-title: Math. Ann.
  doi: 10.1007/BF01428050
  contributor:
    fullname: Chillingworth
– volume: 95
  start-page: 361
  issue: 2
  year: 2020
  ident: 10.1016/j.aim.2021.107926_br0020
  article-title: Connected components of strata of Abelian differentials over Teichmüller space
  publication-title: Comment. Math. Helv.
  doi: 10.4171/CMH/491
  contributor:
    fullname: Calderon
– volume: 153
  start-page: 631
  issue: 3
  year: 2003
  ident: 10.1016/j.aim.2021.107926_br0120
  article-title: Connected components of the moduli spaces of Abelian differentials with prescribed singularities
  publication-title: Invent. Math.
  doi: 10.1007/s00222-003-0303-x
  contributor:
    fullname: Kontsevich
– volume: 260
  start-page: 67
  issue: 1
  year: 1982
  ident: 10.1016/j.aim.2021.107926_br0190
  article-title: Roots of the canonical bundle of the universal Teichmüller curve and certain subgroups of the mapping class group
  publication-title: Math. Ann.
  doi: 10.1007/BF01475756
  contributor:
    fullname: Sipe
– volume: 97
  start-page: 515
  issue: 3
  year: 1986
  ident: 10.1016/j.aim.2021.107926_br0200
  article-title: Some finite quotients of the mapping class group of a surface
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1986-0840639-5
  contributor:
    fullname: Sipe
– volume: 58
  start-page: 366
  issue: 2
  year: 1989
  ident: 10.1016/j.aim.2021.107926_br0070
  article-title: A generalization of winding number functions on surfaces
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/s3-58.2.366
  contributor:
    fullname: Humphries
– volume: 7
  start-page: 155
  issue: 1
  year: 2013
  ident: 10.1016/j.aim.2021.107926_br0170
  article-title: Homology of the moduli spaces and mapping class groups of framed, r-Spin and Pin surfaces
  publication-title: J. Topol.
  doi: 10.1112/jtopol/jtt029
  contributor:
    fullname: Randal-Williams
– start-page: 1
  year: 2018
  ident: 10.1016/j.aim.2021.107926_br0060
  article-title: Classification of Rauzy-Veech groups: proof of the Zorich conjecture
  publication-title: Invent. Math.
  contributor:
    fullname: Gutiérrez-Romo
– volume: 210
  start-page: 125
  year: 2015
  ident: 10.1016/j.aim.2021.107926_br0130
  article-title: Counting invariant components of hyperelliptic translation surfaces
  publication-title: Isr. J. Math.
  doi: 10.1007/s11856-015-1248-7
  contributor:
    fullname: Lindsey
– ident: 10.1016/j.aim.2021.107926_br0030
  contributor:
    fullname: Calderon
– year: 2011
  ident: 10.1016/j.aim.2021.107926_br0050
  contributor:
    fullname: Farb
– volume: 216
  start-page: 153
  year: 2019
  ident: 10.1016/j.aim.2021.107926_br0180
  article-title: Monodromy and vanishing cycles in toric surfaces
  publication-title: Invent. Math.
  doi: 10.1007/s00222-018-0845-6
  contributor:
    fullname: Salter
– volume: 169
  start-page: 109
  issue: 1
  year: 2014
  ident: 10.1016/j.aim.2021.107926_br0140
  article-title: The fine structure of the moduli space of abelian differentials in genus 3
  publication-title: Geom. Dedic.
  doi: 10.1007/s10711-013-9845-2
  contributor:
    fullname: Looijenga
– ident: 10.1016/j.aim.2021.107926_br0160
– volume: 22
  start-page: 365
  issue: 2
  year: 1980
  ident: 10.1016/j.aim.2021.107926_br0090
  article-title: Spin structures and quadratic forms on surfaces
  publication-title: J. Lond. Math. Soc. (2)
  doi: 10.1112/jlms/s2-22.2.365
  contributor:
    fullname: Johnson
SSID ssj0009419
Score 2.4259114
Snippet For g≥5, we give a complete classification of the connected components of strata of abelian differentials over Teichmüller space, establishing an analogue of...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 107926
SubjectTerms Abelian differentials
Higher spin structures
Mapping class groups
Monodromy
Strata
Translation surfaces
Title Higher spin mapping class groups and strata of Abelian differentials over Teichmüller space
URI https://dx.doi.org/10.1016/j.aim.2021.107926
Volume 389
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKe4EDYhVlqXzghBRqO87iY1VRFVB7aqUekCJvgSCRVjRc-TJu_BieLCwSXDg60ljW2Jl5id-8Qeg89q1OqaRebALmcWUi90q5DaHCRDZKRUBSKHCeTMPxnN8sgkULDZtaGKBV1rG_iulltK6f9Gtv9ldZBjW-0FDOpTAKoirw3d5x6YjFbdQZXN-Op1_au5zWKNgtyRk0l5slzUtmUI_OqBtHAiQWfktP31LOaAdt11gRD6rl7KKWzffQ1uRTaHW9j-4qngZer7IcP0kQW7jHGhAxLus11ljmBpfauBIvUzxQFv5r4KYvSgHHDwONE89sph-e3t-gNtDNJ7U9QPPR1Ww49uqGCZ72OSk8FYsw1tblfGJUKANDhIWrPiVZRIwEKXnNqOSGM-OL1DKtQ2NiphxmFKGN_UPUzpe5PUJYaUaCwLAwspoTLSQhxjfSGjeDA1mqiy4aPyWrShcjaQhjj4lzagJOTSqndhFvPJn82NzExe2_zY7_Z3aCNmFUEfVOUbt4frFnDjkUqoc2Ll9prz4fH6ghwyg
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUqegAOiFWU1QdOSFEdx1l8rCqqlC6nVuoBKfIWCFLTioa_48aP4cnCIsGFYxyNZY3tmZf4zTNCN5FnVOoK14m0Tx0mdWi3lJ0Ql-vQhCn3SQoFzpNpEM_Z_cJftFC_qYUBWmUd-6uYXkbruqVbe7O7zjKo8YUL5WwKc0FUBb7b2xYNcLs7273hKJ5-ae8yt0bBdkjWoDncLGleIoN6dOra55CDxMJv6elbyhnso70aK-JeNZwD1DL5IdqdfAqtbo7QQ8XTwJt1luOlALGFR6wAEeOyXmODRa5xqY0r8CrFPWngvwZu7kUpYPlhoHHimcnU0_L9DWoDbX9CmWM0H9zN-rFTX5jgKI-RwpERDyJlbM4nWgbC14QbOOqTgoZEC5CSV9QVTDOqPZ4aqlSgdUSlxYw8MJF3grbyVW5OEZaKEt_XNAiNYkRxQYj2tDDa9mBBluyg28ZPybrSxUgawthzYp2agFOTyqkdxBpPJj8mN7Fx-2-zs_-ZXaPteDYZJ-PhdHSOduBNRdq7QFvFy6u5tCiikFf1KvkAZdvFHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher+spin+mapping+class+groups+and+strata+of+Abelian+differentials+over+Teichm%C3%BCller+space&rft.jtitle=Advances+in+mathematics+%28New+York.+1965%29&rft.au=Calderon%2C+Aaron&rft.au=Salter%2C+Nick&rft.date=2021-10-08&rft.issn=0001-8708&rft.volume=389&rft.spage=107926&rft_id=info:doi/10.1016%2Fj.aim.2021.107926&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aim_2021_107926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8708&client=summon