Analytical methods for perfect wedge diffraction: A review

The subject of diffraction of waves by sharp boundaries has been studied intensively for well over a century, initiated by groundbreaking mathematicians and physicists including Sommerfeld, Macdonald and Poincaré. The significance of such canonical diffraction models, and their analytical solutions,...

Full description

Saved in:
Bibliographic Details
Published inWave motion Vol. 93; p. 102479
Main Authors Nethercote, M.A., Assier, R.C., Abrahams, I.D.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.03.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0165-2125
1878-433X
DOI10.1016/j.wavemoti.2019.102479

Cover

Loading…
Abstract The subject of diffraction of waves by sharp boundaries has been studied intensively for well over a century, initiated by groundbreaking mathematicians and physicists including Sommerfeld, Macdonald and Poincaré. The significance of such canonical diffraction models, and their analytical solutions, was recognised much more broadly thanks to Keller, who introduced a geometrical theory of diffraction (GTD) in the middle of the last century, and other important mathematicians such as Fock and Babich. This has led to a very wide variety of approaches to be developed in order to tackle such two and three dimensional diffraction problems, with the purpose of obtaining elegant and compact analytic solutions capable of easy numerical evaluation. The purpose of this review article is to showcase the disparate mathematical techniques that have been proposed. For ease of exposition, mathematical brevity, and for the broadest interest to the reader, all approaches are aimed at one canonical model, namely diffraction of a monochromatic scalar plane wave by a two-dimensional wedge with perfect Dirichlet or Neumann boundaries. The first three approaches offered are those most commonly used today in diffraction theory, although not necessarily in the context of wedge diffraction. These are the Sommerfeld–Malyuzhinets method, the Wiener–Hopf technique, and the Kontorovich–Lebedev transform approach. Then follows three less well-known and somewhat novel methods, which would be of interest even to specialists in the field, namely the embedding method, a random walk approach, and the technique of functionally-invariant solutions. Having offered the exact solution of this problem in a variety of forms, a numerical comparison between the exact solution and several powerful approximations such as GTD is performed and critically assessed. •Review and critical analysis of the Sommerfeld–Malyuzhinets, the Wiener–Hopf and the Kontorovich–Lebedev methods for the perfect wedge.•Critical numerical comparison between the exact solution and various approximations.•Review and critical analysis of the embedding, the random walk and the Smirnov–Sobolev methods for the perfect wedge.•Emphasis on the mathematical links between the first three methods.
AbstractList The subject of diffraction of waves by sharp boundaries has been studied intensively for well over a century, initiated by groundbreaking mathematicians and physicists including Sommerfeld, Macdonald and Poincaré. The significance of such canonical diffraction models, and their analytical solutions, was recognised much more broadly thanks to Keller, who introduced a geometrical theory of diffraction (GTD) in the middle of the last century, and other important mathematicians such as Fock and Babich. This has led to a very wide variety of approaches to be developed in order to tackle such two and three dimensional diffraction problems, with the purpose of obtaining elegant and compact analytic solutions capable of easy numerical evaluation. The purpose of this review article is to showcase the disparate mathematical techniques that have been proposed. For ease of exposition, mathematical brevity, and for the broadest interest to the reader, all approaches are aimed at one canonical model, namely diffraction of a monochromatic scalar plane wave by a two-dimensional wedge with perfect Dirichlet or Neumann boundaries. The first three approaches offered are those most commonly used today in diffraction theory, although not necessarily in the context of wedge diffraction. These are the Sommerfeld–Malyuzhinets method, the Wiener–Hopf technique, and the Kontorovich–Lebedev transform approach. Then follows three less well-known and somewhat novel methods, which would be of interest even to specialists in the field, namely the embedding method, a random walk approach, and the technique of functionally-invariant solutions. Having offered the exact solution of this problem in a variety of forms, a numerical comparison between the exact solution and several powerful approximations such as GTD is performed and critically assessed.
The subject of diffraction of waves by sharp boundaries has been studied intensively for well over a century, initiated by groundbreaking mathematicians and physicists including Sommerfeld, Macdonald and Poincaré. The significance of such canonical diffraction models, and their analytical solutions, was recognised much more broadly thanks to Keller, who introduced a geometrical theory of diffraction (GTD) in the middle of the last century, and other important mathematicians such as Fock and Babich. This has led to a very wide variety of approaches to be developed in order to tackle such two and three dimensional diffraction problems, with the purpose of obtaining elegant and compact analytic solutions capable of easy numerical evaluation. The purpose of this review article is to showcase the disparate mathematical techniques that have been proposed. For ease of exposition, mathematical brevity, and for the broadest interest to the reader, all approaches are aimed at one canonical model, namely diffraction of a monochromatic scalar plane wave by a two-dimensional wedge with perfect Dirichlet or Neumann boundaries. The first three approaches offered are those most commonly used today in diffraction theory, although not necessarily in the context of wedge diffraction. These are the Sommerfeld–Malyuzhinets method, the Wiener–Hopf technique, and the Kontorovich–Lebedev transform approach. Then follows three less well-known and somewhat novel methods, which would be of interest even to specialists in the field, namely the embedding method, a random walk approach, and the technique of functionally-invariant solutions. Having offered the exact solution of this problem in a variety of forms, a numerical comparison between the exact solution and several powerful approximations such as GTD is performed and critically assessed. •Review and critical analysis of the Sommerfeld–Malyuzhinets, the Wiener–Hopf and the Kontorovich–Lebedev methods for the perfect wedge.•Critical numerical comparison between the exact solution and various approximations.•Review and critical analysis of the embedding, the random walk and the Smirnov–Sobolev methods for the perfect wedge.•Emphasis on the mathematical links between the first three methods.
ArticleNumber 102479
Author Abrahams, I.D.
Nethercote, M.A.
Assier, R.C.
Author_xml – sequence: 1
  givenname: M.A.
  orcidid: 0000-0002-7566-1693
  surname: Nethercote
  fullname: Nethercote, M.A.
  email: matthew.nethercote@postgrad.manchester.ac.uk
  organization: School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
– sequence: 2
  givenname: R.C.
  orcidid: 0000-0001-9848-3482
  surname: Assier
  fullname: Assier, R.C.
  email: raphael.assier@manchester.ac.uk
  organization: School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
– sequence: 3
  givenname: I.D.
  surname: Abrahams
  fullname: Abrahams, I.D.
  email: i.d.abrahams@newton.ac.uk
  organization: Isaac Newton Institute, University of Cambridge, 20 Clarkson Road, Cambridge CB3 0EH, UK
BookMark eNqFkE1LAzEQhoNUsK3-BVnwvDVfm-0WD5biFxS8KHgL2exEs7SbmqQt_femrF689DQwvM_wzjNCg851gNA1wROCibhtJ3u1g7WLdkIxqdKS8rI6Q0MyLac5Z-xjgIYpWOSU0OICjUJoMcakZNUQzeadWh2i1WqVrSF-uSZkxvlsA96Ajtkemk_IGmuMVzpa182yeeZhZ2F_ic6NWgW4-p1j9P748LZ4zpevTy-L-TLXjOOY16VStWBlJUyVymCtiooB45SBUFppIFrgyvBSCCbqktJGU9BE1VDWhcGYjdFNf3fj3fcWQpSt2_pUO0jKWXqJci5S6q5Pae9C8GCktlEdG0ev7EoSLI-2ZCv_bMmjLdnbSrj4h2-8XSt_OA3e9yAkBUmLl0Fb6DQ01ieBsnH21IkfS7OKiA
CitedBy_id crossref_primary_10_1103_PhysRevE_109_025303
crossref_primary_10_1098_rspa_2023_0905
crossref_primary_10_1137_21M1461861
crossref_primary_10_1098_rspa_2021_0533
crossref_primary_10_1016_j_enganabound_2021_01_017
crossref_primary_10_1049_mia2_12425
crossref_primary_10_1142_S0129055X2450003X
crossref_primary_10_1137_23M1562445
crossref_primary_10_1098_rspa_2022_0144
crossref_primary_10_1137_21M1438608
crossref_primary_10_1134_S1995080222080091
crossref_primary_10_1098_rspa_2020_0150
crossref_primary_10_1007_s00033_022_01841_6
crossref_primary_10_35378_gujs_1348483
crossref_primary_10_1109_TASLP_2023_3264737
crossref_primary_10_1109_TMTT_2022_3167639
crossref_primary_10_1007_s10665_022_10222_x
crossref_primary_10_1016_j_jocs_2023_102057
crossref_primary_10_1121_10_0020844
crossref_primary_10_1137_23M1611300
crossref_primary_10_1098_rspa_2020_0681
crossref_primary_10_1134_S1063771022030149
crossref_primary_10_1109_TMTT_2021_3064343
crossref_primary_10_1098_rspa_2022_0604
crossref_primary_10_1134_S1995080221060081
crossref_primary_10_1109_TAP_2022_3226354
Cites_doi 10.1007/BF02418036
10.1103/RevModPhys.20.367
10.1093/qjmam/hbl014
10.1098/rspa.1999.0421
10.1093/imamat/26.2.133
10.6028/jres.061.030
10.1121/1.389828
10.1093/qjmam/55.2.209
10.1007/978-0-387-34149-1_7
10.1016/S0165-2125(98)00042-0
10.1090/S0002-9947-1949-0027960-X
10.1093/qjmam/hbi010
10.3103/S0025654413030102
10.1016/j.wavemoti.2011.07.003
10.1109/MAP.2011.6028472
10.1016/j.wavemoti.2009.11.006
10.1002/cpa.3160040109
10.1093/imamat/hxv007
10.1007/s10665-007-9195-x
10.1002/cpa.3160070306
10.1007/s00033-015-0533-y
10.1121/1.1605413
10.1098/rspa.1998.0287
10.1016/S0022-460X(86)80156-0
10.1016/S0020-7683(02)00364-5
10.1016/j.wavemoti.2013.02.001
10.1016/0315-0860(92)90004-U
10.1093/qjmam/54.4.523
10.1109/TAP.2006.880723
10.1093/qjmam/55.2.249
10.1098/rspa.2004.1443
10.1007/s10440-008-9408-y
10.1093/qmath/os-17.1.19
10.1016/j.wavemoti.2016.07.003
10.1109/TAP.2004.841303
10.1093/qjmam/35.1.103
10.1112/plms/s2_14.1.450
10.1093/imamat/hxs042
10.1121/1.1365113
10.1016/j.wavemoti.2004.05.005
10.1088/0305-4470/32/11/012
10.1080/02726340390197485
10.1109/TAP.2011.2163780
10.1017/S0305004100001523
10.1016/S0165-2125(96)00024-8
10.1002/cpa.3160120209
10.1007/BF01447273
10.1137/S0036139901400239
10.1016/j.cam.2009.08.010
10.1016/0165-2125(95)00023-C
10.1007/BF01218506
10.1016/0021-8928(64)90170-4
10.1016/j.wavemoti.2006.04.002
10.1093/qmath/3.1.189
10.1109/PROC.1974.9651
10.1007/BF02418992
10.1134/S1061920815020016
10.1364/JOSA.52.000116
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Mar 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.wavemoti.2019.102479
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1878-433X
ExternalDocumentID 10_1016_j_wavemoti_2019_102479
S0165212519304573
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29R
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY7
M38
M41
MHUIS
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSE
SSQ
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c340t-b7aab63796f94330ca593e3423e6acace1c609f476636b722dc2ec1abe7b5f003
IEDL.DBID .~1
ISSN 0165-2125
IngestDate Fri Jul 25 07:24:09 EDT 2025
Thu Apr 24 23:04:48 EDT 2025
Tue Jul 01 03:10:20 EDT 2025
Fri Feb 23 02:49:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wedge geometry
Applied complex analysis
Canonical wave diffraction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-b7aab63796f94330ca593e3423e6acace1c609f476636b722dc2ec1abe7b5f003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9848-3482
0000-0002-7566-1693
PQID 2431252446
PQPubID 2045382
ParticipantIDs proquest_journals_2431252446
crossref_citationtrail_10_1016_j_wavemoti_2019_102479
crossref_primary_10_1016_j_wavemoti_2019_102479
elsevier_sciencedirect_doi_10_1016_j_wavemoti_2019_102479
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Wave motion
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Macdonald (b6) 1902
Sommerfeld (b5) 2003
Keller, Blank (b58) 1951; 4
Bleistein, Handelsman (b88) 2010
Bromwich (b60) 1915; 14
Jones (b29) 1964
Fock (b41) 1965
Babich, Lyalinov, Grikurov (b16) 2007
Kac (b94) 1949; 65
Kythe (b106) 2011
Craster, Shanin (b47) 2005; 461
V.G. Daniele, Generalized Wiener-Hopf technique for wedge shaped regions of arbitrary angles, in: VIII-Th Int. Conf. Math. Methods Electromagn. Theory, Kharkov Ukraine, 2000, pp. 432–434.
Daniele, Lombardi (b83) 2011; 59
Budaev, Bogy (b70) 1998; 454
Felsen, Marcuvitz (b32) 1994
James (b36) 1986
Feynman (b93) 1948; 20
Daniele (b78) 2003; 23
Knopoff (b66) 1969
Moran, Biggs, Chamberlain (b92) 2016; 67
Abrahams (b26) 1986; 111
Budaev, Bogy (b48) 2001; 109
V.G. Daniele, New analytical Methods for wedge problems, in: Proc. 2001 Int. Conf. Electromagn. Adv. Appl., 2001, pp. 385–393.
Keller (b33) 1962; 52
Assier, Peake (b105) 2012; 49
Budaev, Bogy (b50) 2002; 39
Copson (b19) 1946; 17
Budaev (b15) 1995
Biggs (b45) 2001; 54
Malyuzhinets (b8) 1955; 1
Castro, Kapanadze (b99) 2010; 110
Smirnov (b53) 1964
Martin, Wickham (b44) 1983; 390
Bernard (b81) 2006; 59
Lebedev (b28) 1965
Noble (b21) 1958
Abrahams (b27) 1987; 411
Ufimtsev (b39) 2014
Komech, Merzon (b101) 2019
Jones (b30) 1980; 26
Gautesen (b43) 1983; 74
Kisil (b79) 2015; 80
Israilov (b100) 2013; 48
Jones (b31) 1986
Budaev, Bogy (b51) 2003; 114
Daniele, Lombardi (b82) 2006; 54
Poincaré (b1) 1892; 16
Kouyoumjian, Pathak (b35) 1974; 62
Biggs (b46) 2002; 55
Bowman, Senior, Uslenghi (b65) 1987
S.L. Sobolev, General theory of diffraction of waves on Riemann surfaces, in: Sel. Work. S. L. Sobolev, Vol. I, New York, 1935, pp. 201–262.
Croisille, Lebeau (b67) 1999
Rawlins (b62) 1987; 411
Daniele, Zich (b84) 2014
Malyuzhinets (b7) 1955; 1
Malyuzhinets (b10) 1958; 3
Biggs (b89) 2006; 43
Shanin, Craster (b90) 2010; 234
Gradshteyn, Ryzhik (b85) 2014
Ufimtsev (b38) 1971
Rawlins (b102) 1999; 455
Lawrie, Abrahams (b22) 2007; 59
Sommerfeld (b4) 1901; 46
Budaev, Bogy (b68) 1995; 22
Shanin (b23) 1996; 42
Mcnamara, Pistorius, Malherbe (b37) 1990
Bernard (b80) 2005; 58
Miles (b59) 1952; 212
Kontorovich, Lebedev (b25) 1939; 1
Daniele (b24) 2003; 63
Teixeira (b98) 1991; 14
Senior (b12) 1959; 12
Freidlin (b95) 1985; vol. 109
Sommerfeld (b3) 1896; 47
Wegert (b71) 2012
Oberhettinger (b61) 1954; 7
Skelton, Craster, Shanin, Valyaev (b91) 2010; 47
Wiener, Hopf (b18) 1931; 31
Budaev, Bogy (b49) 2002; 55
Schot (b72) 1992; 19
Williams (b13) 1959; 252
Jones (b20) 1952; 3
Borovikov, Kinber (b34) 1994
Budaev, Bogy (b69) 1996; 24
Voss (b96) 2013
Oberhettinger (b64) 1958; 61
Malyuzhinets (b11) 1958; 3
Osipov, Norris (b14) 1999; 29
Filippov (b54) 1964; 28
Lyalinov, Zhu (b17) 2013
Lyalinov (b103) 1999; 32
Abramowitz, Stegun (b86) 1967
Lyalinov (b74) 2013; 50
Williams (b42) 1982; 35
Rawlins (b63) 1989; 105
Malyuzhinets (b9) 1958; 3
Poincaré (b2) 1897; 20
Shanin (b75) 1998; 44
Bender, Orszag (b73) 1999
Babich (b56) 2015; 22
Busemann (b57) 1947
Assier, Peake (b87) 2012; 77
Budaev, Bogy (b97) 2005; 53
Hacivelioglu, Sevgi, Ufimtsev (b40) 2011; 53
Komech, Merzon, la Paz Méndez (b55) 2015; 66
Shanin (b104) 2005; 41
Babich (10.1016/j.wavemoti.2019.102479_b16) 2007
10.1016/j.wavemoti.2019.102479_b52
Wegert (10.1016/j.wavemoti.2019.102479_b71) 2012
Shanin (10.1016/j.wavemoti.2019.102479_b104) 2005; 41
Bernard (10.1016/j.wavemoti.2019.102479_b81) 2006; 59
Malyuzhinets (10.1016/j.wavemoti.2019.102479_b10) 1958; 3
Malyuzhinets (10.1016/j.wavemoti.2019.102479_b7) 1955; 1
Budaev (10.1016/j.wavemoti.2019.102479_b69) 1996; 24
Kythe (10.1016/j.wavemoti.2019.102479_b106) 2011
Abrahams (10.1016/j.wavemoti.2019.102479_b27) 1987; 411
Daniele (10.1016/j.wavemoti.2019.102479_b78) 2003; 23
Rawlins (10.1016/j.wavemoti.2019.102479_b62) 1987; 411
Budaev (10.1016/j.wavemoti.2019.102479_b49) 2002; 55
Wiener (10.1016/j.wavemoti.2019.102479_b18) 1931; 31
Malyuzhinets (10.1016/j.wavemoti.2019.102479_b11) 1958; 3
Daniele (10.1016/j.wavemoti.2019.102479_b83) 2011; 59
Budaev (10.1016/j.wavemoti.2019.102479_b15) 1995
Schot (10.1016/j.wavemoti.2019.102479_b72) 1992; 19
Filippov (10.1016/j.wavemoti.2019.102479_b54) 1964; 28
Jones (10.1016/j.wavemoti.2019.102479_b29) 1964
Biggs (10.1016/j.wavemoti.2019.102479_b46) 2002; 55
Sommerfeld (10.1016/j.wavemoti.2019.102479_b5) 2003
Oberhettinger (10.1016/j.wavemoti.2019.102479_b64) 1958; 61
Rawlins (10.1016/j.wavemoti.2019.102479_b63) 1989; 105
Komech (10.1016/j.wavemoti.2019.102479_b55) 2015; 66
Oberhettinger (10.1016/j.wavemoti.2019.102479_b61) 1954; 7
Abrahams (10.1016/j.wavemoti.2019.102479_b26) 1986; 111
Macdonald (10.1016/j.wavemoti.2019.102479_b6) 1902
Budaev (10.1016/j.wavemoti.2019.102479_b48) 2001; 109
Malyuzhinets (10.1016/j.wavemoti.2019.102479_b9) 1958; 3
Jones (10.1016/j.wavemoti.2019.102479_b20) 1952; 3
Keller (10.1016/j.wavemoti.2019.102479_b33) 1962; 52
Daniele (10.1016/j.wavemoti.2019.102479_b84) 2014
Croisille (10.1016/j.wavemoti.2019.102479_b67) 1999
Rawlins (10.1016/j.wavemoti.2019.102479_b102) 1999; 455
Jones (10.1016/j.wavemoti.2019.102479_b30) 1980; 26
Daniele (10.1016/j.wavemoti.2019.102479_b24) 2003; 63
Shanin (10.1016/j.wavemoti.2019.102479_b90) 2010; 234
Budaev (10.1016/j.wavemoti.2019.102479_b68) 1995; 22
Assier (10.1016/j.wavemoti.2019.102479_b105) 2012; 49
Fock (10.1016/j.wavemoti.2019.102479_b41) 1965
Lebedev (10.1016/j.wavemoti.2019.102479_b28) 1965
Feynman (10.1016/j.wavemoti.2019.102479_b93) 1948; 20
Martin (10.1016/j.wavemoti.2019.102479_b44) 1983; 390
Keller (10.1016/j.wavemoti.2019.102479_b58) 1951; 4
Bender (10.1016/j.wavemoti.2019.102479_b73) 1999
Freidlin (10.1016/j.wavemoti.2019.102479_b95) 1985; vol. 109
Kac (10.1016/j.wavemoti.2019.102479_b94) 1949; 65
Teixeira (10.1016/j.wavemoti.2019.102479_b98) 1991; 14
Mcnamara (10.1016/j.wavemoti.2019.102479_b37) 1990
Castro (10.1016/j.wavemoti.2019.102479_b99) 2010; 110
Lyalinov (10.1016/j.wavemoti.2019.102479_b103) 1999; 32
Bleistein (10.1016/j.wavemoti.2019.102479_b88) 2010
Israilov (10.1016/j.wavemoti.2019.102479_b100) 2013; 48
Bromwich (10.1016/j.wavemoti.2019.102479_b60) 1915; 14
Biggs (10.1016/j.wavemoti.2019.102479_b89) 2006; 43
James (10.1016/j.wavemoti.2019.102479_b36) 1986
Voss (10.1016/j.wavemoti.2019.102479_b96) 2013
Biggs (10.1016/j.wavemoti.2019.102479_b45) 2001; 54
Gradshteyn (10.1016/j.wavemoti.2019.102479_b85) 2014
Komech (10.1016/j.wavemoti.2019.102479_b101) 2019
Poincaré (10.1016/j.wavemoti.2019.102479_b1) 1892; 16
Shanin (10.1016/j.wavemoti.2019.102479_b75) 1998; 44
Ufimtsev (10.1016/j.wavemoti.2019.102479_b39) 2014
Abramowitz (10.1016/j.wavemoti.2019.102479_b86) 1967
Babich (10.1016/j.wavemoti.2019.102479_b56) 2015; 22
Sommerfeld (10.1016/j.wavemoti.2019.102479_b3) 1896; 47
Moran (10.1016/j.wavemoti.2019.102479_b92) 2016; 67
Lyalinov (10.1016/j.wavemoti.2019.102479_b17) 2013
Budaev (10.1016/j.wavemoti.2019.102479_b50) 2002; 39
Budaev (10.1016/j.wavemoti.2019.102479_b51) 2003; 114
Williams (10.1016/j.wavemoti.2019.102479_b42) 1982; 35
Miles (10.1016/j.wavemoti.2019.102479_b59) 1952; 212
Shanin (10.1016/j.wavemoti.2019.102479_b23) 1996; 42
Budaev (10.1016/j.wavemoti.2019.102479_b70) 1998; 454
Sommerfeld (10.1016/j.wavemoti.2019.102479_b4) 1901; 46
Smirnov (10.1016/j.wavemoti.2019.102479_b53) 1964
Assier (10.1016/j.wavemoti.2019.102479_b87) 2012; 77
Kouyoumjian (10.1016/j.wavemoti.2019.102479_b35) 1974; 62
Busemann (10.1016/j.wavemoti.2019.102479_b57) 1947
Noble (10.1016/j.wavemoti.2019.102479_b21) 1958
10.1016/j.wavemoti.2019.102479_b76
Jones (10.1016/j.wavemoti.2019.102479_b31) 1986
Gautesen (10.1016/j.wavemoti.2019.102479_b43) 1983; 74
Borovikov (10.1016/j.wavemoti.2019.102479_b34) 1994
Knopoff (10.1016/j.wavemoti.2019.102479_b66) 1969
Malyuzhinets (10.1016/j.wavemoti.2019.102479_b8) 1955; 1
Copson (10.1016/j.wavemoti.2019.102479_b19) 1946; 17
Kisil (10.1016/j.wavemoti.2019.102479_b79) 2015; 80
Osipov (10.1016/j.wavemoti.2019.102479_b14) 1999; 29
Ufimtsev (10.1016/j.wavemoti.2019.102479_b38) 1971
Poincaré (10.1016/j.wavemoti.2019.102479_b2) 1897; 20
Felsen (10.1016/j.wavemoti.2019.102479_b32) 1994
Craster (10.1016/j.wavemoti.2019.102479_b47) 2005; 461
Senior (10.1016/j.wavemoti.2019.102479_b12) 1959; 12
Bowman (10.1016/j.wavemoti.2019.102479_b65) 1987
Bernard (10.1016/j.wavemoti.2019.102479_b80) 2005; 58
10.1016/j.wavemoti.2019.102479_b77
Lyalinov (10.1016/j.wavemoti.2019.102479_b74) 2013; 50
Budaev (10.1016/j.wavemoti.2019.102479_b97) 2005; 53
Kontorovich (10.1016/j.wavemoti.2019.102479_b25) 1939; 1
Skelton (10.1016/j.wavemoti.2019.102479_b91) 2010; 47
Daniele (10.1016/j.wavemoti.2019.102479_b82) 2006; 54
Lawrie (10.1016/j.wavemoti.2019.102479_b22) 2007; 59
Hacivelioglu (10.1016/j.wavemoti.2019.102479_b40) 2011; 53
Williams (10.1016/j.wavemoti.2019.102479_b13) 1959; 252
References_xml – year: 2013
  ident: b96
  article-title: An Introduction to Statistical Computing: A Simulation-based Approach
– year: 1967
  ident: b86
  article-title: Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables
– volume: 65
  start-page: 1
  year: 1949
  end-page: 13
  ident: b94
  article-title: On the distribution of certain wiener functionals
  publication-title: Trans. Amer. Math. Soc.
– volume: 411
  start-page: 239
  year: 1987
  end-page: 250
  ident: b27
  article-title: On the sound field generated by membrane surface waves on a wedge-shaped boundary
  publication-title: Proc. R. Soc. A
– volume: 58
  start-page: 383
  year: 2005
  end-page: 418
  ident: b80
  article-title: Scattering by a three-part impedance plane: A new spectral approach
  publication-title: Q. J. Mech. Appl. Math.
– volume: 114
  start-page: 1733
  year: 2003
  end-page: 1741
  ident: b51
  article-title: Random walk approach to wave propagation in wedges and cones
  publication-title: J. Acoust. Soc. Am.
– year: 2019
  ident: b101
  article-title: Stationary Diffraction by Wedges
– volume: 109
  start-page: 2260
  year: 2001
  end-page: 2262
  ident: b48
  article-title: Probabilistic solutions of the Helmholtz equation
  publication-title: J. Acoust. Soc. Am.
– volume: 1
  start-page: 144
  year: 1955
  end-page: 164
  ident: b7
  article-title: Sound radiation by vibrating faces of arbitrary wedge. Part I
  publication-title: Akust. Zhurnal (in Russ.)
– volume: 26
  start-page: 133
  year: 1980
  end-page: 141
  ident: b30
  article-title: The kontorovich-lebedev transform
  publication-title: IMA J. Appl. Math.
– volume: 55
  start-page: 209
  year: 2002
  end-page: 226
  ident: b49
  article-title: Application of random walk methods to wave propagation
  publication-title: Q. J. Mech. Appl. Math.
– volume: 17
  start-page: 19
  year: 1946
  end-page: 34
  ident: b19
  article-title: On an integral equation arising in the theory of diffraction
  publication-title: Q. J. Math.
– volume: 3
  start-page: 752
  year: 1958
  end-page: 755
  ident: b11
  article-title: Excitation, reflection and emission of surface waves from a wedge with given face impedances
  publication-title: Sov. Phys. Dokl.
– volume: 53
  start-page: 711
  year: 2005
  end-page: 718
  ident: b97
  article-title: Diffraction of a plane wave by a sector with Dirichlet or Neumann boundary conditions
  publication-title: IEEE Trans. Antennas Propag.
– volume: 49
  start-page: 64
  year: 2012
  end-page: 82
  ident: b105
  article-title: On the diffraction of acoustic waves by a quarter-plane
  publication-title: Wave Motion
– volume: 66
  start-page: 2485
  year: 2015
  end-page: 2498
  ident: b55
  article-title: On uniqueness and stability of Sobolev’s solution in scattering by wedges
  publication-title: Z. Angew. Math. Phys.
– volume: 47
  start-page: 299
  year: 2010
  end-page: 317
  ident: b91
  article-title: Embedding formulae for scattering by three-dimensional structures
  publication-title: Wave Motion
– volume: 20
  start-page: 313
  year: 1897
  end-page: 355
  ident: b2
  article-title: Sur la polarisation par diffraction: Seconde partie
  publication-title: Acta Math. (in French)
– volume: 455
  start-page: 2655
  year: 1999
  end-page: 2686
  ident: b102
  article-title: Diffraction by, or diffusion into, a penetrable wedge
  publication-title: Proc. R. Soc. A
– volume: 67
  start-page: 32
  year: 2016
  end-page: 46
  ident: b92
  article-title: Embedding formulae for wave diffraction by a circular arc
  publication-title: Wave Motion
– volume: 22
  start-page: 239
  year: 1995
  end-page: 257
  ident: b68
  article-title: Rayleigh wave scattering by a wedge
  publication-title: Wave Motion
– volume: 23
  start-page: 223
  year: 2003
  end-page: 236
  ident: b78
  article-title: Rotating waves in the Laplace domain for angular regions
  publication-title: Electromagnetics
– year: 1986
  ident: b31
  article-title: Acoustic and Electromagnetic Waves
– year: 1987
  ident: b65
  article-title: Electromagnetic and Acoustic Scattering by Simple Shapes
– volume: 54
  start-page: 523
  year: 2001
  end-page: 547
  ident: b45
  article-title: Wave diffraction through a perforated barrier of non-zero thickness
  publication-title: Q. J. Mech. Appl. Math.
– volume: 105
  start-page: 185
  year: 1989
  end-page: 192
  ident: b63
  article-title: A green’s function for diffraction by a rational wedge
  publication-title: Math. Proc. Cambr. Philos. Soc.
– volume: 1
  start-page: 226
  year: 1955
  end-page: 234
  ident: b8
  article-title: Sound radiation by vibrating faces of arbitrary wedge. Part II
  publication-title: Akust. Zhurnal (in Russ.)
– year: 1999
  ident: b67
  article-title: Diffraction by an Immersed Elastic Wedge
– year: 1986
  ident: b36
  article-title: Geometrical Theory of Diffraction for Electromagnetic Waves
– volume: 7
  start-page: 551
  year: 1954
  end-page: 563
  ident: b61
  article-title: Diffraction of waves by a wedge
  publication-title: Comm. Pure Appl. Math.
– year: 1971
  ident: b38
  article-title: Method of edge waves in the physical theory of diffraction
– reference: V.G. Daniele, Generalized Wiener-Hopf technique for wedge shaped regions of arbitrary angles, in: VIII-Th Int. Conf. Math. Methods Electromagn. Theory, Kharkov Ukraine, 2000, pp. 432–434.
– volume: 16
  start-page: 297
  year: 1892
  end-page: 339
  ident: b1
  article-title: Sur la polarisation par diffraction
  publication-title: Acta Math. (in French)
– volume: 252
  start-page: 376
  year: 1959
  end-page: 393
  ident: b13
  article-title: Diffraction of an e-polarized plane wave by an imperfectly conducting wedge
  publication-title: Proc. R. Soc. A
– year: 1965
  ident: b28
  publication-title: Special Functions and their Application
– volume: 22
  start-page: 145
  year: 2015
  end-page: 152
  ident: b56
  article-title: Solution of the diffraction problem of a plane wave by an impedance wedge (non-stationary Case, Smirnov-Sobolev method)
  publication-title: Russ. J. Math. Phys.
– volume: 44
  start-page: 592
  year: 1998
  end-page: 597
  ident: b75
  article-title: Excitation of waves in a wedge-shaped region
  publication-title: Acoust. Phys.
– volume: 234
  start-page: 1637
  year: 2010
  end-page: 1646
  ident: b90
  article-title: Pseudo-differential operators for embedding formulae
  publication-title: J. Comput. Appl. Math.
– year: 2013
  ident: b17
  publication-title: Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions
– year: 2003
  ident: b5
  article-title: Mathematical Theory of Diffraction
– volume: 4
  start-page: 75
  year: 1951
  end-page: 94
  ident: b58
  article-title: Diffraction and reflection of pulses by wedges and corners
  publication-title: Comm. Pure Appl. Math.
– volume: vol. 109
  year: 1985
  ident: b95
  publication-title: Functional Integration and Partial Differential Equations. (AM-109)
– volume: 39
  start-page: 5547
  year: 2002
  end-page: 5570
  ident: b50
  article-title: Random walk methods and wave diffraction
  publication-title: Int. J. Solids Struct.
– year: 1994
  ident: b32
  article-title: Radiation and Scattering of Waves
– volume: 74
  start-page: 600
  year: 1983
  ident: b43
  article-title: On the green’s function for acoustical diffraction by a strip
  publication-title: J. Acoust. Soc. Am.
– year: 1995
  ident: b15
  article-title: Diffraction by Wedges
– volume: 59
  start-page: 3797
  year: 2011
  end-page: 3818
  ident: b83
  article-title: The wiener-hopf solution of the isotropic penetrable wedge problem: diffraction and total field
  publication-title: IEEE Trans. Antennas Propag.
– year: 1999
  ident: b73
  article-title: Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory
– start-page: 3
  year: 1969
  end-page: 43
  ident: b66
  article-title: Elastic wave propagation in a wedge
  publication-title: Wave Propag. Solids
– volume: 29
  start-page: 313
  year: 1999
  end-page: 340
  ident: b14
  article-title: The malyuzhinets theory for scattering from wedge boundaries: a review
  publication-title: Wave Motion
– volume: 20
  start-page: 367
  year: 1948
  end-page: 387
  ident: b93
  article-title: Space-time approach to non-relativistic quantum mechanics
  publication-title: Rev. Modern Phys.
– volume: 390
  start-page: 91
  year: 1983
  end-page: 129
  ident: b44
  article-title: Diffraction of elastic waves by a penny-shaped crack: Analytical and numerical results
  publication-title: Proc. R. Soc. A
– volume: 461
  start-page: 2227
  year: 2005
  end-page: 2242
  ident: b47
  article-title: Embedding formulae for diffraction by rational wedge and angular geometries
  publication-title: Proc. R. Soc. A
– year: 2011
  ident: b106
  article-title: Green’s Functions and Linear Differential Equations
– volume: 59
  start-page: 351
  year: 2007
  end-page: 358
  ident: b22
  article-title: A brief historical perspective of the Wiener-Hopf technique
  publication-title: J. Eng. Math.
– volume: 41
  start-page: 79
  year: 2005
  end-page: 93
  ident: b104
  article-title: Modified smyshlyaev’s formulae for the problem of diffraction of a plane wave by an ideal quarter-plane
  publication-title: Wave Motion
– year: 1947
  ident: b57
  article-title: Infinitesimal conical supersonic flow
– volume: 48
  start-page: 337
  year: 2013
  end-page: 347
  ident: b100
  article-title: Diffraction of acoustic and elastic waves on a half-plane for boundary conditions of various types
  publication-title: Mech. Solids
– volume: 42
  start-page: 612
  year: 1996
  end-page: 617
  ident: b23
  article-title: On wave excitation in a wedge-shaped region
  publication-title: Acoust. Phys.
– year: 1964
  ident: b53
  article-title: A Course of Higher Mathematics. Volume 3, Part 2
– volume: 43
  start-page: 517
  year: 2006
  end-page: 528
  ident: b89
  article-title: A new family of embedding formulae for diffraction by wedges and polygons
  publication-title: Wave Motion
– volume: 24
  start-page: 307
  year: 1996
  end-page: 314
  ident: b69
  article-title: Rayleigh wave scattering by a wedge II
  publication-title: Wave Motion
– volume: 47
  start-page: 317
  year: 1896
  end-page: 374
  ident: b3
  article-title: Mathematische theorie der diffraction
  publication-title: Math. Ann. (in Ger.)
– volume: 54
  start-page: 2472
  year: 2006
  end-page: 2485
  ident: b82
  article-title: Wiener-hopf solution for impenetrable wedges at skew incidence
  publication-title: IEEE Trans. Antennas Propag.
– year: 2014
  ident: b84
  publication-title: The Wiener-Hopf Method in Electromagnetics
– year: 2014
  ident: b39
  article-title: Fundamentals of the Physical Theory of Diffraction
– volume: 28
  start-page: 372
  year: 1964
  end-page: 388
  ident: b54
  article-title: Diffraction of an arbitrary acoustic wave by a wedge
  publication-title: J. Appl. Math. Mech.
– year: 1994
  ident: b34
  article-title: Geometrical Theory of Diffraction
– volume: 3
  start-page: 189
  year: 1952
  end-page: 196
  ident: b20
  article-title: A simplifying technique in the solution of a class of diffraction problems
  publication-title: Q. J. Math.
– year: 1902
  ident: b6
  article-title: Electric Waves
– volume: 1
  start-page: 229
  year: 1939
  end-page: 241
  ident: b25
  article-title: On a method of solution of some problems of the diffraction theory
  publication-title: J. Phys. (Acad. Sci. U.S.S.R.)
– volume: 454
  start-page: 2949
  year: 1998
  end-page: 2996
  ident: b70
  article-title: Rayleigh wave scattering by two adhering elastic wedges
  publication-title: Proc. R. Soc. A
– volume: 77
  start-page: 605
  year: 2012
  end-page: 625
  ident: b87
  article-title: Precise description of the different far fields encountered in the problem of diffraction of acoustic waves by a quarter-plane
  publication-title: IMA J. Appl. Math.
– volume: 3
  start-page: 266
  year: 1958
  end-page: 268
  ident: b10
  article-title: Relation between the inversion formulas for the sommerfeld integral and the formulas of kontorovich-lebedev
  publication-title: Sov. Phys. Dokl.
– volume: 411
  start-page: 265
  year: 1987
  end-page: 283
  ident: b62
  article-title: Plane-wave diffraction by a rational wedge
  publication-title: Proc. R. Soc. A
– volume: 111
  start-page: 191
  year: 1986
  end-page: 207
  ident: b26
  article-title: Diffraction by a semi-infinite membrane in the presence of a vertical barrier
  publication-title: J. Sound Vib.
– year: 2012
  ident: b71
  article-title: Visual Complex Functions
– year: 1965
  ident: b41
  article-title: Electromagnetic Diffraction and Propagation Problems
– volume: 50
  start-page: 739
  year: 2013
  end-page: 762
  ident: b74
  article-title: Scattering of acoustic waves by a sector
  publication-title: Wave Motion
– year: 2010
  ident: b88
  publication-title: Asymptotic Expansions of Integrals
– volume: 212
  start-page: 543
  year: 1952
  end-page: 547
  ident: b59
  article-title: On the diffraction of an acoustic pulse by a wedge
  publication-title: Proc. R. Soc. A
– volume: 31
  start-page: 696
  year: 1931
  end-page: 706
  ident: b18
  article-title: Über eine klasse singulärer integralgleichungen
  publication-title: Sitzungsberichte Preuss. Akad. Wissenschaften, Phys. Klasse (in Ger.)
– volume: 53
  start-page: 232
  year: 2011
  end-page: 253
  ident: b40
  article-title: Electromagnetic wave scattering from a wedge with perfectly reflecting boundaries : Analysis of asymptotic techniques
  publication-title: IEEE Antennas Propag. Mag.
– year: 2007
  ident: b16
  publication-title: Diffraction Theory: The Sommerfeld-Malyuzhinets Technique
– volume: 14
  start-page: 436
  year: 1991
  end-page: 454
  ident: b98
  article-title: Diffraction by a rectangular wedge: Wiener-Hopf-Hankel formulation
  publication-title: Integr. Equations Oper. Theory
– year: 1990
  ident: b37
  article-title: Introduction to the Uniform Geometrical Theory of Diffraction
– volume: 35
  start-page: 103
  year: 1982
  end-page: 124
  ident: b42
  article-title: Diffraction by a finite strip
  publication-title: Q. J. Mech. Appl. Math.
– reference: V.G. Daniele, New analytical Methods for wedge problems, in: Proc. 2001 Int. Conf. Electromagn. Adv. Appl., 2001, pp. 385–393.
– volume: 32
  start-page: 2183
  year: 1999
  end-page: 2206
  ident: b103
  article-title: Diffraction by a highly contrast transparent wedge
  publication-title: J. Phys. A
– volume: 59
  start-page: 517
  year: 2006
  end-page: 550
  ident: b81
  article-title: A spectral approach for scattering by impedance polygons
  publication-title: Q. J. Mech. Appl. Math.
– volume: 80
  start-page: 1569
  year: 2015
  end-page: 1581
  ident: b79
  article-title: The relationship between a strip wiener-hopf problem and a line Riemann-Hilbert problem
  publication-title: IMA J. Appl. Math.
– volume: 3
  start-page: 52
  year: 1958
  end-page: 56
  ident: b9
  article-title: Inversion formula for sommerfeld integral
  publication-title: Sov. Phys. Dokl.
– volume: 14
  start-page: 450
  year: 1915
  end-page: 463
  ident: b60
  article-title: Diffraction of waves by a wedge
  publication-title: Proc. Lond. Math. Soc.
– volume: 55
  start-page: 249
  year: 2002
  end-page: 272
  ident: b46
  article-title: Wave scattering by a perforated duct
  publication-title: Q. J. Mech. Appl. Math.
– volume: 52
  start-page: 116
  year: 1962
  end-page: 130
  ident: b33
  article-title: Geometrical theory of diffraction
  publication-title: J. Opt. Soc. Amer.
– year: 1964
  ident: b29
  article-title: The Theory of Electromagnetism
– volume: 19
  start-page: 385
  year: 1992
  end-page: 401
  ident: b72
  article-title: Eighty years of Sommerfeld’s radiation condition
  publication-title: Hist. Math.
– volume: 110
  start-page: 289
  year: 2010
  end-page: 311
  ident: b99
  article-title: Exterior wedge diffraction problems with Dirichlet, Neumann and impedance boundary conditions
  publication-title: Acta Appl. Math.
– volume: 12
  start-page: 337
  year: 1959
  end-page: 372
  ident: b12
  article-title: Diffraction by an imperfectly conducting wedge
  publication-title: Comm. Pure Appl. Math.
– volume: 62
  start-page: 1448
  year: 1974
  end-page: 1461
  ident: b35
  article-title: A uniform GTD for an edge in a perfectly conducting surface
  publication-title: Proc. IEEE
– reference: S.L. Sobolev, General theory of diffraction of waves on Riemann surfaces, in: Sel. Work. S. L. Sobolev, Vol. I, New York, 1935, pp. 201–262.
– year: 1958
  ident: b21
  article-title: Methods based on the Wiener-Hopf Technique for the solution of partial differential equations (1988 reprint)
– year: 2014
  ident: b85
  article-title: Table of Integrals, Series, and Products
– volume: 61
  start-page: 343
  year: 1958
  end-page: 365
  ident: b64
  article-title: On the diffraction and reflection of waves and pulses by wedges and corners
  publication-title: J. Res. Natl. Bur. Stand.
– volume: 63
  start-page: 1442
  year: 2003
  end-page: 1460
  ident: b24
  article-title: The Wiener-Hopf technique for impenetrable wedges having arbitrary aperture angle
  publication-title: SIAM J. Appl. Math.
– volume: 46
  start-page: 11
  year: 1901
  end-page: 97
  ident: b4
  article-title: Theoretisches über die Beugung der Röntgenstrahlen
  publication-title: Z. Math. Phys. (in Ger.)
– year: 2014
  ident: 10.1016/j.wavemoti.2019.102479_b39
– volume: 20
  start-page: 313
  year: 1897
  ident: 10.1016/j.wavemoti.2019.102479_b2
  article-title: Sur la polarisation par diffraction: Seconde partie
  publication-title: Acta Math. (in French)
  doi: 10.1007/BF02418036
– volume: 20
  start-page: 367
  year: 1948
  ident: 10.1016/j.wavemoti.2019.102479_b93
  article-title: Space-time approach to non-relativistic quantum mechanics
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.20.367
– volume: 59
  start-page: 517
  issue: 4
  year: 2006
  ident: 10.1016/j.wavemoti.2019.102479_b81
  article-title: A spectral approach for scattering by impedance polygons
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/hbl014
– volume: 455
  start-page: 2655
  issue: 1987
  year: 1999
  ident: 10.1016/j.wavemoti.2019.102479_b102
  article-title: Diffraction by, or diffusion into, a penetrable wedge
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.1999.0421
– volume: 42
  start-page: 612
  issue: 5
  year: 1996
  ident: 10.1016/j.wavemoti.2019.102479_b23
  article-title: On wave excitation in a wedge-shaped region
  publication-title: Acoust. Phys.
– volume: 26
  start-page: 133
  issue: 2
  year: 1980
  ident: 10.1016/j.wavemoti.2019.102479_b30
  article-title: The kontorovich-lebedev transform
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/26.2.133
– year: 1999
  ident: 10.1016/j.wavemoti.2019.102479_b73
– volume: 61
  start-page: 343
  issue: 5
  year: 1958
  ident: 10.1016/j.wavemoti.2019.102479_b64
  article-title: On the diffraction and reflection of waves and pulses by wedges and corners
  publication-title: J. Res. Natl. Bur. Stand.
  doi: 10.6028/jres.061.030
– volume: 74
  start-page: 600
  issue: 2
  year: 1983
  ident: 10.1016/j.wavemoti.2019.102479_b43
  article-title: On the green’s function for acoustical diffraction by a strip
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.389828
– volume: 55
  start-page: 209
  issue: 2
  year: 2002
  ident: 10.1016/j.wavemoti.2019.102479_b49
  article-title: Application of random walk methods to wave propagation
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/55.2.209
– year: 2014
  ident: 10.1016/j.wavemoti.2019.102479_b85
– ident: 10.1016/j.wavemoti.2019.102479_b52
  doi: 10.1007/978-0-387-34149-1_7
– volume: 29
  start-page: 313
  year: 1999
  ident: 10.1016/j.wavemoti.2019.102479_b14
  article-title: The malyuzhinets theory for scattering from wedge boundaries: a review
  publication-title: Wave Motion
  doi: 10.1016/S0165-2125(98)00042-0
– volume: 65
  start-page: 1
  issue: 1
  year: 1949
  ident: 10.1016/j.wavemoti.2019.102479_b94
  article-title: On the distribution of certain wiener functionals
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1949-0027960-X
– volume: 58
  start-page: 383
  issue: 3
  year: 2005
  ident: 10.1016/j.wavemoti.2019.102479_b80
  article-title: Scattering by a three-part impedance plane: A new spectral approach
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/hbi010
– year: 1967
  ident: 10.1016/j.wavemoti.2019.102479_b86
– volume: 48
  start-page: 337
  issue: 3
  year: 2013
  ident: 10.1016/j.wavemoti.2019.102479_b100
  article-title: Diffraction of acoustic and elastic waves on a half-plane for boundary conditions of various types
  publication-title: Mech. Solids
  doi: 10.3103/S0025654413030102
– volume: 49
  start-page: 64
  issue: 1
  year: 2012
  ident: 10.1016/j.wavemoti.2019.102479_b105
  article-title: On the diffraction of acoustic waves by a quarter-plane
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2011.07.003
– volume: 53
  start-page: 232
  issue: 3
  year: 2011
  ident: 10.1016/j.wavemoti.2019.102479_b40
  article-title: Electromagnetic wave scattering from a wedge with perfectly reflecting boundaries : Analysis of asymptotic techniques
  publication-title: IEEE Antennas Propag. Mag.
  doi: 10.1109/MAP.2011.6028472
– start-page: 3
  year: 1969
  ident: 10.1016/j.wavemoti.2019.102479_b66
  article-title: Elastic wave propagation in a wedge
– year: 1994
  ident: 10.1016/j.wavemoti.2019.102479_b32
– volume: 47
  start-page: 299
  issue: 5
  year: 2010
  ident: 10.1016/j.wavemoti.2019.102479_b91
  article-title: Embedding formulae for scattering by three-dimensional structures
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2009.11.006
– year: 1965
  ident: 10.1016/j.wavemoti.2019.102479_b28
– volume: vol. 109
  year: 1985
  ident: 10.1016/j.wavemoti.2019.102479_b95
– volume: 1
  start-page: 144
  issue: 2
  year: 1955
  ident: 10.1016/j.wavemoti.2019.102479_b7
  article-title: Sound radiation by vibrating faces of arbitrary wedge. Part I
  publication-title: Akust. Zhurnal (in Russ.)
– year: 1990
  ident: 10.1016/j.wavemoti.2019.102479_b37
– volume: 4
  start-page: 75
  issue: 1
  year: 1951
  ident: 10.1016/j.wavemoti.2019.102479_b58
  article-title: Diffraction and reflection of pulses by wedges and corners
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160040109
– volume: 80
  start-page: 1569
  year: 2015
  ident: 10.1016/j.wavemoti.2019.102479_b79
  article-title: The relationship between a strip wiener-hopf problem and a line Riemann-Hilbert problem
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxv007
– volume: 59
  start-page: 351
  issue: 4
  year: 2007
  ident: 10.1016/j.wavemoti.2019.102479_b22
  article-title: A brief historical perspective of the Wiener-Hopf technique
  publication-title: J. Eng. Math.
  doi: 10.1007/s10665-007-9195-x
– volume: 7
  start-page: 551
  issue: 3
  year: 1954
  ident: 10.1016/j.wavemoti.2019.102479_b61
  article-title: Diffraction of waves by a wedge
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160070306
– volume: 3
  start-page: 52
  year: 1958
  ident: 10.1016/j.wavemoti.2019.102479_b9
  article-title: Inversion formula for sommerfeld integral
  publication-title: Sov. Phys. Dokl.
– year: 1964
  ident: 10.1016/j.wavemoti.2019.102479_b29
– ident: 10.1016/j.wavemoti.2019.102479_b77
– volume: 411
  start-page: 239
  year: 1987
  ident: 10.1016/j.wavemoti.2019.102479_b27
  article-title: On the sound field generated by membrane surface waves on a wedge-shaped boundary
  publication-title: Proc. R. Soc. A
– volume: 66
  start-page: 2485
  issue: 5
  year: 2015
  ident: 10.1016/j.wavemoti.2019.102479_b55
  article-title: On uniqueness and stability of Sobolev’s solution in scattering by wedges
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-015-0533-y
– volume: 3
  start-page: 752
  year: 1958
  ident: 10.1016/j.wavemoti.2019.102479_b11
  article-title: Excitation, reflection and emission of surface waves from a wedge with given face impedances
  publication-title: Sov. Phys. Dokl.
– year: 1986
  ident: 10.1016/j.wavemoti.2019.102479_b31
– volume: 114
  start-page: 1733
  issue: 4
  year: 2003
  ident: 10.1016/j.wavemoti.2019.102479_b51
  article-title: Random walk approach to wave propagation in wedges and cones
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1605413
– volume: 454
  start-page: 2949
  issue: 1979
  year: 1998
  ident: 10.1016/j.wavemoti.2019.102479_b70
  article-title: Rayleigh wave scattering by two adhering elastic wedges
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.1998.0287
– volume: 46
  start-page: 11
  year: 1901
  ident: 10.1016/j.wavemoti.2019.102479_b4
  article-title: Theoretisches über die Beugung der Röntgenstrahlen
  publication-title: Z. Math. Phys. (in Ger.)
– volume: 111
  start-page: 191
  issue: 2
  year: 1986
  ident: 10.1016/j.wavemoti.2019.102479_b26
  article-title: Diffraction by a semi-infinite membrane in the presence of a vertical barrier
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(86)80156-0
– volume: 39
  start-page: 5547
  issue: 21–22
  year: 2002
  ident: 10.1016/j.wavemoti.2019.102479_b50
  article-title: Random walk methods and wave diffraction
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(02)00364-5
– volume: 50
  start-page: 739
  issue: 4
  year: 2013
  ident: 10.1016/j.wavemoti.2019.102479_b74
  article-title: Scattering of acoustic waves by a sector
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2013.02.001
– volume: 19
  start-page: 385
  issue: 4
  year: 1992
  ident: 10.1016/j.wavemoti.2019.102479_b72
  article-title: Eighty years of Sommerfeld’s radiation condition
  publication-title: Hist. Math.
  doi: 10.1016/0315-0860(92)90004-U
– year: 2019
  ident: 10.1016/j.wavemoti.2019.102479_b101
– year: 1995
  ident: 10.1016/j.wavemoti.2019.102479_b15
– volume: 54
  start-page: 523
  issue: 4
  year: 2001
  ident: 10.1016/j.wavemoti.2019.102479_b45
  article-title: Wave diffraction through a perforated barrier of non-zero thickness
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/54.4.523
– volume: 1
  start-page: 226
  issue: 3
  year: 1955
  ident: 10.1016/j.wavemoti.2019.102479_b8
  article-title: Sound radiation by vibrating faces of arbitrary wedge. Part II
  publication-title: Akust. Zhurnal (in Russ.)
– volume: 54
  start-page: 2472
  issue: 9
  year: 2006
  ident: 10.1016/j.wavemoti.2019.102479_b82
  article-title: Wiener-hopf solution for impenetrable wedges at skew incidence
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2006.880723
– volume: 55
  start-page: 249
  issue: 2
  year: 2002
  ident: 10.1016/j.wavemoti.2019.102479_b46
  article-title: Wave scattering by a perforated duct
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/55.2.249
– year: 2014
  ident: 10.1016/j.wavemoti.2019.102479_b84
– volume: 461
  start-page: 2227
  issue: 2059
  year: 2005
  ident: 10.1016/j.wavemoti.2019.102479_b47
  article-title: Embedding formulae for diffraction by rational wedge and angular geometries
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2004.1443
– volume: 110
  start-page: 289
  year: 2010
  ident: 10.1016/j.wavemoti.2019.102479_b99
  article-title: Exterior wedge diffraction problems with Dirichlet, Neumann and impedance boundary conditions
  publication-title: Acta Appl. Math.
  doi: 10.1007/s10440-008-9408-y
– volume: 17
  start-page: 19
  issue: 1
  year: 1946
  ident: 10.1016/j.wavemoti.2019.102479_b19
  article-title: On an integral equation arising in the theory of diffraction
  publication-title: Q. J. Math.
  doi: 10.1093/qmath/os-17.1.19
– volume: 67
  start-page: 32
  year: 2016
  ident: 10.1016/j.wavemoti.2019.102479_b92
  article-title: Embedding formulae for wave diffraction by a circular arc
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2016.07.003
– volume: 53
  start-page: 711
  issue: 2
  year: 2005
  ident: 10.1016/j.wavemoti.2019.102479_b97
  article-title: Diffraction of a plane wave by a sector with Dirichlet or Neumann boundary conditions
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2004.841303
– volume: 35
  start-page: 103
  year: 1982
  ident: 10.1016/j.wavemoti.2019.102479_b42
  article-title: Diffraction by a finite strip
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/35.1.103
– volume: 44
  start-page: 592
  issue: 5
  year: 1998
  ident: 10.1016/j.wavemoti.2019.102479_b75
  article-title: Excitation of waves in a wedge-shaped region
  publication-title: Acoust. Phys.
– volume: 14
  start-page: 450
  issue: 1
  year: 1915
  ident: 10.1016/j.wavemoti.2019.102479_b60
  article-title: Diffraction of waves by a wedge
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/s2_14.1.450
– year: 1987
  ident: 10.1016/j.wavemoti.2019.102479_b65
– year: 1971
  ident: 10.1016/j.wavemoti.2019.102479_b38
– year: 2011
  ident: 10.1016/j.wavemoti.2019.102479_b106
– volume: 1
  start-page: 229
  issue: 3
  year: 1939
  ident: 10.1016/j.wavemoti.2019.102479_b25
  article-title: On a method of solution of some problems of the diffraction theory
  publication-title: J. Phys. (Acad. Sci. U.S.S.R.)
– year: 2010
  ident: 10.1016/j.wavemoti.2019.102479_b88
– volume: 77
  start-page: 605
  issue: 5
  year: 2012
  ident: 10.1016/j.wavemoti.2019.102479_b87
  article-title: Precise description of the different far fields encountered in the problem of diffraction of acoustic waves by a quarter-plane
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxs042
– volume: 109
  start-page: 2260
  issue: 5
  year: 2001
  ident: 10.1016/j.wavemoti.2019.102479_b48
  article-title: Probabilistic solutions of the Helmholtz equation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1365113
– year: 1902
  ident: 10.1016/j.wavemoti.2019.102479_b6
– volume: 41
  start-page: 79
  issue: 1
  year: 2005
  ident: 10.1016/j.wavemoti.2019.102479_b104
  article-title: Modified smyshlyaev’s formulae for the problem of diffraction of a plane wave by an ideal quarter-plane
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2004.05.005
– year: 1964
  ident: 10.1016/j.wavemoti.2019.102479_b53
– year: 1965
  ident: 10.1016/j.wavemoti.2019.102479_b41
– year: 1999
  ident: 10.1016/j.wavemoti.2019.102479_b67
– volume: 32
  start-page: 2183
  issue: 11
  year: 1999
  ident: 10.1016/j.wavemoti.2019.102479_b103
  article-title: Diffraction by a highly contrast transparent wedge
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/32/11/012
– year: 2012
  ident: 10.1016/j.wavemoti.2019.102479_b71
– year: 2013
  ident: 10.1016/j.wavemoti.2019.102479_b96
– volume: 23
  start-page: 223
  issue: 3
  year: 2003
  ident: 10.1016/j.wavemoti.2019.102479_b78
  article-title: Rotating waves in the Laplace domain for angular regions
  publication-title: Electromagnetics
  doi: 10.1080/02726340390197485
– volume: 59
  start-page: 3797
  issue: 10
  year: 2011
  ident: 10.1016/j.wavemoti.2019.102479_b83
  article-title: The wiener-hopf solution of the isotropic penetrable wedge problem: diffraction and total field
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2011.2163780
– year: 2007
  ident: 10.1016/j.wavemoti.2019.102479_b16
– year: 2013
  ident: 10.1016/j.wavemoti.2019.102479_b17
– year: 1986
  ident: 10.1016/j.wavemoti.2019.102479_b36
– year: 1958
  ident: 10.1016/j.wavemoti.2019.102479_b21
– volume: 390
  start-page: 91
  issue: 1798
  year: 1983
  ident: 10.1016/j.wavemoti.2019.102479_b44
  article-title: Diffraction of elastic waves by a penny-shaped crack: Analytical and numerical results
  publication-title: Proc. R. Soc. A
– volume: 105
  start-page: 185
  issue: 1
  year: 1989
  ident: 10.1016/j.wavemoti.2019.102479_b63
  article-title: A green’s function for diffraction by a rational wedge
  publication-title: Math. Proc. Cambr. Philos. Soc.
  doi: 10.1017/S0305004100001523
– volume: 24
  start-page: 307
  issue: 3
  year: 1996
  ident: 10.1016/j.wavemoti.2019.102479_b69
  article-title: Rayleigh wave scattering by a wedge II
  publication-title: Wave Motion
  doi: 10.1016/S0165-2125(96)00024-8
– volume: 12
  start-page: 337
  issue: 2
  year: 1959
  ident: 10.1016/j.wavemoti.2019.102479_b12
  article-title: Diffraction by an imperfectly conducting wedge
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160120209
– volume: 47
  start-page: 317
  year: 1896
  ident: 10.1016/j.wavemoti.2019.102479_b3
  article-title: Mathematische theorie der diffraction
  publication-title: Math. Ann. (in Ger.)
  doi: 10.1007/BF01447273
– volume: 63
  start-page: 1442
  issue: 4
  year: 2003
  ident: 10.1016/j.wavemoti.2019.102479_b24
  article-title: The Wiener-Hopf technique for impenetrable wedges having arbitrary aperture angle
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139901400239
– volume: 234
  start-page: 1637
  year: 2010
  ident: 10.1016/j.wavemoti.2019.102479_b90
  article-title: Pseudo-differential operators for embedding formulae
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2009.08.010
– volume: 22
  start-page: 239
  issue: 1
  year: 1995
  ident: 10.1016/j.wavemoti.2019.102479_b68
  article-title: Rayleigh wave scattering by a wedge
  publication-title: Wave Motion
  doi: 10.1016/0165-2125(95)00023-C
– volume: 14
  start-page: 436
  issue: 3
  year: 1991
  ident: 10.1016/j.wavemoti.2019.102479_b98
  article-title: Diffraction by a rectangular wedge: Wiener-Hopf-Hankel formulation
  publication-title: Integr. Equations Oper. Theory
  doi: 10.1007/BF01218506
– year: 1994
  ident: 10.1016/j.wavemoti.2019.102479_b34
– year: 1947
  ident: 10.1016/j.wavemoti.2019.102479_b57
– volume: 252
  start-page: 376
  issue: 1270
  year: 1959
  ident: 10.1016/j.wavemoti.2019.102479_b13
  article-title: Diffraction of an e-polarized plane wave by an imperfectly conducting wedge
  publication-title: Proc. R. Soc. A
– volume: 28
  start-page: 372
  issue: 2
  year: 1964
  ident: 10.1016/j.wavemoti.2019.102479_b54
  article-title: Diffraction of an arbitrary acoustic wave by a wedge
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/0021-8928(64)90170-4
– volume: 43
  start-page: 517
  issue: 7
  year: 2006
  ident: 10.1016/j.wavemoti.2019.102479_b89
  article-title: A new family of embedding formulae for diffraction by wedges and polygons
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2006.04.002
– volume: 3
  start-page: 266
  year: 1958
  ident: 10.1016/j.wavemoti.2019.102479_b10
  article-title: Relation between the inversion formulas for the sommerfeld integral and the formulas of kontorovich-lebedev
  publication-title: Sov. Phys. Dokl.
– ident: 10.1016/j.wavemoti.2019.102479_b76
– year: 2003
  ident: 10.1016/j.wavemoti.2019.102479_b5
– volume: 3
  start-page: 189
  issue: 1
  year: 1952
  ident: 10.1016/j.wavemoti.2019.102479_b20
  article-title: A simplifying technique in the solution of a class of diffraction problems
  publication-title: Q. J. Math.
  doi: 10.1093/qmath/3.1.189
– volume: 62
  start-page: 1448
  issue: 11
  year: 1974
  ident: 10.1016/j.wavemoti.2019.102479_b35
  article-title: A uniform GTD for an edge in a perfectly conducting surface
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1974.9651
– volume: 212
  start-page: 543
  issue: 1111
  year: 1952
  ident: 10.1016/j.wavemoti.2019.102479_b59
  article-title: On the diffraction of an acoustic pulse by a wedge
  publication-title: Proc. R. Soc. A
– volume: 411
  start-page: 265
  issue: 1841
  year: 1987
  ident: 10.1016/j.wavemoti.2019.102479_b62
  article-title: Plane-wave diffraction by a rational wedge
  publication-title: Proc. R. Soc. A
– volume: 16
  start-page: 297
  year: 1892
  ident: 10.1016/j.wavemoti.2019.102479_b1
  article-title: Sur la polarisation par diffraction
  publication-title: Acta Math. (in French)
  doi: 10.1007/BF02418992
– volume: 31
  start-page: 696
  year: 1931
  ident: 10.1016/j.wavemoti.2019.102479_b18
  article-title: Über eine klasse singulärer integralgleichungen
  publication-title: Sitzungsberichte Preuss. Akad. Wissenschaften, Phys. Klasse (in Ger.)
– volume: 22
  start-page: 145
  issue: 2
  year: 2015
  ident: 10.1016/j.wavemoti.2019.102479_b56
  article-title: Solution of the diffraction problem of a plane wave by an impedance wedge (non-stationary Case, Smirnov-Sobolev method)
  publication-title: Russ. J. Math. Phys.
  doi: 10.1134/S1061920815020016
– volume: 52
  start-page: 116
  issue: 2
  year: 1962
  ident: 10.1016/j.wavemoti.2019.102479_b33
  article-title: Geometrical theory of diffraction
  publication-title: J. Opt. Soc. Amer.
  doi: 10.1364/JOSA.52.000116
SSID ssj0001739
Score 2.4095778
Snippet The subject of diffraction of waves by sharp boundaries has been studied intensively for well over a century, initiated by groundbreaking mathematicians and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102479
SubjectTerms Applied complex analysis
Boundaries
Canonical wave diffraction
Diffraction
Dirichlet problem
Exact solutions
Geometrical theory of diffraction
Mathematical functions
Mathematical models
Physicists
Plane waves
Random walk
Two dimensional models
Wave diffraction
Wedge geometry
Wedges
Title Analytical methods for perfect wedge diffraction: A review
URI https://dx.doi.org/10.1016/j.wavemoti.2019.102479
https://www.proquest.com/docview/2431252446
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lInjxURWrteTgdftIssmmt1IsVbEXLfQW8lpokVraam_-dnd2s74QPHhdMiF8m8zMZr_5BqErwZygRJgoJTqNWOJ0lCTORdKDWJvQNEmgdvh-zEcTdjuNpxU0KGthgFYZfH_h03NvHZ60A5rt5WzWfoBCHALxWcLfPgGKn4wJ2OWtt0-aR1fk3cRgcASjv1QJz1tb_eqB8wYULwkqBgwoXb8HqB-uOo8_w0O0HxJH3C_WdoQqflFDByGJxOGIrmtoN-d02vUx6uWCI_ldNS4aRa9xlqLipV8BhwNv4SoNQ4eUVVHd0MN9XJSynKDJ8PpxMIpCq4TIUtbZREZobTgVkqeSUdqxOpbUg7qf59pq67uWd2SawcMpN4IQZ4m3XW28MHGanexTVF08L_wZwi5OhbOGps7ETHgmoYmf5s5TC5O4OopLfJQNOuLQzuJJlYSxuSpxVYCrKnCto_aH3bJQ0vjTQpbwq297QmXu_k_bRvm-VDiVa0WybInEWULDz_8x9QXaI_DRnRPRGqi6Wb34yywz2ZhmvvWaaKd_czcavwM8meNI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2VIgQXlgJiKeAD19DWTuKYW1VRFbpcaKXeLG-RQKhUbYHfJ5M4FSAkDlyjjBW92OMX580bgGseWs4o10FKVRqEiVVBklgbCIdmbVyxJMHa4eEo7k3Ch2k0rUCnrIVBWaXP_UVOz7O1v9LwaDbmT0-NRyzEobg_C_zbx9kGbKI7VVSFzfZ9vzdaJ-QWzxuK4f0BBnwpFH6--VDvDmVvqPISaGQQoqrr9z3qR7bOt6DuPux67kjaxeMdQMXNarDneSTxq3RZg61c1mmWh3Cbe47kx9Wk6BW9JBlLJXO3QBkH-cDTNIJNUhZFgcMtaZOimuUIJt27cacX-G4JgWFhcxVorpSOGRdxKkLGmkZFgjk0-HOxMsq4lombIg15xjFizSm1hjrTUtpxHaXZ4j6G6ux15k6A2Cjl1miWWp0B6kKBffxUbB0zOIg9hajERxpvJY4dLV5kqRl7liWuEnGVBa6n0FjHzQszjT8jRAm__DYtZJbx_4ytl-9L-oW5lDQjTDTKOE189o-hr2C7Nx4O5OB-1D-HHYrf4LkurQ7V1eLNXWREZaUv_UT8BA325fk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+methods+for+perfect+wedge+diffraction%3A+A+review&rft.jtitle=Wave+motion&rft.au=Nethercote%2C+M.A.&rft.au=Assier%2C+R.C.&rft.au=Abrahams%2C+I.D.&rft.date=2020-03-01&rft.issn=0165-2125&rft.volume=93&rft.spage=102479&rft_id=info:doi/10.1016%2Fj.wavemoti.2019.102479&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_wavemoti_2019_102479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-2125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-2125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-2125&client=summon