Differentiable finite element method with Galerkin discretization for fast and accurate inverse analysis of multidimensional heterogeneous engineering structures
•Galerkin discretization is utilized to build a novel differentiable finite element method (DFEM) that encodes physics and significantly reduces training cost.•DFEM embeds the weak-form physics, boundary/initial conditions, and data constraints into the network architecture.•Both the accuracy and ef...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 437; p. 117755 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Galerkin discretization is utilized to build a novel differentiable finite element method (DFEM) that encodes physics and significantly reduces training cost.•DFEM embeds the weak-form physics, boundary/initial conditions, and data constraints into the network architecture.•Both the accuracy and efficiency of inverse analysis are improved by several orders of magnitude.•Inverse analysis of three-dimensional heterogeneous engineering structures can be accomplished in seconds.•DFEM can be readily extended as Physics-Encoded Numerical Network (PENN) to revitalize classical numerical methods for AI4Science.
Physics-informed neural networks (PINNs) are well-regarded for their capabilities in inverse analysis. However, efficient convergence is hard to achieve due to the necessity of simultaneously handling physics constraints, data constraints, blackbox weights, and blackbox biases. Consequently, PINNs are highly challenged in the inverse analysis of unknown boundary loadings and heterogeneous material parameters, particularly for three-dimensional engineering structures. To address these limitations, this study develops a novel differentiable finite element method (DFEM) based on Galerkin discretization for diverse inverse analysis. The proposed DFEM directly embeds the weak form of the partial differential equation into a discretized and differentiable computational graph, yielding a loss function from fully interpretable trainable parameters. Moreover, the labeled data, including boundary conditions, are strictly encoded into the computational graph without additional training. Finally, two benchmarks validate the DFEM's superior efficiency and accuracy: (1) With only 0.3 % training iterations, the DFEM can achieve an accuracy three orders of magnitude higher for the inverse analysis of unknown loadings. (2) With a training time five orders of magnitude faster, the DFEM is validated to be five orders of magnitude more accurate in determining unknown material parameters. Furthermore, two cases validate DFEM as effective for three-dimensional engineering structures: (1) A damaged cantilever beam characterized by twenty heterogeneous materials with forty unknown parameters is efficiently solved. (2) A tunnel lining ring with sparse noisy data under unknown heterogeneous boundary loadings is successfully analyzed. These problems are solved in seconds, corroborating DFEM's potential for engineering applications. Additionally, the DFEM framework can be generalized to a Physics-Encoded Numerical Network (PENN) for further development and exploration. |
---|---|
AbstractList | •Galerkin discretization is utilized to build a novel differentiable finite element method (DFEM) that encodes physics and significantly reduces training cost.•DFEM embeds the weak-form physics, boundary/initial conditions, and data constraints into the network architecture.•Both the accuracy and efficiency of inverse analysis are improved by several orders of magnitude.•Inverse analysis of three-dimensional heterogeneous engineering structures can be accomplished in seconds.•DFEM can be readily extended as Physics-Encoded Numerical Network (PENN) to revitalize classical numerical methods for AI4Science.
Physics-informed neural networks (PINNs) are well-regarded for their capabilities in inverse analysis. However, efficient convergence is hard to achieve due to the necessity of simultaneously handling physics constraints, data constraints, blackbox weights, and blackbox biases. Consequently, PINNs are highly challenged in the inverse analysis of unknown boundary loadings and heterogeneous material parameters, particularly for three-dimensional engineering structures. To address these limitations, this study develops a novel differentiable finite element method (DFEM) based on Galerkin discretization for diverse inverse analysis. The proposed DFEM directly embeds the weak form of the partial differential equation into a discretized and differentiable computational graph, yielding a loss function from fully interpretable trainable parameters. Moreover, the labeled data, including boundary conditions, are strictly encoded into the computational graph without additional training. Finally, two benchmarks validate the DFEM's superior efficiency and accuracy: (1) With only 0.3 % training iterations, the DFEM can achieve an accuracy three orders of magnitude higher for the inverse analysis of unknown loadings. (2) With a training time five orders of magnitude faster, the DFEM is validated to be five orders of magnitude more accurate in determining unknown material parameters. Furthermore, two cases validate DFEM as effective for three-dimensional engineering structures: (1) A damaged cantilever beam characterized by twenty heterogeneous materials with forty unknown parameters is efficiently solved. (2) A tunnel lining ring with sparse noisy data under unknown heterogeneous boundary loadings is successfully analyzed. These problems are solved in seconds, corroborating DFEM's potential for engineering applications. Additionally, the DFEM framework can be generalized to a Physics-Encoded Numerical Network (PENN) for further development and exploration. |
ArticleNumber | 117755 |
Author | Wu, Wei Yin, Zhen-Yu Wang, Xi Zhu, He-Hua |
Author_xml | – sequence: 1 givenname: Xi orcidid: 0000-0001-7713-0282 surname: Wang fullname: Wang, Xi email: xiwang.wang@polyu.edu.hk organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China – sequence: 2 givenname: Zhen-Yu surname: Yin fullname: Yin, Zhen-Yu email: zhenyu.yin@polyu.edu.hk organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China – sequence: 3 givenname: Wei surname: Wu fullname: Wu, Wei email: weiwu@tongji.edu.cn organization: College of Civil Engineering, Tongji University, Shanghai 200092, PR China – sequence: 4 givenname: He-Hua surname: Zhu fullname: Zhu, He-Hua email: zhuhehua@tongji.edu.cn organization: College of Civil Engineering, Tongji University, Shanghai 200092, PR China |
BookMark | eNp9kE1uFDEQhb0IUv44QHa-wAy2uzvuUVYoQIIUKRtYWzXl8kxNum1ku4PCbbgpDsOKRWpT0pO-J73vXJzEFEmIK63WWunrD4c1zrA2ygxrra0dhhNxplQ_rOxohlNxXspBtRu1ORO_P3EIlClWhu1EMnDkSpImmlsmZ6r75OVPrnt5BxPlJ47Sc8FMlX9B5RRlSFkGKFVC9BIQlwytgeMz5UIthOmlcJEpyHmZKntuzaWBMMk9VcppR5HSUiTFHUeizHEnS80L1iVTuRTvAkyF3v_7F-L7l8_fbu9XD493X28_Pqyw61VdgTWDR-9Vj90II45gw2bTba2xOG6sIaN700G_BVTKgscecfTqmtBiQMLuQthjL-ZUSqbgkOvfhTUDT04r92rXHVyz617tuqPdRur_yB-ZZ8gvbzI3R4bapGem7AoyRSTPmbA6n_gN-g9VYZ2o |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2025_140185 crossref_primary_10_1016_j_compgeo_2025_107110 crossref_primary_10_1016_j_ymssp_2025_112597 |
Cites_doi | 10.1016/j.compgeo.2022.104891 10.1126/sciadv.abk0644 10.1016/j.ijplas.2023.103786 10.1016/0893-6080(89)90020-8 10.1007/s11440-023-02179-7 10.1137/20M1318043 10.1002/nag.3794 10.1016/j.jcp.2018.10.045 10.1007/s00707-023-03691-3 10.1016/j.cma.2022.115852 10.1002/nag.3679 10.1007/s10851-019-00903-1 10.1016/j.tafmec.2019.102447 10.1016/j.cma.2023.116580 10.1016/j.cma.2023.116184 10.1016/j.jcp.2022.111722 10.1016/j.cma.2023.116569 10.1016/j.enggeo.2023.107314 10.1016/j.cma.2021.114012 10.1016/j.cma.2021.113933 10.1016/j.enganabound.2024.01.004 10.1007/s00466-023-02365-0 10.1016/j.cma.2024.117268 10.1016/j.neunet.2023.03.014 10.1016/j.ijplas.2023.103576 10.1016/j.cma.2024.117294 10.1038/s41467-023-39377-6 10.1038/s42256-023-00685-7 10.1016/j.compgeo.2022.104710 10.1016/j.cma.2024.116819 10.1016/j.cma.2021.113741 10.1016/j.cma.2021.114096 10.1016/j.cma.2024.117410 10.1016/j.tust.2023.105562 10.3390/books978-3-7258-3706-9 10.1016/j.cma.2022.115666 10.1016/j.jcp.2021.110839 10.1016/j.compgeo.2019.103283 10.1016/j.cma.2024.117226 10.1111/mice.12685 10.1680/jgeot.22.00135 10.1016/j.gsf.2024.101898 10.1038/s42254-021-00314-5 10.1111/mice.13208 10.1016/j.advwatres.2023.104564 10.1016/j.cma.2022.115616 10.1007/s11440-023-01874-9 10.1016/j.cma.2022.115491 10.1002/nme.6828 10.1016/j.jmps.2024.105758 10.1016/j.ijmecsci.2024.109783 10.1016/j.cma.2021.114502 10.1016/j.cma.2024.117060 10.1016/j.cma.2023.116120 10.1680/jgeot.23.00498 10.1002/nme.7176 10.1016/j.engappai.2023.107250 10.1002/nme.7296 10.1061/IJGNAI.GMENG-8689 10.1016/j.euromechsol.2019.103874 10.1007/s40304-018-0127-z |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.cma.2025.117755 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
ExternalDocumentID | 10_1016_j_cma_2025_117755 S0045782525000271 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ADIYS ADJOM ADMUD ADNMO AGQPQ AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET VH1 VOH WUQ ZY4 |
ID | FETCH-LOGICAL-c340t-a725dcdd04c38a8c8a7f993b727c8972e21423a4bac007adc4cc8d06ec7cfcec3 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Thu Apr 24 23:08:39 EDT 2025 Thu Aug 21 00:24:32 EDT 2025 Sat Aug 30 17:13:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Inverse analysis Physics-Encoded Numerical Network (PENN) Physics-Informed Neural Network (PINN) Heterogeneous engineering structures Differentiable Finite Element Method (DFEM) |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-a725dcdd04c38a8c8a7f993b727c8972e21423a4bac007adc4cc8d06ec7cfcec3 |
ORCID | 0000-0001-7713-0282 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0045782525000271 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cma_2025_117755 crossref_primary_10_1016_j_cma_2025_117755 elsevier_sciencedirect_doi_10_1016_j_cma_2025_117755 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-15 |
PublicationDateYYYYMMDD | 2025-03-15 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Dao, Karniadakis, Suresh (bib0044) 2022; 8 Ouyang, Li, Chen, Liu (bib0048) 2024; 48 Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (bib0013) 2021; 3 Raissi, Perdikaris, Karniadakis (bib0012) 2019; 378 Yu, Zhou (bib0034) 2023; 124 Zhang, Pan, Yang, Yang (bib0050) 2023; 18 Yu, Zhou (bib0032) 2024; 73 Jeong, Cho, Chung, Kim (bib0041) 2024; 418 He, Zhou, Tang (bib0052) 2024; 24 Yang, Zhu, Zhao (bib0002) 2024 Diao, Yang, Zhang, Zhang, Du (bib0043) 2023; 413 Abueidda, Koric, Guleryuz, Sobh (bib0039) 2023; 124 Chen, Zhang, Yin (bib0019) 2024; 0 Abueidda, Lu, Koric (bib0021) 2021; 122 Wu, Wang, Pan, Yin (bib72) 2024 Vahab, Haghighat, Khaleghi, Khalili (bib0022) 2022; 148 He, Tang, Zhou (bib0051) 2024; 144 Borate, Rivière, Marone, Mali, Kifer, Shokouhi (bib0017) 2023; 14 Haghighat, Bekar, Madenci, Juanes (bib0037) 2021; 385 Li, Bazant, Zhu (bib0026) 2021; 383 Chadha, He, Abueidda, Koric, Guleryuz, Jasiuk (bib0040) 2023; 234 Zhang, Wang, Yin, Jin (bib79) 2022; 401 Yang, Zhu, Zhao (bib0003) 2024; 419 Zhou, Yu (bib0035) 2024; 430 Nabian, Gladstone, Meidani (bib0057) 2021; 36 P. Rathore, W. Lei, Z. Frangella, L. Lu, M. Udell, Challenges in training PINNs: a loss landscape perspective, (2024). . Haghighat, Raissi, Moure, Gomez, Juanes (bib0020) 2021; 379 Wang, Teng, Perdikaris (bib0060) 2021; 43 Wang, Sun, Li, Lu, Liu (bib0042) 2022; 400 Goswami, Anitescu, Chakraborty, Rabczuk (bib0018) 2020; 106 Wang, Yin (bib0065) 2024; 431 Qu, Zhao, Guan, Feng (bib0016) 2023; 171 Nguyen-Thanh, Zhuang, Rabczuk (bib0024) 2020; 80 Wang, Mo, Izzuddin, Kim (bib0028) 2023; 414 Vahab, Shahbodagh, Haghighat, Khalili (bib0049) 2023; 277–278 Wang, Fang, Wang, Li, Chen, Liu (bib0055) 2024 Yu, Zhou (bib0033) 2024; 160 Fuhg, Bouklas (bib0038) 2022; 451 Yu, Zhao, Zhao, Liang (bib74) 2024 Nguyen-Thanh, Anitescu, Alajlan, Rabczuk, Zhuang (bib0027) 2021; 386 Karnakov, Litvinov, Koumoutsakos (bib0064) 2024; 3 Gao, Zahr, Wang (bib0030) 2022; 390 Ruthotto, Haber (bib0063) 2020; 62 Wang, Yin, Wu, Zhu (bib0029) 2025; 285 Wang, Wu, Zhu, Zhang (bib0007) 2022; 146 Li, He (bib70) 2024; 15 Rao (bib0001) 2017 Kong, Li, Zhao, Guan (bib77) 2022; 74 Hornik, Stinchcombe, White (bib0011) 1989; 2 Xu, Cao, Yuan, Meschke (bib0054) 2023; 405 Bathe (bib0067) 1996 Wang, Wu, Zhu, Zhang, Lin (bib0009) 2020; 117 Zhao, Zhao, Luding (bib0010) 2023 Wang, Wu, Zhu, Zhang, Lin, Bobet (bib0008) 2022; 150 Harandi, Moeineddin, Kaliske, Reese, Rezaei (bib0046) 2023 Guo, Yin (bib0015) 2024; 421 Motiwale, Zhang, Feldmeier, Sacks (bib0031) 2024; 427 Arzani, Yuan, Newell, Wang (bib0059) 2024 Liang, Fang, Yin, Zhao (bib73) 2024; 431 Rezaei, Harandi, Moeineddin, Xu, Reese (bib0045) 2022; 401 Feng, Zhou (bib0036) 2024; 432 McClenny, Braga-Neto (bib0056) 2023; 474 Rahaman, Baratin, Arpit, Draxler, Lin, Hamprecht, Bengio, Courville (bib0066) 2019 Roy, Bose, Sundararaghavan, Arróyave (bib0023) 2023; 162 Y. Lu, A. Zhong, Q. Li, B. Dong, Beyond finite layer neural networks: bridging deep architectures and numerical differential equations, (2020). Ouyang, Li, Chen, Liu (bib0053) 2024 E, Yu (bib0025) 2018; 6 Rao, Ren, Wang, Buyukozturk, Sun, Liu (bib0061) 2023; 5 Lehmann, Fahs, Alhubail, Hoteit (bib0014) 2023; 181 Qu, Guan, Feng, Ma, Zhou, Zhao (bib76) 2023; 164 Li, Zhao, Sun, Guo, Yang (bib80) 2025 Cipolla, Gal, Kendall (bib0058) 2018 Ren, Lyu (bib0047) 2024; 127 Kong, Guan (bib78) 2023; 326 Wang (10.1016/j.cma.2025.117755_bib0065) 2024; 431 Rezaei (10.1016/j.cma.2025.117755_bib0045) 2022; 401 Liang (10.1016/j.cma.2025.117755_bib73) 2024; 431 Nguyen-Thanh (10.1016/j.cma.2025.117755_bib0027) 2021; 386 Qu (10.1016/j.cma.2025.117755_bib0016) 2023; 171 Haghighat (10.1016/j.cma.2025.117755_bib0037) 2021; 385 Harandi (10.1016/j.cma.2025.117755_bib0046) 2023 Xu (10.1016/j.cma.2025.117755_bib0054) 2023; 405 Wang (10.1016/j.cma.2025.117755_bib0007) 2022; 146 Wu (10.1016/j.cma.2025.117755_bib72) 2024 Arzani (10.1016/j.cma.2025.117755_bib0059) 2024 Fuhg (10.1016/j.cma.2025.117755_bib0038) 2022; 451 Kong (10.1016/j.cma.2025.117755_bib77) 2022; 74 Raissi (10.1016/j.cma.2025.117755_bib0012) 2019; 378 Zhou (10.1016/j.cma.2025.117755_bib0035) 2024; 430 He (10.1016/j.cma.2025.117755_bib0051) 2024; 144 Abueidda (10.1016/j.cma.2025.117755_bib0039) 2023; 124 Chadha (10.1016/j.cma.2025.117755_bib0040) 2023; 234 E (10.1016/j.cma.2025.117755_bib0025) 2018; 6 Lehmann (10.1016/j.cma.2025.117755_bib0014) 2023; 181 Zhang (10.1016/j.cma.2025.117755_bib0044) 2022; 8 Kong (10.1016/j.cma.2025.117755_bib78) 2023; 326 Cipolla (10.1016/j.cma.2025.117755_bib0058) 2018 Yu (10.1016/j.cma.2025.117755_bib0034) 2023; 124 Goswami (10.1016/j.cma.2025.117755_bib0018) 2020; 106 Rao (10.1016/j.cma.2025.117755_bib0001) 2017 Hornik (10.1016/j.cma.2025.117755_bib0011) 1989; 2 Karniadakis (10.1016/j.cma.2025.117755_bib0013) 2021; 3 Gao (10.1016/j.cma.2025.117755_bib0030) 2022; 390 Vahab (10.1016/j.cma.2025.117755_bib0022) 2022; 148 Ouyang (10.1016/j.cma.2025.117755_bib0053) 2024 Feng (10.1016/j.cma.2025.117755_bib0036) 2024; 432 Zhao (10.1016/j.cma.2025.117755_bib0010) 2023 Karnakov (10.1016/j.cma.2025.117755_bib0064) 2024; 3 Wang (10.1016/j.cma.2025.117755_bib0009) 2020; 117 He (10.1016/j.cma.2025.117755_bib0052) 2024; 24 Rao (10.1016/j.cma.2025.117755_bib0061) 2023; 5 Ruthotto (10.1016/j.cma.2025.117755_bib0063) 2020; 62 Wang (10.1016/j.cma.2025.117755_bib0008) 2022; 150 Diao (10.1016/j.cma.2025.117755_bib0043) 2023; 413 Ouyang (10.1016/j.cma.2025.117755_bib0048) 2024; 48 Zhang (10.1016/j.cma.2025.117755_bib0050) 2023; 18 Rahaman (10.1016/j.cma.2025.117755_bib0066) 2019 Guo (10.1016/j.cma.2025.117755_bib0015) 2024; 421 Motiwale (10.1016/j.cma.2025.117755_bib0031) 2024; 427 Yang (10.1016/j.cma.2025.117755_bib0002) 2024 Zhang (10.1016/j.cma.2025.117755_bib79) 2022; 401 Wang (10.1016/j.cma.2025.117755_bib0042) 2022; 400 Yu (10.1016/j.cma.2025.117755_bib0032) 2024; 73 Qu (10.1016/j.cma.2025.117755_bib76) 2023; 164 McClenny (10.1016/j.cma.2025.117755_bib0056) 2023; 474 Borate (10.1016/j.cma.2025.117755_bib0017) 2023; 14 Ren (10.1016/j.cma.2025.117755_bib0047) 2024; 127 Li (10.1016/j.cma.2025.117755_bib80) 2025 Yu (10.1016/j.cma.2025.117755_bib0033) 2024; 160 Nabian (10.1016/j.cma.2025.117755_bib0057) 2021; 36 Wang (10.1016/j.cma.2025.117755_bib0028) 2023; 414 10.1016/j.cma.2025.117755_bib0062 Jeong (10.1016/j.cma.2025.117755_bib0041) 2024; 418 Abueidda (10.1016/j.cma.2025.117755_bib0021) 2021; 122 Nguyen-Thanh (10.1016/j.cma.2025.117755_bib0024) 2020; 80 Wang (10.1016/j.cma.2025.117755_bib0055) 2024 Li (10.1016/j.cma.2025.117755_bib0026) 2021; 383 Haghighat (10.1016/j.cma.2025.117755_bib0020) 2021; 379 Roy (10.1016/j.cma.2025.117755_bib0023) 2023; 162 Vahab (10.1016/j.cma.2025.117755_bib0049) 2023; 277–278 10.1016/j.cma.2025.117755_bib0068 Yu (10.1016/j.cma.2025.117755_bib74) 2024 Wang (10.1016/j.cma.2025.117755_bib0060) 2021; 43 Bathe (10.1016/j.cma.2025.117755_bib0067) 1996 Yang (10.1016/j.cma.2025.117755_bib0003) 2024; 419 Chen (10.1016/j.cma.2025.117755_bib0019) 2024; 0 Wang (10.1016/j.cma.2025.117755_bib0029) 2025; 285 Li (10.1016/j.cma.2025.117755_bib70) 2024; 15 |
References_xml | – volume: 117 year: 2020 ident: bib0009 article-title: The last entrance plane method for contact indeterminacy between convex polyhedral blocks publication-title: Comput. Geotechn. – volume: 430 year: 2024 ident: bib0035 article-title: Transfer learning enhanced nonlocal energy-informed neural network for quasi-static fracture in rock-like materials publication-title: Comput. Method. Appl. Mech. Eng. – volume: 43 start-page: A3055 year: 2021 end-page: A3081 ident: bib0060 article-title: Understanding and mitigating gradient flow pathologies in physics-informed neural networks publication-title: SIAM J. Sci. Comput. – volume: 146 year: 2022 ident: bib0007 article-title: Three-dimensional discontinuous deformation analysis derived from the virtual work principle with a simplex integral on the boundary publication-title: Comput. Geotech. – start-page: 1 year: 2023 end-page: 21 ident: bib0010 article-title: The role of particle shape in computational modelling of granular matter publication-title: Nat. Rev. Phys. – volume: 383 year: 2021 ident: bib0026 article-title: A physics-guided neural network framework for elastic plates: comparison of governing equations-based and energy-based approaches publication-title: Comput. Method. Appl. Mech. Eng. – volume: 285 year: 2025 ident: bib0029 article-title: Neural network-augmented differentiable finite element method for boundary value problems publication-title: Int. J. Mech. Sci. – volume: 74 start-page: 486 year: 2022 end-page: 498 ident: bib77 article-title: Load–deflection of flexible ring-net barrier in resisting debris flows publication-title: Géotechnique – volume: 414 year: 2023 ident: bib0028 article-title: Exact Dirichlet boundary physics-informed neural network EPINN for solid mechanics publication-title: Comput. Method. Appl. Mech. Eng. – year: 2024 ident: bib0059 article-title: Interpreting and generalizing deep learning in physics-based problems with functional linear models publication-title: Eng. Comput. – year: 1996 ident: bib0067 article-title: Finite Element Procedures – year: 2017 ident: bib0001 article-title: The Finite Element Method in Engineering – volume: 162 start-page: 472 year: 2023 end-page: 489 ident: bib0023 article-title: Deep learning-accelerated computational framework based on Physics Informed Neural Network for the solution of linear elasticity publication-title: Neur. Netw. – volume: 386 year: 2021 ident: bib0027 article-title: Parametric deep energy approach for elasticity accounting for strain gradient effects publication-title: Comput. Method. Appl. Mech. Eng. – year: 2024 ident: bib0002 article-title: A multi-horizon fully coupled thermo-mechanical peridynamics publication-title: J. Mech. Phys. Solid. – volume: 48 start-page: 1278 year: 2024 end-page: 1308 ident: bib0048 article-title: Physics-informed neural networks for large deflection analysis of slender piles incorporating non-differentiable soil-structure interaction publication-title: Int. J. Numer. Anal. Method. Geomech. – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: bib0012 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 73 start-page: 233 year: 2024 end-page: 255 ident: bib0032 article-title: A nonlocal energy-informed neural network based on peridynamics for elastic solids with discontinuities publication-title: Comput. Mech. – volume: 106 year: 2020 ident: bib0018 article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture publication-title: Theoret. Appl. Fract. Mech. – volume: 127 year: 2024 ident: bib0047 article-title: Mixed form based physics-informed neural networks for performance evaluation of two-phase random materials publication-title: Eng. Appl. Artif. Intell. – volume: 18 start-page: 4957 year: 2023 end-page: 4972 ident: bib0050 article-title: Physics-informed deep learning method for predicting tunnelling-induced ground deformations publication-title: Acta Geotech. – volume: 24 year: 2024 ident: bib0052 article-title: Physics-informed neural networks for settlement analysis of the immersed tunnel of the Hong Kong–Zhuhai–Macau Bridge publication-title: Int. J. Geomech. – year: 2024 ident: bib0053 article-title: Machine learning-based soil–structure interaction analysis of laterally loaded piles through physics-informed neural networks publication-title: Acta Geotech. – volume: 3 start-page: 422 year: 2021 end-page: 440 ident: bib0013 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. – volume: 144 year: 2024 ident: bib0051 article-title: Settlement prediction of immersed tunnel considering time-dependent foundation modulus publication-title: Tunnell. Undergr. Space Technol. – volume: 148 year: 2022 ident: bib0022 article-title: A physics-informed neural network approach to solution and identification of biharmonic equations of elasticity publication-title: J. Eng. Mech. – volume: 171 year: 2023 ident: bib0016 article-title: Data-driven multiscale modelling of granular materials via knowledge transfer and sharing publication-title: Int. J. Plast. – volume: 400 year: 2022 ident: bib0042 article-title: CENN: conservative energy method based on neural networks with subdomains for solving variational problems involving heterogeneous and complex geometries publication-title: Comput. Method. Appl. Mech. Eng. – volume: 390 year: 2022 ident: bib0030 article-title: Physics-informed graph neural Galerkin networks: a unified framework for solving PDE-governed forward and inverse problems publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 8 start-page: eabk0644 year: 2022 ident: bib0044 article-title: Analyses of internal structures and defects in materials using physics-informed neural networks publication-title: Sci. Adv. – volume: 5 start-page: 765 year: 2023 end-page: 779 ident: bib0061 article-title: Encoding physics to learn reaction–diffusion processes publication-title: Nat. Mach. Intell. – start-page: e7388 year: 2023 ident: bib0046 article-title: Mixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domains publication-title: Num. Method. Eng. – volume: 413 year: 2023 ident: bib0043 article-title: Solving multi-material problems in solid mechanics using physics-informed neural networks based on domain decomposition technology publication-title: Comput. Method. Appl. Mech. Eng. – volume: 451 year: 2022 ident: bib0038 article-title: The mixed Deep Energy Method for resolving concentration features in finite strain hyperelasticity publication-title: J. Comput. Phys. – volume: 431 year: 2024 ident: bib0065 article-title: Interpretable physics-encoded finite element network to handle concentration features and multi-material heterogeneity in hyperelasticity publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 3 start-page: 005 year: 2024 ident: bib0064 article-title: Solving inverse problems in physics by optimizing a discrete loss: fast and accurate learning without neural networks publication-title: PNAS Nexus – volume: 234 start-page: 5975 year: 2023 end-page: 5998 ident: bib0040 article-title: Improving the accuracy of the deep energy method publication-title: Acta Mech. – volume: 164 start-page: 103576 year: 2023 ident: bib76 article-title: Deep active learning for constitutive modelling of granular materials: From representative volume elements to implicit finite element modelling publication-title: Int. J. Plastic. – volume: 122 start-page: 7182 year: 2021 end-page: 7201 ident: bib0021 article-title: Meshless physics-informed deep learning method for three-dimensional solid mechanics publication-title: Int. J. Numer. Method. Eng. – volume: 36 start-page: 962 year: 2021 end-page: 977 ident: bib0057 article-title: Efficient training of physics-informed neural networks via importance sampling publication-title: Comput.-Aid. Civ. Infrastruct. Eng. – volume: 385 year: 2021 ident: bib0037 article-title: A nonlocal physics-informed deep learning framework using the peridynamic differential operator publication-title: Comput. Meth. Appl. Mech. Eng. – start-page: 7482 year: 2018 end-page: 7491 ident: bib0058 article-title: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 419 year: 2024 ident: bib0003 article-title: Coupled total- and semi-Lagrangian peridynamics for modelling fluid-driven fracturing in solids publication-title: Comput. Meth. Appl. Mech. Eng. – start-page: 5301 year: 2019 end-page: 5310 ident: bib0066 article-title: On the spectral bias of neural networks publication-title: Proceedings of the 36th International Conference on Machine Learning – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: bib0011 article-title: Multilayer feedforward networks are universal approximators publication-title: Neur. Netw. – volume: 124 start-page: 3935 year: 2023 end-page: 3963 ident: bib0034 article-title: A nonlocal energy-informed neural network for isotropic elastic solids with cracks under thermomechanical loads publication-title: Int. J. Numer. Method. Eng. – volume: 379 year: 2021 ident: bib0020 article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 405 year: 2023 ident: bib0054 article-title: Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios publication-title: Comput. Method. Appl. Mech. Eng. – year: 2024 ident: bib0055 article-title: Estimation of load for tunnel lining in elastic soil using physics-informed neural network publication-title: Comput.-Aid. Civil Infrastruct. Eng. – volume: 160 start-page: 273 year: 2024 end-page: 297 ident: bib0033 article-title: A nonlocal energy-informed neural network for peridynamic correspondence material models publication-title: Eng. Anal. Bound. Elem. – volume: 0 start-page: 1 year: 2024 end-page: 19 ident: bib0019 article-title: Physics-Informed neural network solver for numerical analysis in geoengineering publication-title: Georisk – volume: 6 start-page: 1 year: 2018 end-page: 12 ident: bib0025 article-title: The deep ritz method: a deep learning-based numerical algorithm for solving variational problems publication-title: Commun. Math. Stat. – volume: 401 year: 2022 ident: bib0045 article-title: A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element method publication-title: Comput. Method. Appl. Mech. Eng. – year: 2024 ident: bib74 article-title: Thermo‐hydro‐mechanical coupled material point method for modeling freezing and thawing of porous media publication-title: Int. J. Numeric. Analyt. Methods Geomech. – start-page: 1 year: 2024 end-page: 13 ident: bib72 article-title: Particle tracking-aided digital volume correlation for clay–sand soil mixtures publication-title: Géotechnique – volume: 15 start-page: 101898 year: 2024 ident: bib70 article-title: Towards an improved prediction of soil-freezing characteristic curve based on extreme gradient boosting model publication-title: Geosci. Front. – volume: 474 year: 2023 ident: bib0056 article-title: Self-adaptive physics-informed neural networks publication-title: J. Comput. Phys. – volume: 181 year: 2023 ident: bib0014 article-title: A mixed pressure-velocity formulation to model flow in heterogeneous porous media with physics-informed neural networks publication-title: Adv. Water Resour. – volume: 401 start-page: 115666 year: 2022 ident: bib79 article-title: A novel stabilized NS-FEM formulation for anisotropic double porosity media publication-title: Comput. Methods Appl. Mech. Eng. – volume: 150 year: 2022 ident: bib0008 article-title: A global direct search method for high-fidelity contact detection between arbitrarily shaped three-dimensional convex polyhedral blocks publication-title: Comput. Geotech. – year: 2025 ident: bib80 article-title: A geometrical morphology-enhanced computer vision approach for structural health assessment publication-title: Struct. Health Monitor. – reference: . – volume: 62 start-page: 352 year: 2020 end-page: 364 ident: bib0063 article-title: Deep neural networks motivated by partial differential equations publication-title: J. Math. Imaging Vis. – volume: 326 start-page: 107314 year: 2023 ident: bib78 article-title: Hydro-mechanical simulations aid demand-oriented design of slit dams for controlling debris flows, debris avalanches and rock avalanches publication-title: Eng. Geol. – volume: 432 year: 2024 ident: bib0036 article-title: The novel graph transformer-based surrogate model for learning physical systems publication-title: Comput. Method. Appl. Mech. Eng. – volume: 431 start-page: 117294 year: 2024 ident: bib73 article-title: A mortar segment-to-segment frictional contact approach in material point method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 124 start-page: 1585 year: 2023 end-page: 1601 ident: bib0039 article-title: Enhanced physics-informed neural networks for hyperelasticity publication-title: Int. J. Numer. Method. Eng. – volume: 418 year: 2024 ident: bib0041 article-title: Data-driven nonparametric identification of material behavior based on physics-informed neural network with full-field data publication-title: Comput. Method. Appl. Mech. Eng. – volume: 14 start-page: 3693 year: 2023 ident: bib0017 article-title: Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes publication-title: Nat. Commun. – volume: 277–278 year: 2023 ident: bib0049 article-title: Application of physics-informed neural networks for forward and inverse analysis of pile–soil interaction publication-title: Int. J. Solid. Struct. – volume: 421 year: 2024 ident: bib0015 article-title: A novel physics-informed deep learning strategy with local time-updating discrete scheme for multi-dimensional forward and inverse consolidation problems publication-title: Comput. Method. Appl. Mech. Eng. – volume: 427 year: 2024 ident: bib0031 article-title: A neural network finite element approach for high speed cardiac mechanics simulations publication-title: Comput. Meth. Appl. Mech. Eng. – reference: Y. Lu, A. Zhong, Q. Li, B. Dong, Beyond finite layer neural networks: bridging deep architectures and numerical differential equations, (2020). – reference: P. Rathore, W. Lei, Z. Frangella, L. Lu, M. Udell, Challenges in training PINNs: a loss landscape perspective, (2024). – volume: 80 year: 2020 ident: bib0024 article-title: A deep energy method for finite deformation hyperelasticity publication-title: Eur. J. Mech. - A/Solid. – volume: 150 year: 2022 ident: 10.1016/j.cma.2025.117755_bib0008 article-title: A global direct search method for high-fidelity contact detection between arbitrarily shaped three-dimensional convex polyhedral blocks publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2022.104891 – volume: 8 start-page: eabk0644 year: 2022 ident: 10.1016/j.cma.2025.117755_bib0044 article-title: Analyses of internal structures and defects in materials using physics-informed neural networks publication-title: Sci. Adv. doi: 10.1126/sciadv.abk0644 – volume: 0 start-page: 1 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0019 article-title: Physics-Informed neural network solver for numerical analysis in geoengineering publication-title: Georisk – year: 2024 ident: 10.1016/j.cma.2025.117755_bib0059 article-title: Interpreting and generalizing deep learning in physics-based problems with functional linear models publication-title: Eng. Comput. – start-page: 1 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0010 article-title: The role of particle shape in computational modelling of granular matter publication-title: Nat. Rev. Phys. – volume: 171 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0016 article-title: Data-driven multiscale modelling of granular materials via knowledge transfer and sharing publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2023.103786 – start-page: e7388 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0046 article-title: Mixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domains publication-title: Num. Method. Eng. – volume: 2 start-page: 359 year: 1989 ident: 10.1016/j.cma.2025.117755_bib0011 article-title: Multilayer feedforward networks are universal approximators publication-title: Neur. Netw. doi: 10.1016/0893-6080(89)90020-8 – year: 2024 ident: 10.1016/j.cma.2025.117755_bib0053 article-title: Machine learning-based soil–structure interaction analysis of laterally loaded piles through physics-informed neural networks publication-title: Acta Geotech. doi: 10.1007/s11440-023-02179-7 – volume: 43 start-page: A3055 year: 2021 ident: 10.1016/j.cma.2025.117755_bib0060 article-title: Understanding and mitigating gradient flow pathologies in physics-informed neural networks publication-title: SIAM J. Sci. Comput. doi: 10.1137/20M1318043 – year: 2024 ident: 10.1016/j.cma.2025.117755_bib74 article-title: Thermo‐hydro‐mechanical coupled material point method for modeling freezing and thawing of porous media publication-title: Int. J. Numeric. Analyt. Methods Geomech. doi: 10.1002/nag.3794 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.cma.2025.117755_bib0012 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 234 start-page: 5975 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0040 article-title: Improving the accuracy of the deep energy method publication-title: Acta Mech. doi: 10.1007/s00707-023-03691-3 – volume: 405 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0054 article-title: Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2022.115852 – volume: 48 start-page: 1278 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0048 article-title: Physics-informed neural networks for large deflection analysis of slender piles incorporating non-differentiable soil-structure interaction publication-title: Int. J. Numer. Anal. Method. Geomech. doi: 10.1002/nag.3679 – volume: 62 start-page: 352 year: 2020 ident: 10.1016/j.cma.2025.117755_bib0063 article-title: Deep neural networks motivated by partial differential equations publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-019-00903-1 – volume: 106 year: 2020 ident: 10.1016/j.cma.2025.117755_bib0018 article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture publication-title: Theoret. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2019.102447 – start-page: 7482 year: 2018 ident: 10.1016/j.cma.2025.117755_bib0058 article-title: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics – ident: 10.1016/j.cma.2025.117755_bib0068 – volume: 419 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0003 article-title: Coupled total- and semi-Lagrangian peridynamics for modelling fluid-driven fracturing in solids publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116580 – volume: 414 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0028 article-title: Exact Dirichlet boundary physics-informed neural network EPINN for solid mechanics publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116184 – volume: 474 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0056 article-title: Self-adaptive physics-informed neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111722 – volume: 418 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0041 article-title: Data-driven nonparametric identification of material behavior based on physics-informed neural network with full-field data publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116569 – volume: 326 start-page: 107314 year: 2023 ident: 10.1016/j.cma.2025.117755_bib78 article-title: Hydro-mechanical simulations aid demand-oriented design of slit dams for controlling debris flows, debris avalanches and rock avalanches publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2023.107314 – volume: 385 year: 2021 ident: 10.1016/j.cma.2025.117755_bib0037 article-title: A nonlocal physics-informed deep learning framework using the peridynamic differential operator publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114012 – volume: 383 year: 2021 ident: 10.1016/j.cma.2025.117755_bib0026 article-title: A physics-guided neural network framework for elastic plates: comparison of governing equations-based and energy-based approaches publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113933 – volume: 160 start-page: 273 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0033 article-title: A nonlocal energy-informed neural network for peridynamic correspondence material models publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2024.01.004 – volume: 73 start-page: 233 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0032 article-title: A nonlocal energy-informed neural network based on peridynamics for elastic solids with discontinuities publication-title: Comput. Mech. doi: 10.1007/s00466-023-02365-0 – volume: 431 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0065 article-title: Interpretable physics-encoded finite element network to handle concentration features and multi-material heterogeneity in hyperelasticity publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2024.117268 – volume: 162 start-page: 472 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0023 article-title: Deep learning-accelerated computational framework based on Physics Informed Neural Network for the solution of linear elasticity publication-title: Neur. Netw. doi: 10.1016/j.neunet.2023.03.014 – volume: 164 start-page: 103576 year: 2023 ident: 10.1016/j.cma.2025.117755_bib76 article-title: Deep active learning for constitutive modelling of granular materials: From representative volume elements to implicit finite element modelling publication-title: Int. J. Plastic. doi: 10.1016/j.ijplas.2023.103576 – volume: 431 start-page: 117294 year: 2024 ident: 10.1016/j.cma.2025.117755_bib73 article-title: A mortar segment-to-segment frictional contact approach in material point method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2024.117294 – volume: 14 start-page: 3693 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0017 article-title: Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes publication-title: Nat. Commun. doi: 10.1038/s41467-023-39377-6 – volume: 277–278 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0049 article-title: Application of physics-informed neural networks for forward and inverse analysis of pile–soil interaction publication-title: Int. J. Solid. Struct. – volume: 5 start-page: 765 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0061 article-title: Encoding physics to learn reaction–diffusion processes publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-023-00685-7 – volume: 146 year: 2022 ident: 10.1016/j.cma.2025.117755_bib0007 article-title: Three-dimensional discontinuous deformation analysis derived from the virtual work principle with a simplex integral on the boundary publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2022.104710 – volume: 421 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0015 article-title: A novel physics-informed deep learning strategy with local time-updating discrete scheme for multi-dimensional forward and inverse consolidation problems publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2024.116819 – volume: 379 year: 2021 ident: 10.1016/j.cma.2025.117755_bib0020 article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113741 – volume: 386 year: 2021 ident: 10.1016/j.cma.2025.117755_bib0027 article-title: Parametric deep energy approach for elasticity accounting for strain gradient effects publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114096 – volume: 432 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0036 article-title: The novel graph transformer-based surrogate model for learning physical systems publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2024.117410 – volume: 144 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0051 article-title: Settlement prediction of immersed tunnel considering time-dependent foundation modulus publication-title: Tunnell. Undergr. Space Technol. doi: 10.1016/j.tust.2023.105562 – year: 2025 ident: 10.1016/j.cma.2025.117755_bib80 article-title: A geometrical morphology-enhanced computer vision approach for structural health assessment publication-title: Struct. Health Monitor. doi: 10.3390/books978-3-7258-3706-9 – volume: 401 start-page: 115666 year: 2022 ident: 10.1016/j.cma.2025.117755_bib79 article-title: A novel stabilized NS-FEM formulation for anisotropic double porosity media publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.115666 – volume: 451 year: 2022 ident: 10.1016/j.cma.2025.117755_bib0038 article-title: The mixed Deep Energy Method for resolving concentration features in finite strain hyperelasticity publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110839 – volume: 117 year: 2020 ident: 10.1016/j.cma.2025.117755_bib0009 article-title: The last entrance plane method for contact indeterminacy between convex polyhedral blocks publication-title: Comput. Geotechn. doi: 10.1016/j.compgeo.2019.103283 – volume: 430 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0035 article-title: Transfer learning enhanced nonlocal energy-informed neural network for quasi-static fracture in rock-like materials publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2024.117226 – volume: 36 start-page: 962 year: 2021 ident: 10.1016/j.cma.2025.117755_bib0057 article-title: Efficient training of physics-informed neural networks via importance sampling publication-title: Comput.-Aid. Civ. Infrastruct. Eng. doi: 10.1111/mice.12685 – volume: 74 start-page: 486 issue: 5 year: 2022 ident: 10.1016/j.cma.2025.117755_bib77 article-title: Load–deflection of flexible ring-net barrier in resisting debris flows publication-title: Géotechnique doi: 10.1680/jgeot.22.00135 – volume: 15 start-page: 101898 issue: 6 year: 2024 ident: 10.1016/j.cma.2025.117755_bib70 article-title: Towards an improved prediction of soil-freezing characteristic curve based on extreme gradient boosting model publication-title: Geosci. Front. doi: 10.1016/j.gsf.2024.101898 – volume: 3 start-page: 422 year: 2021 ident: 10.1016/j.cma.2025.117755_bib0013 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00314-5 – volume: 3 start-page: 005 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0064 article-title: Solving inverse problems in physics by optimizing a discrete loss: fast and accurate learning without neural networks publication-title: PNAS Nexus – year: 2024 ident: 10.1016/j.cma.2025.117755_bib0055 article-title: Estimation of load for tunnel lining in elastic soil using physics-informed neural network publication-title: Comput.-Aid. Civil Infrastruct. Eng. doi: 10.1111/mice.13208 – volume: 181 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0014 article-title: A mixed pressure-velocity formulation to model flow in heterogeneous porous media with physics-informed neural networks publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2023.104564 – volume: 401 year: 2022 ident: 10.1016/j.cma.2025.117755_bib0045 article-title: A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element method publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2022.115616 – volume: 18 start-page: 4957 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0050 article-title: Physics-informed deep learning method for predicting tunnelling-induced ground deformations publication-title: Acta Geotech. doi: 10.1007/s11440-023-01874-9 – volume: 400 year: 2022 ident: 10.1016/j.cma.2025.117755_bib0042 article-title: CENN: conservative energy method based on neural networks with subdomains for solving variational problems involving heterogeneous and complex geometries publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2022.115491 – volume: 122 start-page: 7182 year: 2021 ident: 10.1016/j.cma.2025.117755_bib0021 article-title: Meshless physics-informed deep learning method for three-dimensional solid mechanics publication-title: Int. J. Numer. Method. Eng. doi: 10.1002/nme.6828 – year: 2024 ident: 10.1016/j.cma.2025.117755_bib0002 article-title: A multi-horizon fully coupled thermo-mechanical peridynamics publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2024.105758 – ident: 10.1016/j.cma.2025.117755_bib0062 – volume: 285 year: 2025 ident: 10.1016/j.cma.2025.117755_bib0029 article-title: Neural network-augmented differentiable finite element method for boundary value problems publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2024.109783 – volume: 390 year: 2022 ident: 10.1016/j.cma.2025.117755_bib0030 article-title: Physics-informed graph neural Galerkin networks: a unified framework for solving PDE-governed forward and inverse problems publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114502 – year: 2017 ident: 10.1016/j.cma.2025.117755_bib0001 – volume: 427 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0031 article-title: A neural network finite element approach for high speed cardiac mechanics simulations publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2024.117060 – volume: 413 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0043 article-title: Solving multi-material problems in solid mechanics using physics-informed neural networks based on domain decomposition technology publication-title: Comput. Method. Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116120 – start-page: 1 year: 2024 ident: 10.1016/j.cma.2025.117755_bib72 article-title: Particle tracking-aided digital volume correlation for clay–sand soil mixtures publication-title: Géotechnique doi: 10.1680/jgeot.23.00498 – volume: 124 start-page: 1585 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0039 article-title: Enhanced physics-informed neural networks for hyperelasticity publication-title: Int. J. Numer. Method. Eng. doi: 10.1002/nme.7176 – volume: 127 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0047 article-title: Mixed form based physics-informed neural networks for performance evaluation of two-phase random materials publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107250 – volume: 124 start-page: 3935 year: 2023 ident: 10.1016/j.cma.2025.117755_bib0034 article-title: A nonlocal energy-informed neural network for isotropic elastic solids with cracks under thermomechanical loads publication-title: Int. J. Numer. Method. Eng. doi: 10.1002/nme.7296 – volume: 24 year: 2024 ident: 10.1016/j.cma.2025.117755_bib0052 article-title: Physics-informed neural networks for settlement analysis of the immersed tunnel of the Hong Kong–Zhuhai–Macau Bridge publication-title: Int. J. Geomech. doi: 10.1061/IJGNAI.GMENG-8689 – volume: 148 year: 2022 ident: 10.1016/j.cma.2025.117755_bib0022 article-title: A physics-informed neural network approach to solution and identification of biharmonic equations of elasticity publication-title: J. Eng. Mech. – start-page: 5301 year: 2019 ident: 10.1016/j.cma.2025.117755_bib0066 article-title: On the spectral bias of neural networks – volume: 80 year: 2020 ident: 10.1016/j.cma.2025.117755_bib0024 article-title: A deep energy method for finite deformation hyperelasticity publication-title: Eur. J. Mech. - A/Solid. doi: 10.1016/j.euromechsol.2019.103874 – volume: 6 start-page: 1 year: 2018 ident: 10.1016/j.cma.2025.117755_bib0025 article-title: The deep ritz method: a deep learning-based numerical algorithm for solving variational problems publication-title: Commun. Math. Stat. doi: 10.1007/s40304-018-0127-z – year: 1996 ident: 10.1016/j.cma.2025.117755_bib0067 |
SSID | ssj0000812 |
Score | 2.5116363 |
Snippet | •Galerkin discretization is utilized to build a novel differentiable finite element method (DFEM) that encodes physics and significantly reduces training... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117755 |
SubjectTerms | Differentiable Finite Element Method (DFEM) Heterogeneous engineering structures Inverse analysis Physics-Encoded Numerical Network (PENN) Physics-Informed Neural Network (PINN) |
Title | Differentiable finite element method with Galerkin discretization for fast and accurate inverse analysis of multidimensional heterogeneous engineering structures |
URI | https://dx.doi.org/10.1016/j.cma.2025.117755 |
Volume | 437 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07SwQxEA6ijRY-TsU3U1gJq-tt9nGl-DoVrRTslmSS4InsCXfX-l_8p84kWT1BLSw3bCBkJpkvyTffCLGfp2jIefPEpZnxt1WJynQvKbQpuhSSdOUz5G7viv6DvH7MH2fEaZsLw7TKuPeHPd3v1rHlKM7m0etgwDm-krXY-V2OD1c-g12W7OWHb180Dwp5QTFc5gn_3b5seo4Xeumhbu6fLjnb76fYNBVvLpbFYgSKcBLGsiJmbNMRSxE0QlySo45YmFIUXBXvZ7HgCS1c_WLBDRhTgg0kcQj1ooEvX-GSQgNflAMn5nIuY0jIBEKx4NRoDKoxoBAnLCYBg4b5G5Yag4gJDB14MqLh8gBB2gOemFszJJe0w8kI7NfAIMjUTuhsvyYeLs7vT_tJrMKQYCbTcaLKbm7QmFRiVqkKK1U6AjWagA9WvbJrWbQtU1IrJLyhDErEyqSFxRIdWszWxWwzbOyGgLToWVk6Qg09R8fCkrCIqbRRSrlSk1tsirSd_xqjRDlXynipWy7ac00mq9lkdTDZpjj47PIa9Dn--lm2Rq2_OVlN8eP3blv_67Yt5vmLCWvH-Y6YpYm2u4RgxnrPu-iemDu5uunffQA4JPTS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtUwEB2VsoAuSimglkeZBWyQQtPEedwFC0Qpt_SxaqXugj221Yuq3IrcK8Sm_8I38IPMxA4tUssCqdskjhKPPWdsnzkD8KpIyfLgLRKf5rbfrUp0bkZJaWyZMSSZus-QOzgsx8fq80lxsgC_hlwYoVVG3x98eu-t45XN2Jub55OJ5Pgq0WKXczlZXG1FZuWe-_Gd123du91tNvLrLNv5ePRhnMTSAgnlKp0lusoKS9amivJa11TryjNSG0ZzqkdV5kSJLNfKaGIQ1ZYUUW3T0lFFnhzl_N47cFexu5CyCW8vLnkljLFBolwViXzecJTak8qo1zrKiv6sVNILrwPDKwC3swLLMTLF9-HnH8KCa1fhQYxSMfqAbhWWrkgYPoKf27HCCnsKc-bQTySIRRdY6RgKVKPs9uInxiLZmUfJBJbkyZABihw2o9fdDHVrURPNRb0CJ60QRhxfDKopOPXYsx-t1CMIWiJ4KmSeKc8BN5136C4_DIMu7vyb6x7D8a3Y5gksttPWrQGm5cipynOYMvK8Dq04-LG1sVprXxkeh-uQDv3fUNREl9IcZ81AfvvasMkaMVkTTLYOb_40OQ-CIP96WA1Gbf4a1Q0D1s3Nnv5fs5dwb3x0sN_s7x7uPYP7ckfYclvFc1jkTncvOHyamY1-uCJ8ue358RuDEjJz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentiable+finite+element+method+with+Galerkin+discretization+for+fast+and+accurate+inverse+analysis+of+multidimensional+heterogeneous+engineering+structures&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Wang%2C+Xi&rft.au=Yin%2C+Zhen-Yu&rft.au=Wu%2C+Wei&rft.au=Zhu%2C+He-Hua&rft.date=2025-03-15&rft.issn=0045-7825&rft.volume=437&rft.spage=117755&rft_id=info:doi/10.1016%2Fj.cma.2025.117755&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2025_117755 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |