Surface nanocrystallization of body-centered cubic beta phase in Ti–6Al–4V alloy subjected to ultrasonic surface rolling process
The nanocrystallization mechanism of a body-centered cubic β phase in Ti–6Al–4V alloy subjected to ultrasonic surface rolling process was investigated. A gradient nanostructure (thickness: ~400 μm) that the β grain size in thickness gradually changes from ~0.76 μm in the interior to ~36.5 nm at the...
Saved in:
Published in | Surface & coatings technology Vol. 361; pp. 35 - 41 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.03.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0257-8972 1879-3347 |
DOI | 10.1016/j.surfcoat.2019.01.045 |
Cover
Abstract | The nanocrystallization mechanism of a body-centered cubic β phase in Ti–6Al–4V alloy subjected to ultrasonic surface rolling process was investigated. A gradient nanostructure (thickness: ~400 μm) that the β grain size in thickness gradually changes from ~0.76 μm in the interior to ~36.5 nm at the topmost surface was formed in Ti–6Al–4V alloy surface layer. The gradient nanostructure of the β phase is formed primarily via dislocation activities without the occurrence of deformation twinning. Dislocations were first generated in β phase at the phase boundaries where a high density of dislocations occurred in α phase. The coarse β grains were then gradually transformed into equiaxed nano grains via longitudinal splitting and transverse breakdown, which are induced by dislocation glide, entanglement, accumulation, and rearrangement. Additionally, with increasing strain, the β nanograins will be further refined via dislocation activities.
•The softer β phase deforms after α phase in USRP-treated Ti–6Al–4V alloy.•β phase deforms mainly via dislocation motion without twinning occurring.•Dislocations in β phase initiate at the α/β phase boundaries.•There is no shear band observed during deformation. |
---|---|
AbstractList | The nanocrystallization mechanism of a body-centered cubic β phase in Ti–6Al–4V alloy subjected to ultrasonic surface rolling process was investigated. A gradient nanostructure (thickness: ~400 μm) that the β grain size in thickness gradually changes from ~0.76 μm in the interior to ~36.5 nm at the topmost surface was formed in Ti–6Al–4V alloy surface layer. The gradient nanostructure of the β phase is formed primarily via dislocation activities without the occurrence of deformation twinning. Dislocations were first generated in β phase at the phase boundaries where a high density of dislocations occurred in α phase. The coarse β grains were then gradually transformed into equiaxed nano grains via longitudinal splitting and transverse breakdown, which are induced by dislocation glide, entanglement, accumulation, and rearrangement. Additionally, with increasing strain, the β nanograins will be further refined via dislocation activities. The nanocrystallization mechanism of a body-centered cubic β phase in Ti–6Al–4V alloy subjected to ultrasonic surface rolling process was investigated. A gradient nanostructure (thickness: ~400 μm) that the β grain size in thickness gradually changes from ~0.76 μm in the interior to ~36.5 nm at the topmost surface was formed in Ti–6Al–4V alloy surface layer. The gradient nanostructure of the β phase is formed primarily via dislocation activities without the occurrence of deformation twinning. Dislocations were first generated in β phase at the phase boundaries where a high density of dislocations occurred in α phase. The coarse β grains were then gradually transformed into equiaxed nano grains via longitudinal splitting and transverse breakdown, which are induced by dislocation glide, entanglement, accumulation, and rearrangement. Additionally, with increasing strain, the β nanograins will be further refined via dislocation activities. •The softer β phase deforms after α phase in USRP-treated Ti–6Al–4V alloy.•β phase deforms mainly via dislocation motion without twinning occurring.•Dislocations in β phase initiate at the α/β phase boundaries.•There is no shear band observed during deformation. |
Author | Liu, Chengsong Yang, Jing Liu, Daoxin Zhang, Xiaohua Ao, Ni Liu, Dan |
Author_xml | – sequence: 1 givenname: Ni surname: Ao fullname: Ao, Ni – sequence: 2 givenname: Daoxin surname: Liu fullname: Liu, Daoxin email: liudaox@nwpu.edu.cn – sequence: 3 givenname: Xiaohua surname: Zhang fullname: Zhang, Xiaohua – sequence: 4 givenname: Chengsong surname: Liu fullname: Liu, Chengsong – sequence: 5 givenname: Jing surname: Yang fullname: Yang, Jing – sequence: 6 givenname: Dan surname: Liu fullname: Liu, Dan |
BookMark | eNqFkL1uFTEQRi0UJG4Cr4Aspd7N2Ptjr0SRKCIBKRIFgdbyeseJV4t9Y3uRLhUFb8Ab8iT4cpOGJs24mO_MJ59jcuSDR0LeMqgZsP5srtMarQk61xzYUAOroe1ekA2TYqiaphVHZAO8E5UcBH9FjlOaAYCJod2QX58Lqw1Sr30wcZeyXhb3Q2cXPA2WjmHaVQZ9xogTNevoDB0xa7q91wmp8_TW_fn5u79Yymy_0kKHHU3rOKPJhciBrkuOOgVfyPRYFkMp8Xd0G4PBlF6Tl1YvCd88vifky9X728sP1c2n64-XFzeVaVrIlTbjMPJ2wM4yAVwCtGboUY56lBYn21kp-6HsrG7YJDkTbQOCS9OBmUq0OSGnh7ul92HFlNUc1uhLpeIcGsZE0-9T7w4pE0NKEa0yLv8TUv7hFsVA7b2rWT15V3vvCpgq3gve_4dvo_um4-558PwAYlHw3WFUyTj0BicXi0w1Bffcib8Kraha |
CitedBy_id | crossref_primary_10_1016_j_surfcoat_2022_128807 crossref_primary_10_1016_j_jmrt_2025_01_009 crossref_primary_10_1016_j_jmapro_2021_09_058 crossref_primary_10_3390_coatings11070812 crossref_primary_10_1016_j_jallcom_2023_172549 crossref_primary_10_1016_j_apsusc_2019_144711 crossref_primary_10_1002_adem_202401100 crossref_primary_10_1016_j_intermet_2020_106780 crossref_primary_10_3390_coatings13010060 crossref_primary_10_1016_j_cirpj_2023_03_003 crossref_primary_10_1016_j_ijfatigue_2020_105970 crossref_primary_10_1016_j_triboint_2022_107818 crossref_primary_10_1016_j_jmatprotec_2021_117068 crossref_primary_10_1016_j_jmrt_2021_05_065 crossref_primary_10_1016_j_jallcom_2025_178898 crossref_primary_10_1016_j_jmrt_2020_08_106 crossref_primary_10_1016_j_jmrt_2024_06_116 crossref_primary_10_1007_s40436_022_00435_9 crossref_primary_10_1116_6_0001801 crossref_primary_10_1016_j_matchemphys_2023_128410 crossref_primary_10_1016_j_surfcoat_2021_127566 crossref_primary_10_1016_j_surfcoat_2022_128513 crossref_primary_10_1016_j_apsusc_2020_147941 crossref_primary_10_1088_1742_6596_1345_3_032031 crossref_primary_10_1016_j_surfcoat_2023_130047 crossref_primary_10_1007_s12598_022_02075_1 crossref_primary_10_1016_j_surfcoat_2023_130167 crossref_primary_10_1016_j_surfcoat_2021_127088 crossref_primary_10_1007_s00170_019_04648_4 crossref_primary_10_1016_j_ijfatigue_2021_106391 crossref_primary_10_1134_S1029959922030055 crossref_primary_10_1016_j_triboint_2023_109216 crossref_primary_10_1016_j_smmf_2024_100056 crossref_primary_10_1016_j_jallcom_2021_161393 crossref_primary_10_1016_j_jmrt_2024_06_091 crossref_primary_10_1016_j_surfcoat_2022_129033 crossref_primary_10_1016_j_jmrt_2024_01_020 crossref_primary_10_3390_met13101719 crossref_primary_10_3390_ma18020378 crossref_primary_10_1016_j_jmrt_2021_01_013 crossref_primary_10_1016_j_jallcom_2023_169507 crossref_primary_10_1016_j_matdes_2021_110117 crossref_primary_10_1016_j_jallcom_2023_169704 crossref_primary_10_3390_app112210986 crossref_primary_10_1007_s00170_021_06967_x crossref_primary_10_1007_s11665_023_09086_8 crossref_primary_10_1007_s00170_020_06503_3 crossref_primary_10_1016_j_ijfatigue_2022_106794 crossref_primary_10_1016_j_surfcoat_2019_124971 crossref_primary_10_1016_j_msea_2021_141911 crossref_primary_10_1016_j_surfcoat_2024_131573 crossref_primary_10_1007_s11665_021_06483_9 crossref_primary_10_1016_j_jmrt_2020_05_096 crossref_primary_10_1016_j_msea_2023_145394 crossref_primary_10_1016_j_jmrt_2021_01_091 crossref_primary_10_1016_j_jmrt_2025_02_248 crossref_primary_10_1007_s00170_020_06084_1 |
Cites_doi | 10.1016/j.actamat.2004.05.023 10.1016/j.jsv.2007.03.054 10.1016/j.actamat.2017.01.050 10.1016/j.actamat.2014.12.057 10.1016/j.msea.2014.06.114 10.1016/j.actamat.2006.09.018 10.1016/j.apsusc.2014.09.068 10.1007/s00170-016-8659-4 10.1016/j.actamat.2009.08.005 10.1016/j.msea.2018.10.098 10.1016/j.actamat.2010.05.007 10.1016/j.apsusc.2015.04.137 10.1016/j.jallcom.2017.06.127 10.1016/j.actamat.2010.03.026 10.1016/S1359-6454(02)00310-5 10.1016/j.matdes.2017.01.006 10.1016/j.actamat.2010.06.010 10.1016/j.apsusc.2008.06.034 10.1179/1743284715Y.0000000042 10.1016/j.jallcom.2015.06.268 10.1016/j.actamat.2006.07.013 10.1016/j.msea.2016.05.088 10.1016/j.matlet.2016.09.077 10.1016/j.actamat.2018.04.035 10.3390/ma10070833 10.1016/j.ultsonch.2017.03.061 10.1016/j.msea.2010.07.054 10.1016/j.matdes.2016.03.162 10.1016/j.msea.2015.06.072 10.1016/j.matchar.2018.09.004 10.1016/j.intermet.2011.03.020 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Mar 15, 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Mar 15, 2019 |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.surfcoat.2019.01.045 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3347 |
EndPage | 41 |
ExternalDocumentID | 10_1016_j_surfcoat_2019_01_045 S0257897219300544 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- SEW SMS SPG SSH WUQ 7QQ 7SR 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c340t-acb9b249e5f17028004c96e8bab8fedf5f8869f17fa31d8217430728c50cd4c93 |
IEDL.DBID | AIKHN |
ISSN | 0257-8972 |
IngestDate | Sun Sep 07 03:31:36 EDT 2025 Thu Apr 24 23:02:48 EDT 2025 Tue Jul 01 03:07:45 EDT 2025 Fri Feb 23 02:32:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | β phase Titanium alloy Ultrasonic surface rolling process Gradient nanostructure Nanocrystallization mechanism Dislocation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-acb9b249e5f17028004c96e8bab8fedf5f8869f17fa31d8217430728c50cd4c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2203117369 |
PQPubID | 2045394 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2203117369 crossref_citationtrail_10_1016_j_surfcoat_2019_01_045 crossref_primary_10_1016_j_surfcoat_2019_01_045 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2019_01_045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-15 |
PublicationDateYYYYMMDD | 2019-03-15 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Surface & coatings technology |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Tao, Wang, Tong, Sui, Lu, Lu (bb0005) 2002; 50 Sun, Shi, Zhang, Lu (bb0080) 2007; 55 Ye, Telang, Gill, Suslov, Idell, Zweiacker, Wiezorek, Zhou, Qian, Mannava, Vasudevan (bb0045) 2014; 613 Panin, Kazachenok, Kozelskaya, Balokhonov, Romanova, Perevalova, Pochivalov (bb0020) 2017; 117 Dekhtyar, Mordyuk, Savvakin, Bondarchuk, Moiseeva, Khripta (bb0150) 2015; 641 Bagherifard, Slawik, Fernandez-Pariente, Pauly, Muecklich, Guagliano (bb0010) 2016; 102 Liu, Li (bb0095) 2016; 669 Li, Qu, Xie, Ren, Li (bb0065) 2017; 10 Lu, Luo, Zhang, Cui, Sun, Zhou, Zhang, You, Chen, Zhong (bb0075) 2010; 58 Hu, Chu, Wu, Xu, Sun, Hung, Yeung, Wu, Li, Chu (bb0025) 2011; 19 Wu, Zhang, Zhang, Pyoun, Murakami (bb0125) 2014; 321 Zhou, He, Luo, Long, Wang, Nie, He, Shen, Li (bb0105) 2016; 655 Yang, Zhang, Qiao (bb0160) 2017; 722 Ao, Liu, Liu, Zhang, Liu (bb0135) 2018; 145 Huang, Wang, Lu, Lu (bb0030) 2015; 87 Yang, Cizek, Hodgson, Wen (bb0085) 2010; 58 Lu, Sun, Li, Xiong (bb0060) 2016; 87 Ting, Dongpo, Gang, Baoming, Ningxia (bb0055) 2008; 255 Wang, Tao, Liu, Lu, Lu (bb0140) 2006; 54 Liu, Li, Tang, Chen, Wang, Song (bb0050) 2015; 31 Kheradmandfard, Kashani-Bozorg, Kim, Hanzaki, Pyoun, Kim, Amanov, Kim (bb0120) 2017; 39 Lu, Wu, Sun, Luo, Zhang, Cai, Cui, Luo (bb0015) 2017; 127 Gao, Huang, Guan, Knowles, Ma, Dye, Rainforth (bb0130) 2018; 152 Liu, Liu, Zhang, Yu, Zhao (bb0035) 2017; 10 Lu, Luo, Zhang, Sun, Gu, Zhou, Ren, Zhang, Zhang, Chen, Cui, Jiang, Feng, Zhang (bb0070) 2010; 58 Ao, Liu, Chen, Zhang, Liu (bb0155) 2019; 742 Mordyuk, Prokopenko (bb0040) 2007; 308 Jin, Cui, Song, Zhou (bb0090) 2015; 347 Villegas, Shaw (bb0100) 2009; 57 Zhu, Vassel, Brisset, Lu, Lu (bb0110) 2004; 52 Liu, Li (bb0115) 2016; 185 N. Li, Y.D. Wang, R.L. Peng, X. Sun, P.K. Liaw, G.L. Wu, L. Wang, H.N. Cai, Localized amorphism after high-strain-rate deformation in TWIP steel, Acta Mater. 59(2011) 6369–6377. Chen, Sun, Xiao, Sun (bb0145) 2010; 527 Lu (10.1016/j.surfcoat.2019.01.045_bb0075) 2010; 58 Villegas (10.1016/j.surfcoat.2019.01.045_bb0100) 2009; 57 Zhou (10.1016/j.surfcoat.2019.01.045_bb0105) 2016; 655 Liu (10.1016/j.surfcoat.2019.01.045_bb0095) 2016; 669 Yang (10.1016/j.surfcoat.2019.01.045_bb0085) 2010; 58 Gao (10.1016/j.surfcoat.2019.01.045_bb0130) 2018; 152 Lu (10.1016/j.surfcoat.2019.01.045_bb0060) 2016; 87 Li (10.1016/j.surfcoat.2019.01.045_bb0065) 2017; 10 Dekhtyar (10.1016/j.surfcoat.2019.01.045_bb0150) 2015; 641 Panin (10.1016/j.surfcoat.2019.01.045_bb0020) 2017; 117 Lu (10.1016/j.surfcoat.2019.01.045_bb0015) 2017; 127 Ye (10.1016/j.surfcoat.2019.01.045_bb0045) 2014; 613 Ao (10.1016/j.surfcoat.2019.01.045_bb0155) 2019; 742 Zhu (10.1016/j.surfcoat.2019.01.045_bb0110) 2004; 52 Bagherifard (10.1016/j.surfcoat.2019.01.045_bb0010) 2016; 102 Huang (10.1016/j.surfcoat.2019.01.045_bb0030) 2015; 87 Jin (10.1016/j.surfcoat.2019.01.045_bb0090) 2015; 347 Ting (10.1016/j.surfcoat.2019.01.045_bb0055) 2008; 255 Liu (10.1016/j.surfcoat.2019.01.045_bb0035) 2017; 10 10.1016/j.surfcoat.2019.01.045_bb0165 Sun (10.1016/j.surfcoat.2019.01.045_bb0080) 2007; 55 Liu (10.1016/j.surfcoat.2019.01.045_bb0050) 2015; 31 Lu (10.1016/j.surfcoat.2019.01.045_bb0070) 2010; 58 Ao (10.1016/j.surfcoat.2019.01.045_bb0135) 2018; 145 Yang (10.1016/j.surfcoat.2019.01.045_bb0160) 2017; 722 Chen (10.1016/j.surfcoat.2019.01.045_bb0145) 2010; 527 Wang (10.1016/j.surfcoat.2019.01.045_bb0140) 2006; 54 Wu (10.1016/j.surfcoat.2019.01.045_bb0125) 2014; 321 Tao (10.1016/j.surfcoat.2019.01.045_bb0005) 2002; 50 Kheradmandfard (10.1016/j.surfcoat.2019.01.045_bb0120) 2017; 39 Hu (10.1016/j.surfcoat.2019.01.045_bb0025) 2011; 19 Mordyuk (10.1016/j.surfcoat.2019.01.045_bb0040) 2007; 308 Liu (10.1016/j.surfcoat.2019.01.045_bb0115) 2016; 185 |
References_xml | – volume: 58 start-page: 3984 year: 2010 end-page: 3994 ident: bb0075 article-title: Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts publication-title: Acta Mater. – volume: 52 start-page: 4101 year: 2004 end-page: 4110 ident: bb0110 article-title: Nanostructure formation mechanism of alpha-titanium using SMAT publication-title: Acta Mater. – volume: 58 start-page: 4536 year: 2010 end-page: 4548 ident: bb0085 article-title: Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium publication-title: Acta Mater. – volume: 55 start-page: 975 year: 2007 end-page: 982 ident: bb0080 article-title: Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy publication-title: Acta Mater. – volume: 39 start-page: 698 year: 2017 end-page: 706 ident: bb0120 article-title: Nanostructured beta-type titanium alloy fabricated by ultrasonic nanocrystal surface modification publication-title: Ultrason. Sonochem. – volume: 527 start-page: 7225 year: 2010 end-page: 7234 ident: bb0145 article-title: Deformation-induced microstructure refinement in primary alpha phase-containing Ti-10V-2Fe-3Al alloy publication-title: Mater. Sci. Eng. A – volume: 145 start-page: 527 year: 2018 end-page: 533 ident: bb0135 article-title: Face-centered titanium induced by ultrasonic surface rolling process in Ti-6Al-4V alloy and its tensile behavior publication-title: Mater. Charact. – volume: 321 start-page: 318 year: 2014 end-page: 330 ident: bb0125 article-title: Effect of ultrasonic nanocrystal surface modification on surface and fatigue properties of quenching and tempering S45C steel publication-title: Appl. Surf. Sci. – volume: 10 year: 2017 ident: bb0035 article-title: Effect of the ultrasonic surface rolling process on the fretting fatigue behavior of Ti-6Al-4V alloy publication-title: Materials – volume: 87 start-page: 2533 year: 2016 end-page: 2539 ident: bb0060 article-title: Study on surface characteristics of 7050-T7451 aluminum alloy by ultrasonic surface rolling process publication-title: Int. J. Adv. Manuf. Technol. – volume: 308 start-page: 855 year: 2007 end-page: 866 ident: bb0040 article-title: Ultrasonic impact peening for the surface properties' management publication-title: J. Sound Vib. – volume: 742 start-page: 820 year: 2019 end-page: 834 ident: bb0155 article-title: Gradient nanostructure evolution and phase transformation of α phase in Ti-6Al-4V alloy induced by ultrasonic surface rolling process publication-title: Mater. Sci. Eng. A – reference: N. Li, Y.D. Wang, R.L. Peng, X. Sun, P.K. Liaw, G.L. Wu, L. Wang, H.N. Cai, Localized amorphism after high-strain-rate deformation in TWIP steel, Acta Mater. 59(2011) 6369–6377. – volume: 58 start-page: 5354 year: 2010 end-page: 5362 ident: bb0070 article-title: Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel publication-title: Acta Mater. – volume: 185 start-page: 488 year: 2016 end-page: 490 ident: bb0115 article-title: Deformation mechanisms of nanocrystalline alpha titanium in Ti-6Al-4V publication-title: Mater. Lett. – volume: 57 start-page: 5782 year: 2009 end-page: 5795 ident: bb0100 article-title: Nanocrystallization process and mechanism in a nickel alloy subjected to surface severe plastic deformation publication-title: Acta Mater. – volume: 31 start-page: 1572 year: 2015 end-page: 1576 ident: bb0050 article-title: Improvement of surface properties of 2316 stainless steel with ultrasonic electric surface modification publication-title: Mater. Sci. Tech.-Lond. – volume: 87 start-page: 150 year: 2015 end-page: 160 ident: bb0030 article-title: Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer publication-title: Acta Mater. – volume: 152 start-page: 301 year: 2018 end-page: 314 ident: bb0130 article-title: Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate publication-title: Acta Mater. – volume: 102 start-page: 68 year: 2016 end-page: 77 ident: bb0010 article-title: Nanoscale surface modification of AISI 316L stainless steel by severe shot peening publication-title: Mater. Des. – volume: 127 start-page: 252 year: 2017 end-page: 266 ident: bb0015 article-title: Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts publication-title: Acta Mater. – volume: 722 start-page: 509 year: 2017 end-page: 516 ident: bb0160 article-title: Microstructure characteristics and formation mechanism of TC17 titanium alloy induced by laser shock processing publication-title: J. Alloys Compd. – volume: 10 year: 2017 ident: bb0065 article-title: Effect of multi-pass ultrasonic surface rolling on the mechanical and fatigue properties of HIP Ti-6Al-4V alloy publication-title: Dent. Mater. – volume: 613 start-page: 274 year: 2014 end-page: 288 ident: bb0045 article-title: Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility publication-title: Mater. Sci. Eng. A – volume: 54 start-page: 5281 year: 2006 end-page: 5291 ident: bb0140 article-title: Plastic strain-induced grain refinement at the nanometer scale in copper publication-title: Acta Mater. – volume: 655 start-page: 66 year: 2016 end-page: 70 ident: bb0105 article-title: Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel publication-title: J. Alloys Compd. – volume: 347 start-page: 553 year: 2015 end-page: 560 ident: bb0090 article-title: The formation mechanisms of surface nanocrystallites in beta-type biomedical TiNbZrFe alloy by surface mechanical attrition treatment publication-title: Appl. Surf. Sci. – volume: 19 start-page: 1136 year: 2011 end-page: 1145 ident: bb0025 article-title: Microstructural evolution in NiTi alloy subjected to surface mechanical attrition treatment and mechanism publication-title: Intermetallics – volume: 50 start-page: 4603 year: 2002 end-page: 4616 ident: bb0005 article-title: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment publication-title: Acta Mater. – volume: 669 start-page: 7 year: 2016 end-page: 13 ident: bb0095 article-title: Nanocrystallization mechanism of beta phase in Ti-6Al-4V subjected to severe plastic deformation publication-title: Mater. Sci. Eng. A – volume: 641 start-page: 348 year: 2015 end-page: 359 ident: bb0150 article-title: Enhanced fatigue behavior of powder metallurgy Ti-6A1-4V alloy by applying ultrasonic impact treatment publication-title: Mater. Sci. Eng. A – volume: 255 start-page: 1824 year: 2008 end-page: 1829 ident: bb0055 article-title: Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing publication-title: Appl. Surf. Sci. – volume: 117 start-page: 371 year: 2017 end-page: 381 ident: bb0020 article-title: The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension publication-title: Mater. Des. – volume: 52 start-page: 4101 year: 2004 ident: 10.1016/j.surfcoat.2019.01.045_bb0110 article-title: Nanostructure formation mechanism of alpha-titanium using SMAT publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.05.023 – volume: 308 start-page: 855 year: 2007 ident: 10.1016/j.surfcoat.2019.01.045_bb0040 article-title: Ultrasonic impact peening for the surface properties' management publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2007.03.054 – volume: 127 start-page: 252 year: 2017 ident: 10.1016/j.surfcoat.2019.01.045_bb0015 article-title: Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.01.050 – volume: 87 start-page: 150 year: 2015 ident: 10.1016/j.surfcoat.2019.01.045_bb0030 article-title: Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.12.057 – volume: 613 start-page: 274 year: 2014 ident: 10.1016/j.surfcoat.2019.01.045_bb0045 article-title: Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2014.06.114 – volume: 55 start-page: 975 year: 2007 ident: 10.1016/j.surfcoat.2019.01.045_bb0080 article-title: Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.09.018 – volume: 321 start-page: 318 year: 2014 ident: 10.1016/j.surfcoat.2019.01.045_bb0125 article-title: Effect of ultrasonic nanocrystal surface modification on surface and fatigue properties of quenching and tempering S45C steel publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.09.068 – volume: 87 start-page: 2533 year: 2016 ident: 10.1016/j.surfcoat.2019.01.045_bb0060 article-title: Study on surface characteristics of 7050-T7451 aluminum alloy by ultrasonic surface rolling process publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-8659-4 – volume: 57 start-page: 5782 year: 2009 ident: 10.1016/j.surfcoat.2019.01.045_bb0100 article-title: Nanocrystallization process and mechanism in a nickel alloy subjected to surface severe plastic deformation publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.08.005 – ident: 10.1016/j.surfcoat.2019.01.045_bb0165 – volume: 742 start-page: 820 year: 2019 ident: 10.1016/j.surfcoat.2019.01.045_bb0155 article-title: Gradient nanostructure evolution and phase transformation of α phase in Ti-6Al-4V alloy induced by ultrasonic surface rolling process publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.10.098 – volume: 58 start-page: 4536 year: 2010 ident: 10.1016/j.surfcoat.2019.01.045_bb0085 article-title: Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.05.007 – volume: 10 year: 2017 ident: 10.1016/j.surfcoat.2019.01.045_bb0065 article-title: Effect of multi-pass ultrasonic surface rolling on the mechanical and fatigue properties of HIP Ti-6Al-4V alloy publication-title: Dent. Mater. – volume: 347 start-page: 553 year: 2015 ident: 10.1016/j.surfcoat.2019.01.045_bb0090 article-title: The formation mechanisms of surface nanocrystallites in beta-type biomedical TiNbZrFe alloy by surface mechanical attrition treatment publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.04.137 – volume: 722 start-page: 509 year: 2017 ident: 10.1016/j.surfcoat.2019.01.045_bb0160 article-title: Microstructure characteristics and formation mechanism of TC17 titanium alloy induced by laser shock processing publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.06.127 – volume: 58 start-page: 3984 year: 2010 ident: 10.1016/j.surfcoat.2019.01.045_bb0075 article-title: Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.03.026 – volume: 50 start-page: 4603 year: 2002 ident: 10.1016/j.surfcoat.2019.01.045_bb0005 article-title: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment publication-title: Acta Mater. doi: 10.1016/S1359-6454(02)00310-5 – volume: 117 start-page: 371 year: 2017 ident: 10.1016/j.surfcoat.2019.01.045_bb0020 article-title: The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.01.006 – volume: 58 start-page: 5354 year: 2010 ident: 10.1016/j.surfcoat.2019.01.045_bb0070 article-title: Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.06.010 – volume: 255 start-page: 1824 year: 2008 ident: 10.1016/j.surfcoat.2019.01.045_bb0055 article-title: Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.06.034 – volume: 31 start-page: 1572 year: 2015 ident: 10.1016/j.surfcoat.2019.01.045_bb0050 article-title: Improvement of surface properties of 2316 stainless steel with ultrasonic electric surface modification publication-title: Mater. Sci. Tech.-Lond. doi: 10.1179/1743284715Y.0000000042 – volume: 655 start-page: 66 year: 2016 ident: 10.1016/j.surfcoat.2019.01.045_bb0105 article-title: Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.06.268 – volume: 54 start-page: 5281 year: 2006 ident: 10.1016/j.surfcoat.2019.01.045_bb0140 article-title: Plastic strain-induced grain refinement at the nanometer scale in copper publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.07.013 – volume: 669 start-page: 7 year: 2016 ident: 10.1016/j.surfcoat.2019.01.045_bb0095 article-title: Nanocrystallization mechanism of beta phase in Ti-6Al-4V subjected to severe plastic deformation publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.05.088 – volume: 185 start-page: 488 year: 2016 ident: 10.1016/j.surfcoat.2019.01.045_bb0115 article-title: Deformation mechanisms of nanocrystalline alpha titanium in Ti-6Al-4V publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.09.077 – volume: 152 start-page: 301 year: 2018 ident: 10.1016/j.surfcoat.2019.01.045_bb0130 article-title: Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.04.035 – volume: 10 year: 2017 ident: 10.1016/j.surfcoat.2019.01.045_bb0035 article-title: Effect of the ultrasonic surface rolling process on the fretting fatigue behavior of Ti-6Al-4V alloy publication-title: Materials doi: 10.3390/ma10070833 – volume: 39 start-page: 698 year: 2017 ident: 10.1016/j.surfcoat.2019.01.045_bb0120 article-title: Nanostructured beta-type titanium alloy fabricated by ultrasonic nanocrystal surface modification publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.03.061 – volume: 527 start-page: 7225 year: 2010 ident: 10.1016/j.surfcoat.2019.01.045_bb0145 article-title: Deformation-induced microstructure refinement in primary alpha phase-containing Ti-10V-2Fe-3Al alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.07.054 – volume: 102 start-page: 68 year: 2016 ident: 10.1016/j.surfcoat.2019.01.045_bb0010 article-title: Nanoscale surface modification of AISI 316L stainless steel by severe shot peening publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.03.162 – volume: 641 start-page: 348 year: 2015 ident: 10.1016/j.surfcoat.2019.01.045_bb0150 article-title: Enhanced fatigue behavior of powder metallurgy Ti-6A1-4V alloy by applying ultrasonic impact treatment publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.06.072 – volume: 145 start-page: 527 year: 2018 ident: 10.1016/j.surfcoat.2019.01.045_bb0135 article-title: Face-centered titanium induced by ultrasonic surface rolling process in Ti-6Al-4V alloy and its tensile behavior publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.09.004 – volume: 19 start-page: 1136 year: 2011 ident: 10.1016/j.surfcoat.2019.01.045_bb0025 article-title: Microstructural evolution in NiTi alloy subjected to surface mechanical attrition treatment and mechanism publication-title: Intermetallics doi: 10.1016/j.intermet.2011.03.020 |
SSID | ssj0001794 |
Score | 2.4987302 |
Snippet | The nanocrystallization mechanism of a body-centered cubic β phase in Ti–6Al–4V alloy subjected to ultrasonic surface rolling process was investigated. A... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 35 |
SubjectTerms | Beta phase Deformation mechanisms Dislocation Dislocation density Entanglement Gradient nanostructure Grains Nanocrystallization mechanism Nanocrystals Nanostructure Skin pass rolling Surface layers Thickness Titanium alloy Titanium base alloys Twinning Ultrasonic surface rolling process β phase |
Title | Surface nanocrystallization of body-centered cubic beta phase in Ti–6Al–4V alloy subjected to ultrasonic surface rolling process |
URI | https://dx.doi.org/10.1016/j.surfcoat.2019.01.045 https://www.proquest.com/docview/2203117369 |
Volume | 361 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELba7QE4ICigtpTKB65h7TjJ2sfVqtUCUi9tUW-WPXFEqihZZbOHvSAOvEHfsE9ST-JULULqgUuk_EwceZxvxvbMN4R8nsXoplsT5dZlfoIiITKxyCMLokD7ihzhGG1xni2vkm_X6fUOWYy5MBhWGbB_wPQercOVaejN6aospxcMRxuSzyikXE-SXbIXC5WlE7I3__p9ef4AyDjm-qWW1AOyF3iUKHzjIaotoDEYVslVz-CJmU3_tlF_oXVvgs7ekNfBd6Tz4fPekh1X75MXi7Fk2z559Yhd8B35c-EbNeBobeoG2q33A6sqpF3SpqC2ybcRBmdiuU4KG1sCta4zdPXTmzZa1vSyvPt9m80rf0x-UNyi39L1xuLSjZfoGrqputaskV2XrkNj7cDyTVdDBsJ7cnV2erlYRqHoQgQiYV1kwCrr52QuLfgM911ZAipz0horC5cXaSFlpvy9wgiey35Gw2axhJRB7h8VH8ikbmp3QCgwV3AbCzAAmDGrWGYZlw6UAilMckjSsZs1BEZyLIxR6TH07EaP6tGoHs249uo5JNMHudXAyfGshBq1qJ-MLu0Nx7Oyx6Padfi_1zqOPRjymcjU0X-8-iN5iWcY0sbTYzLp2o375H2czp6Q3S-_-EkYyfeXUgCt |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKORQOCAqoLQV84BrWifNjH6sV1QKll25Rb5Y9sUWqKFlls4e9oB54A96QJ8GTOFAQUg9ccog9SeSZzPjnm28IeVMkOE03OiqNzf0CRUCkE15GBrjD-Ioc4Yi2OM8Xl-mHq-xqh8ynXBiEVQbfP_r0wVuHO7MwmrNVVc0uGFobks9IpFxP03vkfprxAnF9b7_-xnmgxQ0bLZl3x777rTTha--gOgetRlBlLAf-Tsxr-neE-stXDwHo9DF5FGaO9GT8uCdkxzb7ZG8-FWzbJw9vcQs-Jd8u_Es1WNropoVu62eBdR2SLmnrqGnLbYTQTCzWSWFjKqDG9pquvvjARquGLqsfN9_zk9pf088UD-i3dL0xuHHjJfqWbuq-02vk1qXr8LJu5PimqzH_4Bm5PH23nC-iUHIhAp6yPtJgpPErMpu5uMBTV5aCzK0w2ghnS5c5IXLp25zmcSmG9QwrEgEZg9J35c_JbtM29oBQYNbFJuGgATBfVrLcsFhYkBIE1-khyaZhVhD4yLEsRq0m4Nm1mtSjUD2Kxcqr55DMfsmtRkaOOyXkpEX1h20pHzbulD2e1K7C371WSeJdYVzwXB79x6Nfk73F8tOZOnt__vEFeYAtCG6Ls2Oy23cb-9LPdnrzarDmn83pAXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+nanocrystallization+of+body-centered+cubic+beta+phase+in+Ti%E2%80%936Al%E2%80%934V+alloy+subjected+to+ultrasonic+surface+rolling+process&rft.jtitle=Surface+%26+coatings+technology&rft.au=Ao%2C+Ni&rft.au=Liu%2C+Daoxin&rft.au=Zhang%2C+Xiaohua&rft.au=Liu%2C+Chengsong&rft.date=2019-03-15&rft.issn=0257-8972&rft.volume=361&rft.spage=35&rft.epage=41&rft_id=info:doi/10.1016%2Fj.surfcoat.2019.01.045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfcoat_2019_01_045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |