Controlled growth of MoS2 by atomic layer deposition on patterned gold pads

•ALD-based synthesis approach was developed for the deposition of MoS2.•Growth behaviors on various substrates were analyzed and compared.•Mechanism of MoS2 growth on Au by ALD was discussed.•Selective growth of MoS2 at controlled location was achieved using ALD. Approaches to synthesize large-area...

Full description

Saved in:
Bibliographic Details
Published inJournal of crystal growth Vol. 541; p. 125683
Main Authors Yue, Chenxi, Wang, Yang, Liu, Hao, Chen, Lin, Zhu, Hao, Sun, Qingqing
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.07.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •ALD-based synthesis approach was developed for the deposition of MoS2.•Growth behaviors on various substrates were analyzed and compared.•Mechanism of MoS2 growth on Au by ALD was discussed.•Selective growth of MoS2 at controlled location was achieved using ALD. Approaches to synthesize large-area MoS2 thin films have been extensively investigated in recent years towards system-level micro-/nanoelectronics applications. Methods including chemical vapor deposition (CVD) and atomic layer deposition (ALD) can enable uniform and wafer-scale MoS2 films on insulating substrates, but without selective control on the growth location. Herein, we report a controlled growth of ultra-thin MoS2 films on Au pads patterned on insulating substrates using ALD-based techniques. Clear difference in the incubation period duration of the ALD process among different substrate surfaces has been observed. Selective growth of MoS2 can be achieved on patterned Au on SiO2/Si substrate while the incubation period is shorter on sapphire substrate as compared with that on SiO2/Si. In addition, the influence of deposition temperature on the film growth dynamics on difference surfaces has been studied. Such controlled growth of MoS2 by ALD can be very attractive in future optoelectronics applications and the synthesis on patterned Au is promising in fulfilling its application potentials such as electrocatalyst in hydrogen evolution reaction.
AbstractList •ALD-based synthesis approach was developed for the deposition of MoS2.•Growth behaviors on various substrates were analyzed and compared.•Mechanism of MoS2 growth on Au by ALD was discussed.•Selective growth of MoS2 at controlled location was achieved using ALD. Approaches to synthesize large-area MoS2 thin films have been extensively investigated in recent years towards system-level micro-/nanoelectronics applications. Methods including chemical vapor deposition (CVD) and atomic layer deposition (ALD) can enable uniform and wafer-scale MoS2 films on insulating substrates, but without selective control on the growth location. Herein, we report a controlled growth of ultra-thin MoS2 films on Au pads patterned on insulating substrates using ALD-based techniques. Clear difference in the incubation period duration of the ALD process among different substrate surfaces has been observed. Selective growth of MoS2 can be achieved on patterned Au on SiO2/Si substrate while the incubation period is shorter on sapphire substrate as compared with that on SiO2/Si. In addition, the influence of deposition temperature on the film growth dynamics on difference surfaces has been studied. Such controlled growth of MoS2 by ALD can be very attractive in future optoelectronics applications and the synthesis on patterned Au is promising in fulfilling its application potentials such as electrocatalyst in hydrogen evolution reaction.
Approaches to synthesize large-area MoS2 thin films have been extensively investigated in recent years towards system-level micro-/nanoelectronics applications. Methods including chemical vapor deposition (CVD) and atomic layer deposition (ALD) can enable uniform and wafer-scale MoS2 films on insulating substrates, but without selective control on the growth location. Herein, we report a controlled growth of ultra-thin MoS2 films on Au pads patterned on insulating substrates using ALD-based techniques. Clear difference in the incubation period duration of the ALD process among different substrate surfaces has been observed. Selective growth of MoS2 can be achieved on patterned Au on SiO2/Si substrate while the incubation period is shorter on sapphire substrate as compared with that on SiO2/Si. In addition, the influence of deposition temperature on the film growth dynamics on difference surfaces has been studied. Such controlled growth of MoS2 by ALD can be very attractive in future optoelectronics applications and the synthesis on patterned Au is promising in fulfilling its application potentials such as electrocatalyst in hydrogen evolution reaction.
ArticleNumber 125683
Author Wang, Yang
Liu, Hao
Sun, Qingqing
Chen, Lin
Yue, Chenxi
Zhu, Hao
Author_xml – sequence: 1
  givenname: Chenxi
  surname: Yue
  fullname: Yue, Chenxi
– sequence: 2
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
– sequence: 3
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
– sequence: 4
  givenname: Lin
  surname: Chen
  fullname: Chen, Lin
– sequence: 5
  givenname: Hao
  orcidid: 0000-0003-3890-6871
  surname: Zhu
  fullname: Zhu, Hao
  email: hao_zhu@fudan.edu.cn
– sequence: 6
  givenname: Qingqing
  surname: Sun
  fullname: Sun, Qingqing
  email: qqsun@fudan.edu.cn
BookMark eNqFkMtKxDAUhoOM4Dj6ClJw3TGXphdwoQzecMSFug6Z5FRTOk1NMkrf3pTqxs1AOCGH8_0nfMdo1tkOEDojeEkwyS-aZaPc4N-dXVJMY5PyvGQHaE7KgqUcYzpD81hpimlWHqFj7xuMI0nwHD2ubBecbVvQSUz4Dh-JrZMn-0KTzZDIYLdGJa0cwCUaeutNMLZL4ullCOC6EbOtjk_tT9BhLVsPp7_3Ar3d3ryu7tP1893D6nqdKpbhkEqAktBKSyLzXFFGOK95zQBDxuoqp5kqMa9YBYopxoFmOd8QFhFe601RaLZA51Nu7-znDnwQjd25Lq4UNMtwVhY5Y3HqcppSznrvoBbKBDl-PzhpWkGwGPWJRvzpE6M-MemLeP4P753ZSjfsB68mEKKCLwNOeGWgU6CNAxWEtmZfxA_4do_c
CitedBy_id crossref_primary_10_1002_slct_202204944
crossref_primary_10_1038_s41699_024_00456_x
crossref_primary_10_1039_D1QM00035G
crossref_primary_10_1116_6_0000641
crossref_primary_10_1016_j_physb_2023_414896
crossref_primary_10_1088_2515_7639_abbdb1
crossref_primary_10_1002_pssr_202000533
crossref_primary_10_1002_admi_202001677
crossref_primary_10_1186_s11671_021_03596_x
crossref_primary_10_1007_s11431_020_1833_4
Cites_doi 10.1002/pssr.201900018
10.1039/C6NR01346E
10.1021/acsami.6b13777
10.1088/2053-1583/aa9ea5
10.1038/nnano.2012.95
10.1038/ncomms7128
10.1021/nl3002974
10.1021/acsnano.5b01281
10.1021/acsnano.5b01529
10.1038/ncomms9569
10.1038/srep38394
10.1021/acsnano.5b00081
10.1002/adma.201104798
10.1021/nn305301b
10.1021/ja201269b
10.1021/acs.nanolett.7b01393
10.1002/adma.201602854
10.1002/smll.201102654
10.1021/ja0504690
10.1021/nl403661s
10.1039/C4NR04816D
10.1039/C4NR02451F
10.1002/adfm.201401504
10.1021/nn503211t
10.1002/anie.201309474
10.1116/1.4941245
10.1021/nn503284n
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Jul 1, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Jul 1, 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.jcrysgro.2020.125683
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-5002
ExternalDocumentID 10_1016_j_jcrysgro_2020_125683
S0022024820302062
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSZ
T5K
TN5
XPP
~02
~G-
29K
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
SSH
VH1
WUQ
ZMT
7SR
7U5
8BQ
8FD
AFXIZ
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c340t-aee8129da1a66c23155f5f3e0e43f9624c805939ec3c35e2465b138125fdb77d3
IEDL.DBID .~1
ISSN 0022-0248
IngestDate Mon Jul 14 08:17:36 EDT 2025
Tue Jul 01 04:25:40 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Fri Feb 23 02:39:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords A3. Atomic layer deposition
B1. Sulfides
B2. Semiconducting materials
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-aee8129da1a66c23155f5f3e0e43f9624c805939ec3c35e2465b138125fdb77d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3890-6871
PQID 2440487633
PQPubID 2045452
ParticipantIDs proquest_journals_2440487633
crossref_citationtrail_10_1016_j_jcrysgro_2020_125683
crossref_primary_10_1016_j_jcrysgro_2020_125683
elsevier_sciencedirect_doi_10_1016_j_jcrysgro_2020_125683
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of crystal growth
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Lee, Zhang, Zhang, Chang, Lin, Chang (b0050) 2012; 24
Zhan, Liu, Najmaei (b0055) 2012; 8
Han, Kybert, Naylor (b0095) 2015; 6
Jin, Shin, Kwon (b0105) 2014; 6
Yun, Sang, Kim, Jin, Park, Gang (b0145) 2015; 9
Valdivia, Tweet, Conley (b0060) 2016; 34
Zhang, Wang, Wu (b0065) 2017; 9
Voiry, Salehi, Silva, Fujita, Chhowalla (b0040) 2013; 13
Hinnemann, Moses, Bonde (b0045) 2005; 127
Wu, Wang, Yu, Liu, Su, Hone (b0015) 2016; 28
Zhang, Wang, Xu (b0070) 2017; 5
Tian, Cao, Wu (b0140) 2012; 12
Wang, Chen, Zhang (b0130) 2019; 30
Gao, Liu, Sun (b0125) 2015; 6
Zhang, Liu, Wang (b0075) 2019; 13
Shi, Ma, Han (b0115) 2014; 8
Luo, Xu, Zhu, Wu, Mccormick, Zhan (b0025) 2017; 17
Huo, Kang, Wei, Li, Li, Wei (b0020) 2014; 24
Li, Wang, Xie (b0035) 2011; 133
Pyeon, Kim, Jeong, Baek (b0085) 2016; 8
Wang, Huang, Chen (b0100) 2016; 6
Dumcenco, Ovchinnikov, Marinov (b0135) 2015; 9
Shi, Zhang, Ma (b0110) 2015; 9
Song, Park, Hong (b0120) 2014; 53
Tan, Liu, Teng (b0080) 2014; 6
Choi, Qu, Lee, Liu, Watanabe, Taniguchi (b0010) 2014; 8
Titel, Moody (b0090) 2017; 56
Tsai, Liu, Lien, Tsai, Kang, Lin (b0005) 2013; 7
Zeng, Dai, Yao, Xiao, Cui (b0030) 2012; 7
Wang (10.1016/j.jcrysgro.2020.125683_b0100) 2016; 6
Luo (10.1016/j.jcrysgro.2020.125683_b0025) 2017; 17
Voiry (10.1016/j.jcrysgro.2020.125683_b0040) 2013; 13
Li (10.1016/j.jcrysgro.2020.125683_b0035) 2011; 133
Tan (10.1016/j.jcrysgro.2020.125683_b0080) 2014; 6
Titel (10.1016/j.jcrysgro.2020.125683_b0090) 2017; 56
Shi (10.1016/j.jcrysgro.2020.125683_b0115) 2014; 8
Zhan (10.1016/j.jcrysgro.2020.125683_b0055) 2012; 8
Zhang (10.1016/j.jcrysgro.2020.125683_b0070) 2017; 5
Pyeon (10.1016/j.jcrysgro.2020.125683_b0085) 2016; 8
Lee (10.1016/j.jcrysgro.2020.125683_b0050) 2012; 24
Zhang (10.1016/j.jcrysgro.2020.125683_b0065) 2017; 9
Shi (10.1016/j.jcrysgro.2020.125683_b0110) 2015; 9
Tsai (10.1016/j.jcrysgro.2020.125683_b0005) 2013; 7
Zeng (10.1016/j.jcrysgro.2020.125683_b0030) 2012; 7
Gao (10.1016/j.jcrysgro.2020.125683_b0125) 2015; 6
Wang (10.1016/j.jcrysgro.2020.125683_b0130) 2019; 30
Huo (10.1016/j.jcrysgro.2020.125683_b0020) 2014; 24
Choi (10.1016/j.jcrysgro.2020.125683_b0010) 2014; 8
Valdivia (10.1016/j.jcrysgro.2020.125683_b0060) 2016; 34
Dumcenco (10.1016/j.jcrysgro.2020.125683_b0135) 2015; 9
Tian (10.1016/j.jcrysgro.2020.125683_b0140) 2012; 12
Hinnemann (10.1016/j.jcrysgro.2020.125683_b0045) 2005; 127
Wu (10.1016/j.jcrysgro.2020.125683_b0015) 2016; 28
Zhang (10.1016/j.jcrysgro.2020.125683_b0075) 2019; 13
Han (10.1016/j.jcrysgro.2020.125683_b0095) 2015; 6
Song (10.1016/j.jcrysgro.2020.125683_b0120) 2014; 53
Yun (10.1016/j.jcrysgro.2020.125683_b0145) 2015; 9
Jin (10.1016/j.jcrysgro.2020.125683_b0105) 2014; 6
References_xml – volume: 8
  start-page: 10196
  year: 2014
  end-page: 10204
  ident: b0115
  article-title: Controllable growth and transfer of monolayer MoS
  publication-title: ACS Nano
– volume: 9
  start-page: 4017
  year: 2015
  end-page: 4025
  ident: b0110
  article-title: Substrate facet effect on the growth of monolayer MoS
  publication-title: ACS Nano
– volume: 28
  start-page: 8463
  year: 2016
  end-page: 8468
  ident: b0015
  article-title: Piezophototronic effect in single-atomic-layer MoS
  publication-title: Adv. Mater.
– volume: 9
  start-page: 5510
  year: 2015
  end-page: 5519
  ident: b0145
  article-title: Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils
  publication-title: ACS Nano
– volume: 6
  start-page: 6128
  year: 2015
  ident: b0095
  article-title: Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations
  publication-title: Nat. Commun.
– volume: 30
  start-page: 4085
  year: 2019
  end-page: 4092
  ident: b0130
  article-title: Ni-assisted crystallization of few-layer transition metal dichalcogenide ultra-thin films
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 6
  start-page: 8569
  year: 2015
  ident: b0125
  article-title: Large-area synthesis of high-quality and uniform monolayer WS
  publication-title: Nat. Commun.
– volume: 8
  start-page: 10792
  year: 2016
  end-page: 10798
  ident: b0085
  article-title: Wafer-scale growth of MoS
  publication-title: Nanoscale
– volume: 24
  start-page: 7025
  year: 2014
  end-page: 7031
  ident: b0020
  article-title: Novel and enhanced optoelectronic performances of multilayer MoS
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 3893
  year: 2012
  end-page: 3899
  ident: b0140
  article-title: Graphene induced surface reconstruction of Cu
  publication-title: Nano Lett.
– volume: 127
  start-page: 5308
  year: 2005
  end-page: 5309
  ident: b0045
  article-title: Biomimetic hydrogen evolution: MoS
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 966
  year: 2012
  end-page: 971
  ident: b0055
  article-title: Large-area vapor-phase growth and characterization of MoS
  publication-title: Small
– volume: 6
  start-page: 14453
  year: 2014
  end-page: 14458
  ident: b0105
  article-title: Novel chemical route for atomic layer deposition of MoS2 thin film on SiO
  publication-title: Nanoscale
– volume: 17
  start-page: 3877
  year: 2017
  end-page: 3883
  ident: b0025
  article-title: Opto-valleytronic spin injection in monolayer MoS
  publication-title: Nano Lett.
– volume: 7
  start-page: 490
  year: 2012
  end-page: 493
  ident: b0030
  article-title: Valley polarization in MoS
  publication-title: Nat. Nanotechnol.
– volume: 53
  start-page: 1266
  year: 2014
  end-page: 1269
  ident: b0120
  article-title: Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition
  publication-title: Angew. Chem.
– volume: 8
  start-page: 9332
  year: 2014
  end-page: 9340
  ident: b0010
  article-title: Lateral MoS
  publication-title: ACS Nano
– volume: 133
  start-page: 7296
  year: 2011
  end-page: 7299
  ident: b0035
  article-title: MoS
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 38394
  year: 2016
  ident: b0100
  article-title: Metal induced growth of transition metal dichalcogenides at controlled locations
  publication-title: Sci. Rep.
– volume: 56
  start-page: 1
  year: 2017
  end-page: 6
  ident: b0090
  article-title: Low-temperature atomic layer deposition of MoS2 films
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 34
  year: 2016
  ident: b0060
  article-title: Atomic layer deposition of two dimensional MoS
  publication-title: J. Vac. Sci. Technol. A
– volume: 9
  start-page: 763
  year: 2017
  end-page: 770
  ident: b0065
  article-title: Shape-dependent defect structures of monolayer MoS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 10584
  year: 2014
  end-page: 10588
  ident: b0080
  article-title: Atomic layer deposition of a MoS
  publication-title: Nanoscale
– volume: 9
  start-page: 4611
  year: 2015
  end-page: 4620
  ident: b0135
  article-title: Large-area epitaxial monolayer MoS
  publication-title: ACS Nano
– volume: 13
  start-page: 1900018
  year: 2019
  ident: b0075
  article-title: Fast-response inverter arrays built on wafer-scale MoS
  publication-title: Phys. Status Solidi RRL
– volume: 5
  year: 2017
  ident: b0070
  article-title: High performance few-layer MoS
  publication-title: 2D Mater
– volume: 7
  start-page: 3905
  year: 2013
  end-page: 3911
  ident: b0005
  article-title: Few-layer MoS
  publication-title: ACS Nano
– volume: 13
  start-page: 6222
  year: 2013
  end-page: 6227
  ident: b0040
  article-title: Conducting MoS
  publication-title: Nano Lett.
– volume: 24
  start-page: 2320
  year: 2012
  end-page: 2325
  ident: b0050
  article-title: Synthesis of large-area MoS
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1900018
  year: 2019
  ident: 10.1016/j.jcrysgro.2020.125683_b0075
  article-title: Fast-response inverter arrays built on wafer-scale MoS2 by atomic layer deposition
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201900018
– volume: 8
  start-page: 10792
  year: 2016
  ident: 10.1016/j.jcrysgro.2020.125683_b0085
  article-title: Wafer-scale growth of MoS2 thin films by atomic layer deposition
  publication-title: Nanoscale
  doi: 10.1039/C6NR01346E
– volume: 30
  start-page: 4085
  year: 2019
  ident: 10.1016/j.jcrysgro.2020.125683_b0130
  article-title: Ni-assisted crystallization of few-layer transition metal dichalcogenide ultra-thin films
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 9
  start-page: 763
  year: 2017
  ident: 10.1016/j.jcrysgro.2020.125683_b0065
  article-title: Shape-dependent defect structures of monolayer MoS2 crystals grown by chemical vapor deposition
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13777
– volume: 5
  year: 2017
  ident: 10.1016/j.jcrysgro.2020.125683_b0070
  article-title: High performance few-layer MoS2 transistor arrays with wafer level homogeneity integrated by atomic layer deposition
  publication-title: 2D Mater
  doi: 10.1088/2053-1583/aa9ea5
– volume: 7
  start-page: 490
  year: 2012
  ident: 10.1016/j.jcrysgro.2020.125683_b0030
  article-title: Valley polarization in MoS2 monolayers by optical pumping
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.95
– volume: 6
  start-page: 6128
  year: 2015
  ident: 10.1016/j.jcrysgro.2020.125683_b0095
  article-title: Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7128
– volume: 12
  start-page: 3893
  year: 2012
  ident: 10.1016/j.jcrysgro.2020.125683_b0140
  article-title: Graphene induced surface reconstruction of Cu
  publication-title: Nano Lett.
  doi: 10.1021/nl3002974
– volume: 9
  start-page: 4611
  year: 2015
  ident: 10.1016/j.jcrysgro.2020.125683_b0135
  article-title: Large-area epitaxial monolayer MoS2
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01281
– volume: 9
  start-page: 5510
  year: 2015
  ident: 10.1016/j.jcrysgro.2020.125683_b0145
  article-title: Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01529
– volume: 6
  start-page: 8569
  year: 2015
  ident: 10.1016/j.jcrysgro.2020.125683_b0125
  article-title: Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9569
– volume: 6
  start-page: 38394
  year: 2016
  ident: 10.1016/j.jcrysgro.2020.125683_b0100
  article-title: Metal induced growth of transition metal dichalcogenides at controlled locations
  publication-title: Sci. Rep.
  doi: 10.1038/srep38394
– volume: 56
  start-page: 1
  year: 2017
  ident: 10.1016/j.jcrysgro.2020.125683_b0090
  article-title: Low-temperature atomic layer deposition of MoS2 films
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 9
  start-page: 4017
  year: 2015
  ident: 10.1016/j.jcrysgro.2020.125683_b0110
  article-title: Substrate facet effect on the growth of monolayer MoS2 on Au foils
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00081
– volume: 24
  start-page: 2320
  year: 2012
  ident: 10.1016/j.jcrysgro.2020.125683_b0050
  article-title: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104798
– volume: 7
  start-page: 3905
  year: 2013
  ident: 10.1016/j.jcrysgro.2020.125683_b0005
  article-title: Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments
  publication-title: ACS Nano
  doi: 10.1021/nn305301b
– volume: 133
  start-page: 7296
  year: 2011
  ident: 10.1016/j.jcrysgro.2020.125683_b0035
  article-title: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201269b
– volume: 17
  start-page: 3877
  year: 2017
  ident: 10.1016/j.jcrysgro.2020.125683_b0025
  article-title: Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01393
– volume: 28
  start-page: 8463
  year: 2016
  ident: 10.1016/j.jcrysgro.2020.125683_b0015
  article-title: Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602854
– volume: 8
  start-page: 966
  year: 2012
  ident: 10.1016/j.jcrysgro.2020.125683_b0055
  article-title: Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate
  publication-title: Small
  doi: 10.1002/smll.201102654
– volume: 127
  start-page: 5308
  year: 2005
  ident: 10.1016/j.jcrysgro.2020.125683_b0045
  article-title: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0504690
– volume: 13
  start-page: 6222
  year: 2013
  ident: 10.1016/j.jcrysgro.2020.125683_b0040
  article-title: Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction
  publication-title: Nano Lett.
  doi: 10.1021/nl403661s
– volume: 6
  start-page: 14453
  year: 2014
  ident: 10.1016/j.jcrysgro.2020.125683_b0105
  article-title: Novel chemical route for atomic layer deposition of MoS2 thin film on SiO2/Si substrate
  publication-title: Nanoscale
  doi: 10.1039/C4NR04816D
– volume: 6
  start-page: 10584
  year: 2014
  ident: 10.1016/j.jcrysgro.2020.125683_b0080
  article-title: Atomic layer deposition of a MoS2 film
  publication-title: Nanoscale
  doi: 10.1039/C4NR02451F
– volume: 24
  start-page: 7025
  year: 2014
  ident: 10.1016/j.jcrysgro.2020.125683_b0020
  article-title: Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401504
– volume: 8
  start-page: 10196
  year: 2014
  ident: 10.1016/j.jcrysgro.2020.125683_b0115
  article-title: Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction
  publication-title: ACS Nano
  doi: 10.1021/nn503211t
– volume: 53
  start-page: 1266
  year: 2014
  ident: 10.1016/j.jcrysgro.2020.125683_b0120
  article-title: Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201309474
– volume: 34
  year: 2016
  ident: 10.1016/j.jcrysgro.2020.125683_b0060
  article-title: Atomic layer deposition of two dimensional MoS2 on 150 mm substrates
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.4941245
– volume: 8
  start-page: 9332
  year: 2014
  ident: 10.1016/j.jcrysgro.2020.125683_b0010
  article-title: Lateral MoS2 p-n junction formed by chemical doping for use in high performance optoelectronics
  publication-title: ACS Nano
  doi: 10.1021/nn503284n
SSID ssj0001610
Score 2.3662972
Snippet •ALD-based synthesis approach was developed for the deposition of MoS2.•Growth behaviors on various substrates were analyzed and compared.•Mechanism of MoS2...
Approaches to synthesize large-area MoS2 thin films have been extensively investigated in recent years towards system-level micro-/nanoelectronics...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125683
SubjectTerms A3. Atomic layer deposition
Atomic layer epitaxy
B1. Sulfides
B2. Semiconducting materials
Chemical vapor deposition
Electrocatalysts
Film growth
Hydrogen evolution reactions
Molybdenum disulfide
Nanoelectronics
Optoelectronics
Sapphire
Silicon dioxide
Silicon substrates
Thin films
Title Controlled growth of MoS2 by atomic layer deposition on patterned gold pads
URI https://dx.doi.org/10.1016/j.jcrysgro.2020.125683
https://www.proquest.com/docview/2440487633
Volume 541
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ED-pBtCrWF3vwGpvuI80epShVsRcVvC3J7gRbaltsRXrxtzuTZH2BeBBy2ZBJwmTyzbcw8w1jJ1p5MEalUUF9ypjx0yhNMh_FShlnkO-aDnUj3_ST3r26etAPS6wbemGorLLG_grTS7Suz7Rqb7amgwH1-ApBilwC41TEJQ4r1aEoP337LPNARhMHxXC6-kuX8PB06J4X1D6B-0RBQgs6SeVvCeoHVJf552KTbdTEkZ9V77bFlmDcYKvdMK-twda_SAtus-tuVYM-As_x0a_zRz4p-M3kVvB8wXGn_TRwfJQh4eYeQuUWx2NaCm6OyWwy8rj0sx12f3F-1-1F9eCEyEkVz6MMAPO28Vk7SxKHDE7rQhcSYlCyMIlQLqVJfgacdFKDUInO25i6hS583ul4ucuWx5Mx7DFO7s0MyKTtc5UhuwFQGpTJtEOsBGgyHbxlXa0qTsMtRjaUjw1t8LIlL9vKy03W-rCbVroaf1qY8DHstwixCP5_2h6Gr2frf3RmBUkjkiCf3P_HrQ_YGq2qCt5Dtjx_foEj5Cnz_LgMxGO2cnZ53eu_AzWO5oA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB2hcKA9oEKLCk1hD72aOPvheI9RVBQIyQWQuK3s3bFIlCYRpEL8e2ZiL6JIFQckX2xrbGt2_OatNPMG4JfRAa3VeVJxnzJl_DzJsyIkqdbWW-K7tsfdyONJNrzRF7fmdgsGsReGyyob7K8xfYPWzZVO483OajrlHl8pWZFLUpzKlHF4m9WpTAu2--ej4eQFkInUpFE0nA1eNQrPTmf-_ok7KGirKFlrwWS5-l-OeoPWmxR09gV2G-4o-vXn7cEWLvZhZxBHtu3D51fqgl9hNKjL0OcYBL36cX0nlpUYL6-kKJ8Ebbb_TL2YF8S5RcBYvCXoWG00NxdstpwHOg0P3-Dm7Pf1YJg0sxMSr3S6TgpESt02FN0iyzyROGMqUylMUavKZlL7nIf5WfTKK4NSZ6bsUvaWpgplrxfUAbQWywV-B8EeLiyqrBtKXRDBQdQGtS2MJ7hEPAQTveV8IyzO8y3mLlaQzVz0smMvu9rLh9B5sVvV0hrvWti4GO6fIHGE_-_atuPqueY3fXCS1RFZk08dfeDRJ7AzvB5fusvzyegHfOI7dUFvG1rr-7_4k2jLujxuwvIZIfLpMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+growth+of+MoS2+by+atomic+layer+deposition+on+patterned+gold+pads&rft.jtitle=Journal+of+crystal+growth&rft.au=Yue%2C+Chenxi&rft.au=Wang%2C+Yang&rft.au=Liu%2C+Hao&rft.au=Chen%2C+Lin&rft.date=2020-07-01&rft.issn=0022-0248&rft.volume=541&rft.spage=125683&rft_id=info:doi/10.1016%2Fj.jcrysgro.2020.125683&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcrysgro_2020_125683
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0248&client=summon