Controlled growth of MoS2 by atomic layer deposition on patterned gold pads
•ALD-based synthesis approach was developed for the deposition of MoS2.•Growth behaviors on various substrates were analyzed and compared.•Mechanism of MoS2 growth on Au by ALD was discussed.•Selective growth of MoS2 at controlled location was achieved using ALD. Approaches to synthesize large-area...
Saved in:
Published in | Journal of crystal growth Vol. 541; p. 125683 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.07.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •ALD-based synthesis approach was developed for the deposition of MoS2.•Growth behaviors on various substrates were analyzed and compared.•Mechanism of MoS2 growth on Au by ALD was discussed.•Selective growth of MoS2 at controlled location was achieved using ALD.
Approaches to synthesize large-area MoS2 thin films have been extensively investigated in recent years towards system-level micro-/nanoelectronics applications. Methods including chemical vapor deposition (CVD) and atomic layer deposition (ALD) can enable uniform and wafer-scale MoS2 films on insulating substrates, but without selective control on the growth location. Herein, we report a controlled growth of ultra-thin MoS2 films on Au pads patterned on insulating substrates using ALD-based techniques. Clear difference in the incubation period duration of the ALD process among different substrate surfaces has been observed. Selective growth of MoS2 can be achieved on patterned Au on SiO2/Si substrate while the incubation period is shorter on sapphire substrate as compared with that on SiO2/Si. In addition, the influence of deposition temperature on the film growth dynamics on difference surfaces has been studied. Such controlled growth of MoS2 by ALD can be very attractive in future optoelectronics applications and the synthesis on patterned Au is promising in fulfilling its application potentials such as electrocatalyst in hydrogen evolution reaction. |
---|---|
AbstractList | •ALD-based synthesis approach was developed for the deposition of MoS2.•Growth behaviors on various substrates were analyzed and compared.•Mechanism of MoS2 growth on Au by ALD was discussed.•Selective growth of MoS2 at controlled location was achieved using ALD.
Approaches to synthesize large-area MoS2 thin films have been extensively investigated in recent years towards system-level micro-/nanoelectronics applications. Methods including chemical vapor deposition (CVD) and atomic layer deposition (ALD) can enable uniform and wafer-scale MoS2 films on insulating substrates, but without selective control on the growth location. Herein, we report a controlled growth of ultra-thin MoS2 films on Au pads patterned on insulating substrates using ALD-based techniques. Clear difference in the incubation period duration of the ALD process among different substrate surfaces has been observed. Selective growth of MoS2 can be achieved on patterned Au on SiO2/Si substrate while the incubation period is shorter on sapphire substrate as compared with that on SiO2/Si. In addition, the influence of deposition temperature on the film growth dynamics on difference surfaces has been studied. Such controlled growth of MoS2 by ALD can be very attractive in future optoelectronics applications and the synthesis on patterned Au is promising in fulfilling its application potentials such as electrocatalyst in hydrogen evolution reaction. Approaches to synthesize large-area MoS2 thin films have been extensively investigated in recent years towards system-level micro-/nanoelectronics applications. Methods including chemical vapor deposition (CVD) and atomic layer deposition (ALD) can enable uniform and wafer-scale MoS2 films on insulating substrates, but without selective control on the growth location. Herein, we report a controlled growth of ultra-thin MoS2 films on Au pads patterned on insulating substrates using ALD-based techniques. Clear difference in the incubation period duration of the ALD process among different substrate surfaces has been observed. Selective growth of MoS2 can be achieved on patterned Au on SiO2/Si substrate while the incubation period is shorter on sapphire substrate as compared with that on SiO2/Si. In addition, the influence of deposition temperature on the film growth dynamics on difference surfaces has been studied. Such controlled growth of MoS2 by ALD can be very attractive in future optoelectronics applications and the synthesis on patterned Au is promising in fulfilling its application potentials such as electrocatalyst in hydrogen evolution reaction. |
ArticleNumber | 125683 |
Author | Wang, Yang Liu, Hao Sun, Qingqing Chen, Lin Yue, Chenxi Zhu, Hao |
Author_xml | – sequence: 1 givenname: Chenxi surname: Yue fullname: Yue, Chenxi – sequence: 2 givenname: Yang surname: Wang fullname: Wang, Yang – sequence: 3 givenname: Hao surname: Liu fullname: Liu, Hao – sequence: 4 givenname: Lin surname: Chen fullname: Chen, Lin – sequence: 5 givenname: Hao orcidid: 0000-0003-3890-6871 surname: Zhu fullname: Zhu, Hao email: hao_zhu@fudan.edu.cn – sequence: 6 givenname: Qingqing surname: Sun fullname: Sun, Qingqing email: qqsun@fudan.edu.cn |
BookMark | eNqFkMtKxDAUhoOM4Dj6ClJw3TGXphdwoQzecMSFug6Z5FRTOk1NMkrf3pTqxs1AOCGH8_0nfMdo1tkOEDojeEkwyS-aZaPc4N-dXVJMY5PyvGQHaE7KgqUcYzpD81hpimlWHqFj7xuMI0nwHD2ubBecbVvQSUz4Dh-JrZMn-0KTzZDIYLdGJa0cwCUaeutNMLZL4ullCOC6EbOtjk_tT9BhLVsPp7_3Ar3d3ryu7tP1893D6nqdKpbhkEqAktBKSyLzXFFGOK95zQBDxuoqp5kqMa9YBYopxoFmOd8QFhFe601RaLZA51Nu7-znDnwQjd25Lq4UNMtwVhY5Y3HqcppSznrvoBbKBDl-PzhpWkGwGPWJRvzpE6M-MemLeP4P753ZSjfsB68mEKKCLwNOeGWgU6CNAxWEtmZfxA_4do_c |
CitedBy_id | crossref_primary_10_1002_slct_202204944 crossref_primary_10_1038_s41699_024_00456_x crossref_primary_10_1039_D1QM00035G crossref_primary_10_1116_6_0000641 crossref_primary_10_1016_j_physb_2023_414896 crossref_primary_10_1088_2515_7639_abbdb1 crossref_primary_10_1002_pssr_202000533 crossref_primary_10_1002_admi_202001677 crossref_primary_10_1186_s11671_021_03596_x crossref_primary_10_1007_s11431_020_1833_4 |
Cites_doi | 10.1002/pssr.201900018 10.1039/C6NR01346E 10.1021/acsami.6b13777 10.1088/2053-1583/aa9ea5 10.1038/nnano.2012.95 10.1038/ncomms7128 10.1021/nl3002974 10.1021/acsnano.5b01281 10.1021/acsnano.5b01529 10.1038/ncomms9569 10.1038/srep38394 10.1021/acsnano.5b00081 10.1002/adma.201104798 10.1021/nn305301b 10.1021/ja201269b 10.1021/acs.nanolett.7b01393 10.1002/adma.201602854 10.1002/smll.201102654 10.1021/ja0504690 10.1021/nl403661s 10.1039/C4NR04816D 10.1039/C4NR02451F 10.1002/adfm.201401504 10.1021/nn503211t 10.1002/anie.201309474 10.1116/1.4941245 10.1021/nn503284n |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Jul 1, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Jul 1, 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.jcrysgro.2020.125683 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-5002 |
ExternalDocumentID | 10_1016_j_jcrysgro_2020_125683 S0022024820302062 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSZ T5K TN5 XPP ~02 ~G- 29K 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- RIG SEW SMS SPG SSH VH1 WUQ ZMT 7SR 7U5 8BQ 8FD AFXIZ EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c340t-aee8129da1a66c23155f5f3e0e43f9624c805939ec3c35e2465b138125fdb77d3 |
IEDL.DBID | .~1 |
ISSN | 0022-0248 |
IngestDate | Mon Jul 14 08:17:36 EDT 2025 Tue Jul 01 04:25:40 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Fri Feb 23 02:39:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | A3. Atomic layer deposition B1. Sulfides B2. Semiconducting materials |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-aee8129da1a66c23155f5f3e0e43f9624c805939ec3c35e2465b138125fdb77d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3890-6871 |
PQID | 2440487633 |
PQPubID | 2045452 |
ParticipantIDs | proquest_journals_2440487633 crossref_citationtrail_10_1016_j_jcrysgro_2020_125683 crossref_primary_10_1016_j_jcrysgro_2020_125683 elsevier_sciencedirect_doi_10_1016_j_jcrysgro_2020_125683 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 2020-07-00 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of crystal growth |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Lee, Zhang, Zhang, Chang, Lin, Chang (b0050) 2012; 24 Zhan, Liu, Najmaei (b0055) 2012; 8 Han, Kybert, Naylor (b0095) 2015; 6 Jin, Shin, Kwon (b0105) 2014; 6 Yun, Sang, Kim, Jin, Park, Gang (b0145) 2015; 9 Valdivia, Tweet, Conley (b0060) 2016; 34 Zhang, Wang, Wu (b0065) 2017; 9 Voiry, Salehi, Silva, Fujita, Chhowalla (b0040) 2013; 13 Hinnemann, Moses, Bonde (b0045) 2005; 127 Wu, Wang, Yu, Liu, Su, Hone (b0015) 2016; 28 Zhang, Wang, Xu (b0070) 2017; 5 Tian, Cao, Wu (b0140) 2012; 12 Wang, Chen, Zhang (b0130) 2019; 30 Gao, Liu, Sun (b0125) 2015; 6 Zhang, Liu, Wang (b0075) 2019; 13 Shi, Ma, Han (b0115) 2014; 8 Luo, Xu, Zhu, Wu, Mccormick, Zhan (b0025) 2017; 17 Huo, Kang, Wei, Li, Li, Wei (b0020) 2014; 24 Li, Wang, Xie (b0035) 2011; 133 Pyeon, Kim, Jeong, Baek (b0085) 2016; 8 Wang, Huang, Chen (b0100) 2016; 6 Dumcenco, Ovchinnikov, Marinov (b0135) 2015; 9 Shi, Zhang, Ma (b0110) 2015; 9 Song, Park, Hong (b0120) 2014; 53 Tan, Liu, Teng (b0080) 2014; 6 Choi, Qu, Lee, Liu, Watanabe, Taniguchi (b0010) 2014; 8 Titel, Moody (b0090) 2017; 56 Tsai, Liu, Lien, Tsai, Kang, Lin (b0005) 2013; 7 Zeng, Dai, Yao, Xiao, Cui (b0030) 2012; 7 Wang (10.1016/j.jcrysgro.2020.125683_b0100) 2016; 6 Luo (10.1016/j.jcrysgro.2020.125683_b0025) 2017; 17 Voiry (10.1016/j.jcrysgro.2020.125683_b0040) 2013; 13 Li (10.1016/j.jcrysgro.2020.125683_b0035) 2011; 133 Tan (10.1016/j.jcrysgro.2020.125683_b0080) 2014; 6 Titel (10.1016/j.jcrysgro.2020.125683_b0090) 2017; 56 Shi (10.1016/j.jcrysgro.2020.125683_b0115) 2014; 8 Zhan (10.1016/j.jcrysgro.2020.125683_b0055) 2012; 8 Zhang (10.1016/j.jcrysgro.2020.125683_b0070) 2017; 5 Pyeon (10.1016/j.jcrysgro.2020.125683_b0085) 2016; 8 Lee (10.1016/j.jcrysgro.2020.125683_b0050) 2012; 24 Zhang (10.1016/j.jcrysgro.2020.125683_b0065) 2017; 9 Shi (10.1016/j.jcrysgro.2020.125683_b0110) 2015; 9 Tsai (10.1016/j.jcrysgro.2020.125683_b0005) 2013; 7 Zeng (10.1016/j.jcrysgro.2020.125683_b0030) 2012; 7 Gao (10.1016/j.jcrysgro.2020.125683_b0125) 2015; 6 Wang (10.1016/j.jcrysgro.2020.125683_b0130) 2019; 30 Huo (10.1016/j.jcrysgro.2020.125683_b0020) 2014; 24 Choi (10.1016/j.jcrysgro.2020.125683_b0010) 2014; 8 Valdivia (10.1016/j.jcrysgro.2020.125683_b0060) 2016; 34 Dumcenco (10.1016/j.jcrysgro.2020.125683_b0135) 2015; 9 Tian (10.1016/j.jcrysgro.2020.125683_b0140) 2012; 12 Hinnemann (10.1016/j.jcrysgro.2020.125683_b0045) 2005; 127 Wu (10.1016/j.jcrysgro.2020.125683_b0015) 2016; 28 Zhang (10.1016/j.jcrysgro.2020.125683_b0075) 2019; 13 Han (10.1016/j.jcrysgro.2020.125683_b0095) 2015; 6 Song (10.1016/j.jcrysgro.2020.125683_b0120) 2014; 53 Yun (10.1016/j.jcrysgro.2020.125683_b0145) 2015; 9 Jin (10.1016/j.jcrysgro.2020.125683_b0105) 2014; 6 |
References_xml | – volume: 8 start-page: 10196 year: 2014 end-page: 10204 ident: b0115 article-title: Controllable growth and transfer of monolayer MoS publication-title: ACS Nano – volume: 9 start-page: 4017 year: 2015 end-page: 4025 ident: b0110 article-title: Substrate facet effect on the growth of monolayer MoS publication-title: ACS Nano – volume: 28 start-page: 8463 year: 2016 end-page: 8468 ident: b0015 article-title: Piezophototronic effect in single-atomic-layer MoS publication-title: Adv. Mater. – volume: 9 start-page: 5510 year: 2015 end-page: 5519 ident: b0145 article-title: Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils publication-title: ACS Nano – volume: 6 start-page: 6128 year: 2015 ident: b0095 article-title: Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations publication-title: Nat. Commun. – volume: 30 start-page: 4085 year: 2019 end-page: 4092 ident: b0130 article-title: Ni-assisted crystallization of few-layer transition metal dichalcogenide ultra-thin films publication-title: J. Mater. Sci.: Mater. Electron. – volume: 6 start-page: 8569 year: 2015 ident: b0125 article-title: Large-area synthesis of high-quality and uniform monolayer WS publication-title: Nat. Commun. – volume: 8 start-page: 10792 year: 2016 end-page: 10798 ident: b0085 article-title: Wafer-scale growth of MoS publication-title: Nanoscale – volume: 24 start-page: 7025 year: 2014 end-page: 7031 ident: b0020 article-title: Novel and enhanced optoelectronic performances of multilayer MoS publication-title: Adv. Funct. Mater. – volume: 12 start-page: 3893 year: 2012 end-page: 3899 ident: b0140 article-title: Graphene induced surface reconstruction of Cu publication-title: Nano Lett. – volume: 127 start-page: 5308 year: 2005 end-page: 5309 ident: b0045 article-title: Biomimetic hydrogen evolution: MoS publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 966 year: 2012 end-page: 971 ident: b0055 article-title: Large-area vapor-phase growth and characterization of MoS publication-title: Small – volume: 6 start-page: 14453 year: 2014 end-page: 14458 ident: b0105 article-title: Novel chemical route for atomic layer deposition of MoS2 thin film on SiO publication-title: Nanoscale – volume: 17 start-page: 3877 year: 2017 end-page: 3883 ident: b0025 article-title: Opto-valleytronic spin injection in monolayer MoS publication-title: Nano Lett. – volume: 7 start-page: 490 year: 2012 end-page: 493 ident: b0030 article-title: Valley polarization in MoS publication-title: Nat. Nanotechnol. – volume: 53 start-page: 1266 year: 2014 end-page: 1269 ident: b0120 article-title: Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition publication-title: Angew. Chem. – volume: 8 start-page: 9332 year: 2014 end-page: 9340 ident: b0010 article-title: Lateral MoS publication-title: ACS Nano – volume: 133 start-page: 7296 year: 2011 end-page: 7299 ident: b0035 article-title: MoS publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 38394 year: 2016 ident: b0100 article-title: Metal induced growth of transition metal dichalcogenides at controlled locations publication-title: Sci. Rep. – volume: 56 start-page: 1 year: 2017 end-page: 6 ident: b0090 article-title: Low-temperature atomic layer deposition of MoS2 films publication-title: Angew. Chem. Int. Ed. Engl. – volume: 34 year: 2016 ident: b0060 article-title: Atomic layer deposition of two dimensional MoS publication-title: J. Vac. Sci. Technol. A – volume: 9 start-page: 763 year: 2017 end-page: 770 ident: b0065 article-title: Shape-dependent defect structures of monolayer MoS publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 10584 year: 2014 end-page: 10588 ident: b0080 article-title: Atomic layer deposition of a MoS publication-title: Nanoscale – volume: 9 start-page: 4611 year: 2015 end-page: 4620 ident: b0135 article-title: Large-area epitaxial monolayer MoS publication-title: ACS Nano – volume: 13 start-page: 1900018 year: 2019 ident: b0075 article-title: Fast-response inverter arrays built on wafer-scale MoS publication-title: Phys. Status Solidi RRL – volume: 5 year: 2017 ident: b0070 article-title: High performance few-layer MoS publication-title: 2D Mater – volume: 7 start-page: 3905 year: 2013 end-page: 3911 ident: b0005 article-title: Few-layer MoS publication-title: ACS Nano – volume: 13 start-page: 6222 year: 2013 end-page: 6227 ident: b0040 article-title: Conducting MoS publication-title: Nano Lett. – volume: 24 start-page: 2320 year: 2012 end-page: 2325 ident: b0050 article-title: Synthesis of large-area MoS publication-title: Adv. Mater. – volume: 13 start-page: 1900018 year: 2019 ident: 10.1016/j.jcrysgro.2020.125683_b0075 article-title: Fast-response inverter arrays built on wafer-scale MoS2 by atomic layer deposition publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.201900018 – volume: 8 start-page: 10792 year: 2016 ident: 10.1016/j.jcrysgro.2020.125683_b0085 article-title: Wafer-scale growth of MoS2 thin films by atomic layer deposition publication-title: Nanoscale doi: 10.1039/C6NR01346E – volume: 30 start-page: 4085 year: 2019 ident: 10.1016/j.jcrysgro.2020.125683_b0130 article-title: Ni-assisted crystallization of few-layer transition metal dichalcogenide ultra-thin films publication-title: J. Mater. Sci.: Mater. Electron. – volume: 9 start-page: 763 year: 2017 ident: 10.1016/j.jcrysgro.2020.125683_b0065 article-title: Shape-dependent defect structures of monolayer MoS2 crystals grown by chemical vapor deposition publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13777 – volume: 5 year: 2017 ident: 10.1016/j.jcrysgro.2020.125683_b0070 article-title: High performance few-layer MoS2 transistor arrays with wafer level homogeneity integrated by atomic layer deposition publication-title: 2D Mater doi: 10.1088/2053-1583/aa9ea5 – volume: 7 start-page: 490 year: 2012 ident: 10.1016/j.jcrysgro.2020.125683_b0030 article-title: Valley polarization in MoS2 monolayers by optical pumping publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.95 – volume: 6 start-page: 6128 year: 2015 ident: 10.1016/j.jcrysgro.2020.125683_b0095 article-title: Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations publication-title: Nat. Commun. doi: 10.1038/ncomms7128 – volume: 12 start-page: 3893 year: 2012 ident: 10.1016/j.jcrysgro.2020.125683_b0140 article-title: Graphene induced surface reconstruction of Cu publication-title: Nano Lett. doi: 10.1021/nl3002974 – volume: 9 start-page: 4611 year: 2015 ident: 10.1016/j.jcrysgro.2020.125683_b0135 article-title: Large-area epitaxial monolayer MoS2 publication-title: ACS Nano doi: 10.1021/acsnano.5b01281 – volume: 9 start-page: 5510 year: 2015 ident: 10.1016/j.jcrysgro.2020.125683_b0145 article-title: Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils publication-title: ACS Nano doi: 10.1021/acsnano.5b01529 – volume: 6 start-page: 8569 year: 2015 ident: 10.1016/j.jcrysgro.2020.125683_b0125 article-title: Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils publication-title: Nat. Commun. doi: 10.1038/ncomms9569 – volume: 6 start-page: 38394 year: 2016 ident: 10.1016/j.jcrysgro.2020.125683_b0100 article-title: Metal induced growth of transition metal dichalcogenides at controlled locations publication-title: Sci. Rep. doi: 10.1038/srep38394 – volume: 56 start-page: 1 year: 2017 ident: 10.1016/j.jcrysgro.2020.125683_b0090 article-title: Low-temperature atomic layer deposition of MoS2 films publication-title: Angew. Chem. Int. Ed. Engl. – volume: 9 start-page: 4017 year: 2015 ident: 10.1016/j.jcrysgro.2020.125683_b0110 article-title: Substrate facet effect on the growth of monolayer MoS2 on Au foils publication-title: ACS Nano doi: 10.1021/acsnano.5b00081 – volume: 24 start-page: 2320 year: 2012 ident: 10.1016/j.jcrysgro.2020.125683_b0050 article-title: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition publication-title: Adv. Mater. doi: 10.1002/adma.201104798 – volume: 7 start-page: 3905 year: 2013 ident: 10.1016/j.jcrysgro.2020.125683_b0005 article-title: Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments publication-title: ACS Nano doi: 10.1021/nn305301b – volume: 133 start-page: 7296 year: 2011 ident: 10.1016/j.jcrysgro.2020.125683_b0035 article-title: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201269b – volume: 17 start-page: 3877 year: 2017 ident: 10.1016/j.jcrysgro.2020.125683_b0025 article-title: Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01393 – volume: 28 start-page: 8463 year: 2016 ident: 10.1016/j.jcrysgro.2020.125683_b0015 article-title: Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics publication-title: Adv. Mater. doi: 10.1002/adma.201602854 – volume: 8 start-page: 966 year: 2012 ident: 10.1016/j.jcrysgro.2020.125683_b0055 article-title: Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate publication-title: Small doi: 10.1002/smll.201102654 – volume: 127 start-page: 5308 year: 2005 ident: 10.1016/j.jcrysgro.2020.125683_b0045 article-title: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0504690 – volume: 13 start-page: 6222 year: 2013 ident: 10.1016/j.jcrysgro.2020.125683_b0040 article-title: Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction publication-title: Nano Lett. doi: 10.1021/nl403661s – volume: 6 start-page: 14453 year: 2014 ident: 10.1016/j.jcrysgro.2020.125683_b0105 article-title: Novel chemical route for atomic layer deposition of MoS2 thin film on SiO2/Si substrate publication-title: Nanoscale doi: 10.1039/C4NR04816D – volume: 6 start-page: 10584 year: 2014 ident: 10.1016/j.jcrysgro.2020.125683_b0080 article-title: Atomic layer deposition of a MoS2 film publication-title: Nanoscale doi: 10.1039/C4NR02451F – volume: 24 start-page: 7025 year: 2014 ident: 10.1016/j.jcrysgro.2020.125683_b0020 article-title: Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401504 – volume: 8 start-page: 10196 year: 2014 ident: 10.1016/j.jcrysgro.2020.125683_b0115 article-title: Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction publication-title: ACS Nano doi: 10.1021/nn503211t – volume: 53 start-page: 1266 year: 2014 ident: 10.1016/j.jcrysgro.2020.125683_b0120 article-title: Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition publication-title: Angew. Chem. doi: 10.1002/anie.201309474 – volume: 34 year: 2016 ident: 10.1016/j.jcrysgro.2020.125683_b0060 article-title: Atomic layer deposition of two dimensional MoS2 on 150 mm substrates publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.4941245 – volume: 8 start-page: 9332 year: 2014 ident: 10.1016/j.jcrysgro.2020.125683_b0010 article-title: Lateral MoS2 p-n junction formed by chemical doping for use in high performance optoelectronics publication-title: ACS Nano doi: 10.1021/nn503284n |
SSID | ssj0001610 |
Score | 2.3662972 |
Snippet | •ALD-based synthesis approach was developed for the deposition of MoS2.•Growth behaviors on various substrates were analyzed and compared.•Mechanism of MoS2... Approaches to synthesize large-area MoS2 thin films have been extensively investigated in recent years towards system-level micro-/nanoelectronics... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 125683 |
SubjectTerms | A3. Atomic layer deposition Atomic layer epitaxy B1. Sulfides B2. Semiconducting materials Chemical vapor deposition Electrocatalysts Film growth Hydrogen evolution reactions Molybdenum disulfide Nanoelectronics Optoelectronics Sapphire Silicon dioxide Silicon substrates Thin films |
Title | Controlled growth of MoS2 by atomic layer deposition on patterned gold pads |
URI | https://dx.doi.org/10.1016/j.jcrysgro.2020.125683 https://www.proquest.com/docview/2440487633 |
Volume | 541 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ED-pBtCrWF3vwGpvuI80epShVsRcVvC3J7gRbaltsRXrxtzuTZH2BeBBy2ZBJwmTyzbcw8w1jJ1p5MEalUUF9ypjx0yhNMh_FShlnkO-aDnUj3_ST3r26etAPS6wbemGorLLG_grTS7Suz7Rqb7amgwH1-ApBilwC41TEJQ4r1aEoP337LPNARhMHxXC6-kuX8PB06J4X1D6B-0RBQgs6SeVvCeoHVJf552KTbdTEkZ9V77bFlmDcYKvdMK-twda_SAtus-tuVYM-As_x0a_zRz4p-M3kVvB8wXGn_TRwfJQh4eYeQuUWx2NaCm6OyWwy8rj0sx12f3F-1-1F9eCEyEkVz6MMAPO28Vk7SxKHDE7rQhcSYlCyMIlQLqVJfgacdFKDUInO25i6hS583ul4ucuWx5Mx7DFO7s0MyKTtc5UhuwFQGpTJtEOsBGgyHbxlXa0qTsMtRjaUjw1t8LIlL9vKy03W-rCbVroaf1qY8DHstwixCP5_2h6Gr2frf3RmBUkjkiCf3P_HrQ_YGq2qCt5Dtjx_foEj5Cnz_LgMxGO2cnZ53eu_AzWO5oA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB2hcKA9oEKLCk1hD72aOPvheI9RVBQIyQWQuK3s3bFIlCYRpEL8e2ZiL6JIFQckX2xrbGt2_OatNPMG4JfRAa3VeVJxnzJl_DzJsyIkqdbWW-K7tsfdyONJNrzRF7fmdgsGsReGyyob7K8xfYPWzZVO483OajrlHl8pWZFLUpzKlHF4m9WpTAu2--ej4eQFkInUpFE0nA1eNQrPTmf-_ok7KGirKFlrwWS5-l-OeoPWmxR09gV2G-4o-vXn7cEWLvZhZxBHtu3D51fqgl9hNKjL0OcYBL36cX0nlpUYL6-kKJ8Ebbb_TL2YF8S5RcBYvCXoWG00NxdstpwHOg0P3-Dm7Pf1YJg0sxMSr3S6TgpESt02FN0iyzyROGMqUylMUavKZlL7nIf5WfTKK4NSZ6bsUvaWpgplrxfUAbQWywV-B8EeLiyqrBtKXRDBQdQGtS2MJ7hEPAQTveV8IyzO8y3mLlaQzVz0smMvu9rLh9B5sVvV0hrvWti4GO6fIHGE_-_atuPqueY3fXCS1RFZk08dfeDRJ7AzvB5fusvzyegHfOI7dUFvG1rr-7_4k2jLujxuwvIZIfLpMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+growth+of+MoS2+by+atomic+layer+deposition+on+patterned+gold+pads&rft.jtitle=Journal+of+crystal+growth&rft.au=Yue%2C+Chenxi&rft.au=Wang%2C+Yang&rft.au=Liu%2C+Hao&rft.au=Chen%2C+Lin&rft.date=2020-07-01&rft.issn=0022-0248&rft.volume=541&rft.spage=125683&rft_id=info:doi/10.1016%2Fj.jcrysgro.2020.125683&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcrysgro_2020_125683 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0248&client=summon |