A hybrid discrete exterior calculus and finite difference method for Boussinesq convection in spherical shells
We present a new hybrid discrete exterior calculus (DEC) and finite difference (FD) method to simulate fully three-dimensional Boussinesq convection in spherical shells subject to internal heating and basal heating, relevant in the planetary and stellar phenomenon. We employ DEC to compute the surfa...
Saved in:
Published in | Journal of computational physics Vol. 491; p. 112397 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a new hybrid discrete exterior calculus (DEC) and finite difference (FD) method to simulate fully three-dimensional Boussinesq convection in spherical shells subject to internal heating and basal heating, relevant in the planetary and stellar phenomenon. We employ DEC to compute the surface spherical flows, taking advantage of its unique features including coordinate system independence to preserve the spherical geometry, while we discretize the radial direction using FD method. The grid employed for this novel method is free of problems like the coordinate singularity, grid non-convergence near the poles, and the overlap regions. We have developed a parallel in-house code using the PETSc framework to verify the hybrid DEC-FD formulation and demonstrate convergence. We have performed a series of numerical tests which include quantification of the critical Rayleigh numbers for spherical shells characterized by aspect ratios ranging from 0.2 to 0.8, simulation of robust convective patterns in addition to stationary giant spiral roll covering all the spherical surface in moderately thin shells near the weakly nonlinear regime, and the quantification of Nusselt and Reynolds numbers for basally heated spherical shells.
•Boussinesq convection in spherical shells.•Hybrid discrete exterior calculus and finite difference (DEC-FD) discretization.•Surface and radial operators are approximated by DEC and FD, respectively.•No coordinate singularity and grid non-convergence near poles, and overlap regions.•A plethora of robust convective patterns and resolving high wavenumber features. |
---|---|
AbstractList | We present a new hybrid discrete exterior calculus (DEC) and finite difference (FD) method to simulate fully three-dimensional Boussinesq convection in spherical shells subject to internal heating and basal heating, relevant in the planetary and stellar phenomenon. We employ DEC to compute the surface spherical flows, taking advantage of its unique features including coordinate system independence to preserve the spherical geometry, while we discretize the radial direction using FD method. The grid employed for this novel method is free of problems like the coordinate singularity, grid non-convergence near the poles, and the overlap regions. We have developed a parallel in-house code using the PETSc framework to verify the hybrid DEC-FD formulation and demonstrate convergence. We have performed a series of numerical tests which include quantification of the critical Rayleigh numbers for spherical shells characterized by aspect ratios ranging from 0.2 to 0.8, simulation of robust convective patterns in addition to stationary giant spiral roll covering all the spherical surface in moderately thin shells near the weakly nonlinear regime, and the quantification of Nusselt and Reynolds numbers for basally heated spherical shells.
•Boussinesq convection in spherical shells.•Hybrid discrete exterior calculus and finite difference (DEC-FD) discretization.•Surface and radial operators are approximated by DEC and FD, respectively.•No coordinate singularity and grid non-convergence near poles, and overlap regions.•A plethora of robust convective patterns and resolving high wavenumber features. |
ArticleNumber | 112397 |
Author | Mantravadi, Bhargav Samtaney, Ravi Jagad, Pankaj |
Author_xml | – sequence: 1 givenname: Bhargav surname: Mantravadi fullname: Mantravadi, Bhargav – sequence: 2 givenname: Pankaj surname: Jagad fullname: Jagad, Pankaj email: pankaj.jagad@kaust.edu.sa – sequence: 3 givenname: Ravi surname: Samtaney fullname: Samtaney, Ravi |
BookMark | eNp9kMtOwzAQRS1UJNrCB7DzD6TYzsOJWJWKl1SJDawtZzxRHKVOsdOK_j2OyopFVyPNzLmaOQsyc4NDQu45W3HGi4du1cF-JZhIV5yLtJJXZM5ZxRIheTEjc8YET6qq4jdkEULHGCvzrJwTt6btqfbWUGMDeByR4s-I3g6egu7h0B8C1c7Qxjobh8Y2DXp0gHSHYzvEQdx8Gg4hWIfhm8LgjgijHRy1joZ9G7NiEA0t9n24JdeN7gPe_dUl-Xp5_ty8JduP1_fNeptAmrEx0VktUhS51iZDI0EKU-SlNhqA52kdH2tqDVVsGIlSCq2ZgcKYtCozQFanSyLPueCHEDw2Cuyop6tGr22vOFOTNtWpqE1N2tRZWyT5P3Lv7U7700Xm8cxgfOlo0asAdnJkrI8ulBnsBfoX34eLgw |
CitedBy_id | crossref_primary_10_1063_5_0216692 crossref_primary_10_1016_j_compfluid_2024_106280 |
Cites_doi | 10.1017/jfm.2016.659 10.1016/j.jcp.2009.12.007 10.1007/s41116-021-00031-2 10.5194/gmd-7-2065-2014 10.1017/S0022112075002947 10.1080/15502287.2018.1446196 10.1007/s00454-019-00159-x 10.1137/090761355 10.1103/PhysRevFluids.3.024801 10.1016/j.jcp.2013.10.008 10.1016/j.parco.2005.07.004 10.1016/j.jcp.2016.02.028 10.1016/j.jcp.2006.12.022 10.5194/gmd-6-1353-2013 10.1016/j.jcp.2009.08.006 10.1080/15502287.2014.977500 10.1146/annurev.fluid.010908.165215 10.1016/j.jcp.2013.10.013 10.1137/S0895479899358194 10.5194/gmd-8-3131-2015 10.1063/5.0068860 10.1146/annurev.aa.09.090171.001543 10.1007/s41115-017-0001-9 10.1146/annurev.fl.20.010188.001155 10.1016/j.ocemod.2013.04.010 10.1063/5.0035981 10.1073/pnas.1922794117 10.5194/gmd-10-791-2017 10.1017/S0022112082003061 10.1103/PhysRevE.71.016301 10.1017/jfm.2012.317 10.1080/03091920410001659281 10.7566/JPSJ.84.103401 10.1006/jpdc.1997.1403 10.1145/1039813.1039820 10.1137/110850293 10.1016/0045-7930(91)90017-C 10.1103/PhysRevFluids.5.044701 10.1017/jfm.2015.401 10.1146/annurev-fluid-122414-034534 10.1146/annurev.aa.28.090190.001403 10.1175/1520-0493(1995)123<1881:NIOTSW>2.0.CO;2 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. |
Copyright_xml | – notice: 2023 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jcp.2023.112397 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1090-2716 |
ExternalDocumentID | 10_1016_j_jcp_2023_112397 S0021999123004928 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6OB 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADIYS ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SHN SPC SPCBC SPD SPG SSQ SSV SSZ T5K T9H TN5 UPT UQL WUQ YQT ZMT ZU3 ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c340t-a4b23e25aad4ed7c72d658adacc153b109fbac9adad7e772aa0dc6dd3984ce0b3 |
IEDL.DBID | .~1 |
ISSN | 0021-9991 |
IngestDate | Tue Jul 01 01:55:01 EDT 2025 Thu Apr 24 22:53:06 EDT 2025 Tue Jul 16 04:31:29 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Boussinesq convection Operator splitting PETSc Flow in spherical shell Discrete exterior calculus Finite difference method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-a4b23e25aad4ed7c72d658adacc153b109fbac9adad7e772aa0dc6dd3984ce0b3 |
OpenAccessLink | http://hdl.handle.net/10754/693918 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jcp_2023_112397 crossref_primary_10_1016_j_jcp_2023_112397 elsevier_sciencedirect_doi_10_1016_j_jcp_2023_112397 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-15 |
PublicationDateYYYYMMDD | 2023-10-15 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational physics |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | M. S. Mohamed, A. N. Hirani, R. Samtaney, Discrete exterior calculus discretization of incompressible navier–stokes equations over surface simplicial meshes, Journal of Computational Physics 312 (2016) 175–191. F. Garcia, F. R. Chambers, A. L. Watts, Onset of low prandtl number thermal convection in thin spherical shells, Physical Review Fluids 3 (2) (2018) 024801. M. Wang, P. Jagad, A. N. Hirani, R. Samtaney, Discrete exterior calculus discretization of two-phase incompressible navier-stokes equations with a conservative phase field method, arXiv preprint arXiv:2203.13070. M. S. Miesch, J. Toomre, Turbulence, magnetism, and shear in stellar interiors, Annual Review of Fluid Mechanics 41 (2009) 317–345. T. D. Ringler, J. Thuburn, J. B. Klemp, W. C. Skamarock, A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured c-grids, Journal of Computational Physics 229 (9) (2010) 3065–3090. K. Crane, Discrete differential geometry: An applied introduction, Notices of the AMS, Communication (2018) 1153–1159. S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Courier Corporation, 2013. C. Eldred, W. Bauer, An interpretation of trisk-type schemes from a discrete exterior calculus perspective, arXiv preprint arXiv:2210.07476. D. Jacobsen, M. Gunzburger, T. Ringler, J. Burkardt, J. Peterson, Parallel algorithms for planar and spherical delaunay construction with an application to centroidal voronoi tessellations, Geoscientific Model Development 6 (4) (2013) 1353–1365. T. Gastine, J. Wicht, J. M. Aurnou, Turbulent rayleigh–bénard convection in spherical shells, Journal of Fluid Mechanics 778 (2015) 721–764. Y. Fan, Magnetic fields in the solar convection zone, Living Reviews in Solar Physics 18 (1) (2021) 1–96. L. Li, P. Zhang, X. Liao, K. Zhang, Multiplicity of nonlinear thermal convection in a spherical shell, Physical Review E 71 (1) (2005) 016301. J. B. Perot, V. Subramanian, Discrete calculus methods for diffusion, Journal of Computational Physics 224 (1) (2007) 59–81. S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, J. Zhang, PETSc Web page S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.11, Argonne National Laboratory (2019). T. Ringler, M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, M. Maltrud, A multi-resolution approach to global ocean modeling, Ocean Modelling 69 (2013) 211–232. M. S. Mohamed, A. N. Hirani, R. Samtaney, Numerical convergence of discrete exterior calculus on arbitrary surface meshes, International Journal for Computational Methods in Engineering Science and Mechanics 19 (3) (2018) 194–206. E. Schulz, G. Tsogtgerel, Convergence of discrete exterior calculus approximations for poisson problems, Discrete & Computational Geometry 63 (2) (2020) 346–376. M. Rieutord, F. Rincon, The sun's supergranulation, Living Reviews in Solar Physics 7 (1) (2010) 1–82. T. Gastine, J. Wicht, J. Aubert, Scaling regimes in spherical shell rotating convection, Journal of Fluid Mechanics 808 (2016) 690–732. R. Aris, Vectors, tensors and the basic equations of fluid mechanics, Courier Corporation, 2012. C. Hall, J. Cavendish, W. Frey, The dual variable method for solving fluid flow difference equations on delaunay triangulations, Computers & fluids 20 (2) (1991) 145–164. P. R. Amestoy, I. S. Duff, J.-Y. L'Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications 23 (1) (2001) 15–41. F. H. Busse, Patterns of convection in spherical shells, Journal of Fluid Mechanics 72 (1) (1975) 67–85. doi:10.1017/S0022112075002947. T. Dubos, S. Dubey, M. Tort, R. Mittal, Y. Meurdesoif, F. Hourdin, Dynamico-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geoscientific Model Development 8 (10) (2015) 3131–3150. D. Hughes, M. Proctor, Magnetic fields in the solar convection zone: magnetoconvection and magnetic buoyancy, Annual review of fluid mechanics 20 (1988) 187–223. . S.-i. Iga, H. Tomita, Improved smoothness and homogeneity of icosahedral grids using the spring dynamics method, Journal of Computational Physics 258 (2014) 208–226. M. G. Knepley, D. A. Karpeev, Mesh algorithms for pde with sieve i: Mesh distribution, Scientific Programming 17 (3) (2009) 215–230. E. A. Spiegel, Convection in stars: I. basic boussinesq convection, Annual review of astronomy and astrophysics 9 (1971) 323. J. Thuburn, C. J. Cotter, A framework for mimetic discretization of the rotating shallow-water equations on arbitrary polygonal grids, SIAM Journal on Scientific Computing 34 (3) (2012) B203–B225. H. Flanders, Differential forms with applications to the physical sciences, Vol. 11, Courier Corporation, 1963. M. Desbrun, E. Kanso, Y. Tong, Discrete differential forms for computational modeling, in: Discrete differential geometry, Springer, 2008, pp. 287–324. F. Al-Shamali, M. Heimpel, J. Aurnou, Varying the spherical shell geometry in rotating thermal convection, Geophysical & Astrophysical Fluid Dynamics 98 (2) (2004) 153–169. H. C. Spruit, A. Nordlund, et al., Solar convection, Annual review of astronomy and astrophysics 28 (1990) 263–301. I. Nitschke, S. Reuther, A. Voigt, Discrete exterior calculus (dec) for the surface navier-stokes equation, in: Transport processes at fluidic interfaces, Springer, 2017, pp. 177–197. M. S. Miesch, Large-scale dynamics of the convection zone and tachocline, Living Reviews in Solar Physics 2 (1) (2005) 1–139. T. Frankel, The geometry of physics: an introduction, Cambridge university press, 2011. M. Desbrun, A. N. Hirani, M. Leok, J. E. Marsden, Discrete exterior calculus, arXiv preprint math/0508341. P. Jagad, M. S. Mohamed, R. Samtaney, Investigation of flow past a cylinder embedded on curved and flat surfaces, Physical Review Fluids 5 (4) (2020) 044701. R. C. Kirby, Algorithm 839: Fiat, a new paradigm for computing finite element basis functions, ACM Transactions on Mathematical Software 30 (4) (2004) 502–516. doi:10.1145/1039813.1039820. S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in: E. Arge, A. M. Bruaset, H. P. Langtangen (Eds.), Modern Software Tools in Scientific Computing, Birkhäuser Press, 1997, pp. 163–202. T. Itano, T. Ninomiya, K. Konno, M. Sugihara-Seki, Spiral roll state in heat convection between nonrotating concentric double spherical boundaries, Journal of the Physical Society of Japan 84 (10) (2015) 103401. F. H. Busse, N. Riahi, Patterns of convection in spherical shells. part 2, Journal of Fluid Mechanics 123 (1982) 283–301. C. Eldred, D. Randall, Total energy and potential enstrophy conserving schemes for the shallow water equations using hamiltonian methods–part 1: Derivation and properties, Geoscientific Model Development 10 (2) (2017) 791–810. P.-A. Arrial, N. Flyer, G. B. Wright, L. H. Kellogg, On the sensitivity of 3-d thermal convection codes to numerical discretization: a model intercomparison, Geoscientific Model Development 7 (5) (2014) 2065–2076. A. N. Hirani, Discrete exterior calculus, California Institute of Technology, 2003. A. N. Hirani, K. B. Nakshatrala, J. H. Chaudhry, Numerical method for darcy flow derived using discrete exterior calculus, International Journal for Computational Methods in Engineering Science and Mechanics 16 (3) (2015) 151–169. R. Heikes, D. A. Randall, Numerical integration of the shallow-water equations on a twisted icosahedral grid. part ii. a detailed description of the grid and an analysis of numerical accuracy, Monthly Weather Review 123 (6) (1995) 1881–1887. N. Wang, J.-L. Lee, Geometric properties of the icosahedral-hexagonal grid on the two-sphere, SIAM Journal on Scientific Computing 33 (5) (2011) 2536–2559. K. P. Iyer, J. D. Scheel, J. Schumacher, K. R. Sreenivasan, Classical 1/3 scaling of convection holds up to ra= 1015, Proceedings of the National Academy of Sciences 117 (14) (2020) 7594–7598. F. Kupka, H. J. Muthsam, Modelling of stellar convection, Living Reviews in Computational Astrophysics 3 (1) (2017) 1–159. I. Nitschke, A. Voigt, J. Wensch, A finite element approach to incompressible two-phase flow on manifolds, Journal of Fluid Mechanics 708 (2012) 418–438. C. J. Cotter, J. Thuburn, A finite element exterior calculus framework for the rotating shallow-water equations, Journal of Computational Physics 257 (2014) 1506–1526. M. K. Verma, Physics of buoyant flows: from instabilities to turbulence, World Scientific, 2018. (2023). URL S. Chen, W. C. Chew, Discrete electromagnetic theory with exterior calculus, in: 2016 Progress in Electromagnetic Research Symposium (PIERS), IEEE, 2016, pp. 896–897. P. Jagad, A. Abukhwejah, M. Mohamed, R. Samtaney, A primitive variable discrete exterior calculus discretization of incompressible navier–stokes equations over surface simplicial meshes, Physics of Fluids 33 (1) (2021) 017114. G. Karypis, V. Kumar, A parallel algorithm for multilevel graph partitioning and sparse matrix ordering, Journal of Parallel and Distributed Computing 48 (1998) 71–85. doi:https://doi.org/10.1006/jpdc.1997.1403. S. Hanasoge, L. Gizon, K. R. Sreenivasan, Seismic sounding of convection in the sun, Annual Review of Fluid Mechanics 48 (2016) 191–217. J. Munkres, Elements of algebraic topology. vol. 4586 (1984). P. Jagad, R. Samtaney, Effects of rotation on vorticity dynamics on a sphere with di Kupka (10.1016/j.jcp.2023.112397_br0100) 2017; 3 Balay (10.1016/j.jcp.2023.112397_br0350) Arrial (10.1016/j.jcp.2023.112397_br0590) 2014; 7 Karypis (10.1016/j.jcp.2023.112397_br0510) 1998; 48 Balay (10.1016/j.jcp.2023.112397_br0500) 1997 Spiegel (10.1016/j.jcp.2023.112397_br0050) 1971; 9 Gastine (10.1016/j.jcp.2023.112397_br0110) 2015; 778 Aris (10.1016/j.jcp.2023.112397_br0370) 2012 Garcia (10.1016/j.jcp.2023.112397_br0030) 2018; 3 Eldred (10.1016/j.jcp.2023.112397_br0320) 2017; 10 Amestoy (10.1016/j.jcp.2023.112397_br0550) 2006; 32 Busse (10.1016/j.jcp.2023.112397_br0620) 1982; 123 Munkres (10.1016/j.jcp.2023.112397_br0400) 1984 Dubos (10.1016/j.jcp.2023.112397_br0340) 2015; 8 Heikes (10.1016/j.jcp.2023.112397_br0430) 1995; 123 Ringler (10.1016/j.jcp.2023.112397_br0330) 2013; 69 Jagad (10.1016/j.jcp.2023.112397_br0260) 2021; 33 Amestoy (10.1016/j.jcp.2023.112397_br0540) 2001; 23 Iyer (10.1016/j.jcp.2023.112397_br0130) 2020; 117 Chandrasekhar (10.1016/j.jcp.2023.112397_br0560) 2013 Hughes (10.1016/j.jcp.2023.112397_br0060) 1988; 20 Nitschke (10.1016/j.jcp.2023.112397_br0630) 2012; 708 Desbrun (10.1016/j.jcp.2023.112397_br0180) 2008 Perot (10.1016/j.jcp.2023.112397_br0140) 2007; 224 Miesch (10.1016/j.jcp.2023.112397_br0020) 2005; 2 Al-Shamali (10.1016/j.jcp.2023.112397_br0570) 2004; 98 Jagad (10.1016/j.jcp.2023.112397_br0240) 2020; 5 Kirby (10.1016/j.jcp.2023.112397_br0520) 2004; 30 Busse (10.1016/j.jcp.2023.112397_br0580) 1975; 72 Hirani (10.1016/j.jcp.2023.112397_br0150) 2003 Thuburn (10.1016/j.jcp.2023.112397_br0310) 2012; 34 Knepley (10.1016/j.jcp.2023.112397_br0530) 2009; 17 Ringler (10.1016/j.jcp.2023.112397_br0210) 2010; 229 Crane (10.1016/j.jcp.2023.112397_br0440) 2018 Verma (10.1016/j.jcp.2023.112397_br0610) 2018 Flanders (10.1016/j.jcp.2023.112397_br0450) 1963 Balay (10.1016/j.jcp.2023.112397_br0490) 2019 Jacobsen (10.1016/j.jcp.2023.112397_br0410) 2013; 6 Fan (10.1016/j.jcp.2023.112397_br0040) 2021; 18 Frankel (10.1016/j.jcp.2023.112397_br0460) 2011 Eldred (10.1016/j.jcp.2023.112397_br0300) Nitschke (10.1016/j.jcp.2023.112397_br0380) 2017 Hall (10.1016/j.jcp.2023.112397_br0480) 1991; 20 Jagad (10.1016/j.jcp.2023.112397_br0250) 2021; 33 Iga (10.1016/j.jcp.2023.112397_br0420) 2014; 258 Rieutord (10.1016/j.jcp.2023.112397_br0090) 2010; 7 Gastine (10.1016/j.jcp.2023.112397_br0120) 2016; 808 Desbrun (10.1016/j.jcp.2023.112397_br0160) Itano (10.1016/j.jcp.2023.112397_br0360) 2015; 84 Wang (10.1016/j.jcp.2023.112397_br0390) 2011; 33 Li (10.1016/j.jcp.2023.112397_br0600) 2005; 71 Mohamed (10.1016/j.jcp.2023.112397_br0280) 2018; 19 Chen (10.1016/j.jcp.2023.112397_br0190) 2016 Spruit (10.1016/j.jcp.2023.112397_br0070) 1990; 28 Cotter (10.1016/j.jcp.2023.112397_br0470) 2014; 257 Miesch (10.1016/j.jcp.2023.112397_br0080) 2009; 41 Desbrun (10.1016/j.jcp.2023.112397_br0170) 2003 Mohamed (10.1016/j.jcp.2023.112397_br0230) 2016; 312 Schulz (10.1016/j.jcp.2023.112397_br0290) 2020; 63 Hanasoge (10.1016/j.jcp.2023.112397_br0010) 2016; 48 Wang (10.1016/j.jcp.2023.112397_br0270) Hirani (10.1016/j.jcp.2023.112397_br0220) 2015; 16 Thuburn (10.1016/j.jcp.2023.112397_br0200) 2009; 228 |
References_xml | – reference: C. Hall, J. Cavendish, W. Frey, The dual variable method for solving fluid flow difference equations on delaunay triangulations, Computers & fluids 20 (2) (1991) 145–164. – reference: M. Rieutord, F. Rincon, The sun's supergranulation, Living Reviews in Solar Physics 7 (1) (2010) 1–82. – reference: G. Karypis, V. Kumar, A parallel algorithm for multilevel graph partitioning and sparse matrix ordering, Journal of Parallel and Distributed Computing 48 (1998) 71–85. doi:https://doi.org/10.1006/jpdc.1997.1403. – reference: F. H. Busse, N. Riahi, Patterns of convection in spherical shells. part 2, Journal of Fluid Mechanics 123 (1982) 283–301. – reference: C. Eldred, D. Randall, Total energy and potential enstrophy conserving schemes for the shallow water equations using hamiltonian methods–part 1: Derivation and properties, Geoscientific Model Development 10 (2) (2017) 791–810. – reference: F. Kupka, H. J. Muthsam, Modelling of stellar convection, Living Reviews in Computational Astrophysics 3 (1) (2017) 1–159. – reference: C. Eldred, W. Bauer, An interpretation of trisk-type schemes from a discrete exterior calculus perspective, arXiv preprint arXiv:2210.07476. – reference: M. S. Miesch, J. Toomre, Turbulence, magnetism, and shear in stellar interiors, Annual Review of Fluid Mechanics 41 (2009) 317–345. – reference: J. B. Perot, V. Subramanian, Discrete calculus methods for diffusion, Journal of Computational Physics 224 (1) (2007) 59–81. – reference: T. Ringler, M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, M. Maltrud, A multi-resolution approach to global ocean modeling, Ocean Modelling 69 (2013) 211–232. – reference: M. Desbrun, E. Kanso, Y. Tong, Discrete differential forms for computational modeling, in: Discrete differential geometry, Springer, 2008, pp. 287–324. – reference: S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in: E. Arge, A. M. Bruaset, H. P. Langtangen (Eds.), Modern Software Tools in Scientific Computing, Birkhäuser Press, 1997, pp. 163–202. – reference: T. Dubos, S. Dubey, M. Tort, R. Mittal, Y. Meurdesoif, F. Hourdin, Dynamico-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geoscientific Model Development 8 (10) (2015) 3131–3150. – reference: D. Jacobsen, M. Gunzburger, T. Ringler, J. Burkardt, J. Peterson, Parallel algorithms for planar and spherical delaunay construction with an application to centroidal voronoi tessellations, Geoscientific Model Development 6 (4) (2013) 1353–1365. – reference: M. Wang, P. Jagad, A. N. Hirani, R. Samtaney, Discrete exterior calculus discretization of two-phase incompressible navier-stokes equations with a conservative phase field method, arXiv preprint arXiv:2203.13070. – reference: J. Thuburn, T. D. Ringler, W. C. Skamarock, J. B. Klemp, Numerical representation of geostrophic modes on arbitrarily structured c-grids, Journal of Computational Physics 228 (22) (2009) 8321–8335. – reference: T. Frankel, The geometry of physics: an introduction, Cambridge university press, 2011. – reference: R. Aris, Vectors, tensors and the basic equations of fluid mechanics, Courier Corporation, 2012. – reference: E. A. Spiegel, Convection in stars: I. basic boussinesq convection, Annual review of astronomy and astrophysics 9 (1971) 323. – reference: N. Wang, J.-L. Lee, Geometric properties of the icosahedral-hexagonal grid on the two-sphere, SIAM Journal on Scientific Computing 33 (5) (2011) 2536–2559. – reference: A. N. Hirani, Discrete exterior calculus, California Institute of Technology, 2003. – reference: T. Itano, T. Ninomiya, K. Konno, M. Sugihara-Seki, Spiral roll state in heat convection between nonrotating concentric double spherical boundaries, Journal of the Physical Society of Japan 84 (10) (2015) 103401. – reference: T. D. Ringler, J. Thuburn, J. B. Klemp, W. C. Skamarock, A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured c-grids, Journal of Computational Physics 229 (9) (2010) 3065–3090. – reference: I. Nitschke, A. Voigt, J. Wensch, A finite element approach to incompressible two-phase flow on manifolds, Journal of Fluid Mechanics 708 (2012) 418–438. – reference: S.-i. Iga, H. Tomita, Improved smoothness and homogeneity of icosahedral grids using the spring dynamics method, Journal of Computational Physics 258 (2014) 208–226. – reference: M. G. Knepley, D. A. Karpeev, Mesh algorithms for pde with sieve i: Mesh distribution, Scientific Programming 17 (3) (2009) 215–230. – reference: M. S. Mohamed, A. N. Hirani, R. Samtaney, Numerical convergence of discrete exterior calculus on arbitrary surface meshes, International Journal for Computational Methods in Engineering Science and Mechanics 19 (3) (2018) 194–206. – reference: H. Flanders, Differential forms with applications to the physical sciences, Vol. 11, Courier Corporation, 1963. – reference: Y. Fan, Magnetic fields in the solar convection zone, Living Reviews in Solar Physics 18 (1) (2021) 1–96. – reference: H. C. Spruit, A. Nordlund, et al., Solar convection, Annual review of astronomy and astrophysics 28 (1990) 263–301. – reference: T. Gastine, J. Wicht, J. M. Aurnou, Turbulent rayleigh–bénard convection in spherical shells, Journal of Fluid Mechanics 778 (2015) 721–764. – reference: M. K. Verma, Physics of buoyant flows: from instabilities to turbulence, World Scientific, 2018. – reference: J. Thuburn, C. J. Cotter, A framework for mimetic discretization of the rotating shallow-water equations on arbitrary polygonal grids, SIAM Journal on Scientific Computing 34 (3) (2012) B203–B225. – reference: K. Crane, Discrete differential geometry: An applied introduction, Notices of the AMS, Communication (2018) 1153–1159. – reference: F. Garcia, F. R. Chambers, A. L. Watts, Onset of low prandtl number thermal convection in thin spherical shells, Physical Review Fluids 3 (2) (2018) 024801. – reference: D. Hughes, M. Proctor, Magnetic fields in the solar convection zone: magnetoconvection and magnetic buoyancy, Annual review of fluid mechanics 20 (1988) 187–223. – reference: T. Gastine, J. Wicht, J. Aubert, Scaling regimes in spherical shell rotating convection, Journal of Fluid Mechanics 808 (2016) 690–732. – reference: A. N. Hirani, K. B. Nakshatrala, J. H. Chaudhry, Numerical method for darcy flow derived using discrete exterior calculus, International Journal for Computational Methods in Engineering Science and Mechanics 16 (3) (2015) 151–169. – reference: C. J. Cotter, J. Thuburn, A finite element exterior calculus framework for the rotating shallow-water equations, Journal of Computational Physics 257 (2014) 1506–1526. – reference: M. Desbrun, A. N. Hirani, J. E. Marsden, Discrete exterior calculus for variational problems in computer vision and graphics, in: 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), Vol. 5, IEEE, 2003, pp. 4902–4907. – reference: P.-A. Arrial, N. Flyer, G. B. Wright, L. H. Kellogg, On the sensitivity of 3-d thermal convection codes to numerical discretization: a model intercomparison, Geoscientific Model Development 7 (5) (2014) 2065–2076. – reference: P. R. Amestoy, I. S. Duff, J.-Y. L'Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications 23 (1) (2001) 15–41. – reference: M. Desbrun, A. N. Hirani, M. Leok, J. E. Marsden, Discrete exterior calculus, arXiv preprint math/0508341. – reference: R. C. Kirby, Algorithm 839: Fiat, a new paradigm for computing finite element basis functions, ACM Transactions on Mathematical Software 30 (4) (2004) 502–516. doi:10.1145/1039813.1039820. – reference: P. Jagad, M. S. Mohamed, R. Samtaney, Investigation of flow past a cylinder embedded on curved and flat surfaces, Physical Review Fluids 5 (4) (2020) 044701. – reference: P. R. Amestoy, A. Guermouche, J.-Y. L'Excellent, S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Computing 32 (2) (2006) 136–156. – reference: F. H. Busse, Patterns of convection in spherical shells, Journal of Fluid Mechanics 72 (1) (1975) 67–85. doi:10.1017/S0022112075002947. – reference: S. Chen, W. C. Chew, Discrete electromagnetic theory with exterior calculus, in: 2016 Progress in Electromagnetic Research Symposium (PIERS), IEEE, 2016, pp. 896–897. – reference: S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Courier Corporation, 2013. – reference: P. Jagad, R. Samtaney, Effects of rotation on vorticity dynamics on a sphere with discrete exterior calculus, Physics of Fluids 33 (10) (2021) 107117. – reference: J. Munkres, Elements of algebraic topology. vol. 4586 (1984). – reference: F. Al-Shamali, M. Heimpel, J. Aurnou, Varying the spherical shell geometry in rotating thermal convection, Geophysical & Astrophysical Fluid Dynamics 98 (2) (2004) 153–169. – reference: E. Schulz, G. Tsogtgerel, Convergence of discrete exterior calculus approximations for poisson problems, Discrete & Computational Geometry 63 (2) (2020) 346–376. – reference: . – reference: S. Hanasoge, L. Gizon, K. R. Sreenivasan, Seismic sounding of convection in the sun, Annual Review of Fluid Mechanics 48 (2016) 191–217. – reference: R. Heikes, D. A. Randall, Numerical integration of the shallow-water equations on a twisted icosahedral grid. part ii. a detailed description of the grid and an analysis of numerical accuracy, Monthly Weather Review 123 (6) (1995) 1881–1887. – reference: P. Jagad, A. Abukhwejah, M. Mohamed, R. Samtaney, A primitive variable discrete exterior calculus discretization of incompressible navier–stokes equations over surface simplicial meshes, Physics of Fluids 33 (1) (2021) 017114. – reference: M. S. Miesch, Large-scale dynamics of the convection zone and tachocline, Living Reviews in Solar Physics 2 (1) (2005) 1–139. – reference: K. P. Iyer, J. D. Scheel, J. Schumacher, K. R. Sreenivasan, Classical 1/3 scaling of convection holds up to ra= 1015, Proceedings of the National Academy of Sciences 117 (14) (2020) 7594–7598. – reference: I. Nitschke, S. Reuther, A. Voigt, Discrete exterior calculus (dec) for the surface navier-stokes equation, in: Transport processes at fluidic interfaces, Springer, 2017, pp. 177–197. – reference: S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.11, Argonne National Laboratory (2019). – reference: (2023). URL – reference: L. Li, P. Zhang, X. Liao, K. Zhang, Multiplicity of nonlinear thermal convection in a spherical shell, Physical Review E 71 (1) (2005) 016301. – reference: M. S. Mohamed, A. N. Hirani, R. Samtaney, Discrete exterior calculus discretization of incompressible navier–stokes equations over surface simplicial meshes, Journal of Computational Physics 312 (2016) 175–191. – reference: S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, J. Zhang, PETSc Web page, – volume: 808 start-page: 690 year: 2016 ident: 10.1016/j.jcp.2023.112397_br0120 article-title: Scaling regimes in spherical shell rotating convection publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.659 – volume: 229 start-page: 3065 issue: 9 year: 2010 ident: 10.1016/j.jcp.2023.112397_br0210 article-title: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured c-grids publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.12.007 – volume: 18 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.jcp.2023.112397_br0040 article-title: Magnetic fields in the solar convection zone publication-title: Living Rev. Sol. Phys. doi: 10.1007/s41116-021-00031-2 – volume: 7 start-page: 2065 issue: 5 year: 2014 ident: 10.1016/j.jcp.2023.112397_br0590 article-title: On the sensitivity of 3-D thermal convection codes to numerical discretization: a model intercomparison publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-2065-2014 – volume: 72 start-page: 67 issue: 1 year: 1975 ident: 10.1016/j.jcp.2023.112397_br0580 article-title: Patterns of convection in spherical shells publication-title: J. Fluid Mech. doi: 10.1017/S0022112075002947 – volume: 19 start-page: 194 issue: 3 year: 2018 ident: 10.1016/j.jcp.2023.112397_br0280 article-title: Numerical convergence of discrete exterior calculus on arbitrary surface meshes publication-title: Int. J. Comput. Methods Eng. Sci. Mech. doi: 10.1080/15502287.2018.1446196 – volume: 63 start-page: 346 issue: 2 year: 2020 ident: 10.1016/j.jcp.2023.112397_br0290 article-title: Convergence of discrete exterior calculus approximations for Poisson problems publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-019-00159-x – volume: 33 start-page: 2536 issue: 5 year: 2011 ident: 10.1016/j.jcp.2023.112397_br0390 article-title: Geometric properties of the icosahedral-hexagonal grid on the two-sphere publication-title: SIAM J. Sci. Comput. doi: 10.1137/090761355 – ident: 10.1016/j.jcp.2023.112397_br0300 – volume: 3 issue: 2 year: 2018 ident: 10.1016/j.jcp.2023.112397_br0030 article-title: Onset of low Prandtl number thermal convection in thin spherical shells publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.3.024801 – year: 1963 ident: 10.1016/j.jcp.2023.112397_br0450 – volume: 257 start-page: 1506 year: 2014 ident: 10.1016/j.jcp.2023.112397_br0470 article-title: A finite element exterior calculus framework for the rotating shallow-water equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.10.008 – volume: 32 start-page: 136 issue: 2 year: 2006 ident: 10.1016/j.jcp.2023.112397_br0550 article-title: Hybrid scheduling for the parallel solution of linear systems publication-title: Parallel Comput. doi: 10.1016/j.parco.2005.07.004 – year: 2013 ident: 10.1016/j.jcp.2023.112397_br0560 – volume: 312 start-page: 175 year: 2016 ident: 10.1016/j.jcp.2023.112397_br0230 article-title: Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.02.028 – volume: 224 start-page: 59 issue: 1 year: 2007 ident: 10.1016/j.jcp.2023.112397_br0140 article-title: Discrete calculus methods for diffusion publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.12.022 – volume: 6 start-page: 1353 issue: 4 year: 2013 ident: 10.1016/j.jcp.2023.112397_br0410 article-title: Parallel algorithms for planar and spherical Delaunay construction with an application to centroidal Voronoi tessellations publication-title: Geosci. Model Dev. doi: 10.5194/gmd-6-1353-2013 – start-page: 4902 year: 2003 ident: 10.1016/j.jcp.2023.112397_br0170 article-title: Discrete exterior calculus for variational problems in computer vision and graphics – volume: 228 start-page: 8321 issue: 22 year: 2009 ident: 10.1016/j.jcp.2023.112397_br0200 article-title: Numerical representation of geostrophic modes on arbitrarily structured c-grids publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.08.006 – ident: 10.1016/j.jcp.2023.112397_br0270 – year: 2019 ident: 10.1016/j.jcp.2023.112397_br0490 – ident: 10.1016/j.jcp.2023.112397_br0350 – volume: 16 start-page: 151 issue: 3 year: 2015 ident: 10.1016/j.jcp.2023.112397_br0220 article-title: Numerical method for Darcy flow derived using discrete exterior calculus publication-title: Int. J. Comput. Methods Eng. Sci. Mech. doi: 10.1080/15502287.2014.977500 – year: 2011 ident: 10.1016/j.jcp.2023.112397_br0460 – year: 2018 ident: 10.1016/j.jcp.2023.112397_br0610 – volume: 41 start-page: 317 year: 2009 ident: 10.1016/j.jcp.2023.112397_br0080 article-title: Turbulence, magnetism, and shear in stellar interiors publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.010908.165215 – start-page: 287 year: 2008 ident: 10.1016/j.jcp.2023.112397_br0180 article-title: Discrete differential forms for computational modeling – volume: 258 start-page: 208 year: 2014 ident: 10.1016/j.jcp.2023.112397_br0420 article-title: Improved smoothness and homogeneity of icosahedral grids using the spring dynamics method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.10.013 – start-page: 1153 year: 2018 ident: 10.1016/j.jcp.2023.112397_br0440 article-title: Discrete Differential Geometry: An Applied Introduction – volume: 23 start-page: 15 issue: 1 year: 2001 ident: 10.1016/j.jcp.2023.112397_br0540 article-title: A fully asynchronous multifrontal solver using distributed dynamic scheduling publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479899358194 – volume: 8 start-page: 3131 issue: 10 year: 2015 ident: 10.1016/j.jcp.2023.112397_br0340 article-title: Dynamico-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility publication-title: Geosci. Model Dev. doi: 10.5194/gmd-8-3131-2015 – volume: 33 issue: 10 year: 2021 ident: 10.1016/j.jcp.2023.112397_br0260 article-title: Effects of rotation on vorticity dynamics on a sphere with discrete exterior calculus publication-title: Phys. Fluids doi: 10.1063/5.0068860 – volume: 9 start-page: 323 year: 1971 ident: 10.1016/j.jcp.2023.112397_br0050 article-title: Convection in stars: I. Basic Boussinesq convection publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev.aa.09.090171.001543 – volume: 3 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.jcp.2023.112397_br0100 article-title: Modelling of stellar convection publication-title: Living Rev. Comput. Astrophys. doi: 10.1007/s41115-017-0001-9 – volume: 20 start-page: 187 year: 1988 ident: 10.1016/j.jcp.2023.112397_br0060 article-title: Magnetic fields in the solar convection zone: magnetoconvection and magnetic buoyancy publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.20.010188.001155 – volume: 69 start-page: 211 year: 2013 ident: 10.1016/j.jcp.2023.112397_br0330 article-title: A multi-resolution approach to global ocean modeling publication-title: Ocean Model. doi: 10.1016/j.ocemod.2013.04.010 – volume: 33 issue: 1 year: 2021 ident: 10.1016/j.jcp.2023.112397_br0250 article-title: A primitive variable discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes publication-title: Phys. Fluids doi: 10.1063/5.0035981 – volume: 117 start-page: 7594 issue: 14 year: 2020 ident: 10.1016/j.jcp.2023.112397_br0130 article-title: Classical 1/3 scaling of convection holds up to Ra=1015 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1922794117 – start-page: 896 year: 2016 ident: 10.1016/j.jcp.2023.112397_br0190 article-title: Discrete electromagnetic theory with exterior calculus – year: 1984 ident: 10.1016/j.jcp.2023.112397_br0400 – volume: 7 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.jcp.2023.112397_br0090 article-title: The sun's supergranulation publication-title: Living Rev. Sol. Phys. – volume: 10 start-page: 791 issue: 2 year: 2017 ident: 10.1016/j.jcp.2023.112397_br0320 article-title: Total energy and potential enstrophy conserving schemes for the shallow water equations using Hamiltonian methods–Part 1: derivation and properties publication-title: Geosci. Model Dev. doi: 10.5194/gmd-10-791-2017 – volume: 17 start-page: 215 issue: 3 year: 2009 ident: 10.1016/j.jcp.2023.112397_br0530 article-title: Mesh algorithms for pde with sieve I: mesh distribution publication-title: Sci. Program. – volume: 123 start-page: 283 year: 1982 ident: 10.1016/j.jcp.2023.112397_br0620 article-title: Patterns of convection in spherical shells. Part 2 publication-title: J. Fluid Mech. doi: 10.1017/S0022112082003061 – ident: 10.1016/j.jcp.2023.112397_br0160 – volume: 2 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.jcp.2023.112397_br0020 article-title: Large-scale dynamics of the convection zone and tachocline publication-title: Living Rev. Sol. Phys. – year: 2003 ident: 10.1016/j.jcp.2023.112397_br0150 – volume: 71 issue: 1 year: 2005 ident: 10.1016/j.jcp.2023.112397_br0600 article-title: Multiplicity of nonlinear thermal convection in a spherical shell publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.016301 – volume: 708 start-page: 418 year: 2012 ident: 10.1016/j.jcp.2023.112397_br0630 article-title: A finite element approach to incompressible two-phase flow on manifolds publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.317 – volume: 98 start-page: 153 issue: 2 year: 2004 ident: 10.1016/j.jcp.2023.112397_br0570 article-title: Varying the spherical shell geometry in rotating thermal convection publication-title: Geophys. Astrophys. Fluid Dyn. doi: 10.1080/03091920410001659281 – volume: 84 issue: 10 year: 2015 ident: 10.1016/j.jcp.2023.112397_br0360 article-title: Spiral roll state in heat convection between nonrotating concentric double spherical boundaries publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.84.103401 – volume: 48 start-page: 71 year: 1998 ident: 10.1016/j.jcp.2023.112397_br0510 article-title: A parallel algorithm for multilevel graph partitioning and sparse matrix ordering publication-title: J. Parallel Distrib. Comput. doi: 10.1006/jpdc.1997.1403 – volume: 30 start-page: 502 issue: 4 year: 2004 ident: 10.1016/j.jcp.2023.112397_br0520 article-title: Algorithm 839: fiat, a new paradigm for computing finite element basis functions publication-title: ACM Trans. Math. Softw. doi: 10.1145/1039813.1039820 – volume: 34 start-page: B203 issue: 3 year: 2012 ident: 10.1016/j.jcp.2023.112397_br0310 article-title: A framework for mimetic discretization of the rotating shallow-water equations on arbitrary polygonal grids publication-title: SIAM J. Sci. Comput. doi: 10.1137/110850293 – volume: 20 start-page: 145 issue: 2 year: 1991 ident: 10.1016/j.jcp.2023.112397_br0480 article-title: The dual variable method for solving fluid flow difference equations on Delaunay triangulations publication-title: Comput. Fluids doi: 10.1016/0045-7930(91)90017-C – volume: 5 issue: 4 year: 2020 ident: 10.1016/j.jcp.2023.112397_br0240 article-title: Investigation of flow past a cylinder embedded on curved and flat surfaces publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.5.044701 – volume: 778 start-page: 721 year: 2015 ident: 10.1016/j.jcp.2023.112397_br0110 article-title: Turbulent Rayleigh–Bénard convection in spherical shells publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.401 – volume: 48 start-page: 191 year: 2016 ident: 10.1016/j.jcp.2023.112397_br0010 article-title: Seismic sounding of convection in the sun publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122414-034534 – volume: 28 start-page: 263 year: 1990 ident: 10.1016/j.jcp.2023.112397_br0070 article-title: Solar convection publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev.aa.28.090190.001403 – volume: 123 start-page: 1881 issue: 6 year: 1995 ident: 10.1016/j.jcp.2023.112397_br0430 article-title: Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part II. A detailed description of the grid and an analysis of numerical accuracy publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1995)123<1881:NIOTSW>2.0.CO;2 – year: 2012 ident: 10.1016/j.jcp.2023.112397_br0370 – start-page: 177 year: 2017 ident: 10.1016/j.jcp.2023.112397_br0380 article-title: Discrete exterior calculus (DEC) for the surface Navier-Stokes equation – start-page: 163 year: 1997 ident: 10.1016/j.jcp.2023.112397_br0500 article-title: Efficient management of parallelism in object oriented numerical software libraries |
SSID | ssj0008548 |
Score | 2.4511929 |
Snippet | We present a new hybrid discrete exterior calculus (DEC) and finite difference (FD) method to simulate fully three-dimensional Boussinesq convection in... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112397 |
SubjectTerms | Boussinesq convection Discrete exterior calculus Finite difference method Flow in spherical shell Operator splitting PETSc |
Title | A hybrid discrete exterior calculus and finite difference method for Boussinesq convection in spherical shells |
URI | https://dx.doi.org/10.1016/j.jcp.2023.112397 |
Volume | 491 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqsrDwRpRHdQcmpFA3dupmLBVVAakTlbpFfkWkQmlp2oGFb8c3cXhIwMAYy5asa_v4yDnnXkIu3QGTnEoeMCZ4wK3hgZL4DMdUSNM0xld9VFtMeuMpv59FswYZ1l4YlFV67K8wvURr39Lx0ewssww9viF66B30Is0N0fDLucBdfv32KfPoR7xCY5QiuN71n81S4zXXmLIyZGikYZj36ae76ct9M9ojO54owqCayz5p2PyA7HrSCP5IFockH8DTK9quAA22K8eBocTbbLECF3983StA5gbSDOkl1BVRtIWqejQ42go3i01RKuBfoNShl24HyHIoMO0ALiQUKBktjsh0dPs4HAe-iEKgGafrQHIVMhtGUhq3EkKL0DjSIY3U2oGd6tI4VVLHrsEI66i2lNTonjEs7nNtqWLHpJkvcntCIBI6pjIKbY-n3DDHrDTrdZVVWoh-lOoWoXX4Eu0zjGOhi-eklpLNExfxBCOeVBFvkauPIcsqvcZfnXm9Jsm3PZI4-P992On_hp2RbfzCe6obnZPmerWxF46ArFW73GFtsjW4exhP3gEdeNxA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADLZKO8DCG1GeHpiQItLcpWnGgkAtLZ2KxBbdKyIIpaVpB_495-SCQAIG1kssRfbd50-XzzbAhT1ggvuCe4xF3ONGc08KuoZjMvDTNKZbfVJbTLqDR37_FD414KauhSFZpcP-CtNLtHYrV86bV_MsoxrfgGroLfQSzQ16a9Ci7lRhE1r94Wgw-QTkXsgrQCY1gjWof26WMq8XRV0rA0a1NIxaP_2Unr6knLtt2HRcEfvV5-xAw-S7sOV4I7pTWexB3sfnd6q8QqqxXVgajCXkZrMF2hDQBV-BIteYZsQwsR6KogxWA6TRMle8nq2KUgT_hqUUvSx4wCzHgjoPUCyxINVosQ-Pd7fTm4Hn5ih4inF_6QkuA2aCUAhtgxGpKNCWdwgtlLJ4Jzt-nEqhYrugI2PZthC-Vl2tWdzjyviSHUAzn-XmEDCMVOyLMDBdnnLNLLlSrNuRRqoo6oWpaoNfuy9Rrsk4zbp4TWo12UtiPZ6Qx5PK4224_DSZVx02_nqZ1zFJvm2TxGaA382O_md2DuuD6cM4GQ8no2PYoCeUtjrhCTSXi5U5tXxkKc_cfvsArxze8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+discrete+exterior+calculus+and+finite+difference+method+for+Boussinesq+convection+in+spherical+shells&rft.jtitle=Journal+of+computational+physics&rft.au=Mantravadi%2C+Bhargav&rft.au=Jagad%2C+Pankaj&rft.au=Samtaney%2C+Ravi&rft.date=2023-10-15&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016%2Fj.jcp.2023.112397&rft.externalDocID=S0021999123004928 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |