Differentiable finite element method with Galerkin discretization for fast and accurate inverse analysis of multidimensional heterogeneous engineering structures

•Galerkin discretization is utilized to build a novel differentiable finite element method (DFEM) that encodes physics and significantly reduces training cost.•DFEM embeds the weak-form physics, boundary/initial conditions, and data constraints into the network architecture.•Both the accuracy and ef...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 437; p. 117755
Main Authors Wang, Xi, Yin, Zhen-Yu, Wu, Wei, Zhu, He-Hua
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Galerkin discretization is utilized to build a novel differentiable finite element method (DFEM) that encodes physics and significantly reduces training cost.•DFEM embeds the weak-form physics, boundary/initial conditions, and data constraints into the network architecture.•Both the accuracy and efficiency of inverse analysis are improved by several orders of magnitude.•Inverse analysis of three-dimensional heterogeneous engineering structures can be accomplished in seconds.•DFEM can be readily extended as Physics-Encoded Numerical Network (PENN) to revitalize classical numerical methods for AI4Science. Physics-informed neural networks (PINNs) are well-regarded for their capabilities in inverse analysis. However, efficient convergence is hard to achieve due to the necessity of simultaneously handling physics constraints, data constraints, blackbox weights, and blackbox biases. Consequently, PINNs are highly challenged in the inverse analysis of unknown boundary loadings and heterogeneous material parameters, particularly for three-dimensional engineering structures. To address these limitations, this study develops a novel differentiable finite element method (DFEM) based on Galerkin discretization for diverse inverse analysis. The proposed DFEM directly embeds the weak form of the partial differential equation into a discretized and differentiable computational graph, yielding a loss function from fully interpretable trainable parameters. Moreover, the labeled data, including boundary conditions, are strictly encoded into the computational graph without additional training. Finally, two benchmarks validate the DFEM's superior efficiency and accuracy: (1) With only 0.3 % training iterations, the DFEM can achieve an accuracy three orders of magnitude higher for the inverse analysis of unknown loadings. (2) With a training time five orders of magnitude faster, the DFEM is validated to be five orders of magnitude more accurate in determining unknown material parameters. Furthermore, two cases validate DFEM as effective for three-dimensional engineering structures: (1) A damaged cantilever beam characterized by twenty heterogeneous materials with forty unknown parameters is efficiently solved. (2) A tunnel lining ring with sparse noisy data under unknown heterogeneous boundary loadings is successfully analyzed. These problems are solved in seconds, corroborating DFEM's potential for engineering applications. Additionally, the DFEM framework can be generalized to a Physics-Encoded Numerical Network (PENN) for further development and exploration.
AbstractList •Galerkin discretization is utilized to build a novel differentiable finite element method (DFEM) that encodes physics and significantly reduces training cost.•DFEM embeds the weak-form physics, boundary/initial conditions, and data constraints into the network architecture.•Both the accuracy and efficiency of inverse analysis are improved by several orders of magnitude.•Inverse analysis of three-dimensional heterogeneous engineering structures can be accomplished in seconds.•DFEM can be readily extended as Physics-Encoded Numerical Network (PENN) to revitalize classical numerical methods for AI4Science. Physics-informed neural networks (PINNs) are well-regarded for their capabilities in inverse analysis. However, efficient convergence is hard to achieve due to the necessity of simultaneously handling physics constraints, data constraints, blackbox weights, and blackbox biases. Consequently, PINNs are highly challenged in the inverse analysis of unknown boundary loadings and heterogeneous material parameters, particularly for three-dimensional engineering structures. To address these limitations, this study develops a novel differentiable finite element method (DFEM) based on Galerkin discretization for diverse inverse analysis. The proposed DFEM directly embeds the weak form of the partial differential equation into a discretized and differentiable computational graph, yielding a loss function from fully interpretable trainable parameters. Moreover, the labeled data, including boundary conditions, are strictly encoded into the computational graph without additional training. Finally, two benchmarks validate the DFEM's superior efficiency and accuracy: (1) With only 0.3 % training iterations, the DFEM can achieve an accuracy three orders of magnitude higher for the inverse analysis of unknown loadings. (2) With a training time five orders of magnitude faster, the DFEM is validated to be five orders of magnitude more accurate in determining unknown material parameters. Furthermore, two cases validate DFEM as effective for three-dimensional engineering structures: (1) A damaged cantilever beam characterized by twenty heterogeneous materials with forty unknown parameters is efficiently solved. (2) A tunnel lining ring with sparse noisy data under unknown heterogeneous boundary loadings is successfully analyzed. These problems are solved in seconds, corroborating DFEM's potential for engineering applications. Additionally, the DFEM framework can be generalized to a Physics-Encoded Numerical Network (PENN) for further development and exploration.
ArticleNumber 117755
Author Wu, Wei
Yin, Zhen-Yu
Wang, Xi
Zhu, He-Hua
Author_xml – sequence: 1
  givenname: Xi
  orcidid: 0000-0001-7713-0282
  surname: Wang
  fullname: Wang, Xi
  email: xiwang.wang@polyu.edu.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
– sequence: 2
  givenname: Zhen-Yu
  surname: Yin
  fullname: Yin, Zhen-Yu
  email: zhenyu.yin@polyu.edu.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
– sequence: 3
  givenname: Wei
  surname: Wu
  fullname: Wu, Wei
  email: weiwu@tongji.edu.cn
  organization: College of Civil Engineering, Tongji University, Shanghai 200092, PR China
– sequence: 4
  givenname: He-Hua
  surname: Zhu
  fullname: Zhu, He-Hua
  email: zhuhehua@tongji.edu.cn
  organization: College of Civil Engineering, Tongji University, Shanghai 200092, PR China
BookMark eNp9kE1uFDEQhb0IUv44QHa-wAy2uzvuUVYoQIIUKRtYWzXl8kxNum1ku4PCbbgpDsOKRWpT0pO-J73vXJzEFEmIK63WWunrD4c1zrA2ygxrra0dhhNxplQ_rOxohlNxXspBtRu1ORO_P3EIlClWhu1EMnDkSpImmlsmZ6r75OVPrnt5BxPlJ47Sc8FMlX9B5RRlSFkGKFVC9BIQlwytgeMz5UIthOmlcJEpyHmZKntuzaWBMMk9VcppR5HSUiTFHUeizHEnS80L1iVTuRTvAkyF3v_7F-L7l8_fbu9XD493X28_Pqyw61VdgTWDR-9Vj90II45gw2bTba2xOG6sIaN700G_BVTKgscecfTqmtBiQMLuQthjL-ZUSqbgkOvfhTUDT04r92rXHVyz617tuqPdRur_yB-ZZ8gvbzI3R4bapGem7AoyRSTPmbA6n_gN-g9VYZ2o
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2025_140185
crossref_primary_10_1016_j_compgeo_2025_107110
crossref_primary_10_1016_j_ymssp_2025_112597
Cites_doi 10.1016/j.compgeo.2022.104891
10.1126/sciadv.abk0644
10.1016/j.ijplas.2023.103786
10.1016/0893-6080(89)90020-8
10.1007/s11440-023-02179-7
10.1137/20M1318043
10.1002/nag.3794
10.1016/j.jcp.2018.10.045
10.1007/s00707-023-03691-3
10.1016/j.cma.2022.115852
10.1002/nag.3679
10.1007/s10851-019-00903-1
10.1016/j.tafmec.2019.102447
10.1016/j.cma.2023.116580
10.1016/j.cma.2023.116184
10.1016/j.jcp.2022.111722
10.1016/j.cma.2023.116569
10.1016/j.enggeo.2023.107314
10.1016/j.cma.2021.114012
10.1016/j.cma.2021.113933
10.1016/j.enganabound.2024.01.004
10.1007/s00466-023-02365-0
10.1016/j.cma.2024.117268
10.1016/j.neunet.2023.03.014
10.1016/j.ijplas.2023.103576
10.1016/j.cma.2024.117294
10.1038/s41467-023-39377-6
10.1038/s42256-023-00685-7
10.1016/j.compgeo.2022.104710
10.1016/j.cma.2024.116819
10.1016/j.cma.2021.113741
10.1016/j.cma.2021.114096
10.1016/j.cma.2024.117410
10.1016/j.tust.2023.105562
10.3390/books978-3-7258-3706-9
10.1016/j.cma.2022.115666
10.1016/j.jcp.2021.110839
10.1016/j.compgeo.2019.103283
10.1016/j.cma.2024.117226
10.1111/mice.12685
10.1680/jgeot.22.00135
10.1016/j.gsf.2024.101898
10.1038/s42254-021-00314-5
10.1111/mice.13208
10.1016/j.advwatres.2023.104564
10.1016/j.cma.2022.115616
10.1007/s11440-023-01874-9
10.1016/j.cma.2022.115491
10.1002/nme.6828
10.1016/j.jmps.2024.105758
10.1016/j.ijmecsci.2024.109783
10.1016/j.cma.2021.114502
10.1016/j.cma.2024.117060
10.1016/j.cma.2023.116120
10.1680/jgeot.23.00498
10.1002/nme.7176
10.1016/j.engappai.2023.107250
10.1002/nme.7296
10.1061/IJGNAI.GMENG-8689
10.1016/j.euromechsol.2019.103874
10.1007/s40304-018-0127-z
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.cma.2025.117755
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_cma_2025_117755
S0045782525000271
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ADIYS
ADJOM
ADMUD
ADNMO
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
VH1
VOH
WUQ
ZY4
ID FETCH-LOGICAL-c340t-a725dcdd04c38a8c8a7f993b727c8972e21423a4bac007adc4cc8d06ec7cfcec3
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Thu Apr 24 23:08:39 EDT 2025
Thu Aug 21 00:24:32 EDT 2025
Sat Aug 30 17:13:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Inverse analysis
Physics-Encoded Numerical Network (PENN)
Physics-Informed Neural Network (PINN)
Heterogeneous engineering structures
Differentiable Finite Element Method (DFEM)
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-a725dcdd04c38a8c8a7f993b727c8972e21423a4bac007adc4cc8d06ec7cfcec3
ORCID 0000-0001-7713-0282
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0045782525000271
ParticipantIDs crossref_citationtrail_10_1016_j_cma_2025_117755
crossref_primary_10_1016_j_cma_2025_117755
elsevier_sciencedirect_doi_10_1016_j_cma_2025_117755
PublicationCentury 2000
PublicationDate 2025-03-15
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Dao, Karniadakis, Suresh (bib0044) 2022; 8
Ouyang, Li, Chen, Liu (bib0048) 2024; 48
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (bib0013) 2021; 3
Raissi, Perdikaris, Karniadakis (bib0012) 2019; 378
Yu, Zhou (bib0034) 2023; 124
Zhang, Pan, Yang, Yang (bib0050) 2023; 18
Yu, Zhou (bib0032) 2024; 73
Jeong, Cho, Chung, Kim (bib0041) 2024; 418
He, Zhou, Tang (bib0052) 2024; 24
Yang, Zhu, Zhao (bib0002) 2024
Diao, Yang, Zhang, Zhang, Du (bib0043) 2023; 413
Abueidda, Koric, Guleryuz, Sobh (bib0039) 2023; 124
Chen, Zhang, Yin (bib0019) 2024; 0
Abueidda, Lu, Koric (bib0021) 2021; 122
Wu, Wang, Pan, Yin (bib72) 2024
Vahab, Haghighat, Khaleghi, Khalili (bib0022) 2022; 148
He, Tang, Zhou (bib0051) 2024; 144
Borate, Rivière, Marone, Mali, Kifer, Shokouhi (bib0017) 2023; 14
Haghighat, Bekar, Madenci, Juanes (bib0037) 2021; 385
Li, Bazant, Zhu (bib0026) 2021; 383
Chadha, He, Abueidda, Koric, Guleryuz, Jasiuk (bib0040) 2023; 234
Zhang, Wang, Yin, Jin (bib79) 2022; 401
Yang, Zhu, Zhao (bib0003) 2024; 419
Zhou, Yu (bib0035) 2024; 430
Nabian, Gladstone, Meidani (bib0057) 2021; 36
P. Rathore, W. Lei, Z. Frangella, L. Lu, M. Udell, Challenges in training PINNs: a loss landscape perspective, (2024).
.
Haghighat, Raissi, Moure, Gomez, Juanes (bib0020) 2021; 379
Wang, Teng, Perdikaris (bib0060) 2021; 43
Wang, Sun, Li, Lu, Liu (bib0042) 2022; 400
Goswami, Anitescu, Chakraborty, Rabczuk (bib0018) 2020; 106
Wang, Yin (bib0065) 2024; 431
Qu, Zhao, Guan, Feng (bib0016) 2023; 171
Nguyen-Thanh, Zhuang, Rabczuk (bib0024) 2020; 80
Wang, Mo, Izzuddin, Kim (bib0028) 2023; 414
Vahab, Shahbodagh, Haghighat, Khalili (bib0049) 2023; 277–278
Wang, Fang, Wang, Li, Chen, Liu (bib0055) 2024
Yu, Zhou (bib0033) 2024; 160
Fuhg, Bouklas (bib0038) 2022; 451
Yu, Zhao, Zhao, Liang (bib74) 2024
Nguyen-Thanh, Anitescu, Alajlan, Rabczuk, Zhuang (bib0027) 2021; 386
Karnakov, Litvinov, Koumoutsakos (bib0064) 2024; 3
Gao, Zahr, Wang (bib0030) 2022; 390
Ruthotto, Haber (bib0063) 2020; 62
Wang, Yin, Wu, Zhu (bib0029) 2025; 285
Wang, Wu, Zhu, Zhang (bib0007) 2022; 146
Li, He (bib70) 2024; 15
Rao (bib0001) 2017
Kong, Li, Zhao, Guan (bib77) 2022; 74
Hornik, Stinchcombe, White (bib0011) 1989; 2
Xu, Cao, Yuan, Meschke (bib0054) 2023; 405
Bathe (bib0067) 1996
Wang, Wu, Zhu, Zhang, Lin (bib0009) 2020; 117
Zhao, Zhao, Luding (bib0010) 2023
Wang, Wu, Zhu, Zhang, Lin, Bobet (bib0008) 2022; 150
Harandi, Moeineddin, Kaliske, Reese, Rezaei (bib0046) 2023
Guo, Yin (bib0015) 2024; 421
Motiwale, Zhang, Feldmeier, Sacks (bib0031) 2024; 427
Arzani, Yuan, Newell, Wang (bib0059) 2024
Liang, Fang, Yin, Zhao (bib73) 2024; 431
Rezaei, Harandi, Moeineddin, Xu, Reese (bib0045) 2022; 401
Feng, Zhou (bib0036) 2024; 432
McClenny, Braga-Neto (bib0056) 2023; 474
Rahaman, Baratin, Arpit, Draxler, Lin, Hamprecht, Bengio, Courville (bib0066) 2019
Roy, Bose, Sundararaghavan, Arróyave (bib0023) 2023; 162
Y. Lu, A. Zhong, Q. Li, B. Dong, Beyond finite layer neural networks: bridging deep architectures and numerical differential equations, (2020).
Ouyang, Li, Chen, Liu (bib0053) 2024
E, Yu (bib0025) 2018; 6
Rao, Ren, Wang, Buyukozturk, Sun, Liu (bib0061) 2023; 5
Lehmann, Fahs, Alhubail, Hoteit (bib0014) 2023; 181
Qu, Guan, Feng, Ma, Zhou, Zhao (bib76) 2023; 164
Li, Zhao, Sun, Guo, Yang (bib80) 2025
Cipolla, Gal, Kendall (bib0058) 2018
Ren, Lyu (bib0047) 2024; 127
Kong, Guan (bib78) 2023; 326
Wang (10.1016/j.cma.2025.117755_bib0065) 2024; 431
Rezaei (10.1016/j.cma.2025.117755_bib0045) 2022; 401
Liang (10.1016/j.cma.2025.117755_bib73) 2024; 431
Nguyen-Thanh (10.1016/j.cma.2025.117755_bib0027) 2021; 386
Qu (10.1016/j.cma.2025.117755_bib0016) 2023; 171
Haghighat (10.1016/j.cma.2025.117755_bib0037) 2021; 385
Harandi (10.1016/j.cma.2025.117755_bib0046) 2023
Xu (10.1016/j.cma.2025.117755_bib0054) 2023; 405
Wang (10.1016/j.cma.2025.117755_bib0007) 2022; 146
Wu (10.1016/j.cma.2025.117755_bib72) 2024
Arzani (10.1016/j.cma.2025.117755_bib0059) 2024
Fuhg (10.1016/j.cma.2025.117755_bib0038) 2022; 451
Kong (10.1016/j.cma.2025.117755_bib77) 2022; 74
Raissi (10.1016/j.cma.2025.117755_bib0012) 2019; 378
Zhou (10.1016/j.cma.2025.117755_bib0035) 2024; 430
He (10.1016/j.cma.2025.117755_bib0051) 2024; 144
Abueidda (10.1016/j.cma.2025.117755_bib0039) 2023; 124
Chadha (10.1016/j.cma.2025.117755_bib0040) 2023; 234
E (10.1016/j.cma.2025.117755_bib0025) 2018; 6
Lehmann (10.1016/j.cma.2025.117755_bib0014) 2023; 181
Zhang (10.1016/j.cma.2025.117755_bib0044) 2022; 8
Kong (10.1016/j.cma.2025.117755_bib78) 2023; 326
Cipolla (10.1016/j.cma.2025.117755_bib0058) 2018
Yu (10.1016/j.cma.2025.117755_bib0034) 2023; 124
Goswami (10.1016/j.cma.2025.117755_bib0018) 2020; 106
Rao (10.1016/j.cma.2025.117755_bib0001) 2017
Hornik (10.1016/j.cma.2025.117755_bib0011) 1989; 2
Karniadakis (10.1016/j.cma.2025.117755_bib0013) 2021; 3
Gao (10.1016/j.cma.2025.117755_bib0030) 2022; 390
Vahab (10.1016/j.cma.2025.117755_bib0022) 2022; 148
Ouyang (10.1016/j.cma.2025.117755_bib0053) 2024
Feng (10.1016/j.cma.2025.117755_bib0036) 2024; 432
Zhao (10.1016/j.cma.2025.117755_bib0010) 2023
Karnakov (10.1016/j.cma.2025.117755_bib0064) 2024; 3
Wang (10.1016/j.cma.2025.117755_bib0009) 2020; 117
He (10.1016/j.cma.2025.117755_bib0052) 2024; 24
Rao (10.1016/j.cma.2025.117755_bib0061) 2023; 5
Ruthotto (10.1016/j.cma.2025.117755_bib0063) 2020; 62
Wang (10.1016/j.cma.2025.117755_bib0008) 2022; 150
Diao (10.1016/j.cma.2025.117755_bib0043) 2023; 413
Ouyang (10.1016/j.cma.2025.117755_bib0048) 2024; 48
Zhang (10.1016/j.cma.2025.117755_bib0050) 2023; 18
Rahaman (10.1016/j.cma.2025.117755_bib0066) 2019
Guo (10.1016/j.cma.2025.117755_bib0015) 2024; 421
Motiwale (10.1016/j.cma.2025.117755_bib0031) 2024; 427
Yang (10.1016/j.cma.2025.117755_bib0002) 2024
Zhang (10.1016/j.cma.2025.117755_bib79) 2022; 401
Wang (10.1016/j.cma.2025.117755_bib0042) 2022; 400
Yu (10.1016/j.cma.2025.117755_bib0032) 2024; 73
Qu (10.1016/j.cma.2025.117755_bib76) 2023; 164
McClenny (10.1016/j.cma.2025.117755_bib0056) 2023; 474
Borate (10.1016/j.cma.2025.117755_bib0017) 2023; 14
Ren (10.1016/j.cma.2025.117755_bib0047) 2024; 127
Li (10.1016/j.cma.2025.117755_bib80) 2025
Yu (10.1016/j.cma.2025.117755_bib0033) 2024; 160
Nabian (10.1016/j.cma.2025.117755_bib0057) 2021; 36
Wang (10.1016/j.cma.2025.117755_bib0028) 2023; 414
10.1016/j.cma.2025.117755_bib0062
Jeong (10.1016/j.cma.2025.117755_bib0041) 2024; 418
Abueidda (10.1016/j.cma.2025.117755_bib0021) 2021; 122
Nguyen-Thanh (10.1016/j.cma.2025.117755_bib0024) 2020; 80
Wang (10.1016/j.cma.2025.117755_bib0055) 2024
Li (10.1016/j.cma.2025.117755_bib0026) 2021; 383
Haghighat (10.1016/j.cma.2025.117755_bib0020) 2021; 379
Roy (10.1016/j.cma.2025.117755_bib0023) 2023; 162
Vahab (10.1016/j.cma.2025.117755_bib0049) 2023; 277–278
10.1016/j.cma.2025.117755_bib0068
Yu (10.1016/j.cma.2025.117755_bib74) 2024
Wang (10.1016/j.cma.2025.117755_bib0060) 2021; 43
Bathe (10.1016/j.cma.2025.117755_bib0067) 1996
Yang (10.1016/j.cma.2025.117755_bib0003) 2024; 419
Chen (10.1016/j.cma.2025.117755_bib0019) 2024; 0
Wang (10.1016/j.cma.2025.117755_bib0029) 2025; 285
Li (10.1016/j.cma.2025.117755_bib70) 2024; 15
References_xml – volume: 117
  year: 2020
  ident: bib0009
  article-title: The last entrance plane method for contact indeterminacy between convex polyhedral blocks
  publication-title: Comput. Geotechn.
– volume: 430
  year: 2024
  ident: bib0035
  article-title: Transfer learning enhanced nonlocal energy-informed neural network for quasi-static fracture in rock-like materials
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 43
  start-page: A3055
  year: 2021
  end-page: A3081
  ident: bib0060
  article-title: Understanding and mitigating gradient flow pathologies in physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
– volume: 146
  year: 2022
  ident: bib0007
  article-title: Three-dimensional discontinuous deformation analysis derived from the virtual work principle with a simplex integral on the boundary
  publication-title: Comput. Geotech.
– start-page: 1
  year: 2023
  end-page: 21
  ident: bib0010
  article-title: The role of particle shape in computational modelling of granular matter
  publication-title: Nat. Rev. Phys.
– volume: 383
  year: 2021
  ident: bib0026
  article-title: A physics-guided neural network framework for elastic plates: comparison of governing equations-based and energy-based approaches
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 285
  year: 2025
  ident: bib0029
  article-title: Neural network-augmented differentiable finite element method for boundary value problems
  publication-title: Int. J. Mech. Sci.
– volume: 74
  start-page: 486
  year: 2022
  end-page: 498
  ident: bib77
  article-title: Load–deflection of flexible ring-net barrier in resisting debris flows
  publication-title: Géotechnique
– volume: 414
  year: 2023
  ident: bib0028
  article-title: Exact Dirichlet boundary physics-informed neural network EPINN for solid mechanics
  publication-title: Comput. Method. Appl. Mech. Eng.
– year: 2024
  ident: bib0059
  article-title: Interpreting and generalizing deep learning in physics-based problems with functional linear models
  publication-title: Eng. Comput.
– year: 1996
  ident: bib0067
  article-title: Finite Element Procedures
– year: 2017
  ident: bib0001
  article-title: The Finite Element Method in Engineering
– volume: 162
  start-page: 472
  year: 2023
  end-page: 489
  ident: bib0023
  article-title: Deep learning-accelerated computational framework based on Physics Informed Neural Network for the solution of linear elasticity
  publication-title: Neur. Netw.
– volume: 386
  year: 2021
  ident: bib0027
  article-title: Parametric deep energy approach for elasticity accounting for strain gradient effects
  publication-title: Comput. Method. Appl. Mech. Eng.
– year: 2024
  ident: bib0002
  article-title: A multi-horizon fully coupled thermo-mechanical peridynamics
  publication-title: J. Mech. Phys. Solid.
– volume: 48
  start-page: 1278
  year: 2024
  end-page: 1308
  ident: bib0048
  article-title: Physics-informed neural networks for large deflection analysis of slender piles incorporating non-differentiable soil-structure interaction
  publication-title: Int. J. Numer. Anal. Method. Geomech.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: bib0012
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 73
  start-page: 233
  year: 2024
  end-page: 255
  ident: bib0032
  article-title: A nonlocal energy-informed neural network based on peridynamics for elastic solids with discontinuities
  publication-title: Comput. Mech.
– volume: 106
  year: 2020
  ident: bib0018
  article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
  publication-title: Theoret. Appl. Fract. Mech.
– volume: 127
  year: 2024
  ident: bib0047
  article-title: Mixed form based physics-informed neural networks for performance evaluation of two-phase random materials
  publication-title: Eng. Appl. Artif. Intell.
– volume: 18
  start-page: 4957
  year: 2023
  end-page: 4972
  ident: bib0050
  article-title: Physics-informed deep learning method for predicting tunnelling-induced ground deformations
  publication-title: Acta Geotech.
– volume: 24
  year: 2024
  ident: bib0052
  article-title: Physics-informed neural networks for settlement analysis of the immersed tunnel of the Hong Kong–Zhuhai–Macau Bridge
  publication-title: Int. J. Geomech.
– year: 2024
  ident: bib0053
  article-title: Machine learning-based soil–structure interaction analysis of laterally loaded piles through physics-informed neural networks
  publication-title: Acta Geotech.
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: bib0013
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
– volume: 144
  year: 2024
  ident: bib0051
  article-title: Settlement prediction of immersed tunnel considering time-dependent foundation modulus
  publication-title: Tunnell. Undergr. Space Technol.
– volume: 148
  year: 2022
  ident: bib0022
  article-title: A physics-informed neural network approach to solution and identification of biharmonic equations of elasticity
  publication-title: J. Eng. Mech.
– volume: 171
  year: 2023
  ident: bib0016
  article-title: Data-driven multiscale modelling of granular materials via knowledge transfer and sharing
  publication-title: Int. J. Plast.
– volume: 400
  year: 2022
  ident: bib0042
  article-title: CENN: conservative energy method based on neural networks with subdomains for solving variational problems involving heterogeneous and complex geometries
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 390
  year: 2022
  ident: bib0030
  article-title: Physics-informed graph neural Galerkin networks: a unified framework for solving PDE-governed forward and inverse problems
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 8
  start-page: eabk0644
  year: 2022
  ident: bib0044
  article-title: Analyses of internal structures and defects in materials using physics-informed neural networks
  publication-title: Sci. Adv.
– volume: 5
  start-page: 765
  year: 2023
  end-page: 779
  ident: bib0061
  article-title: Encoding physics to learn reaction–diffusion processes
  publication-title: Nat. Mach. Intell.
– start-page: e7388
  year: 2023
  ident: bib0046
  article-title: Mixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domains
  publication-title: Num. Method. Eng.
– volume: 413
  year: 2023
  ident: bib0043
  article-title: Solving multi-material problems in solid mechanics using physics-informed neural networks based on domain decomposition technology
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 451
  year: 2022
  ident: bib0038
  article-title: The mixed Deep Energy Method for resolving concentration features in finite strain hyperelasticity
  publication-title: J. Comput. Phys.
– volume: 431
  year: 2024
  ident: bib0065
  article-title: Interpretable physics-encoded finite element network to handle concentration features and multi-material heterogeneity in hyperelasticity
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 3
  start-page: 005
  year: 2024
  ident: bib0064
  article-title: Solving inverse problems in physics by optimizing a discrete loss: fast and accurate learning without neural networks
  publication-title: PNAS Nexus
– volume: 234
  start-page: 5975
  year: 2023
  end-page: 5998
  ident: bib0040
  article-title: Improving the accuracy of the deep energy method
  publication-title: Acta Mech.
– volume: 164
  start-page: 103576
  year: 2023
  ident: bib76
  article-title: Deep active learning for constitutive modelling of granular materials: From representative volume elements to implicit finite element modelling
  publication-title: Int. J. Plastic.
– volume: 122
  start-page: 7182
  year: 2021
  end-page: 7201
  ident: bib0021
  article-title: Meshless physics-informed deep learning method for three-dimensional solid mechanics
  publication-title: Int. J. Numer. Method. Eng.
– volume: 36
  start-page: 962
  year: 2021
  end-page: 977
  ident: bib0057
  article-title: Efficient training of physics-informed neural networks via importance sampling
  publication-title: Comput.-Aid. Civ. Infrastruct. Eng.
– volume: 385
  year: 2021
  ident: bib0037
  article-title: A nonlocal physics-informed deep learning framework using the peridynamic differential operator
  publication-title: Comput. Meth. Appl. Mech. Eng.
– start-page: 7482
  year: 2018
  end-page: 7491
  ident: bib0058
  article-title: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 419
  year: 2024
  ident: bib0003
  article-title: Coupled total- and semi-Lagrangian peridynamics for modelling fluid-driven fracturing in solids
  publication-title: Comput. Meth. Appl. Mech. Eng.
– start-page: 5301
  year: 2019
  end-page: 5310
  ident: bib0066
  article-title: On the spectral bias of neural networks
  publication-title: Proceedings of the 36th International Conference on Machine Learning
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib0011
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neur. Netw.
– volume: 124
  start-page: 3935
  year: 2023
  end-page: 3963
  ident: bib0034
  article-title: A nonlocal energy-informed neural network for isotropic elastic solids with cracks under thermomechanical loads
  publication-title: Int. J. Numer. Method. Eng.
– volume: 379
  year: 2021
  ident: bib0020
  article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 405
  year: 2023
  ident: bib0054
  article-title: Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios
  publication-title: Comput. Method. Appl. Mech. Eng.
– year: 2024
  ident: bib0055
  article-title: Estimation of load for tunnel lining in elastic soil using physics-informed neural network
  publication-title: Comput.-Aid. Civil Infrastruct. Eng.
– volume: 160
  start-page: 273
  year: 2024
  end-page: 297
  ident: bib0033
  article-title: A nonlocal energy-informed neural network for peridynamic correspondence material models
  publication-title: Eng. Anal. Bound. Elem.
– volume: 0
  start-page: 1
  year: 2024
  end-page: 19
  ident: bib0019
  article-title: Physics-Informed neural network solver for numerical analysis in geoengineering
  publication-title: Georisk
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib0025
  article-title: The deep ritz method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
– volume: 401
  year: 2022
  ident: bib0045
  article-title: A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element method
  publication-title: Comput. Method. Appl. Mech. Eng.
– year: 2024
  ident: bib74
  article-title: Thermo‐hydro‐mechanical coupled material point method for modeling freezing and thawing of porous media
  publication-title: Int. J. Numeric. Analyt. Methods Geomech.
– start-page: 1
  year: 2024
  end-page: 13
  ident: bib72
  article-title: Particle tracking-aided digital volume correlation for clay–sand soil mixtures
  publication-title: Géotechnique
– volume: 15
  start-page: 101898
  year: 2024
  ident: bib70
  article-title: Towards an improved prediction of soil-freezing characteristic curve based on extreme gradient boosting model
  publication-title: Geosci. Front.
– volume: 474
  year: 2023
  ident: bib0056
  article-title: Self-adaptive physics-informed neural networks
  publication-title: J. Comput. Phys.
– volume: 181
  year: 2023
  ident: bib0014
  article-title: A mixed pressure-velocity formulation to model flow in heterogeneous porous media with physics-informed neural networks
  publication-title: Adv. Water Resour.
– volume: 401
  start-page: 115666
  year: 2022
  ident: bib79
  article-title: A novel stabilized NS-FEM formulation for anisotropic double porosity media
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 150
  year: 2022
  ident: bib0008
  article-title: A global direct search method for high-fidelity contact detection between arbitrarily shaped three-dimensional convex polyhedral blocks
  publication-title: Comput. Geotech.
– year: 2025
  ident: bib80
  article-title: A geometrical morphology-enhanced computer vision approach for structural health assessment
  publication-title: Struct. Health Monitor.
– reference: .
– volume: 62
  start-page: 352
  year: 2020
  end-page: 364
  ident: bib0063
  article-title: Deep neural networks motivated by partial differential equations
  publication-title: J. Math. Imaging Vis.
– volume: 326
  start-page: 107314
  year: 2023
  ident: bib78
  article-title: Hydro-mechanical simulations aid demand-oriented design of slit dams for controlling debris flows, debris avalanches and rock avalanches
  publication-title: Eng. Geol.
– volume: 432
  year: 2024
  ident: bib0036
  article-title: The novel graph transformer-based surrogate model for learning physical systems
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 431
  start-page: 117294
  year: 2024
  ident: bib73
  article-title: A mortar segment-to-segment frictional contact approach in material point method
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 124
  start-page: 1585
  year: 2023
  end-page: 1601
  ident: bib0039
  article-title: Enhanced physics-informed neural networks for hyperelasticity
  publication-title: Int. J. Numer. Method. Eng.
– volume: 418
  year: 2024
  ident: bib0041
  article-title: Data-driven nonparametric identification of material behavior based on physics-informed neural network with full-field data
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 14
  start-page: 3693
  year: 2023
  ident: bib0017
  article-title: Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes
  publication-title: Nat. Commun.
– volume: 277–278
  year: 2023
  ident: bib0049
  article-title: Application of physics-informed neural networks for forward and inverse analysis of pile–soil interaction
  publication-title: Int. J. Solid. Struct.
– volume: 421
  year: 2024
  ident: bib0015
  article-title: A novel physics-informed deep learning strategy with local time-updating discrete scheme for multi-dimensional forward and inverse consolidation problems
  publication-title: Comput. Method. Appl. Mech. Eng.
– volume: 427
  year: 2024
  ident: bib0031
  article-title: A neural network finite element approach for high speed cardiac mechanics simulations
  publication-title: Comput. Meth. Appl. Mech. Eng.
– reference: Y. Lu, A. Zhong, Q. Li, B. Dong, Beyond finite layer neural networks: bridging deep architectures and numerical differential equations, (2020).
– reference: P. Rathore, W. Lei, Z. Frangella, L. Lu, M. Udell, Challenges in training PINNs: a loss landscape perspective, (2024).
– volume: 80
  year: 2020
  ident: bib0024
  article-title: A deep energy method for finite deformation hyperelasticity
  publication-title: Eur. J. Mech. - A/Solid.
– volume: 150
  year: 2022
  ident: 10.1016/j.cma.2025.117755_bib0008
  article-title: A global direct search method for high-fidelity contact detection between arbitrarily shaped three-dimensional convex polyhedral blocks
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2022.104891
– volume: 8
  start-page: eabk0644
  year: 2022
  ident: 10.1016/j.cma.2025.117755_bib0044
  article-title: Analyses of internal structures and defects in materials using physics-informed neural networks
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abk0644
– volume: 0
  start-page: 1
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0019
  article-title: Physics-Informed neural network solver for numerical analysis in geoengineering
  publication-title: Georisk
– year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0059
  article-title: Interpreting and generalizing deep learning in physics-based problems with functional linear models
  publication-title: Eng. Comput.
– start-page: 1
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0010
  article-title: The role of particle shape in computational modelling of granular matter
  publication-title: Nat. Rev. Phys.
– volume: 171
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0016
  article-title: Data-driven multiscale modelling of granular materials via knowledge transfer and sharing
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2023.103786
– start-page: e7388
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0046
  article-title: Mixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domains
  publication-title: Num. Method. Eng.
– volume: 2
  start-page: 359
  year: 1989
  ident: 10.1016/j.cma.2025.117755_bib0011
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neur. Netw.
  doi: 10.1016/0893-6080(89)90020-8
– year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0053
  article-title: Machine learning-based soil–structure interaction analysis of laterally loaded piles through physics-informed neural networks
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-023-02179-7
– volume: 43
  start-page: A3055
  year: 2021
  ident: 10.1016/j.cma.2025.117755_bib0060
  article-title: Understanding and mitigating gradient flow pathologies in physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/20M1318043
– year: 2024
  ident: 10.1016/j.cma.2025.117755_bib74
  article-title: Thermo‐hydro‐mechanical coupled material point method for modeling freezing and thawing of porous media
  publication-title: Int. J. Numeric. Analyt. Methods Geomech.
  doi: 10.1002/nag.3794
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2025.117755_bib0012
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 234
  start-page: 5975
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0040
  article-title: Improving the accuracy of the deep energy method
  publication-title: Acta Mech.
  doi: 10.1007/s00707-023-03691-3
– volume: 405
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0054
  article-title: Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.115852
– volume: 48
  start-page: 1278
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0048
  article-title: Physics-informed neural networks for large deflection analysis of slender piles incorporating non-differentiable soil-structure interaction
  publication-title: Int. J. Numer. Anal. Method. Geomech.
  doi: 10.1002/nag.3679
– volume: 62
  start-page: 352
  year: 2020
  ident: 10.1016/j.cma.2025.117755_bib0063
  article-title: Deep neural networks motivated by partial differential equations
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-019-00903-1
– volume: 106
  year: 2020
  ident: 10.1016/j.cma.2025.117755_bib0018
  article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
  publication-title: Theoret. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2019.102447
– start-page: 7482
  year: 2018
  ident: 10.1016/j.cma.2025.117755_bib0058
  article-title: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics
– ident: 10.1016/j.cma.2025.117755_bib0068
– volume: 419
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0003
  article-title: Coupled total- and semi-Lagrangian peridynamics for modelling fluid-driven fracturing in solids
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116580
– volume: 414
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0028
  article-title: Exact Dirichlet boundary physics-informed neural network EPINN for solid mechanics
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116184
– volume: 474
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0056
  article-title: Self-adaptive physics-informed neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111722
– volume: 418
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0041
  article-title: Data-driven nonparametric identification of material behavior based on physics-informed neural network with full-field data
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116569
– volume: 326
  start-page: 107314
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib78
  article-title: Hydro-mechanical simulations aid demand-oriented design of slit dams for controlling debris flows, debris avalanches and rock avalanches
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2023.107314
– volume: 385
  year: 2021
  ident: 10.1016/j.cma.2025.117755_bib0037
  article-title: A nonlocal physics-informed deep learning framework using the peridynamic differential operator
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114012
– volume: 383
  year: 2021
  ident: 10.1016/j.cma.2025.117755_bib0026
  article-title: A physics-guided neural network framework for elastic plates: comparison of governing equations-based and energy-based approaches
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113933
– volume: 160
  start-page: 273
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0033
  article-title: A nonlocal energy-informed neural network for peridynamic correspondence material models
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2024.01.004
– volume: 73
  start-page: 233
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0032
  article-title: A nonlocal energy-informed neural network based on peridynamics for elastic solids with discontinuities
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-023-02365-0
– volume: 431
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0065
  article-title: Interpretable physics-encoded finite element network to handle concentration features and multi-material heterogeneity in hyperelasticity
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2024.117268
– volume: 162
  start-page: 472
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0023
  article-title: Deep learning-accelerated computational framework based on Physics Informed Neural Network for the solution of linear elasticity
  publication-title: Neur. Netw.
  doi: 10.1016/j.neunet.2023.03.014
– volume: 164
  start-page: 103576
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib76
  article-title: Deep active learning for constitutive modelling of granular materials: From representative volume elements to implicit finite element modelling
  publication-title: Int. J. Plastic.
  doi: 10.1016/j.ijplas.2023.103576
– volume: 431
  start-page: 117294
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib73
  article-title: A mortar segment-to-segment frictional contact approach in material point method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2024.117294
– volume: 14
  start-page: 3693
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0017
  article-title: Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39377-6
– volume: 277–278
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0049
  article-title: Application of physics-informed neural networks for forward and inverse analysis of pile–soil interaction
  publication-title: Int. J. Solid. Struct.
– volume: 5
  start-page: 765
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0061
  article-title: Encoding physics to learn reaction–diffusion processes
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00685-7
– volume: 146
  year: 2022
  ident: 10.1016/j.cma.2025.117755_bib0007
  article-title: Three-dimensional discontinuous deformation analysis derived from the virtual work principle with a simplex integral on the boundary
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2022.104710
– volume: 421
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0015
  article-title: A novel physics-informed deep learning strategy with local time-updating discrete scheme for multi-dimensional forward and inverse consolidation problems
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2024.116819
– volume: 379
  year: 2021
  ident: 10.1016/j.cma.2025.117755_bib0020
  article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113741
– volume: 386
  year: 2021
  ident: 10.1016/j.cma.2025.117755_bib0027
  article-title: Parametric deep energy approach for elasticity accounting for strain gradient effects
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114096
– volume: 432
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0036
  article-title: The novel graph transformer-based surrogate model for learning physical systems
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2024.117410
– volume: 144
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0051
  article-title: Settlement prediction of immersed tunnel considering time-dependent foundation modulus
  publication-title: Tunnell. Undergr. Space Technol.
  doi: 10.1016/j.tust.2023.105562
– year: 2025
  ident: 10.1016/j.cma.2025.117755_bib80
  article-title: A geometrical morphology-enhanced computer vision approach for structural health assessment
  publication-title: Struct. Health Monitor.
  doi: 10.3390/books978-3-7258-3706-9
– volume: 401
  start-page: 115666
  year: 2022
  ident: 10.1016/j.cma.2025.117755_bib79
  article-title: A novel stabilized NS-FEM formulation for anisotropic double porosity media
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.115666
– volume: 451
  year: 2022
  ident: 10.1016/j.cma.2025.117755_bib0038
  article-title: The mixed Deep Energy Method for resolving concentration features in finite strain hyperelasticity
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110839
– volume: 117
  year: 2020
  ident: 10.1016/j.cma.2025.117755_bib0009
  article-title: The last entrance plane method for contact indeterminacy between convex polyhedral blocks
  publication-title: Comput. Geotechn.
  doi: 10.1016/j.compgeo.2019.103283
– volume: 430
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0035
  article-title: Transfer learning enhanced nonlocal energy-informed neural network for quasi-static fracture in rock-like materials
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2024.117226
– volume: 36
  start-page: 962
  year: 2021
  ident: 10.1016/j.cma.2025.117755_bib0057
  article-title: Efficient training of physics-informed neural networks via importance sampling
  publication-title: Comput.-Aid. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12685
– volume: 74
  start-page: 486
  issue: 5
  year: 2022
  ident: 10.1016/j.cma.2025.117755_bib77
  article-title: Load–deflection of flexible ring-net barrier in resisting debris flows
  publication-title: Géotechnique
  doi: 10.1680/jgeot.22.00135
– volume: 15
  start-page: 101898
  issue: 6
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib70
  article-title: Towards an improved prediction of soil-freezing characteristic curve based on extreme gradient boosting model
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2024.101898
– volume: 3
  start-page: 422
  year: 2021
  ident: 10.1016/j.cma.2025.117755_bib0013
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– volume: 3
  start-page: 005
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0064
  article-title: Solving inverse problems in physics by optimizing a discrete loss: fast and accurate learning without neural networks
  publication-title: PNAS Nexus
– year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0055
  article-title: Estimation of load for tunnel lining in elastic soil using physics-informed neural network
  publication-title: Comput.-Aid. Civil Infrastruct. Eng.
  doi: 10.1111/mice.13208
– volume: 181
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0014
  article-title: A mixed pressure-velocity formulation to model flow in heterogeneous porous media with physics-informed neural networks
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2023.104564
– volume: 401
  year: 2022
  ident: 10.1016/j.cma.2025.117755_bib0045
  article-title: A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element method
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.115616
– volume: 18
  start-page: 4957
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0050
  article-title: Physics-informed deep learning method for predicting tunnelling-induced ground deformations
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-023-01874-9
– volume: 400
  year: 2022
  ident: 10.1016/j.cma.2025.117755_bib0042
  article-title: CENN: conservative energy method based on neural networks with subdomains for solving variational problems involving heterogeneous and complex geometries
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.115491
– volume: 122
  start-page: 7182
  year: 2021
  ident: 10.1016/j.cma.2025.117755_bib0021
  article-title: Meshless physics-informed deep learning method for three-dimensional solid mechanics
  publication-title: Int. J. Numer. Method. Eng.
  doi: 10.1002/nme.6828
– year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0002
  article-title: A multi-horizon fully coupled thermo-mechanical peridynamics
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2024.105758
– ident: 10.1016/j.cma.2025.117755_bib0062
– volume: 285
  year: 2025
  ident: 10.1016/j.cma.2025.117755_bib0029
  article-title: Neural network-augmented differentiable finite element method for boundary value problems
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2024.109783
– volume: 390
  year: 2022
  ident: 10.1016/j.cma.2025.117755_bib0030
  article-title: Physics-informed graph neural Galerkin networks: a unified framework for solving PDE-governed forward and inverse problems
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114502
– year: 2017
  ident: 10.1016/j.cma.2025.117755_bib0001
– volume: 427
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0031
  article-title: A neural network finite element approach for high speed cardiac mechanics simulations
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2024.117060
– volume: 413
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0043
  article-title: Solving multi-material problems in solid mechanics using physics-informed neural networks based on domain decomposition technology
  publication-title: Comput. Method. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116120
– start-page: 1
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib72
  article-title: Particle tracking-aided digital volume correlation for clay–sand soil mixtures
  publication-title: Géotechnique
  doi: 10.1680/jgeot.23.00498
– volume: 124
  start-page: 1585
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0039
  article-title: Enhanced physics-informed neural networks for hyperelasticity
  publication-title: Int. J. Numer. Method. Eng.
  doi: 10.1002/nme.7176
– volume: 127
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0047
  article-title: Mixed form based physics-informed neural networks for performance evaluation of two-phase random materials
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107250
– volume: 124
  start-page: 3935
  year: 2023
  ident: 10.1016/j.cma.2025.117755_bib0034
  article-title: A nonlocal energy-informed neural network for isotropic elastic solids with cracks under thermomechanical loads
  publication-title: Int. J. Numer. Method. Eng.
  doi: 10.1002/nme.7296
– volume: 24
  year: 2024
  ident: 10.1016/j.cma.2025.117755_bib0052
  article-title: Physics-informed neural networks for settlement analysis of the immersed tunnel of the Hong Kong–Zhuhai–Macau Bridge
  publication-title: Int. J. Geomech.
  doi: 10.1061/IJGNAI.GMENG-8689
– volume: 148
  year: 2022
  ident: 10.1016/j.cma.2025.117755_bib0022
  article-title: A physics-informed neural network approach to solution and identification of biharmonic equations of elasticity
  publication-title: J. Eng. Mech.
– start-page: 5301
  year: 2019
  ident: 10.1016/j.cma.2025.117755_bib0066
  article-title: On the spectral bias of neural networks
– volume: 80
  year: 2020
  ident: 10.1016/j.cma.2025.117755_bib0024
  article-title: A deep energy method for finite deformation hyperelasticity
  publication-title: Eur. J. Mech. - A/Solid.
  doi: 10.1016/j.euromechsol.2019.103874
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2025.117755_bib0025
  article-title: The deep ritz method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-018-0127-z
– year: 1996
  ident: 10.1016/j.cma.2025.117755_bib0067
SSID ssj0000812
Score 2.5116363
Snippet •Galerkin discretization is utilized to build a novel differentiable finite element method (DFEM) that encodes physics and significantly reduces training...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117755
SubjectTerms Differentiable Finite Element Method (DFEM)
Heterogeneous engineering structures
Inverse analysis
Physics-Encoded Numerical Network (PENN)
Physics-Informed Neural Network (PINN)
Title Differentiable finite element method with Galerkin discretization for fast and accurate inverse analysis of multidimensional heterogeneous engineering structures
URI https://dx.doi.org/10.1016/j.cma.2025.117755
Volume 437
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07SwQxEA6ijRY-TsU3U1gJq-tt9nGl-DoVrRTslmSS4InsCXfX-l_8p84kWT1BLSw3bCBkJpkvyTffCLGfp2jIefPEpZnxt1WJynQvKbQpuhSSdOUz5G7viv6DvH7MH2fEaZsLw7TKuPeHPd3v1rHlKM7m0etgwDm-krXY-V2OD1c-g12W7OWHb180Dwp5QTFc5gn_3b5seo4Xeumhbu6fLjnb76fYNBVvLpbFYgSKcBLGsiJmbNMRSxE0QlySo45YmFIUXBXvZ7HgCS1c_WLBDRhTgg0kcQj1ooEvX-GSQgNflAMn5nIuY0jIBEKx4NRoDKoxoBAnLCYBg4b5G5Yag4gJDB14MqLh8gBB2gOemFszJJe0w8kI7NfAIMjUTuhsvyYeLs7vT_tJrMKQYCbTcaLKbm7QmFRiVqkKK1U6AjWagA9WvbJrWbQtU1IrJLyhDErEyqSFxRIdWszWxWwzbOyGgLToWVk6Qg09R8fCkrCIqbRRSrlSk1tsirSd_xqjRDlXynipWy7ac00mq9lkdTDZpjj47PIa9Dn--lm2Rq2_OVlN8eP3blv_67Yt5vmLCWvH-Y6YpYm2u4RgxnrPu-iemDu5uunffQA4JPTS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtUwEB2VsoAuSimglkeZBWyQQtPEedwFC0Qpt_SxaqXugj221Yuq3IrcK8Sm_8I38IPMxA4tUssCqdskjhKPPWdsnzkD8KpIyfLgLRKf5rbfrUp0bkZJaWyZMSSZus-QOzgsx8fq80lxsgC_hlwYoVVG3x98eu-t45XN2Jub55OJ5Pgq0WKXczlZXG1FZuWe-_Gd123du91tNvLrLNv5ePRhnMTSAgnlKp0lusoKS9amivJa11TryjNSG0ZzqkdV5kSJLNfKaGIQ1ZYUUW3T0lFFnhzl_N47cFexu5CyCW8vLnkljLFBolwViXzecJTak8qo1zrKiv6sVNILrwPDKwC3swLLMTLF9-HnH8KCa1fhQYxSMfqAbhWWrkgYPoKf27HCCnsKc-bQTySIRRdY6RgKVKPs9uInxiLZmUfJBJbkyZABihw2o9fdDHVrURPNRb0CJ60QRhxfDKopOPXYsx-t1CMIWiJ4KmSeKc8BN5136C4_DIMu7vyb6x7D8a3Y5gksttPWrQGm5cipynOYMvK8Dq04-LG1sVprXxkeh-uQDv3fUNREl9IcZ81AfvvasMkaMVkTTLYOb_40OQ-CIP96WA1Gbf4a1Q0D1s3Nnv5fs5dwb3x0sN_s7x7uPYP7ckfYclvFc1jkTncvOHyamY1-uCJ8ue358RuDEjJz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentiable+finite+element+method+with+Galerkin+discretization+for+fast+and+accurate+inverse+analysis+of+multidimensional+heterogeneous+engineering+structures&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Wang%2C+Xi&rft.au=Yin%2C+Zhen-Yu&rft.au=Wu%2C+Wei&rft.au=Zhu%2C+He-Hua&rft.date=2025-03-15&rft.issn=0045-7825&rft.volume=437&rft.spage=117755&rft_id=info:doi/10.1016%2Fj.cma.2025.117755&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2025_117755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon