Surface nanocrystallization of body-centered cubic beta phase in Ti–6Al–4V alloy subjected to ultrasonic surface rolling process

The nanocrystallization mechanism of a body-centered cubic β phase in Ti–6Al–4V alloy subjected to ultrasonic surface rolling process was investigated. A gradient nanostructure (thickness: ~400 μm) that the β grain size in thickness gradually changes from ~0.76 μm in the interior to ~36.5 nm at the...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 361; pp. 35 - 41
Main Authors Ao, Ni, Liu, Daoxin, Zhang, Xiaohua, Liu, Chengsong, Yang, Jing, Liu, Dan
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.03.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0257-8972
1879-3347
DOI10.1016/j.surfcoat.2019.01.045

Cover

Abstract The nanocrystallization mechanism of a body-centered cubic β phase in Ti–6Al–4V alloy subjected to ultrasonic surface rolling process was investigated. A gradient nanostructure (thickness: ~400 μm) that the β grain size in thickness gradually changes from ~0.76 μm in the interior to ~36.5 nm at the topmost surface was formed in Ti–6Al–4V alloy surface layer. The gradient nanostructure of the β phase is formed primarily via dislocation activities without the occurrence of deformation twinning. Dislocations were first generated in β phase at the phase boundaries where a high density of dislocations occurred in α phase. The coarse β grains were then gradually transformed into equiaxed nano grains via longitudinal splitting and transverse breakdown, which are induced by dislocation glide, entanglement, accumulation, and rearrangement. Additionally, with increasing strain, the β nanograins will be further refined via dislocation activities. •The softer β phase deforms after α phase in USRP-treated Ti–6Al–4V alloy.•β phase deforms mainly via dislocation motion without twinning occurring.•Dislocations in β phase initiate at the α/β phase boundaries.•There is no shear band observed during deformation.
AbstractList The nanocrystallization mechanism of a body-centered cubic β phase in Ti–6Al–4V alloy subjected to ultrasonic surface rolling process was investigated. A gradient nanostructure (thickness: ~400 μm) that the β grain size in thickness gradually changes from ~0.76 μm in the interior to ~36.5 nm at the topmost surface was formed in Ti–6Al–4V alloy surface layer. The gradient nanostructure of the β phase is formed primarily via dislocation activities without the occurrence of deformation twinning. Dislocations were first generated in β phase at the phase boundaries where a high density of dislocations occurred in α phase. The coarse β grains were then gradually transformed into equiaxed nano grains via longitudinal splitting and transverse breakdown, which are induced by dislocation glide, entanglement, accumulation, and rearrangement. Additionally, with increasing strain, the β nanograins will be further refined via dislocation activities.
The nanocrystallization mechanism of a body-centered cubic β phase in Ti–6Al–4V alloy subjected to ultrasonic surface rolling process was investigated. A gradient nanostructure (thickness: ~400 μm) that the β grain size in thickness gradually changes from ~0.76 μm in the interior to ~36.5 nm at the topmost surface was formed in Ti–6Al–4V alloy surface layer. The gradient nanostructure of the β phase is formed primarily via dislocation activities without the occurrence of deformation twinning. Dislocations were first generated in β phase at the phase boundaries where a high density of dislocations occurred in α phase. The coarse β grains were then gradually transformed into equiaxed nano grains via longitudinal splitting and transverse breakdown, which are induced by dislocation glide, entanglement, accumulation, and rearrangement. Additionally, with increasing strain, the β nanograins will be further refined via dislocation activities. •The softer β phase deforms after α phase in USRP-treated Ti–6Al–4V alloy.•β phase deforms mainly via dislocation motion without twinning occurring.•Dislocations in β phase initiate at the α/β phase boundaries.•There is no shear band observed during deformation.
Author Liu, Chengsong
Yang, Jing
Liu, Daoxin
Zhang, Xiaohua
Ao, Ni
Liu, Dan
Author_xml – sequence: 1
  givenname: Ni
  surname: Ao
  fullname: Ao, Ni
– sequence: 2
  givenname: Daoxin
  surname: Liu
  fullname: Liu, Daoxin
  email: liudaox@nwpu.edu.cn
– sequence: 3
  givenname: Xiaohua
  surname: Zhang
  fullname: Zhang, Xiaohua
– sequence: 4
  givenname: Chengsong
  surname: Liu
  fullname: Liu, Chengsong
– sequence: 5
  givenname: Jing
  surname: Yang
  fullname: Yang, Jing
– sequence: 6
  givenname: Dan
  surname: Liu
  fullname: Liu, Dan
BookMark eNqFkL1uFTEQRi0UJG4Cr4Aspd7N2Ptjr0SRKCIBKRIFgdbyeseJV4t9Y3uRLhUFb8Ab8iT4cpOGJs24mO_MJ59jcuSDR0LeMqgZsP5srtMarQk61xzYUAOroe1ekA2TYqiaphVHZAO8E5UcBH9FjlOaAYCJod2QX58Lqw1Sr30wcZeyXhb3Q2cXPA2WjmHaVQZ9xogTNevoDB0xa7q91wmp8_TW_fn5u79Yymy_0kKHHU3rOKPJhciBrkuOOgVfyPRYFkMp8Xd0G4PBlF6Tl1YvCd88vifky9X728sP1c2n64-XFzeVaVrIlTbjMPJ2wM4yAVwCtGboUY56lBYn21kp-6HsrG7YJDkTbQOCS9OBmUq0OSGnh7ul92HFlNUc1uhLpeIcGsZE0-9T7w4pE0NKEa0yLv8TUv7hFsVA7b2rWT15V3vvCpgq3gve_4dvo_um4-558PwAYlHw3WFUyTj0BicXi0w1Bffcib8Kraha
CitedBy_id crossref_primary_10_1016_j_surfcoat_2022_128807
crossref_primary_10_1016_j_jmrt_2025_01_009
crossref_primary_10_1016_j_jmapro_2021_09_058
crossref_primary_10_3390_coatings11070812
crossref_primary_10_1016_j_jallcom_2023_172549
crossref_primary_10_1016_j_apsusc_2019_144711
crossref_primary_10_1002_adem_202401100
crossref_primary_10_1016_j_intermet_2020_106780
crossref_primary_10_3390_coatings13010060
crossref_primary_10_1016_j_cirpj_2023_03_003
crossref_primary_10_1016_j_ijfatigue_2020_105970
crossref_primary_10_1016_j_triboint_2022_107818
crossref_primary_10_1016_j_jmatprotec_2021_117068
crossref_primary_10_1016_j_jmrt_2021_05_065
crossref_primary_10_1016_j_jallcom_2025_178898
crossref_primary_10_1016_j_jmrt_2020_08_106
crossref_primary_10_1016_j_jmrt_2024_06_116
crossref_primary_10_1007_s40436_022_00435_9
crossref_primary_10_1116_6_0001801
crossref_primary_10_1016_j_matchemphys_2023_128410
crossref_primary_10_1016_j_surfcoat_2021_127566
crossref_primary_10_1016_j_surfcoat_2022_128513
crossref_primary_10_1016_j_apsusc_2020_147941
crossref_primary_10_1088_1742_6596_1345_3_032031
crossref_primary_10_1016_j_surfcoat_2023_130047
crossref_primary_10_1007_s12598_022_02075_1
crossref_primary_10_1016_j_surfcoat_2023_130167
crossref_primary_10_1016_j_surfcoat_2021_127088
crossref_primary_10_1007_s00170_019_04648_4
crossref_primary_10_1016_j_ijfatigue_2021_106391
crossref_primary_10_1134_S1029959922030055
crossref_primary_10_1016_j_triboint_2023_109216
crossref_primary_10_1016_j_smmf_2024_100056
crossref_primary_10_1016_j_jallcom_2021_161393
crossref_primary_10_1016_j_jmrt_2024_06_091
crossref_primary_10_1016_j_surfcoat_2022_129033
crossref_primary_10_1016_j_jmrt_2024_01_020
crossref_primary_10_3390_met13101719
crossref_primary_10_3390_ma18020378
crossref_primary_10_1016_j_jmrt_2021_01_013
crossref_primary_10_1016_j_jallcom_2023_169507
crossref_primary_10_1016_j_matdes_2021_110117
crossref_primary_10_1016_j_jallcom_2023_169704
crossref_primary_10_3390_app112210986
crossref_primary_10_1007_s00170_021_06967_x
crossref_primary_10_1007_s11665_023_09086_8
crossref_primary_10_1007_s00170_020_06503_3
crossref_primary_10_1016_j_ijfatigue_2022_106794
crossref_primary_10_1016_j_surfcoat_2019_124971
crossref_primary_10_1016_j_msea_2021_141911
crossref_primary_10_1016_j_surfcoat_2024_131573
crossref_primary_10_1007_s11665_021_06483_9
crossref_primary_10_1016_j_jmrt_2020_05_096
crossref_primary_10_1016_j_msea_2023_145394
crossref_primary_10_1016_j_jmrt_2021_01_091
crossref_primary_10_1016_j_jmrt_2025_02_248
crossref_primary_10_1007_s00170_020_06084_1
Cites_doi 10.1016/j.actamat.2004.05.023
10.1016/j.jsv.2007.03.054
10.1016/j.actamat.2017.01.050
10.1016/j.actamat.2014.12.057
10.1016/j.msea.2014.06.114
10.1016/j.actamat.2006.09.018
10.1016/j.apsusc.2014.09.068
10.1007/s00170-016-8659-4
10.1016/j.actamat.2009.08.005
10.1016/j.msea.2018.10.098
10.1016/j.actamat.2010.05.007
10.1016/j.apsusc.2015.04.137
10.1016/j.jallcom.2017.06.127
10.1016/j.actamat.2010.03.026
10.1016/S1359-6454(02)00310-5
10.1016/j.matdes.2017.01.006
10.1016/j.actamat.2010.06.010
10.1016/j.apsusc.2008.06.034
10.1179/1743284715Y.0000000042
10.1016/j.jallcom.2015.06.268
10.1016/j.actamat.2006.07.013
10.1016/j.msea.2016.05.088
10.1016/j.matlet.2016.09.077
10.1016/j.actamat.2018.04.035
10.3390/ma10070833
10.1016/j.ultsonch.2017.03.061
10.1016/j.msea.2010.07.054
10.1016/j.matdes.2016.03.162
10.1016/j.msea.2015.06.072
10.1016/j.matchar.2018.09.004
10.1016/j.intermet.2011.03.020
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Mar 15, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 15, 2019
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
JG9
DOI 10.1016/j.surfcoat.2019.01.045
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
EndPage 41
ExternalDocumentID 10_1016_j_surfcoat_2019_01_045
S0257897219300544
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SEW
SMS
SPG
SSH
WUQ
7QQ
7SR
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c340t-acb9b249e5f17028004c96e8bab8fedf5f8869f17fa31d8217430728c50cd4c93
IEDL.DBID AIKHN
ISSN 0257-8972
IngestDate Sun Sep 07 03:31:36 EDT 2025
Thu Apr 24 23:02:48 EDT 2025
Tue Jul 01 03:07:45 EDT 2025
Fri Feb 23 02:32:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords β phase
Titanium alloy
Ultrasonic surface rolling process
Gradient nanostructure
Nanocrystallization mechanism
Dislocation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-acb9b249e5f17028004c96e8bab8fedf5f8869f17fa31d8217430728c50cd4c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2203117369
PQPubID 2045394
PageCount 7
ParticipantIDs proquest_journals_2203117369
crossref_citationtrail_10_1016_j_surfcoat_2019_01_045
crossref_primary_10_1016_j_surfcoat_2019_01_045
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2019_01_045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-15
PublicationDateYYYYMMDD 2019-03-15
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-15
  day: 15
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Tao, Wang, Tong, Sui, Lu, Lu (bb0005) 2002; 50
Sun, Shi, Zhang, Lu (bb0080) 2007; 55
Ye, Telang, Gill, Suslov, Idell, Zweiacker, Wiezorek, Zhou, Qian, Mannava, Vasudevan (bb0045) 2014; 613
Panin, Kazachenok, Kozelskaya, Balokhonov, Romanova, Perevalova, Pochivalov (bb0020) 2017; 117
Dekhtyar, Mordyuk, Savvakin, Bondarchuk, Moiseeva, Khripta (bb0150) 2015; 641
Bagherifard, Slawik, Fernandez-Pariente, Pauly, Muecklich, Guagliano (bb0010) 2016; 102
Liu, Li (bb0095) 2016; 669
Li, Qu, Xie, Ren, Li (bb0065) 2017; 10
Lu, Luo, Zhang, Cui, Sun, Zhou, Zhang, You, Chen, Zhong (bb0075) 2010; 58
Hu, Chu, Wu, Xu, Sun, Hung, Yeung, Wu, Li, Chu (bb0025) 2011; 19
Wu, Zhang, Zhang, Pyoun, Murakami (bb0125) 2014; 321
Zhou, He, Luo, Long, Wang, Nie, He, Shen, Li (bb0105) 2016; 655
Yang, Zhang, Qiao (bb0160) 2017; 722
Ao, Liu, Liu, Zhang, Liu (bb0135) 2018; 145
Huang, Wang, Lu, Lu (bb0030) 2015; 87
Yang, Cizek, Hodgson, Wen (bb0085) 2010; 58
Lu, Sun, Li, Xiong (bb0060) 2016; 87
Ting, Dongpo, Gang, Baoming, Ningxia (bb0055) 2008; 255
Wang, Tao, Liu, Lu, Lu (bb0140) 2006; 54
Liu, Li, Tang, Chen, Wang, Song (bb0050) 2015; 31
Kheradmandfard, Kashani-Bozorg, Kim, Hanzaki, Pyoun, Kim, Amanov, Kim (bb0120) 2017; 39
Lu, Wu, Sun, Luo, Zhang, Cai, Cui, Luo (bb0015) 2017; 127
Gao, Huang, Guan, Knowles, Ma, Dye, Rainforth (bb0130) 2018; 152
Liu, Liu, Zhang, Yu, Zhao (bb0035) 2017; 10
Lu, Luo, Zhang, Sun, Gu, Zhou, Ren, Zhang, Zhang, Chen, Cui, Jiang, Feng, Zhang (bb0070) 2010; 58
Ao, Liu, Chen, Zhang, Liu (bb0155) 2019; 742
Mordyuk, Prokopenko (bb0040) 2007; 308
Jin, Cui, Song, Zhou (bb0090) 2015; 347
Villegas, Shaw (bb0100) 2009; 57
Zhu, Vassel, Brisset, Lu, Lu (bb0110) 2004; 52
Liu, Li (bb0115) 2016; 185
N. Li, Y.D. Wang, R.L. Peng, X. Sun, P.K. Liaw, G.L. Wu, L. Wang, H.N. Cai, Localized amorphism after high-strain-rate deformation in TWIP steel, Acta Mater. 59(2011) 6369–6377.
Chen, Sun, Xiao, Sun (bb0145) 2010; 527
Lu (10.1016/j.surfcoat.2019.01.045_bb0075) 2010; 58
Villegas (10.1016/j.surfcoat.2019.01.045_bb0100) 2009; 57
Zhou (10.1016/j.surfcoat.2019.01.045_bb0105) 2016; 655
Liu (10.1016/j.surfcoat.2019.01.045_bb0095) 2016; 669
Yang (10.1016/j.surfcoat.2019.01.045_bb0085) 2010; 58
Gao (10.1016/j.surfcoat.2019.01.045_bb0130) 2018; 152
Lu (10.1016/j.surfcoat.2019.01.045_bb0060) 2016; 87
Li (10.1016/j.surfcoat.2019.01.045_bb0065) 2017; 10
Dekhtyar (10.1016/j.surfcoat.2019.01.045_bb0150) 2015; 641
Panin (10.1016/j.surfcoat.2019.01.045_bb0020) 2017; 117
Lu (10.1016/j.surfcoat.2019.01.045_bb0015) 2017; 127
Ye (10.1016/j.surfcoat.2019.01.045_bb0045) 2014; 613
Ao (10.1016/j.surfcoat.2019.01.045_bb0155) 2019; 742
Zhu (10.1016/j.surfcoat.2019.01.045_bb0110) 2004; 52
Bagherifard (10.1016/j.surfcoat.2019.01.045_bb0010) 2016; 102
Huang (10.1016/j.surfcoat.2019.01.045_bb0030) 2015; 87
Jin (10.1016/j.surfcoat.2019.01.045_bb0090) 2015; 347
Ting (10.1016/j.surfcoat.2019.01.045_bb0055) 2008; 255
Liu (10.1016/j.surfcoat.2019.01.045_bb0035) 2017; 10
10.1016/j.surfcoat.2019.01.045_bb0165
Sun (10.1016/j.surfcoat.2019.01.045_bb0080) 2007; 55
Liu (10.1016/j.surfcoat.2019.01.045_bb0050) 2015; 31
Lu (10.1016/j.surfcoat.2019.01.045_bb0070) 2010; 58
Ao (10.1016/j.surfcoat.2019.01.045_bb0135) 2018; 145
Yang (10.1016/j.surfcoat.2019.01.045_bb0160) 2017; 722
Chen (10.1016/j.surfcoat.2019.01.045_bb0145) 2010; 527
Wang (10.1016/j.surfcoat.2019.01.045_bb0140) 2006; 54
Wu (10.1016/j.surfcoat.2019.01.045_bb0125) 2014; 321
Tao (10.1016/j.surfcoat.2019.01.045_bb0005) 2002; 50
Kheradmandfard (10.1016/j.surfcoat.2019.01.045_bb0120) 2017; 39
Hu (10.1016/j.surfcoat.2019.01.045_bb0025) 2011; 19
Mordyuk (10.1016/j.surfcoat.2019.01.045_bb0040) 2007; 308
Liu (10.1016/j.surfcoat.2019.01.045_bb0115) 2016; 185
References_xml – volume: 58
  start-page: 3984
  year: 2010
  end-page: 3994
  ident: bb0075
  article-title: Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts
  publication-title: Acta Mater.
– volume: 52
  start-page: 4101
  year: 2004
  end-page: 4110
  ident: bb0110
  article-title: Nanostructure formation mechanism of alpha-titanium using SMAT
  publication-title: Acta Mater.
– volume: 58
  start-page: 4536
  year: 2010
  end-page: 4548
  ident: bb0085
  article-title: Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium
  publication-title: Acta Mater.
– volume: 55
  start-page: 975
  year: 2007
  end-page: 982
  ident: bb0080
  article-title: Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy
  publication-title: Acta Mater.
– volume: 39
  start-page: 698
  year: 2017
  end-page: 706
  ident: bb0120
  article-title: Nanostructured beta-type titanium alloy fabricated by ultrasonic nanocrystal surface modification
  publication-title: Ultrason. Sonochem.
– volume: 527
  start-page: 7225
  year: 2010
  end-page: 7234
  ident: bb0145
  article-title: Deformation-induced microstructure refinement in primary alpha phase-containing Ti-10V-2Fe-3Al alloy
  publication-title: Mater. Sci. Eng. A
– volume: 145
  start-page: 527
  year: 2018
  end-page: 533
  ident: bb0135
  article-title: Face-centered titanium induced by ultrasonic surface rolling process in Ti-6Al-4V alloy and its tensile behavior
  publication-title: Mater. Charact.
– volume: 321
  start-page: 318
  year: 2014
  end-page: 330
  ident: bb0125
  article-title: Effect of ultrasonic nanocrystal surface modification on surface and fatigue properties of quenching and tempering S45C steel
  publication-title: Appl. Surf. Sci.
– volume: 10
  year: 2017
  ident: bb0035
  article-title: Effect of the ultrasonic surface rolling process on the fretting fatigue behavior of Ti-6Al-4V alloy
  publication-title: Materials
– volume: 87
  start-page: 2533
  year: 2016
  end-page: 2539
  ident: bb0060
  article-title: Study on surface characteristics of 7050-T7451 aluminum alloy by ultrasonic surface rolling process
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 308
  start-page: 855
  year: 2007
  end-page: 866
  ident: bb0040
  article-title: Ultrasonic impact peening for the surface properties' management
  publication-title: J. Sound Vib.
– volume: 742
  start-page: 820
  year: 2019
  end-page: 834
  ident: bb0155
  article-title: Gradient nanostructure evolution and phase transformation of α phase in Ti-6Al-4V alloy induced by ultrasonic surface rolling process
  publication-title: Mater. Sci. Eng. A
– reference: N. Li, Y.D. Wang, R.L. Peng, X. Sun, P.K. Liaw, G.L. Wu, L. Wang, H.N. Cai, Localized amorphism after high-strain-rate deformation in TWIP steel, Acta Mater. 59(2011) 6369–6377.
– volume: 58
  start-page: 5354
  year: 2010
  end-page: 5362
  ident: bb0070
  article-title: Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel
  publication-title: Acta Mater.
– volume: 185
  start-page: 488
  year: 2016
  end-page: 490
  ident: bb0115
  article-title: Deformation mechanisms of nanocrystalline alpha titanium in Ti-6Al-4V
  publication-title: Mater. Lett.
– volume: 57
  start-page: 5782
  year: 2009
  end-page: 5795
  ident: bb0100
  article-title: Nanocrystallization process and mechanism in a nickel alloy subjected to surface severe plastic deformation
  publication-title: Acta Mater.
– volume: 31
  start-page: 1572
  year: 2015
  end-page: 1576
  ident: bb0050
  article-title: Improvement of surface properties of 2316 stainless steel with ultrasonic electric surface modification
  publication-title: Mater. Sci. Tech.-Lond.
– volume: 87
  start-page: 150
  year: 2015
  end-page: 160
  ident: bb0030
  article-title: Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer
  publication-title: Acta Mater.
– volume: 152
  start-page: 301
  year: 2018
  end-page: 314
  ident: bb0130
  article-title: Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate
  publication-title: Acta Mater.
– volume: 102
  start-page: 68
  year: 2016
  end-page: 77
  ident: bb0010
  article-title: Nanoscale surface modification of AISI 316L stainless steel by severe shot peening
  publication-title: Mater. Des.
– volume: 127
  start-page: 252
  year: 2017
  end-page: 266
  ident: bb0015
  article-title: Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts
  publication-title: Acta Mater.
– volume: 722
  start-page: 509
  year: 2017
  end-page: 516
  ident: bb0160
  article-title: Microstructure characteristics and formation mechanism of TC17 titanium alloy induced by laser shock processing
  publication-title: J. Alloys Compd.
– volume: 10
  year: 2017
  ident: bb0065
  article-title: Effect of multi-pass ultrasonic surface rolling on the mechanical and fatigue properties of HIP Ti-6Al-4V alloy
  publication-title: Dent. Mater.
– volume: 613
  start-page: 274
  year: 2014
  end-page: 288
  ident: bb0045
  article-title: Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility
  publication-title: Mater. Sci. Eng. A
– volume: 54
  start-page: 5281
  year: 2006
  end-page: 5291
  ident: bb0140
  article-title: Plastic strain-induced grain refinement at the nanometer scale in copper
  publication-title: Acta Mater.
– volume: 655
  start-page: 66
  year: 2016
  end-page: 70
  ident: bb0105
  article-title: Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel
  publication-title: J. Alloys Compd.
– volume: 347
  start-page: 553
  year: 2015
  end-page: 560
  ident: bb0090
  article-title: The formation mechanisms of surface nanocrystallites in beta-type biomedical TiNbZrFe alloy by surface mechanical attrition treatment
  publication-title: Appl. Surf. Sci.
– volume: 19
  start-page: 1136
  year: 2011
  end-page: 1145
  ident: bb0025
  article-title: Microstructural evolution in NiTi alloy subjected to surface mechanical attrition treatment and mechanism
  publication-title: Intermetallics
– volume: 50
  start-page: 4603
  year: 2002
  end-page: 4616
  ident: bb0005
  article-title: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment
  publication-title: Acta Mater.
– volume: 669
  start-page: 7
  year: 2016
  end-page: 13
  ident: bb0095
  article-title: Nanocrystallization mechanism of beta phase in Ti-6Al-4V subjected to severe plastic deformation
  publication-title: Mater. Sci. Eng. A
– volume: 641
  start-page: 348
  year: 2015
  end-page: 359
  ident: bb0150
  article-title: Enhanced fatigue behavior of powder metallurgy Ti-6A1-4V alloy by applying ultrasonic impact treatment
  publication-title: Mater. Sci. Eng. A
– volume: 255
  start-page: 1824
  year: 2008
  end-page: 1829
  ident: bb0055
  article-title: Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing
  publication-title: Appl. Surf. Sci.
– volume: 117
  start-page: 371
  year: 2017
  end-page: 381
  ident: bb0020
  article-title: The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension
  publication-title: Mater. Des.
– volume: 52
  start-page: 4101
  year: 2004
  ident: 10.1016/j.surfcoat.2019.01.045_bb0110
  article-title: Nanostructure formation mechanism of alpha-titanium using SMAT
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.05.023
– volume: 308
  start-page: 855
  year: 2007
  ident: 10.1016/j.surfcoat.2019.01.045_bb0040
  article-title: Ultrasonic impact peening for the surface properties' management
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2007.03.054
– volume: 127
  start-page: 252
  year: 2017
  ident: 10.1016/j.surfcoat.2019.01.045_bb0015
  article-title: Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.01.050
– volume: 87
  start-page: 150
  year: 2015
  ident: 10.1016/j.surfcoat.2019.01.045_bb0030
  article-title: Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.12.057
– volume: 613
  start-page: 274
  year: 2014
  ident: 10.1016/j.surfcoat.2019.01.045_bb0045
  article-title: Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.06.114
– volume: 55
  start-page: 975
  year: 2007
  ident: 10.1016/j.surfcoat.2019.01.045_bb0080
  article-title: Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.09.018
– volume: 321
  start-page: 318
  year: 2014
  ident: 10.1016/j.surfcoat.2019.01.045_bb0125
  article-title: Effect of ultrasonic nanocrystal surface modification on surface and fatigue properties of quenching and tempering S45C steel
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.09.068
– volume: 87
  start-page: 2533
  year: 2016
  ident: 10.1016/j.surfcoat.2019.01.045_bb0060
  article-title: Study on surface characteristics of 7050-T7451 aluminum alloy by ultrasonic surface rolling process
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-8659-4
– volume: 57
  start-page: 5782
  year: 2009
  ident: 10.1016/j.surfcoat.2019.01.045_bb0100
  article-title: Nanocrystallization process and mechanism in a nickel alloy subjected to surface severe plastic deformation
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.08.005
– ident: 10.1016/j.surfcoat.2019.01.045_bb0165
– volume: 742
  start-page: 820
  year: 2019
  ident: 10.1016/j.surfcoat.2019.01.045_bb0155
  article-title: Gradient nanostructure evolution and phase transformation of α phase in Ti-6Al-4V alloy induced by ultrasonic surface rolling process
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.10.098
– volume: 58
  start-page: 4536
  year: 2010
  ident: 10.1016/j.surfcoat.2019.01.045_bb0085
  article-title: Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.05.007
– volume: 10
  year: 2017
  ident: 10.1016/j.surfcoat.2019.01.045_bb0065
  article-title: Effect of multi-pass ultrasonic surface rolling on the mechanical and fatigue properties of HIP Ti-6Al-4V alloy
  publication-title: Dent. Mater.
– volume: 347
  start-page: 553
  year: 2015
  ident: 10.1016/j.surfcoat.2019.01.045_bb0090
  article-title: The formation mechanisms of surface nanocrystallites in beta-type biomedical TiNbZrFe alloy by surface mechanical attrition treatment
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.04.137
– volume: 722
  start-page: 509
  year: 2017
  ident: 10.1016/j.surfcoat.2019.01.045_bb0160
  article-title: Microstructure characteristics and formation mechanism of TC17 titanium alloy induced by laser shock processing
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.06.127
– volume: 58
  start-page: 3984
  year: 2010
  ident: 10.1016/j.surfcoat.2019.01.045_bb0075
  article-title: Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.03.026
– volume: 50
  start-page: 4603
  year: 2002
  ident: 10.1016/j.surfcoat.2019.01.045_bb0005
  article-title: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(02)00310-5
– volume: 117
  start-page: 371
  year: 2017
  ident: 10.1016/j.surfcoat.2019.01.045_bb0020
  article-title: The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.01.006
– volume: 58
  start-page: 5354
  year: 2010
  ident: 10.1016/j.surfcoat.2019.01.045_bb0070
  article-title: Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.06.010
– volume: 255
  start-page: 1824
  year: 2008
  ident: 10.1016/j.surfcoat.2019.01.045_bb0055
  article-title: Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.06.034
– volume: 31
  start-page: 1572
  year: 2015
  ident: 10.1016/j.surfcoat.2019.01.045_bb0050
  article-title: Improvement of surface properties of 2316 stainless steel with ultrasonic electric surface modification
  publication-title: Mater. Sci. Tech.-Lond.
  doi: 10.1179/1743284715Y.0000000042
– volume: 655
  start-page: 66
  year: 2016
  ident: 10.1016/j.surfcoat.2019.01.045_bb0105
  article-title: Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.06.268
– volume: 54
  start-page: 5281
  year: 2006
  ident: 10.1016/j.surfcoat.2019.01.045_bb0140
  article-title: Plastic strain-induced grain refinement at the nanometer scale in copper
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.07.013
– volume: 669
  start-page: 7
  year: 2016
  ident: 10.1016/j.surfcoat.2019.01.045_bb0095
  article-title: Nanocrystallization mechanism of beta phase in Ti-6Al-4V subjected to severe plastic deformation
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.05.088
– volume: 185
  start-page: 488
  year: 2016
  ident: 10.1016/j.surfcoat.2019.01.045_bb0115
  article-title: Deformation mechanisms of nanocrystalline alpha titanium in Ti-6Al-4V
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.09.077
– volume: 152
  start-page: 301
  year: 2018
  ident: 10.1016/j.surfcoat.2019.01.045_bb0130
  article-title: Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.04.035
– volume: 10
  year: 2017
  ident: 10.1016/j.surfcoat.2019.01.045_bb0035
  article-title: Effect of the ultrasonic surface rolling process on the fretting fatigue behavior of Ti-6Al-4V alloy
  publication-title: Materials
  doi: 10.3390/ma10070833
– volume: 39
  start-page: 698
  year: 2017
  ident: 10.1016/j.surfcoat.2019.01.045_bb0120
  article-title: Nanostructured beta-type titanium alloy fabricated by ultrasonic nanocrystal surface modification
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.03.061
– volume: 527
  start-page: 7225
  year: 2010
  ident: 10.1016/j.surfcoat.2019.01.045_bb0145
  article-title: Deformation-induced microstructure refinement in primary alpha phase-containing Ti-10V-2Fe-3Al alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2010.07.054
– volume: 102
  start-page: 68
  year: 2016
  ident: 10.1016/j.surfcoat.2019.01.045_bb0010
  article-title: Nanoscale surface modification of AISI 316L stainless steel by severe shot peening
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.03.162
– volume: 641
  start-page: 348
  year: 2015
  ident: 10.1016/j.surfcoat.2019.01.045_bb0150
  article-title: Enhanced fatigue behavior of powder metallurgy Ti-6A1-4V alloy by applying ultrasonic impact treatment
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.06.072
– volume: 145
  start-page: 527
  year: 2018
  ident: 10.1016/j.surfcoat.2019.01.045_bb0135
  article-title: Face-centered titanium induced by ultrasonic surface rolling process in Ti-6Al-4V alloy and its tensile behavior
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2018.09.004
– volume: 19
  start-page: 1136
  year: 2011
  ident: 10.1016/j.surfcoat.2019.01.045_bb0025
  article-title: Microstructural evolution in NiTi alloy subjected to surface mechanical attrition treatment and mechanism
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.03.020
SSID ssj0001794
Score 2.4987302
Snippet The nanocrystallization mechanism of a body-centered cubic β phase in Ti–6Al–4V alloy subjected to ultrasonic surface rolling process was investigated. A...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Beta phase
Deformation mechanisms
Dislocation
Dislocation density
Entanglement
Gradient nanostructure
Grains
Nanocrystallization mechanism
Nanocrystals
Nanostructure
Skin pass rolling
Surface layers
Thickness
Titanium alloy
Titanium base alloys
Twinning
Ultrasonic surface rolling process
β phase
Title Surface nanocrystallization of body-centered cubic beta phase in Ti–6Al–4V alloy subjected to ultrasonic surface rolling process
URI https://dx.doi.org/10.1016/j.surfcoat.2019.01.045
https://www.proquest.com/docview/2203117369
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELba7QE4ICigtpTKB65h7TjJ2sfVqtUCUi9tUW-WPXFEqihZZbOHvSAOvEHfsE9ST-JULULqgUuk_EwceZxvxvbMN4R8nsXoplsT5dZlfoIiITKxyCMLokD7ihzhGG1xni2vkm_X6fUOWYy5MBhWGbB_wPQercOVaejN6aospxcMRxuSzyikXE-SXbIXC5WlE7I3__p9ef4AyDjm-qWW1AOyF3iUKHzjIaotoDEYVslVz-CJmU3_tlF_oXVvgs7ekNfBd6Tz4fPekh1X75MXi7Fk2z559Yhd8B35c-EbNeBobeoG2q33A6sqpF3SpqC2ybcRBmdiuU4KG1sCta4zdPXTmzZa1vSyvPt9m80rf0x-UNyi39L1xuLSjZfoGrqputaskV2XrkNj7cDyTVdDBsJ7cnV2erlYRqHoQgQiYV1kwCrr52QuLfgM911ZAipz0horC5cXaSFlpvy9wgiey35Gw2axhJRB7h8VH8ikbmp3QCgwV3AbCzAAmDGrWGYZlw6UAilMckjSsZs1BEZyLIxR6TH07EaP6tGoHs249uo5JNMHudXAyfGshBq1qJ-MLu0Nx7Oyx6Padfi_1zqOPRjymcjU0X-8-iN5iWcY0sbTYzLp2o375H2czp6Q3S-_-EkYyfeXUgCt
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKORQOCAqoLQV84BrWifNjH6sV1QKll25Rb5Y9sUWqKFlls4e9oB54A96QJ8GTOFAQUg9ccog9SeSZzPjnm28IeVMkOE03OiqNzf0CRUCkE15GBrjD-Ioc4Yi2OM8Xl-mHq-xqh8ynXBiEVQbfP_r0wVuHO7MwmrNVVc0uGFobks9IpFxP03vkfprxAnF9b7_-xnmgxQ0bLZl3x777rTTha--gOgetRlBlLAf-Tsxr-neE-stXDwHo9DF5FGaO9GT8uCdkxzb7ZG8-FWzbJw9vcQs-Jd8u_Es1WNropoVu62eBdR2SLmnrqGnLbYTQTCzWSWFjKqDG9pquvvjARquGLqsfN9_zk9pf088UD-i3dL0xuHHjJfqWbuq-02vk1qXr8LJu5PimqzH_4Bm5PH23nC-iUHIhAp6yPtJgpPErMpu5uMBTV5aCzK0w2ghnS5c5IXLp25zmcSmG9QwrEgEZg9J35c_JbtM29oBQYNbFJuGgATBfVrLcsFhYkBIE1-khyaZhVhD4yLEsRq0m4Nm1mtSjUD2Kxcqr55DMfsmtRkaOOyXkpEX1h20pHzbulD2e1K7C371WSeJdYVzwXB79x6Nfk73F8tOZOnt__vEFeYAtCG6Ls2Oy23cb-9LPdnrzarDmn83pAXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+nanocrystallization+of+body-centered+cubic+beta+phase+in+Ti%E2%80%936Al%E2%80%934V+alloy+subjected+to+ultrasonic+surface+rolling+process&rft.jtitle=Surface+%26+coatings+technology&rft.au=Ao%2C+Ni&rft.au=Liu%2C+Daoxin&rft.au=Zhang%2C+Xiaohua&rft.au=Liu%2C+Chengsong&rft.date=2019-03-15&rft.issn=0257-8972&rft.volume=361&rft.spage=35&rft.epage=41&rft_id=info:doi/10.1016%2Fj.surfcoat.2019.01.045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfcoat_2019_01_045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon