Analytical methods for perfect wedge diffraction: A review
The subject of diffraction of waves by sharp boundaries has been studied intensively for well over a century, initiated by groundbreaking mathematicians and physicists including Sommerfeld, Macdonald and Poincaré. The significance of such canonical diffraction models, and their analytical solutions,...
Saved in:
Published in | Wave motion Vol. 93; p. 102479 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.03.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0165-2125 1878-433X |
DOI | 10.1016/j.wavemoti.2019.102479 |
Cover
Loading…
Abstract | The subject of diffraction of waves by sharp boundaries has been studied intensively for well over a century, initiated by groundbreaking mathematicians and physicists including Sommerfeld, Macdonald and Poincaré. The significance of such canonical diffraction models, and their analytical solutions, was recognised much more broadly thanks to Keller, who introduced a geometrical theory of diffraction (GTD) in the middle of the last century, and other important mathematicians such as Fock and Babich. This has led to a very wide variety of approaches to be developed in order to tackle such two and three dimensional diffraction problems, with the purpose of obtaining elegant and compact analytic solutions capable of easy numerical evaluation.
The purpose of this review article is to showcase the disparate mathematical techniques that have been proposed. For ease of exposition, mathematical brevity, and for the broadest interest to the reader, all approaches are aimed at one canonical model, namely diffraction of a monochromatic scalar plane wave by a two-dimensional wedge with perfect Dirichlet or Neumann boundaries. The first three approaches offered are those most commonly used today in diffraction theory, although not necessarily in the context of wedge diffraction. These are the Sommerfeld–Malyuzhinets method, the Wiener–Hopf technique, and the Kontorovich–Lebedev transform approach. Then follows three less well-known and somewhat novel methods, which would be of interest even to specialists in the field, namely the embedding method, a random walk approach, and the technique of functionally-invariant solutions.
Having offered the exact solution of this problem in a variety of forms, a numerical comparison between the exact solution and several powerful approximations such as GTD is performed and critically assessed.
•Review and critical analysis of the Sommerfeld–Malyuzhinets, the Wiener–Hopf and the Kontorovich–Lebedev methods for the perfect wedge.•Critical numerical comparison between the exact solution and various approximations.•Review and critical analysis of the embedding, the random walk and the Smirnov–Sobolev methods for the perfect wedge.•Emphasis on the mathematical links between the first three methods. |
---|---|
AbstractList | The subject of diffraction of waves by sharp boundaries has been studied intensively for well over a century, initiated by groundbreaking mathematicians and physicists including Sommerfeld, Macdonald and Poincaré. The significance of such canonical diffraction models, and their analytical solutions, was recognised much more broadly thanks to Keller, who introduced a geometrical theory of diffraction (GTD) in the middle of the last century, and other important mathematicians such as Fock and Babich. This has led to a very wide variety of approaches to be developed in order to tackle such two and three dimensional diffraction problems, with the purpose of obtaining elegant and compact analytic solutions capable of easy numerical evaluation. The purpose of this review article is to showcase the disparate mathematical techniques that have been proposed. For ease of exposition, mathematical brevity, and for the broadest interest to the reader, all approaches are aimed at one canonical model, namely diffraction of a monochromatic scalar plane wave by a two-dimensional wedge with perfect Dirichlet or Neumann boundaries. The first three approaches offered are those most commonly used today in diffraction theory, although not necessarily in the context of wedge diffraction. These are the Sommerfeld–Malyuzhinets method, the Wiener–Hopf technique, and the Kontorovich–Lebedev transform approach. Then follows three less well-known and somewhat novel methods, which would be of interest even to specialists in the field, namely the embedding method, a random walk approach, and the technique of functionally-invariant solutions. Having offered the exact solution of this problem in a variety of forms, a numerical comparison between the exact solution and several powerful approximations such as GTD is performed and critically assessed. The subject of diffraction of waves by sharp boundaries has been studied intensively for well over a century, initiated by groundbreaking mathematicians and physicists including Sommerfeld, Macdonald and Poincaré. The significance of such canonical diffraction models, and their analytical solutions, was recognised much more broadly thanks to Keller, who introduced a geometrical theory of diffraction (GTD) in the middle of the last century, and other important mathematicians such as Fock and Babich. This has led to a very wide variety of approaches to be developed in order to tackle such two and three dimensional diffraction problems, with the purpose of obtaining elegant and compact analytic solutions capable of easy numerical evaluation. The purpose of this review article is to showcase the disparate mathematical techniques that have been proposed. For ease of exposition, mathematical brevity, and for the broadest interest to the reader, all approaches are aimed at one canonical model, namely diffraction of a monochromatic scalar plane wave by a two-dimensional wedge with perfect Dirichlet or Neumann boundaries. The first three approaches offered are those most commonly used today in diffraction theory, although not necessarily in the context of wedge diffraction. These are the Sommerfeld–Malyuzhinets method, the Wiener–Hopf technique, and the Kontorovich–Lebedev transform approach. Then follows three less well-known and somewhat novel methods, which would be of interest even to specialists in the field, namely the embedding method, a random walk approach, and the technique of functionally-invariant solutions. Having offered the exact solution of this problem in a variety of forms, a numerical comparison between the exact solution and several powerful approximations such as GTD is performed and critically assessed. •Review and critical analysis of the Sommerfeld–Malyuzhinets, the Wiener–Hopf and the Kontorovich–Lebedev methods for the perfect wedge.•Critical numerical comparison between the exact solution and various approximations.•Review and critical analysis of the embedding, the random walk and the Smirnov–Sobolev methods for the perfect wedge.•Emphasis on the mathematical links between the first three methods. |
ArticleNumber | 102479 |
Author | Abrahams, I.D. Nethercote, M.A. Assier, R.C. |
Author_xml | – sequence: 1 givenname: M.A. orcidid: 0000-0002-7566-1693 surname: Nethercote fullname: Nethercote, M.A. email: matthew.nethercote@postgrad.manchester.ac.uk organization: School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK – sequence: 2 givenname: R.C. orcidid: 0000-0001-9848-3482 surname: Assier fullname: Assier, R.C. email: raphael.assier@manchester.ac.uk organization: School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK – sequence: 3 givenname: I.D. surname: Abrahams fullname: Abrahams, I.D. email: i.d.abrahams@newton.ac.uk organization: Isaac Newton Institute, University of Cambridge, 20 Clarkson Road, Cambridge CB3 0EH, UK |
BookMark | eNqFkE1LAzEQhoNUsK3-BVnwvDVfm-0WD5biFxS8KHgL2exEs7SbmqQt_femrF689DQwvM_wzjNCg851gNA1wROCibhtJ3u1g7WLdkIxqdKS8rI6Q0MyLac5Z-xjgIYpWOSU0OICjUJoMcakZNUQzeadWh2i1WqVrSF-uSZkxvlsA96Ajtkemk_IGmuMVzpa182yeeZhZ2F_ic6NWgW4-p1j9P748LZ4zpevTy-L-TLXjOOY16VStWBlJUyVymCtiooB45SBUFppIFrgyvBSCCbqktJGU9BE1VDWhcGYjdFNf3fj3fcWQpSt2_pUO0jKWXqJci5S6q5Pae9C8GCktlEdG0ev7EoSLI-2ZCv_bMmjLdnbSrj4h2-8XSt_OA3e9yAkBUmLl0Fb6DQ01ieBsnH21IkfS7OKiA |
CitedBy_id | crossref_primary_10_1103_PhysRevE_109_025303 crossref_primary_10_1098_rspa_2023_0905 crossref_primary_10_1137_21M1461861 crossref_primary_10_1098_rspa_2021_0533 crossref_primary_10_1016_j_enganabound_2021_01_017 crossref_primary_10_1049_mia2_12425 crossref_primary_10_1142_S0129055X2450003X crossref_primary_10_1137_23M1562445 crossref_primary_10_1098_rspa_2022_0144 crossref_primary_10_1137_21M1438608 crossref_primary_10_1134_S1995080222080091 crossref_primary_10_1098_rspa_2020_0150 crossref_primary_10_1007_s00033_022_01841_6 crossref_primary_10_35378_gujs_1348483 crossref_primary_10_1109_TASLP_2023_3264737 crossref_primary_10_1109_TMTT_2022_3167639 crossref_primary_10_1007_s10665_022_10222_x crossref_primary_10_1016_j_jocs_2023_102057 crossref_primary_10_1121_10_0020844 crossref_primary_10_1137_23M1611300 crossref_primary_10_1098_rspa_2020_0681 crossref_primary_10_1134_S1063771022030149 crossref_primary_10_1109_TMTT_2021_3064343 crossref_primary_10_1098_rspa_2022_0604 crossref_primary_10_1134_S1995080221060081 crossref_primary_10_1109_TAP_2022_3226354 |
Cites_doi | 10.1007/BF02418036 10.1103/RevModPhys.20.367 10.1093/qjmam/hbl014 10.1098/rspa.1999.0421 10.1093/imamat/26.2.133 10.6028/jres.061.030 10.1121/1.389828 10.1093/qjmam/55.2.209 10.1007/978-0-387-34149-1_7 10.1016/S0165-2125(98)00042-0 10.1090/S0002-9947-1949-0027960-X 10.1093/qjmam/hbi010 10.3103/S0025654413030102 10.1016/j.wavemoti.2011.07.003 10.1109/MAP.2011.6028472 10.1016/j.wavemoti.2009.11.006 10.1002/cpa.3160040109 10.1093/imamat/hxv007 10.1007/s10665-007-9195-x 10.1002/cpa.3160070306 10.1007/s00033-015-0533-y 10.1121/1.1605413 10.1098/rspa.1998.0287 10.1016/S0022-460X(86)80156-0 10.1016/S0020-7683(02)00364-5 10.1016/j.wavemoti.2013.02.001 10.1016/0315-0860(92)90004-U 10.1093/qjmam/54.4.523 10.1109/TAP.2006.880723 10.1093/qjmam/55.2.249 10.1098/rspa.2004.1443 10.1007/s10440-008-9408-y 10.1093/qmath/os-17.1.19 10.1016/j.wavemoti.2016.07.003 10.1109/TAP.2004.841303 10.1093/qjmam/35.1.103 10.1112/plms/s2_14.1.450 10.1093/imamat/hxs042 10.1121/1.1365113 10.1016/j.wavemoti.2004.05.005 10.1088/0305-4470/32/11/012 10.1080/02726340390197485 10.1109/TAP.2011.2163780 10.1017/S0305004100001523 10.1016/S0165-2125(96)00024-8 10.1002/cpa.3160120209 10.1007/BF01447273 10.1137/S0036139901400239 10.1016/j.cam.2009.08.010 10.1016/0165-2125(95)00023-C 10.1007/BF01218506 10.1016/0021-8928(64)90170-4 10.1016/j.wavemoti.2006.04.002 10.1093/qmath/3.1.189 10.1109/PROC.1974.9651 10.1007/BF02418992 10.1134/S1061920815020016 10.1364/JOSA.52.000116 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Mar 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Mar 2020 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.wavemoti.2019.102479 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1878-433X |
ExternalDocumentID | 10_1016_j_wavemoti_2019_102479 S0165212519304573 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29R 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABJNI ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADGUI ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE IMUCA J1W KOM LY7 M38 M41 MHUIS MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SPG SSE SSQ SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c340t-b7aab63796f94330ca593e3423e6acace1c609f476636b722dc2ec1abe7b5f003 |
IEDL.DBID | .~1 |
ISSN | 0165-2125 |
IngestDate | Fri Jul 25 07:24:09 EDT 2025 Thu Apr 24 23:04:48 EDT 2025 Tue Jul 01 03:10:20 EDT 2025 Fri Feb 23 02:49:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wedge geometry Applied complex analysis Canonical wave diffraction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-b7aab63796f94330ca593e3423e6acace1c609f476636b722dc2ec1abe7b5f003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9848-3482 0000-0002-7566-1693 |
PQID | 2431252446 |
PQPubID | 2045382 |
ParticipantIDs | proquest_journals_2431252446 crossref_citationtrail_10_1016_j_wavemoti_2019_102479 crossref_primary_10_1016_j_wavemoti_2019_102479 elsevier_sciencedirect_doi_10_1016_j_wavemoti_2019_102479 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Wave motion |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Macdonald (b6) 1902 Sommerfeld (b5) 2003 Keller, Blank (b58) 1951; 4 Bleistein, Handelsman (b88) 2010 Bromwich (b60) 1915; 14 Jones (b29) 1964 Fock (b41) 1965 Babich, Lyalinov, Grikurov (b16) 2007 Kac (b94) 1949; 65 Kythe (b106) 2011 Craster, Shanin (b47) 2005; 461 V.G. Daniele, Generalized Wiener-Hopf technique for wedge shaped regions of arbitrary angles, in: VIII-Th Int. Conf. Math. Methods Electromagn. Theory, Kharkov Ukraine, 2000, pp. 432–434. Daniele, Lombardi (b83) 2011; 59 Budaev, Bogy (b70) 1998; 454 Felsen, Marcuvitz (b32) 1994 James (b36) 1986 Feynman (b93) 1948; 20 Daniele (b78) 2003; 23 Knopoff (b66) 1969 Moran, Biggs, Chamberlain (b92) 2016; 67 Abrahams (b26) 1986; 111 Budaev, Bogy (b48) 2001; 109 V.G. Daniele, New analytical Methods for wedge problems, in: Proc. 2001 Int. Conf. Electromagn. Adv. Appl., 2001, pp. 385–393. Keller (b33) 1962; 52 Assier, Peake (b105) 2012; 49 Budaev, Bogy (b50) 2002; 39 Copson (b19) 1946; 17 Budaev (b15) 1995 Biggs (b45) 2001; 54 Malyuzhinets (b8) 1955; 1 Castro, Kapanadze (b99) 2010; 110 Smirnov (b53) 1964 Martin, Wickham (b44) 1983; 390 Bernard (b81) 2006; 59 Lebedev (b28) 1965 Noble (b21) 1958 Abrahams (b27) 1987; 411 Ufimtsev (b39) 2014 Komech, Merzon (b101) 2019 Jones (b30) 1980; 26 Gautesen (b43) 1983; 74 Kisil (b79) 2015; 80 Israilov (b100) 2013; 48 Jones (b31) 1986 Budaev, Bogy (b51) 2003; 114 Daniele, Lombardi (b82) 2006; 54 Poincaré (b1) 1892; 16 Kouyoumjian, Pathak (b35) 1974; 62 Biggs (b46) 2002; 55 Bowman, Senior, Uslenghi (b65) 1987 S.L. Sobolev, General theory of diffraction of waves on Riemann surfaces, in: Sel. Work. S. L. Sobolev, Vol. I, New York, 1935, pp. 201–262. Croisille, Lebeau (b67) 1999 Rawlins (b62) 1987; 411 Daniele, Zich (b84) 2014 Malyuzhinets (b7) 1955; 1 Malyuzhinets (b10) 1958; 3 Biggs (b89) 2006; 43 Shanin, Craster (b90) 2010; 234 Gradshteyn, Ryzhik (b85) 2014 Ufimtsev (b38) 1971 Rawlins (b102) 1999; 455 Lawrie, Abrahams (b22) 2007; 59 Sommerfeld (b4) 1901; 46 Budaev, Bogy (b68) 1995; 22 Shanin (b23) 1996; 42 Mcnamara, Pistorius, Malherbe (b37) 1990 Bernard (b80) 2005; 58 Miles (b59) 1952; 212 Kontorovich, Lebedev (b25) 1939; 1 Daniele (b24) 2003; 63 Teixeira (b98) 1991; 14 Senior (b12) 1959; 12 Freidlin (b95) 1985; vol. 109 Sommerfeld (b3) 1896; 47 Wegert (b71) 2012 Oberhettinger (b61) 1954; 7 Skelton, Craster, Shanin, Valyaev (b91) 2010; 47 Wiener, Hopf (b18) 1931; 31 Budaev, Bogy (b49) 2002; 55 Schot (b72) 1992; 19 Williams (b13) 1959; 252 Jones (b20) 1952; 3 Borovikov, Kinber (b34) 1994 Budaev, Bogy (b69) 1996; 24 Voss (b96) 2013 Oberhettinger (b64) 1958; 61 Malyuzhinets (b11) 1958; 3 Osipov, Norris (b14) 1999; 29 Filippov (b54) 1964; 28 Lyalinov, Zhu (b17) 2013 Lyalinov (b103) 1999; 32 Abramowitz, Stegun (b86) 1967 Lyalinov (b74) 2013; 50 Williams (b42) 1982; 35 Rawlins (b63) 1989; 105 Malyuzhinets (b9) 1958; 3 Poincaré (b2) 1897; 20 Shanin (b75) 1998; 44 Bender, Orszag (b73) 1999 Babich (b56) 2015; 22 Busemann (b57) 1947 Assier, Peake (b87) 2012; 77 Budaev, Bogy (b97) 2005; 53 Hacivelioglu, Sevgi, Ufimtsev (b40) 2011; 53 Komech, Merzon, la Paz Méndez (b55) 2015; 66 Shanin (b104) 2005; 41 Babich (10.1016/j.wavemoti.2019.102479_b16) 2007 10.1016/j.wavemoti.2019.102479_b52 Wegert (10.1016/j.wavemoti.2019.102479_b71) 2012 Shanin (10.1016/j.wavemoti.2019.102479_b104) 2005; 41 Bernard (10.1016/j.wavemoti.2019.102479_b81) 2006; 59 Malyuzhinets (10.1016/j.wavemoti.2019.102479_b10) 1958; 3 Malyuzhinets (10.1016/j.wavemoti.2019.102479_b7) 1955; 1 Budaev (10.1016/j.wavemoti.2019.102479_b69) 1996; 24 Kythe (10.1016/j.wavemoti.2019.102479_b106) 2011 Abrahams (10.1016/j.wavemoti.2019.102479_b27) 1987; 411 Daniele (10.1016/j.wavemoti.2019.102479_b78) 2003; 23 Rawlins (10.1016/j.wavemoti.2019.102479_b62) 1987; 411 Budaev (10.1016/j.wavemoti.2019.102479_b49) 2002; 55 Wiener (10.1016/j.wavemoti.2019.102479_b18) 1931; 31 Malyuzhinets (10.1016/j.wavemoti.2019.102479_b11) 1958; 3 Daniele (10.1016/j.wavemoti.2019.102479_b83) 2011; 59 Budaev (10.1016/j.wavemoti.2019.102479_b15) 1995 Schot (10.1016/j.wavemoti.2019.102479_b72) 1992; 19 Filippov (10.1016/j.wavemoti.2019.102479_b54) 1964; 28 Jones (10.1016/j.wavemoti.2019.102479_b29) 1964 Biggs (10.1016/j.wavemoti.2019.102479_b46) 2002; 55 Sommerfeld (10.1016/j.wavemoti.2019.102479_b5) 2003 Oberhettinger (10.1016/j.wavemoti.2019.102479_b64) 1958; 61 Rawlins (10.1016/j.wavemoti.2019.102479_b63) 1989; 105 Komech (10.1016/j.wavemoti.2019.102479_b55) 2015; 66 Oberhettinger (10.1016/j.wavemoti.2019.102479_b61) 1954; 7 Abrahams (10.1016/j.wavemoti.2019.102479_b26) 1986; 111 Macdonald (10.1016/j.wavemoti.2019.102479_b6) 1902 Budaev (10.1016/j.wavemoti.2019.102479_b48) 2001; 109 Malyuzhinets (10.1016/j.wavemoti.2019.102479_b9) 1958; 3 Jones (10.1016/j.wavemoti.2019.102479_b20) 1952; 3 Keller (10.1016/j.wavemoti.2019.102479_b33) 1962; 52 Daniele (10.1016/j.wavemoti.2019.102479_b84) 2014 Croisille (10.1016/j.wavemoti.2019.102479_b67) 1999 Rawlins (10.1016/j.wavemoti.2019.102479_b102) 1999; 455 Jones (10.1016/j.wavemoti.2019.102479_b30) 1980; 26 Daniele (10.1016/j.wavemoti.2019.102479_b24) 2003; 63 Shanin (10.1016/j.wavemoti.2019.102479_b90) 2010; 234 Budaev (10.1016/j.wavemoti.2019.102479_b68) 1995; 22 Assier (10.1016/j.wavemoti.2019.102479_b105) 2012; 49 Fock (10.1016/j.wavemoti.2019.102479_b41) 1965 Lebedev (10.1016/j.wavemoti.2019.102479_b28) 1965 Feynman (10.1016/j.wavemoti.2019.102479_b93) 1948; 20 Martin (10.1016/j.wavemoti.2019.102479_b44) 1983; 390 Keller (10.1016/j.wavemoti.2019.102479_b58) 1951; 4 Bender (10.1016/j.wavemoti.2019.102479_b73) 1999 Freidlin (10.1016/j.wavemoti.2019.102479_b95) 1985; vol. 109 Kac (10.1016/j.wavemoti.2019.102479_b94) 1949; 65 Teixeira (10.1016/j.wavemoti.2019.102479_b98) 1991; 14 Mcnamara (10.1016/j.wavemoti.2019.102479_b37) 1990 Castro (10.1016/j.wavemoti.2019.102479_b99) 2010; 110 Lyalinov (10.1016/j.wavemoti.2019.102479_b103) 1999; 32 Bleistein (10.1016/j.wavemoti.2019.102479_b88) 2010 Israilov (10.1016/j.wavemoti.2019.102479_b100) 2013; 48 Bromwich (10.1016/j.wavemoti.2019.102479_b60) 1915; 14 Biggs (10.1016/j.wavemoti.2019.102479_b89) 2006; 43 James (10.1016/j.wavemoti.2019.102479_b36) 1986 Voss (10.1016/j.wavemoti.2019.102479_b96) 2013 Biggs (10.1016/j.wavemoti.2019.102479_b45) 2001; 54 Gradshteyn (10.1016/j.wavemoti.2019.102479_b85) 2014 Komech (10.1016/j.wavemoti.2019.102479_b101) 2019 Poincaré (10.1016/j.wavemoti.2019.102479_b1) 1892; 16 Shanin (10.1016/j.wavemoti.2019.102479_b75) 1998; 44 Ufimtsev (10.1016/j.wavemoti.2019.102479_b39) 2014 Abramowitz (10.1016/j.wavemoti.2019.102479_b86) 1967 Babich (10.1016/j.wavemoti.2019.102479_b56) 2015; 22 Sommerfeld (10.1016/j.wavemoti.2019.102479_b3) 1896; 47 Moran (10.1016/j.wavemoti.2019.102479_b92) 2016; 67 Lyalinov (10.1016/j.wavemoti.2019.102479_b17) 2013 Budaev (10.1016/j.wavemoti.2019.102479_b50) 2002; 39 Budaev (10.1016/j.wavemoti.2019.102479_b51) 2003; 114 Williams (10.1016/j.wavemoti.2019.102479_b42) 1982; 35 Miles (10.1016/j.wavemoti.2019.102479_b59) 1952; 212 Shanin (10.1016/j.wavemoti.2019.102479_b23) 1996; 42 Budaev (10.1016/j.wavemoti.2019.102479_b70) 1998; 454 Sommerfeld (10.1016/j.wavemoti.2019.102479_b4) 1901; 46 Smirnov (10.1016/j.wavemoti.2019.102479_b53) 1964 Assier (10.1016/j.wavemoti.2019.102479_b87) 2012; 77 Kouyoumjian (10.1016/j.wavemoti.2019.102479_b35) 1974; 62 Busemann (10.1016/j.wavemoti.2019.102479_b57) 1947 Noble (10.1016/j.wavemoti.2019.102479_b21) 1958 10.1016/j.wavemoti.2019.102479_b76 Jones (10.1016/j.wavemoti.2019.102479_b31) 1986 Gautesen (10.1016/j.wavemoti.2019.102479_b43) 1983; 74 Borovikov (10.1016/j.wavemoti.2019.102479_b34) 1994 Knopoff (10.1016/j.wavemoti.2019.102479_b66) 1969 Malyuzhinets (10.1016/j.wavemoti.2019.102479_b8) 1955; 1 Copson (10.1016/j.wavemoti.2019.102479_b19) 1946; 17 Kisil (10.1016/j.wavemoti.2019.102479_b79) 2015; 80 Osipov (10.1016/j.wavemoti.2019.102479_b14) 1999; 29 Ufimtsev (10.1016/j.wavemoti.2019.102479_b38) 1971 Poincaré (10.1016/j.wavemoti.2019.102479_b2) 1897; 20 Felsen (10.1016/j.wavemoti.2019.102479_b32) 1994 Craster (10.1016/j.wavemoti.2019.102479_b47) 2005; 461 Senior (10.1016/j.wavemoti.2019.102479_b12) 1959; 12 Bowman (10.1016/j.wavemoti.2019.102479_b65) 1987 Bernard (10.1016/j.wavemoti.2019.102479_b80) 2005; 58 10.1016/j.wavemoti.2019.102479_b77 Lyalinov (10.1016/j.wavemoti.2019.102479_b74) 2013; 50 Budaev (10.1016/j.wavemoti.2019.102479_b97) 2005; 53 Kontorovich (10.1016/j.wavemoti.2019.102479_b25) 1939; 1 Skelton (10.1016/j.wavemoti.2019.102479_b91) 2010; 47 Daniele (10.1016/j.wavemoti.2019.102479_b82) 2006; 54 Lawrie (10.1016/j.wavemoti.2019.102479_b22) 2007; 59 Hacivelioglu (10.1016/j.wavemoti.2019.102479_b40) 2011; 53 Williams (10.1016/j.wavemoti.2019.102479_b13) 1959; 252 |
References_xml | – year: 2013 ident: b96 article-title: An Introduction to Statistical Computing: A Simulation-based Approach – year: 1967 ident: b86 article-title: Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables – volume: 65 start-page: 1 year: 1949 end-page: 13 ident: b94 article-title: On the distribution of certain wiener functionals publication-title: Trans. Amer. Math. Soc. – volume: 411 start-page: 239 year: 1987 end-page: 250 ident: b27 article-title: On the sound field generated by membrane surface waves on a wedge-shaped boundary publication-title: Proc. R. Soc. A – volume: 58 start-page: 383 year: 2005 end-page: 418 ident: b80 article-title: Scattering by a three-part impedance plane: A new spectral approach publication-title: Q. J. Mech. Appl. Math. – volume: 114 start-page: 1733 year: 2003 end-page: 1741 ident: b51 article-title: Random walk approach to wave propagation in wedges and cones publication-title: J. Acoust. Soc. Am. – year: 2019 ident: b101 article-title: Stationary Diffraction by Wedges – volume: 109 start-page: 2260 year: 2001 end-page: 2262 ident: b48 article-title: Probabilistic solutions of the Helmholtz equation publication-title: J. Acoust. Soc. Am. – volume: 1 start-page: 144 year: 1955 end-page: 164 ident: b7 article-title: Sound radiation by vibrating faces of arbitrary wedge. Part I publication-title: Akust. Zhurnal (in Russ.) – volume: 26 start-page: 133 year: 1980 end-page: 141 ident: b30 article-title: The kontorovich-lebedev transform publication-title: IMA J. Appl. Math. – volume: 55 start-page: 209 year: 2002 end-page: 226 ident: b49 article-title: Application of random walk methods to wave propagation publication-title: Q. J. Mech. Appl. Math. – volume: 17 start-page: 19 year: 1946 end-page: 34 ident: b19 article-title: On an integral equation arising in the theory of diffraction publication-title: Q. J. Math. – volume: 3 start-page: 752 year: 1958 end-page: 755 ident: b11 article-title: Excitation, reflection and emission of surface waves from a wedge with given face impedances publication-title: Sov. Phys. Dokl. – volume: 53 start-page: 711 year: 2005 end-page: 718 ident: b97 article-title: Diffraction of a plane wave by a sector with Dirichlet or Neumann boundary conditions publication-title: IEEE Trans. Antennas Propag. – volume: 49 start-page: 64 year: 2012 end-page: 82 ident: b105 article-title: On the diffraction of acoustic waves by a quarter-plane publication-title: Wave Motion – volume: 66 start-page: 2485 year: 2015 end-page: 2498 ident: b55 article-title: On uniqueness and stability of Sobolev’s solution in scattering by wedges publication-title: Z. Angew. Math. Phys. – volume: 47 start-page: 299 year: 2010 end-page: 317 ident: b91 article-title: Embedding formulae for scattering by three-dimensional structures publication-title: Wave Motion – volume: 20 start-page: 313 year: 1897 end-page: 355 ident: b2 article-title: Sur la polarisation par diffraction: Seconde partie publication-title: Acta Math. (in French) – volume: 455 start-page: 2655 year: 1999 end-page: 2686 ident: b102 article-title: Diffraction by, or diffusion into, a penetrable wedge publication-title: Proc. R. Soc. A – volume: 67 start-page: 32 year: 2016 end-page: 46 ident: b92 article-title: Embedding formulae for wave diffraction by a circular arc publication-title: Wave Motion – volume: 22 start-page: 239 year: 1995 end-page: 257 ident: b68 article-title: Rayleigh wave scattering by a wedge publication-title: Wave Motion – volume: 23 start-page: 223 year: 2003 end-page: 236 ident: b78 article-title: Rotating waves in the Laplace domain for angular regions publication-title: Electromagnetics – year: 1986 ident: b31 article-title: Acoustic and Electromagnetic Waves – year: 1987 ident: b65 article-title: Electromagnetic and Acoustic Scattering by Simple Shapes – volume: 54 start-page: 523 year: 2001 end-page: 547 ident: b45 article-title: Wave diffraction through a perforated barrier of non-zero thickness publication-title: Q. J. Mech. Appl. Math. – volume: 105 start-page: 185 year: 1989 end-page: 192 ident: b63 article-title: A green’s function for diffraction by a rational wedge publication-title: Math. Proc. Cambr. Philos. Soc. – volume: 1 start-page: 226 year: 1955 end-page: 234 ident: b8 article-title: Sound radiation by vibrating faces of arbitrary wedge. Part II publication-title: Akust. Zhurnal (in Russ.) – year: 1999 ident: b67 article-title: Diffraction by an Immersed Elastic Wedge – year: 1986 ident: b36 article-title: Geometrical Theory of Diffraction for Electromagnetic Waves – volume: 7 start-page: 551 year: 1954 end-page: 563 ident: b61 article-title: Diffraction of waves by a wedge publication-title: Comm. Pure Appl. Math. – year: 1971 ident: b38 article-title: Method of edge waves in the physical theory of diffraction – reference: V.G. Daniele, Generalized Wiener-Hopf technique for wedge shaped regions of arbitrary angles, in: VIII-Th Int. Conf. Math. Methods Electromagn. Theory, Kharkov Ukraine, 2000, pp. 432–434. – volume: 16 start-page: 297 year: 1892 end-page: 339 ident: b1 article-title: Sur la polarisation par diffraction publication-title: Acta Math. (in French) – volume: 252 start-page: 376 year: 1959 end-page: 393 ident: b13 article-title: Diffraction of an e-polarized plane wave by an imperfectly conducting wedge publication-title: Proc. R. Soc. A – year: 1965 ident: b28 publication-title: Special Functions and their Application – volume: 22 start-page: 145 year: 2015 end-page: 152 ident: b56 article-title: Solution of the diffraction problem of a plane wave by an impedance wedge (non-stationary Case, Smirnov-Sobolev method) publication-title: Russ. J. Math. Phys. – volume: 44 start-page: 592 year: 1998 end-page: 597 ident: b75 article-title: Excitation of waves in a wedge-shaped region publication-title: Acoust. Phys. – volume: 234 start-page: 1637 year: 2010 end-page: 1646 ident: b90 article-title: Pseudo-differential operators for embedding formulae publication-title: J. Comput. Appl. Math. – year: 2013 ident: b17 publication-title: Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions – year: 2003 ident: b5 article-title: Mathematical Theory of Diffraction – volume: 4 start-page: 75 year: 1951 end-page: 94 ident: b58 article-title: Diffraction and reflection of pulses by wedges and corners publication-title: Comm. Pure Appl. Math. – volume: vol. 109 year: 1985 ident: b95 publication-title: Functional Integration and Partial Differential Equations. (AM-109) – volume: 39 start-page: 5547 year: 2002 end-page: 5570 ident: b50 article-title: Random walk methods and wave diffraction publication-title: Int. J. Solids Struct. – year: 1994 ident: b32 article-title: Radiation and Scattering of Waves – volume: 74 start-page: 600 year: 1983 ident: b43 article-title: On the green’s function for acoustical diffraction by a strip publication-title: J. Acoust. Soc. Am. – year: 1995 ident: b15 article-title: Diffraction by Wedges – volume: 59 start-page: 3797 year: 2011 end-page: 3818 ident: b83 article-title: The wiener-hopf solution of the isotropic penetrable wedge problem: diffraction and total field publication-title: IEEE Trans. Antennas Propag. – year: 1999 ident: b73 article-title: Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory – start-page: 3 year: 1969 end-page: 43 ident: b66 article-title: Elastic wave propagation in a wedge publication-title: Wave Propag. Solids – volume: 29 start-page: 313 year: 1999 end-page: 340 ident: b14 article-title: The malyuzhinets theory for scattering from wedge boundaries: a review publication-title: Wave Motion – volume: 20 start-page: 367 year: 1948 end-page: 387 ident: b93 article-title: Space-time approach to non-relativistic quantum mechanics publication-title: Rev. Modern Phys. – volume: 390 start-page: 91 year: 1983 end-page: 129 ident: b44 article-title: Diffraction of elastic waves by a penny-shaped crack: Analytical and numerical results publication-title: Proc. R. Soc. A – volume: 461 start-page: 2227 year: 2005 end-page: 2242 ident: b47 article-title: Embedding formulae for diffraction by rational wedge and angular geometries publication-title: Proc. R. Soc. A – year: 2011 ident: b106 article-title: Green’s Functions and Linear Differential Equations – volume: 59 start-page: 351 year: 2007 end-page: 358 ident: b22 article-title: A brief historical perspective of the Wiener-Hopf technique publication-title: J. Eng. Math. – volume: 41 start-page: 79 year: 2005 end-page: 93 ident: b104 article-title: Modified smyshlyaev’s formulae for the problem of diffraction of a plane wave by an ideal quarter-plane publication-title: Wave Motion – year: 1947 ident: b57 article-title: Infinitesimal conical supersonic flow – volume: 48 start-page: 337 year: 2013 end-page: 347 ident: b100 article-title: Diffraction of acoustic and elastic waves on a half-plane for boundary conditions of various types publication-title: Mech. Solids – volume: 42 start-page: 612 year: 1996 end-page: 617 ident: b23 article-title: On wave excitation in a wedge-shaped region publication-title: Acoust. Phys. – year: 1964 ident: b53 article-title: A Course of Higher Mathematics. Volume 3, Part 2 – volume: 43 start-page: 517 year: 2006 end-page: 528 ident: b89 article-title: A new family of embedding formulae for diffraction by wedges and polygons publication-title: Wave Motion – volume: 24 start-page: 307 year: 1996 end-page: 314 ident: b69 article-title: Rayleigh wave scattering by a wedge II publication-title: Wave Motion – volume: 47 start-page: 317 year: 1896 end-page: 374 ident: b3 article-title: Mathematische theorie der diffraction publication-title: Math. Ann. (in Ger.) – volume: 54 start-page: 2472 year: 2006 end-page: 2485 ident: b82 article-title: Wiener-hopf solution for impenetrable wedges at skew incidence publication-title: IEEE Trans. Antennas Propag. – year: 2014 ident: b84 publication-title: The Wiener-Hopf Method in Electromagnetics – year: 2014 ident: b39 article-title: Fundamentals of the Physical Theory of Diffraction – volume: 28 start-page: 372 year: 1964 end-page: 388 ident: b54 article-title: Diffraction of an arbitrary acoustic wave by a wedge publication-title: J. Appl. Math. Mech. – year: 1994 ident: b34 article-title: Geometrical Theory of Diffraction – volume: 3 start-page: 189 year: 1952 end-page: 196 ident: b20 article-title: A simplifying technique in the solution of a class of diffraction problems publication-title: Q. J. Math. – year: 1902 ident: b6 article-title: Electric Waves – volume: 1 start-page: 229 year: 1939 end-page: 241 ident: b25 article-title: On a method of solution of some problems of the diffraction theory publication-title: J. Phys. (Acad. Sci. U.S.S.R.) – volume: 454 start-page: 2949 year: 1998 end-page: 2996 ident: b70 article-title: Rayleigh wave scattering by two adhering elastic wedges publication-title: Proc. R. Soc. A – volume: 77 start-page: 605 year: 2012 end-page: 625 ident: b87 article-title: Precise description of the different far fields encountered in the problem of diffraction of acoustic waves by a quarter-plane publication-title: IMA J. Appl. Math. – volume: 3 start-page: 266 year: 1958 end-page: 268 ident: b10 article-title: Relation between the inversion formulas for the sommerfeld integral and the formulas of kontorovich-lebedev publication-title: Sov. Phys. Dokl. – volume: 411 start-page: 265 year: 1987 end-page: 283 ident: b62 article-title: Plane-wave diffraction by a rational wedge publication-title: Proc. R. Soc. A – volume: 111 start-page: 191 year: 1986 end-page: 207 ident: b26 article-title: Diffraction by a semi-infinite membrane in the presence of a vertical barrier publication-title: J. Sound Vib. – year: 2012 ident: b71 article-title: Visual Complex Functions – year: 1965 ident: b41 article-title: Electromagnetic Diffraction and Propagation Problems – volume: 50 start-page: 739 year: 2013 end-page: 762 ident: b74 article-title: Scattering of acoustic waves by a sector publication-title: Wave Motion – year: 2010 ident: b88 publication-title: Asymptotic Expansions of Integrals – volume: 212 start-page: 543 year: 1952 end-page: 547 ident: b59 article-title: On the diffraction of an acoustic pulse by a wedge publication-title: Proc. R. Soc. A – volume: 31 start-page: 696 year: 1931 end-page: 706 ident: b18 article-title: Über eine klasse singulärer integralgleichungen publication-title: Sitzungsberichte Preuss. Akad. Wissenschaften, Phys. Klasse (in Ger.) – volume: 53 start-page: 232 year: 2011 end-page: 253 ident: b40 article-title: Electromagnetic wave scattering from a wedge with perfectly reflecting boundaries : Analysis of asymptotic techniques publication-title: IEEE Antennas Propag. Mag. – year: 2007 ident: b16 publication-title: Diffraction Theory: The Sommerfeld-Malyuzhinets Technique – volume: 14 start-page: 436 year: 1991 end-page: 454 ident: b98 article-title: Diffraction by a rectangular wedge: Wiener-Hopf-Hankel formulation publication-title: Integr. Equations Oper. Theory – year: 1990 ident: b37 article-title: Introduction to the Uniform Geometrical Theory of Diffraction – volume: 35 start-page: 103 year: 1982 end-page: 124 ident: b42 article-title: Diffraction by a finite strip publication-title: Q. J. Mech. Appl. Math. – reference: V.G. Daniele, New analytical Methods for wedge problems, in: Proc. 2001 Int. Conf. Electromagn. Adv. Appl., 2001, pp. 385–393. – volume: 32 start-page: 2183 year: 1999 end-page: 2206 ident: b103 article-title: Diffraction by a highly contrast transparent wedge publication-title: J. Phys. A – volume: 59 start-page: 517 year: 2006 end-page: 550 ident: b81 article-title: A spectral approach for scattering by impedance polygons publication-title: Q. J. Mech. Appl. Math. – volume: 80 start-page: 1569 year: 2015 end-page: 1581 ident: b79 article-title: The relationship between a strip wiener-hopf problem and a line Riemann-Hilbert problem publication-title: IMA J. Appl. Math. – volume: 3 start-page: 52 year: 1958 end-page: 56 ident: b9 article-title: Inversion formula for sommerfeld integral publication-title: Sov. Phys. Dokl. – volume: 14 start-page: 450 year: 1915 end-page: 463 ident: b60 article-title: Diffraction of waves by a wedge publication-title: Proc. Lond. Math. Soc. – volume: 55 start-page: 249 year: 2002 end-page: 272 ident: b46 article-title: Wave scattering by a perforated duct publication-title: Q. J. Mech. Appl. Math. – volume: 52 start-page: 116 year: 1962 end-page: 130 ident: b33 article-title: Geometrical theory of diffraction publication-title: J. Opt. Soc. Amer. – year: 1964 ident: b29 article-title: The Theory of Electromagnetism – volume: 19 start-page: 385 year: 1992 end-page: 401 ident: b72 article-title: Eighty years of Sommerfeld’s radiation condition publication-title: Hist. Math. – volume: 110 start-page: 289 year: 2010 end-page: 311 ident: b99 article-title: Exterior wedge diffraction problems with Dirichlet, Neumann and impedance boundary conditions publication-title: Acta Appl. Math. – volume: 12 start-page: 337 year: 1959 end-page: 372 ident: b12 article-title: Diffraction by an imperfectly conducting wedge publication-title: Comm. Pure Appl. Math. – volume: 62 start-page: 1448 year: 1974 end-page: 1461 ident: b35 article-title: A uniform GTD for an edge in a perfectly conducting surface publication-title: Proc. IEEE – reference: S.L. Sobolev, General theory of diffraction of waves on Riemann surfaces, in: Sel. Work. S. L. Sobolev, Vol. I, New York, 1935, pp. 201–262. – year: 1958 ident: b21 article-title: Methods based on the Wiener-Hopf Technique for the solution of partial differential equations (1988 reprint) – year: 2014 ident: b85 article-title: Table of Integrals, Series, and Products – volume: 61 start-page: 343 year: 1958 end-page: 365 ident: b64 article-title: On the diffraction and reflection of waves and pulses by wedges and corners publication-title: J. Res. Natl. Bur. Stand. – volume: 63 start-page: 1442 year: 2003 end-page: 1460 ident: b24 article-title: The Wiener-Hopf technique for impenetrable wedges having arbitrary aperture angle publication-title: SIAM J. Appl. Math. – volume: 46 start-page: 11 year: 1901 end-page: 97 ident: b4 article-title: Theoretisches über die Beugung der Röntgenstrahlen publication-title: Z. Math. Phys. (in Ger.) – year: 2014 ident: 10.1016/j.wavemoti.2019.102479_b39 – volume: 20 start-page: 313 year: 1897 ident: 10.1016/j.wavemoti.2019.102479_b2 article-title: Sur la polarisation par diffraction: Seconde partie publication-title: Acta Math. (in French) doi: 10.1007/BF02418036 – volume: 20 start-page: 367 year: 1948 ident: 10.1016/j.wavemoti.2019.102479_b93 article-title: Space-time approach to non-relativistic quantum mechanics publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.20.367 – volume: 59 start-page: 517 issue: 4 year: 2006 ident: 10.1016/j.wavemoti.2019.102479_b81 article-title: A spectral approach for scattering by impedance polygons publication-title: Q. J. Mech. Appl. Math. doi: 10.1093/qjmam/hbl014 – volume: 455 start-page: 2655 issue: 1987 year: 1999 ident: 10.1016/j.wavemoti.2019.102479_b102 article-title: Diffraction by, or diffusion into, a penetrable wedge publication-title: Proc. R. Soc. A doi: 10.1098/rspa.1999.0421 – volume: 42 start-page: 612 issue: 5 year: 1996 ident: 10.1016/j.wavemoti.2019.102479_b23 article-title: On wave excitation in a wedge-shaped region publication-title: Acoust. Phys. – volume: 26 start-page: 133 issue: 2 year: 1980 ident: 10.1016/j.wavemoti.2019.102479_b30 article-title: The kontorovich-lebedev transform publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/26.2.133 – year: 1999 ident: 10.1016/j.wavemoti.2019.102479_b73 – volume: 61 start-page: 343 issue: 5 year: 1958 ident: 10.1016/j.wavemoti.2019.102479_b64 article-title: On the diffraction and reflection of waves and pulses by wedges and corners publication-title: J. Res. Natl. Bur. Stand. doi: 10.6028/jres.061.030 – volume: 74 start-page: 600 issue: 2 year: 1983 ident: 10.1016/j.wavemoti.2019.102479_b43 article-title: On the green’s function for acoustical diffraction by a strip publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.389828 – volume: 55 start-page: 209 issue: 2 year: 2002 ident: 10.1016/j.wavemoti.2019.102479_b49 article-title: Application of random walk methods to wave propagation publication-title: Q. J. Mech. Appl. Math. doi: 10.1093/qjmam/55.2.209 – year: 2014 ident: 10.1016/j.wavemoti.2019.102479_b85 – ident: 10.1016/j.wavemoti.2019.102479_b52 doi: 10.1007/978-0-387-34149-1_7 – volume: 29 start-page: 313 year: 1999 ident: 10.1016/j.wavemoti.2019.102479_b14 article-title: The malyuzhinets theory for scattering from wedge boundaries: a review publication-title: Wave Motion doi: 10.1016/S0165-2125(98)00042-0 – volume: 65 start-page: 1 issue: 1 year: 1949 ident: 10.1016/j.wavemoti.2019.102479_b94 article-title: On the distribution of certain wiener functionals publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-1949-0027960-X – volume: 58 start-page: 383 issue: 3 year: 2005 ident: 10.1016/j.wavemoti.2019.102479_b80 article-title: Scattering by a three-part impedance plane: A new spectral approach publication-title: Q. J. Mech. Appl. Math. doi: 10.1093/qjmam/hbi010 – year: 1967 ident: 10.1016/j.wavemoti.2019.102479_b86 – volume: 48 start-page: 337 issue: 3 year: 2013 ident: 10.1016/j.wavemoti.2019.102479_b100 article-title: Diffraction of acoustic and elastic waves on a half-plane for boundary conditions of various types publication-title: Mech. Solids doi: 10.3103/S0025654413030102 – volume: 49 start-page: 64 issue: 1 year: 2012 ident: 10.1016/j.wavemoti.2019.102479_b105 article-title: On the diffraction of acoustic waves by a quarter-plane publication-title: Wave Motion doi: 10.1016/j.wavemoti.2011.07.003 – volume: 53 start-page: 232 issue: 3 year: 2011 ident: 10.1016/j.wavemoti.2019.102479_b40 article-title: Electromagnetic wave scattering from a wedge with perfectly reflecting boundaries : Analysis of asymptotic techniques publication-title: IEEE Antennas Propag. Mag. doi: 10.1109/MAP.2011.6028472 – start-page: 3 year: 1969 ident: 10.1016/j.wavemoti.2019.102479_b66 article-title: Elastic wave propagation in a wedge – year: 1994 ident: 10.1016/j.wavemoti.2019.102479_b32 – volume: 47 start-page: 299 issue: 5 year: 2010 ident: 10.1016/j.wavemoti.2019.102479_b91 article-title: Embedding formulae for scattering by three-dimensional structures publication-title: Wave Motion doi: 10.1016/j.wavemoti.2009.11.006 – year: 1965 ident: 10.1016/j.wavemoti.2019.102479_b28 – volume: vol. 109 year: 1985 ident: 10.1016/j.wavemoti.2019.102479_b95 – volume: 1 start-page: 144 issue: 2 year: 1955 ident: 10.1016/j.wavemoti.2019.102479_b7 article-title: Sound radiation by vibrating faces of arbitrary wedge. Part I publication-title: Akust. Zhurnal (in Russ.) – year: 1990 ident: 10.1016/j.wavemoti.2019.102479_b37 – volume: 4 start-page: 75 issue: 1 year: 1951 ident: 10.1016/j.wavemoti.2019.102479_b58 article-title: Diffraction and reflection of pulses by wedges and corners publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160040109 – volume: 80 start-page: 1569 year: 2015 ident: 10.1016/j.wavemoti.2019.102479_b79 article-title: The relationship between a strip wiener-hopf problem and a line Riemann-Hilbert problem publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/hxv007 – volume: 59 start-page: 351 issue: 4 year: 2007 ident: 10.1016/j.wavemoti.2019.102479_b22 article-title: A brief historical perspective of the Wiener-Hopf technique publication-title: J. Eng. Math. doi: 10.1007/s10665-007-9195-x – volume: 7 start-page: 551 issue: 3 year: 1954 ident: 10.1016/j.wavemoti.2019.102479_b61 article-title: Diffraction of waves by a wedge publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160070306 – volume: 3 start-page: 52 year: 1958 ident: 10.1016/j.wavemoti.2019.102479_b9 article-title: Inversion formula for sommerfeld integral publication-title: Sov. Phys. Dokl. – year: 1964 ident: 10.1016/j.wavemoti.2019.102479_b29 – ident: 10.1016/j.wavemoti.2019.102479_b77 – volume: 411 start-page: 239 year: 1987 ident: 10.1016/j.wavemoti.2019.102479_b27 article-title: On the sound field generated by membrane surface waves on a wedge-shaped boundary publication-title: Proc. R. Soc. A – volume: 66 start-page: 2485 issue: 5 year: 2015 ident: 10.1016/j.wavemoti.2019.102479_b55 article-title: On uniqueness and stability of Sobolev’s solution in scattering by wedges publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-015-0533-y – volume: 3 start-page: 752 year: 1958 ident: 10.1016/j.wavemoti.2019.102479_b11 article-title: Excitation, reflection and emission of surface waves from a wedge with given face impedances publication-title: Sov. Phys. Dokl. – year: 1986 ident: 10.1016/j.wavemoti.2019.102479_b31 – volume: 114 start-page: 1733 issue: 4 year: 2003 ident: 10.1016/j.wavemoti.2019.102479_b51 article-title: Random walk approach to wave propagation in wedges and cones publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1605413 – volume: 454 start-page: 2949 issue: 1979 year: 1998 ident: 10.1016/j.wavemoti.2019.102479_b70 article-title: Rayleigh wave scattering by two adhering elastic wedges publication-title: Proc. R. Soc. A doi: 10.1098/rspa.1998.0287 – volume: 46 start-page: 11 year: 1901 ident: 10.1016/j.wavemoti.2019.102479_b4 article-title: Theoretisches über die Beugung der Röntgenstrahlen publication-title: Z. Math. Phys. (in Ger.) – volume: 111 start-page: 191 issue: 2 year: 1986 ident: 10.1016/j.wavemoti.2019.102479_b26 article-title: Diffraction by a semi-infinite membrane in the presence of a vertical barrier publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(86)80156-0 – volume: 39 start-page: 5547 issue: 21–22 year: 2002 ident: 10.1016/j.wavemoti.2019.102479_b50 article-title: Random walk methods and wave diffraction publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(02)00364-5 – volume: 50 start-page: 739 issue: 4 year: 2013 ident: 10.1016/j.wavemoti.2019.102479_b74 article-title: Scattering of acoustic waves by a sector publication-title: Wave Motion doi: 10.1016/j.wavemoti.2013.02.001 – volume: 19 start-page: 385 issue: 4 year: 1992 ident: 10.1016/j.wavemoti.2019.102479_b72 article-title: Eighty years of Sommerfeld’s radiation condition publication-title: Hist. Math. doi: 10.1016/0315-0860(92)90004-U – year: 2019 ident: 10.1016/j.wavemoti.2019.102479_b101 – year: 1995 ident: 10.1016/j.wavemoti.2019.102479_b15 – volume: 54 start-page: 523 issue: 4 year: 2001 ident: 10.1016/j.wavemoti.2019.102479_b45 article-title: Wave diffraction through a perforated barrier of non-zero thickness publication-title: Q. J. Mech. Appl. Math. doi: 10.1093/qjmam/54.4.523 – volume: 1 start-page: 226 issue: 3 year: 1955 ident: 10.1016/j.wavemoti.2019.102479_b8 article-title: Sound radiation by vibrating faces of arbitrary wedge. Part II publication-title: Akust. Zhurnal (in Russ.) – volume: 54 start-page: 2472 issue: 9 year: 2006 ident: 10.1016/j.wavemoti.2019.102479_b82 article-title: Wiener-hopf solution for impenetrable wedges at skew incidence publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2006.880723 – volume: 55 start-page: 249 issue: 2 year: 2002 ident: 10.1016/j.wavemoti.2019.102479_b46 article-title: Wave scattering by a perforated duct publication-title: Q. J. Mech. Appl. Math. doi: 10.1093/qjmam/55.2.249 – year: 2014 ident: 10.1016/j.wavemoti.2019.102479_b84 – volume: 461 start-page: 2227 issue: 2059 year: 2005 ident: 10.1016/j.wavemoti.2019.102479_b47 article-title: Embedding formulae for diffraction by rational wedge and angular geometries publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2004.1443 – volume: 110 start-page: 289 year: 2010 ident: 10.1016/j.wavemoti.2019.102479_b99 article-title: Exterior wedge diffraction problems with Dirichlet, Neumann and impedance boundary conditions publication-title: Acta Appl. Math. doi: 10.1007/s10440-008-9408-y – volume: 17 start-page: 19 issue: 1 year: 1946 ident: 10.1016/j.wavemoti.2019.102479_b19 article-title: On an integral equation arising in the theory of diffraction publication-title: Q. J. Math. doi: 10.1093/qmath/os-17.1.19 – volume: 67 start-page: 32 year: 2016 ident: 10.1016/j.wavemoti.2019.102479_b92 article-title: Embedding formulae for wave diffraction by a circular arc publication-title: Wave Motion doi: 10.1016/j.wavemoti.2016.07.003 – volume: 53 start-page: 711 issue: 2 year: 2005 ident: 10.1016/j.wavemoti.2019.102479_b97 article-title: Diffraction of a plane wave by a sector with Dirichlet or Neumann boundary conditions publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2004.841303 – volume: 35 start-page: 103 year: 1982 ident: 10.1016/j.wavemoti.2019.102479_b42 article-title: Diffraction by a finite strip publication-title: Q. J. Mech. Appl. Math. doi: 10.1093/qjmam/35.1.103 – volume: 44 start-page: 592 issue: 5 year: 1998 ident: 10.1016/j.wavemoti.2019.102479_b75 article-title: Excitation of waves in a wedge-shaped region publication-title: Acoust. Phys. – volume: 14 start-page: 450 issue: 1 year: 1915 ident: 10.1016/j.wavemoti.2019.102479_b60 article-title: Diffraction of waves by a wedge publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/s2_14.1.450 – year: 1987 ident: 10.1016/j.wavemoti.2019.102479_b65 – year: 1971 ident: 10.1016/j.wavemoti.2019.102479_b38 – year: 2011 ident: 10.1016/j.wavemoti.2019.102479_b106 – volume: 1 start-page: 229 issue: 3 year: 1939 ident: 10.1016/j.wavemoti.2019.102479_b25 article-title: On a method of solution of some problems of the diffraction theory publication-title: J. Phys. (Acad. Sci. U.S.S.R.) – year: 2010 ident: 10.1016/j.wavemoti.2019.102479_b88 – volume: 77 start-page: 605 issue: 5 year: 2012 ident: 10.1016/j.wavemoti.2019.102479_b87 article-title: Precise description of the different far fields encountered in the problem of diffraction of acoustic waves by a quarter-plane publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/hxs042 – volume: 109 start-page: 2260 issue: 5 year: 2001 ident: 10.1016/j.wavemoti.2019.102479_b48 article-title: Probabilistic solutions of the Helmholtz equation publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1365113 – year: 1902 ident: 10.1016/j.wavemoti.2019.102479_b6 – volume: 41 start-page: 79 issue: 1 year: 2005 ident: 10.1016/j.wavemoti.2019.102479_b104 article-title: Modified smyshlyaev’s formulae for the problem of diffraction of a plane wave by an ideal quarter-plane publication-title: Wave Motion doi: 10.1016/j.wavemoti.2004.05.005 – year: 1964 ident: 10.1016/j.wavemoti.2019.102479_b53 – year: 1965 ident: 10.1016/j.wavemoti.2019.102479_b41 – year: 1999 ident: 10.1016/j.wavemoti.2019.102479_b67 – volume: 32 start-page: 2183 issue: 11 year: 1999 ident: 10.1016/j.wavemoti.2019.102479_b103 article-title: Diffraction by a highly contrast transparent wedge publication-title: J. Phys. A doi: 10.1088/0305-4470/32/11/012 – year: 2012 ident: 10.1016/j.wavemoti.2019.102479_b71 – year: 2013 ident: 10.1016/j.wavemoti.2019.102479_b96 – volume: 23 start-page: 223 issue: 3 year: 2003 ident: 10.1016/j.wavemoti.2019.102479_b78 article-title: Rotating waves in the Laplace domain for angular regions publication-title: Electromagnetics doi: 10.1080/02726340390197485 – volume: 59 start-page: 3797 issue: 10 year: 2011 ident: 10.1016/j.wavemoti.2019.102479_b83 article-title: The wiener-hopf solution of the isotropic penetrable wedge problem: diffraction and total field publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2011.2163780 – year: 2007 ident: 10.1016/j.wavemoti.2019.102479_b16 – year: 2013 ident: 10.1016/j.wavemoti.2019.102479_b17 – year: 1986 ident: 10.1016/j.wavemoti.2019.102479_b36 – year: 1958 ident: 10.1016/j.wavemoti.2019.102479_b21 – volume: 390 start-page: 91 issue: 1798 year: 1983 ident: 10.1016/j.wavemoti.2019.102479_b44 article-title: Diffraction of elastic waves by a penny-shaped crack: Analytical and numerical results publication-title: Proc. R. Soc. A – volume: 105 start-page: 185 issue: 1 year: 1989 ident: 10.1016/j.wavemoti.2019.102479_b63 article-title: A green’s function for diffraction by a rational wedge publication-title: Math. Proc. Cambr. Philos. Soc. doi: 10.1017/S0305004100001523 – volume: 24 start-page: 307 issue: 3 year: 1996 ident: 10.1016/j.wavemoti.2019.102479_b69 article-title: Rayleigh wave scattering by a wedge II publication-title: Wave Motion doi: 10.1016/S0165-2125(96)00024-8 – volume: 12 start-page: 337 issue: 2 year: 1959 ident: 10.1016/j.wavemoti.2019.102479_b12 article-title: Diffraction by an imperfectly conducting wedge publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160120209 – volume: 47 start-page: 317 year: 1896 ident: 10.1016/j.wavemoti.2019.102479_b3 article-title: Mathematische theorie der diffraction publication-title: Math. Ann. (in Ger.) doi: 10.1007/BF01447273 – volume: 63 start-page: 1442 issue: 4 year: 2003 ident: 10.1016/j.wavemoti.2019.102479_b24 article-title: The Wiener-Hopf technique for impenetrable wedges having arbitrary aperture angle publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139901400239 – volume: 234 start-page: 1637 year: 2010 ident: 10.1016/j.wavemoti.2019.102479_b90 article-title: Pseudo-differential operators for embedding formulae publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2009.08.010 – volume: 22 start-page: 239 issue: 1 year: 1995 ident: 10.1016/j.wavemoti.2019.102479_b68 article-title: Rayleigh wave scattering by a wedge publication-title: Wave Motion doi: 10.1016/0165-2125(95)00023-C – volume: 14 start-page: 436 issue: 3 year: 1991 ident: 10.1016/j.wavemoti.2019.102479_b98 article-title: Diffraction by a rectangular wedge: Wiener-Hopf-Hankel formulation publication-title: Integr. Equations Oper. Theory doi: 10.1007/BF01218506 – year: 1994 ident: 10.1016/j.wavemoti.2019.102479_b34 – year: 1947 ident: 10.1016/j.wavemoti.2019.102479_b57 – volume: 252 start-page: 376 issue: 1270 year: 1959 ident: 10.1016/j.wavemoti.2019.102479_b13 article-title: Diffraction of an e-polarized plane wave by an imperfectly conducting wedge publication-title: Proc. R. Soc. A – volume: 28 start-page: 372 issue: 2 year: 1964 ident: 10.1016/j.wavemoti.2019.102479_b54 article-title: Diffraction of an arbitrary acoustic wave by a wedge publication-title: J. Appl. Math. Mech. doi: 10.1016/0021-8928(64)90170-4 – volume: 43 start-page: 517 issue: 7 year: 2006 ident: 10.1016/j.wavemoti.2019.102479_b89 article-title: A new family of embedding formulae for diffraction by wedges and polygons publication-title: Wave Motion doi: 10.1016/j.wavemoti.2006.04.002 – volume: 3 start-page: 266 year: 1958 ident: 10.1016/j.wavemoti.2019.102479_b10 article-title: Relation between the inversion formulas for the sommerfeld integral and the formulas of kontorovich-lebedev publication-title: Sov. Phys. Dokl. – ident: 10.1016/j.wavemoti.2019.102479_b76 – year: 2003 ident: 10.1016/j.wavemoti.2019.102479_b5 – volume: 3 start-page: 189 issue: 1 year: 1952 ident: 10.1016/j.wavemoti.2019.102479_b20 article-title: A simplifying technique in the solution of a class of diffraction problems publication-title: Q. J. Math. doi: 10.1093/qmath/3.1.189 – volume: 62 start-page: 1448 issue: 11 year: 1974 ident: 10.1016/j.wavemoti.2019.102479_b35 article-title: A uniform GTD for an edge in a perfectly conducting surface publication-title: Proc. IEEE doi: 10.1109/PROC.1974.9651 – volume: 212 start-page: 543 issue: 1111 year: 1952 ident: 10.1016/j.wavemoti.2019.102479_b59 article-title: On the diffraction of an acoustic pulse by a wedge publication-title: Proc. R. Soc. A – volume: 411 start-page: 265 issue: 1841 year: 1987 ident: 10.1016/j.wavemoti.2019.102479_b62 article-title: Plane-wave diffraction by a rational wedge publication-title: Proc. R. Soc. A – volume: 16 start-page: 297 year: 1892 ident: 10.1016/j.wavemoti.2019.102479_b1 article-title: Sur la polarisation par diffraction publication-title: Acta Math. (in French) doi: 10.1007/BF02418992 – volume: 31 start-page: 696 year: 1931 ident: 10.1016/j.wavemoti.2019.102479_b18 article-title: Über eine klasse singulärer integralgleichungen publication-title: Sitzungsberichte Preuss. Akad. Wissenschaften, Phys. Klasse (in Ger.) – volume: 22 start-page: 145 issue: 2 year: 2015 ident: 10.1016/j.wavemoti.2019.102479_b56 article-title: Solution of the diffraction problem of a plane wave by an impedance wedge (non-stationary Case, Smirnov-Sobolev method) publication-title: Russ. J. Math. Phys. doi: 10.1134/S1061920815020016 – volume: 52 start-page: 116 issue: 2 year: 1962 ident: 10.1016/j.wavemoti.2019.102479_b33 article-title: Geometrical theory of diffraction publication-title: J. Opt. Soc. Amer. doi: 10.1364/JOSA.52.000116 |
SSID | ssj0001739 |
Score | 2.4095778 |
Snippet | The subject of diffraction of waves by sharp boundaries has been studied intensively for well over a century, initiated by groundbreaking mathematicians and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102479 |
SubjectTerms | Applied complex analysis Boundaries Canonical wave diffraction Diffraction Dirichlet problem Exact solutions Geometrical theory of diffraction Mathematical functions Mathematical models Physicists Plane waves Random walk Two dimensional models Wave diffraction Wedge geometry Wedges |
Title | Analytical methods for perfect wedge diffraction: A review |
URI | https://dx.doi.org/10.1016/j.wavemoti.2019.102479 https://www.proquest.com/docview/2431252446 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lInjxURWrteTgdftIssmmt1IsVbEXLfQW8lpokVraam_-dnd2s74QPHhdMiF8m8zMZr_5BqErwZygRJgoJTqNWOJ0lCTORdKDWJvQNEmgdvh-zEcTdjuNpxU0KGthgFYZfH_h03NvHZ60A5rt5WzWfoBCHALxWcLfPgGKn4wJ2OWtt0-aR1fk3cRgcASjv1QJz1tb_eqB8wYULwkqBgwoXb8HqB-uOo8_w0O0HxJH3C_WdoQqflFDByGJxOGIrmtoN-d02vUx6uWCI_ldNS4aRa9xlqLipV8BhwNv4SoNQ4eUVVHd0MN9XJSynKDJ8PpxMIpCq4TIUtbZREZobTgVkqeSUdqxOpbUg7qf59pq67uWd2SawcMpN4IQZ4m3XW28MHGanexTVF08L_wZwi5OhbOGps7ETHgmoYmf5s5TC5O4OopLfJQNOuLQzuJJlYSxuSpxVYCrKnCto_aH3bJQ0vjTQpbwq297QmXu_k_bRvm-VDiVa0WybInEWULDz_8x9QXaI_DRnRPRGqi6Wb34yywz2ZhmvvWaaKd_czcavwM8meNI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2VIgQXlgJiKeAD19DWTuKYW1VRFbpcaKXeLG-RQKhUbYHfJ5M4FSAkDlyjjBW92OMX580bgGseWs4o10FKVRqEiVVBklgbCIdmbVyxJMHa4eEo7k3Ch2k0rUCnrIVBWaXP_UVOz7O1v9LwaDbmT0-NRyzEobg_C_zbx9kGbKI7VVSFzfZ9vzdaJ-QWzxuK4f0BBnwpFH6--VDvDmVvqPISaGQQoqrr9z3qR7bOt6DuPux67kjaxeMdQMXNarDneSTxq3RZg61c1mmWh3Cbe47kx9Wk6BW9JBlLJXO3QBkH-cDTNIJNUhZFgcMtaZOimuUIJt27cacX-G4JgWFhcxVorpSOGRdxKkLGmkZFgjk0-HOxMsq4lombIg15xjFizSm1hjrTUtpxHaXZ4j6G6ux15k6A2Cjl1miWWp0B6kKBffxUbB0zOIg9hajERxpvJY4dLV5kqRl7liWuEnGVBa6n0FjHzQszjT8jRAm__DYtZJbx_4ytl-9L-oW5lDQjTDTKOE189o-hr2C7Nx4O5OB-1D-HHYrf4LkurQ7V1eLNXWREZaUv_UT8BA325fk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+methods+for+perfect+wedge+diffraction%3A+A+review&rft.jtitle=Wave+motion&rft.au=Nethercote%2C+M.A.&rft.au=Assier%2C+R.C.&rft.au=Abrahams%2C+I.D.&rft.date=2020-03-01&rft.issn=0165-2125&rft.volume=93&rft.spage=102479&rft_id=info:doi/10.1016%2Fj.wavemoti.2019.102479&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_wavemoti_2019_102479 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-2125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-2125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-2125&client=summon |