A hybrid discrete exterior calculus and finite difference method for Boussinesq convection in spherical shells

We present a new hybrid discrete exterior calculus (DEC) and finite difference (FD) method to simulate fully three-dimensional Boussinesq convection in spherical shells subject to internal heating and basal heating, relevant in the planetary and stellar phenomenon. We employ DEC to compute the surfa...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 491; p. 112397
Main Authors Mantravadi, Bhargav, Jagad, Pankaj, Samtaney, Ravi
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a new hybrid discrete exterior calculus (DEC) and finite difference (FD) method to simulate fully three-dimensional Boussinesq convection in spherical shells subject to internal heating and basal heating, relevant in the planetary and stellar phenomenon. We employ DEC to compute the surface spherical flows, taking advantage of its unique features including coordinate system independence to preserve the spherical geometry, while we discretize the radial direction using FD method. The grid employed for this novel method is free of problems like the coordinate singularity, grid non-convergence near the poles, and the overlap regions. We have developed a parallel in-house code using the PETSc framework to verify the hybrid DEC-FD formulation and demonstrate convergence. We have performed a series of numerical tests which include quantification of the critical Rayleigh numbers for spherical shells characterized by aspect ratios ranging from 0.2 to 0.8, simulation of robust convective patterns in addition to stationary giant spiral roll covering all the spherical surface in moderately thin shells near the weakly nonlinear regime, and the quantification of Nusselt and Reynolds numbers for basally heated spherical shells. •Boussinesq convection in spherical shells.•Hybrid discrete exterior calculus and finite difference (DEC-FD) discretization.•Surface and radial operators are approximated by DEC and FD, respectively.•No coordinate singularity and grid non-convergence near poles, and overlap regions.•A plethora of robust convective patterns and resolving high wavenumber features.
AbstractList We present a new hybrid discrete exterior calculus (DEC) and finite difference (FD) method to simulate fully three-dimensional Boussinesq convection in spherical shells subject to internal heating and basal heating, relevant in the planetary and stellar phenomenon. We employ DEC to compute the surface spherical flows, taking advantage of its unique features including coordinate system independence to preserve the spherical geometry, while we discretize the radial direction using FD method. The grid employed for this novel method is free of problems like the coordinate singularity, grid non-convergence near the poles, and the overlap regions. We have developed a parallel in-house code using the PETSc framework to verify the hybrid DEC-FD formulation and demonstrate convergence. We have performed a series of numerical tests which include quantification of the critical Rayleigh numbers for spherical shells characterized by aspect ratios ranging from 0.2 to 0.8, simulation of robust convective patterns in addition to stationary giant spiral roll covering all the spherical surface in moderately thin shells near the weakly nonlinear regime, and the quantification of Nusselt and Reynolds numbers for basally heated spherical shells. •Boussinesq convection in spherical shells.•Hybrid discrete exterior calculus and finite difference (DEC-FD) discretization.•Surface and radial operators are approximated by DEC and FD, respectively.•No coordinate singularity and grid non-convergence near poles, and overlap regions.•A plethora of robust convective patterns and resolving high wavenumber features.
ArticleNumber 112397
Author Mantravadi, Bhargav
Samtaney, Ravi
Jagad, Pankaj
Author_xml – sequence: 1
  givenname: Bhargav
  surname: Mantravadi
  fullname: Mantravadi, Bhargav
– sequence: 2
  givenname: Pankaj
  surname: Jagad
  fullname: Jagad, Pankaj
  email: pankaj.jagad@kaust.edu.sa
– sequence: 3
  givenname: Ravi
  surname: Samtaney
  fullname: Samtaney, Ravi
BookMark eNp9kMtOwzAQRS1UJNrCB7DzD6TYzsOJWJWKl1SJDawtZzxRHKVOsdOK_j2OyopFVyPNzLmaOQsyc4NDQu45W3HGi4du1cF-JZhIV5yLtJJXZM5ZxRIheTEjc8YET6qq4jdkEULHGCvzrJwTt6btqfbWUGMDeByR4s-I3g6egu7h0B8C1c7Qxjobh8Y2DXp0gHSHYzvEQdx8Gg4hWIfhm8LgjgijHRy1joZ9G7NiEA0t9n24JdeN7gPe_dUl-Xp5_ty8JduP1_fNeptAmrEx0VktUhS51iZDI0EKU-SlNhqA52kdH2tqDVVsGIlSCq2ZgcKYtCozQFanSyLPueCHEDw2Cuyop6tGr22vOFOTNtWpqE1N2tRZWyT5P3Lv7U7700Xm8cxgfOlo0asAdnJkrI8ulBnsBfoX34eLgw
CitedBy_id crossref_primary_10_1063_5_0216692
crossref_primary_10_1016_j_compfluid_2024_106280
Cites_doi 10.1017/jfm.2016.659
10.1016/j.jcp.2009.12.007
10.1007/s41116-021-00031-2
10.5194/gmd-7-2065-2014
10.1017/S0022112075002947
10.1080/15502287.2018.1446196
10.1007/s00454-019-00159-x
10.1137/090761355
10.1103/PhysRevFluids.3.024801
10.1016/j.jcp.2013.10.008
10.1016/j.parco.2005.07.004
10.1016/j.jcp.2016.02.028
10.1016/j.jcp.2006.12.022
10.5194/gmd-6-1353-2013
10.1016/j.jcp.2009.08.006
10.1080/15502287.2014.977500
10.1146/annurev.fluid.010908.165215
10.1016/j.jcp.2013.10.013
10.1137/S0895479899358194
10.5194/gmd-8-3131-2015
10.1063/5.0068860
10.1146/annurev.aa.09.090171.001543
10.1007/s41115-017-0001-9
10.1146/annurev.fl.20.010188.001155
10.1016/j.ocemod.2013.04.010
10.1063/5.0035981
10.1073/pnas.1922794117
10.5194/gmd-10-791-2017
10.1017/S0022112082003061
10.1103/PhysRevE.71.016301
10.1017/jfm.2012.317
10.1080/03091920410001659281
10.7566/JPSJ.84.103401
10.1006/jpdc.1997.1403
10.1145/1039813.1039820
10.1137/110850293
10.1016/0045-7930(91)90017-C
10.1103/PhysRevFluids.5.044701
10.1017/jfm.2015.401
10.1146/annurev-fluid-122414-034534
10.1146/annurev.aa.28.090190.001403
10.1175/1520-0493(1995)123<1881:NIOTSW>2.0.CO;2
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jcp.2023.112397
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID 10_1016_j_jcp_2023_112397
S0021999123004928
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSV
SSZ
T5K
T9H
TN5
UPT
UQL
WUQ
YQT
ZMT
ZU3
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c340t-a4b23e25aad4ed7c72d658adacc153b109fbac9adad7e772aa0dc6dd3984ce0b3
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Tue Jul 01 01:55:01 EDT 2025
Thu Apr 24 22:53:06 EDT 2025
Tue Jul 16 04:31:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Boussinesq convection
Operator splitting
PETSc
Flow in spherical shell
Discrete exterior calculus
Finite difference method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-a4b23e25aad4ed7c72d658adacc153b109fbac9adad7e772aa0dc6dd3984ce0b3
OpenAccessLink http://hdl.handle.net/10754/693918
ParticipantIDs crossref_citationtrail_10_1016_j_jcp_2023_112397
crossref_primary_10_1016_j_jcp_2023_112397
elsevier_sciencedirect_doi_10_1016_j_jcp_2023_112397
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-15
PublicationDateYYYYMMDD 2023-10-15
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of computational physics
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References M. S. Mohamed, A. N. Hirani, R. Samtaney, Discrete exterior calculus discretization of incompressible navier–stokes equations over surface simplicial meshes, Journal of Computational Physics 312 (2016) 175–191.
F. Garcia, F. R. Chambers, A. L. Watts, Onset of low prandtl number thermal convection in thin spherical shells, Physical Review Fluids 3 (2) (2018) 024801.
M. Wang, P. Jagad, A. N. Hirani, R. Samtaney, Discrete exterior calculus discretization of two-phase incompressible navier-stokes equations with a conservative phase field method, arXiv preprint arXiv:2203.13070.
M. S. Miesch, J. Toomre, Turbulence, magnetism, and shear in stellar interiors, Annual Review of Fluid Mechanics 41 (2009) 317–345.
T. D. Ringler, J. Thuburn, J. B. Klemp, W. C. Skamarock, A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured c-grids, Journal of Computational Physics 229 (9) (2010) 3065–3090.
K. Crane, Discrete differential geometry: An applied introduction, Notices of the AMS, Communication (2018) 1153–1159.
S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Courier Corporation, 2013.
C. Eldred, W. Bauer, An interpretation of trisk-type schemes from a discrete exterior calculus perspective, arXiv preprint arXiv:2210.07476.
D. Jacobsen, M. Gunzburger, T. Ringler, J. Burkardt, J. Peterson, Parallel algorithms for planar and spherical delaunay construction with an application to centroidal voronoi tessellations, Geoscientific Model Development 6 (4) (2013) 1353–1365.
T. Gastine, J. Wicht, J. M. Aurnou, Turbulent rayleigh–bénard convection in spherical shells, Journal of Fluid Mechanics 778 (2015) 721–764.
Y. Fan, Magnetic fields in the solar convection zone, Living Reviews in Solar Physics 18 (1) (2021) 1–96.
L. Li, P. Zhang, X. Liao, K. Zhang, Multiplicity of nonlinear thermal convection in a spherical shell, Physical Review E 71 (1) (2005) 016301.
J. B. Perot, V. Subramanian, Discrete calculus methods for diffusion, Journal of Computational Physics 224 (1) (2007) 59–81.
S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, J. Zhang, PETSc Web page
S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.11, Argonne National Laboratory (2019).
T. Ringler, M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, M. Maltrud, A multi-resolution approach to global ocean modeling, Ocean Modelling 69 (2013) 211–232.
M. S. Mohamed, A. N. Hirani, R. Samtaney, Numerical convergence of discrete exterior calculus on arbitrary surface meshes, International Journal for Computational Methods in Engineering Science and Mechanics 19 (3) (2018) 194–206.
E. Schulz, G. Tsogtgerel, Convergence of discrete exterior calculus approximations for poisson problems, Discrete & Computational Geometry 63 (2) (2020) 346–376.
M. Rieutord, F. Rincon, The sun's supergranulation, Living Reviews in Solar Physics 7 (1) (2010) 1–82.
T. Gastine, J. Wicht, J. Aubert, Scaling regimes in spherical shell rotating convection, Journal of Fluid Mechanics 808 (2016) 690–732.
R. Aris, Vectors, tensors and the basic equations of fluid mechanics, Courier Corporation, 2012.
C. Hall, J. Cavendish, W. Frey, The dual variable method for solving fluid flow difference equations on delaunay triangulations, Computers & fluids 20 (2) (1991) 145–164.
P. R. Amestoy, I. S. Duff, J.-Y. L'Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications 23 (1) (2001) 15–41.
F. H. Busse, Patterns of convection in spherical shells, Journal of Fluid Mechanics 72 (1) (1975) 67–85. doi:10.1017/S0022112075002947.
T. Dubos, S. Dubey, M. Tort, R. Mittal, Y. Meurdesoif, F. Hourdin, Dynamico-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geoscientific Model Development 8 (10) (2015) 3131–3150.
D. Hughes, M. Proctor, Magnetic fields in the solar convection zone: magnetoconvection and magnetic buoyancy, Annual review of fluid mechanics 20 (1988) 187–223.
.
S.-i. Iga, H. Tomita, Improved smoothness and homogeneity of icosahedral grids using the spring dynamics method, Journal of Computational Physics 258 (2014) 208–226.
M. G. Knepley, D. A. Karpeev, Mesh algorithms for pde with sieve i: Mesh distribution, Scientific Programming 17 (3) (2009) 215–230.
E. A. Spiegel, Convection in stars: I. basic boussinesq convection, Annual review of astronomy and astrophysics 9 (1971) 323.
J. Thuburn, C. J. Cotter, A framework for mimetic discretization of the rotating shallow-water equations on arbitrary polygonal grids, SIAM Journal on Scientific Computing 34 (3) (2012) B203–B225.
H. Flanders, Differential forms with applications to the physical sciences, Vol. 11, Courier Corporation, 1963.
M. Desbrun, E. Kanso, Y. Tong, Discrete differential forms for computational modeling, in: Discrete differential geometry, Springer, 2008, pp. 287–324.
F. Al-Shamali, M. Heimpel, J. Aurnou, Varying the spherical shell geometry in rotating thermal convection, Geophysical & Astrophysical Fluid Dynamics 98 (2) (2004) 153–169.
H. C. Spruit, A. Nordlund, et al., Solar convection, Annual review of astronomy and astrophysics 28 (1990) 263–301.
I. Nitschke, S. Reuther, A. Voigt, Discrete exterior calculus (dec) for the surface navier-stokes equation, in: Transport processes at fluidic interfaces, Springer, 2017, pp. 177–197.
M. S. Miesch, Large-scale dynamics of the convection zone and tachocline, Living Reviews in Solar Physics 2 (1) (2005) 1–139.
T. Frankel, The geometry of physics: an introduction, Cambridge university press, 2011.
M. Desbrun, A. N. Hirani, M. Leok, J. E. Marsden, Discrete exterior calculus, arXiv preprint math/0508341.
P. Jagad, M. S. Mohamed, R. Samtaney, Investigation of flow past a cylinder embedded on curved and flat surfaces, Physical Review Fluids 5 (4) (2020) 044701.
R. C. Kirby, Algorithm 839: Fiat, a new paradigm for computing finite element basis functions, ACM Transactions on Mathematical Software 30 (4) (2004) 502–516. doi:10.1145/1039813.1039820.
S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in: E. Arge, A. M. Bruaset, H. P. Langtangen (Eds.), Modern Software Tools in Scientific Computing, Birkhäuser Press, 1997, pp. 163–202.
T. Itano, T. Ninomiya, K. Konno, M. Sugihara-Seki, Spiral roll state in heat convection between nonrotating concentric double spherical boundaries, Journal of the Physical Society of Japan 84 (10) (2015) 103401.
F. H. Busse, N. Riahi, Patterns of convection in spherical shells. part 2, Journal of Fluid Mechanics 123 (1982) 283–301.
C. Eldred, D. Randall, Total energy and potential enstrophy conserving schemes for the shallow water equations using hamiltonian methods–part 1: Derivation and properties, Geoscientific Model Development 10 (2) (2017) 791–810.
P.-A. Arrial, N. Flyer, G. B. Wright, L. H. Kellogg, On the sensitivity of 3-d thermal convection codes to numerical discretization: a model intercomparison, Geoscientific Model Development 7 (5) (2014) 2065–2076.
A. N. Hirani, Discrete exterior calculus, California Institute of Technology, 2003.
A. N. Hirani, K. B. Nakshatrala, J. H. Chaudhry, Numerical method for darcy flow derived using discrete exterior calculus, International Journal for Computational Methods in Engineering Science and Mechanics 16 (3) (2015) 151–169.
R. Heikes, D. A. Randall, Numerical integration of the shallow-water equations on a twisted icosahedral grid. part ii. a detailed description of the grid and an analysis of numerical accuracy, Monthly Weather Review 123 (6) (1995) 1881–1887.
N. Wang, J.-L. Lee, Geometric properties of the icosahedral-hexagonal grid on the two-sphere, SIAM Journal on Scientific Computing 33 (5) (2011) 2536–2559.
K. P. Iyer, J. D. Scheel, J. Schumacher, K. R. Sreenivasan, Classical 1/3 scaling of convection holds up to ra= 1015, Proceedings of the National Academy of Sciences 117 (14) (2020) 7594–7598.
F. Kupka, H. J. Muthsam, Modelling of stellar convection, Living Reviews in Computational Astrophysics 3 (1) (2017) 1–159.
I. Nitschke, A. Voigt, J. Wensch, A finite element approach to incompressible two-phase flow on manifolds, Journal of Fluid Mechanics 708 (2012) 418–438.
C. J. Cotter, J. Thuburn, A finite element exterior calculus framework for the rotating shallow-water equations, Journal of Computational Physics 257 (2014) 1506–1526.
M. K. Verma, Physics of buoyant flows: from instabilities to turbulence, World Scientific, 2018.
(2023). URL
S. Chen, W. C. Chew, Discrete electromagnetic theory with exterior calculus, in: 2016 Progress in Electromagnetic Research Symposium (PIERS), IEEE, 2016, pp. 896–897.
P. Jagad, A. Abukhwejah, M. Mohamed, R. Samtaney, A primitive variable discrete exterior calculus discretization of incompressible navier–stokes equations over surface simplicial meshes, Physics of Fluids 33 (1) (2021) 017114.
G. Karypis, V. Kumar, A parallel algorithm for multilevel graph partitioning and sparse matrix ordering, Journal of Parallel and Distributed Computing 48 (1998) 71–85. doi:https://doi.org/10.1006/jpdc.1997.1403.
S. Hanasoge, L. Gizon, K. R. Sreenivasan, Seismic sounding of convection in the sun, Annual Review of Fluid Mechanics 48 (2016) 191–217.
J. Munkres, Elements of algebraic topology. vol. 4586 (1984).
P. Jagad, R. Samtaney, Effects of rotation on vorticity dynamics on a sphere with di
Kupka (10.1016/j.jcp.2023.112397_br0100) 2017; 3
Balay (10.1016/j.jcp.2023.112397_br0350)
Arrial (10.1016/j.jcp.2023.112397_br0590) 2014; 7
Karypis (10.1016/j.jcp.2023.112397_br0510) 1998; 48
Balay (10.1016/j.jcp.2023.112397_br0500) 1997
Spiegel (10.1016/j.jcp.2023.112397_br0050) 1971; 9
Gastine (10.1016/j.jcp.2023.112397_br0110) 2015; 778
Aris (10.1016/j.jcp.2023.112397_br0370) 2012
Garcia (10.1016/j.jcp.2023.112397_br0030) 2018; 3
Eldred (10.1016/j.jcp.2023.112397_br0320) 2017; 10
Amestoy (10.1016/j.jcp.2023.112397_br0550) 2006; 32
Busse (10.1016/j.jcp.2023.112397_br0620) 1982; 123
Munkres (10.1016/j.jcp.2023.112397_br0400) 1984
Dubos (10.1016/j.jcp.2023.112397_br0340) 2015; 8
Heikes (10.1016/j.jcp.2023.112397_br0430) 1995; 123
Ringler (10.1016/j.jcp.2023.112397_br0330) 2013; 69
Jagad (10.1016/j.jcp.2023.112397_br0260) 2021; 33
Amestoy (10.1016/j.jcp.2023.112397_br0540) 2001; 23
Iyer (10.1016/j.jcp.2023.112397_br0130) 2020; 117
Chandrasekhar (10.1016/j.jcp.2023.112397_br0560) 2013
Hughes (10.1016/j.jcp.2023.112397_br0060) 1988; 20
Nitschke (10.1016/j.jcp.2023.112397_br0630) 2012; 708
Desbrun (10.1016/j.jcp.2023.112397_br0180) 2008
Perot (10.1016/j.jcp.2023.112397_br0140) 2007; 224
Miesch (10.1016/j.jcp.2023.112397_br0020) 2005; 2
Al-Shamali (10.1016/j.jcp.2023.112397_br0570) 2004; 98
Jagad (10.1016/j.jcp.2023.112397_br0240) 2020; 5
Kirby (10.1016/j.jcp.2023.112397_br0520) 2004; 30
Busse (10.1016/j.jcp.2023.112397_br0580) 1975; 72
Hirani (10.1016/j.jcp.2023.112397_br0150) 2003
Thuburn (10.1016/j.jcp.2023.112397_br0310) 2012; 34
Knepley (10.1016/j.jcp.2023.112397_br0530) 2009; 17
Ringler (10.1016/j.jcp.2023.112397_br0210) 2010; 229
Crane (10.1016/j.jcp.2023.112397_br0440) 2018
Verma (10.1016/j.jcp.2023.112397_br0610) 2018
Flanders (10.1016/j.jcp.2023.112397_br0450) 1963
Balay (10.1016/j.jcp.2023.112397_br0490) 2019
Jacobsen (10.1016/j.jcp.2023.112397_br0410) 2013; 6
Fan (10.1016/j.jcp.2023.112397_br0040) 2021; 18
Frankel (10.1016/j.jcp.2023.112397_br0460) 2011
Eldred (10.1016/j.jcp.2023.112397_br0300)
Nitschke (10.1016/j.jcp.2023.112397_br0380) 2017
Hall (10.1016/j.jcp.2023.112397_br0480) 1991; 20
Jagad (10.1016/j.jcp.2023.112397_br0250) 2021; 33
Iga (10.1016/j.jcp.2023.112397_br0420) 2014; 258
Rieutord (10.1016/j.jcp.2023.112397_br0090) 2010; 7
Gastine (10.1016/j.jcp.2023.112397_br0120) 2016; 808
Desbrun (10.1016/j.jcp.2023.112397_br0160)
Itano (10.1016/j.jcp.2023.112397_br0360) 2015; 84
Wang (10.1016/j.jcp.2023.112397_br0390) 2011; 33
Li (10.1016/j.jcp.2023.112397_br0600) 2005; 71
Mohamed (10.1016/j.jcp.2023.112397_br0280) 2018; 19
Chen (10.1016/j.jcp.2023.112397_br0190) 2016
Spruit (10.1016/j.jcp.2023.112397_br0070) 1990; 28
Cotter (10.1016/j.jcp.2023.112397_br0470) 2014; 257
Miesch (10.1016/j.jcp.2023.112397_br0080) 2009; 41
Desbrun (10.1016/j.jcp.2023.112397_br0170) 2003
Mohamed (10.1016/j.jcp.2023.112397_br0230) 2016; 312
Schulz (10.1016/j.jcp.2023.112397_br0290) 2020; 63
Hanasoge (10.1016/j.jcp.2023.112397_br0010) 2016; 48
Wang (10.1016/j.jcp.2023.112397_br0270)
Hirani (10.1016/j.jcp.2023.112397_br0220) 2015; 16
Thuburn (10.1016/j.jcp.2023.112397_br0200) 2009; 228
References_xml – reference: C. Hall, J. Cavendish, W. Frey, The dual variable method for solving fluid flow difference equations on delaunay triangulations, Computers & fluids 20 (2) (1991) 145–164.
– reference: M. Rieutord, F. Rincon, The sun's supergranulation, Living Reviews in Solar Physics 7 (1) (2010) 1–82.
– reference: G. Karypis, V. Kumar, A parallel algorithm for multilevel graph partitioning and sparse matrix ordering, Journal of Parallel and Distributed Computing 48 (1998) 71–85. doi:https://doi.org/10.1006/jpdc.1997.1403.
– reference: F. H. Busse, N. Riahi, Patterns of convection in spherical shells. part 2, Journal of Fluid Mechanics 123 (1982) 283–301.
– reference: C. Eldred, D. Randall, Total energy and potential enstrophy conserving schemes for the shallow water equations using hamiltonian methods–part 1: Derivation and properties, Geoscientific Model Development 10 (2) (2017) 791–810.
– reference: F. Kupka, H. J. Muthsam, Modelling of stellar convection, Living Reviews in Computational Astrophysics 3 (1) (2017) 1–159.
– reference: C. Eldred, W. Bauer, An interpretation of trisk-type schemes from a discrete exterior calculus perspective, arXiv preprint arXiv:2210.07476.
– reference: M. S. Miesch, J. Toomre, Turbulence, magnetism, and shear in stellar interiors, Annual Review of Fluid Mechanics 41 (2009) 317–345.
– reference: J. B. Perot, V. Subramanian, Discrete calculus methods for diffusion, Journal of Computational Physics 224 (1) (2007) 59–81.
– reference: T. Ringler, M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, M. Maltrud, A multi-resolution approach to global ocean modeling, Ocean Modelling 69 (2013) 211–232.
– reference: M. Desbrun, E. Kanso, Y. Tong, Discrete differential forms for computational modeling, in: Discrete differential geometry, Springer, 2008, pp. 287–324.
– reference: S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in: E. Arge, A. M. Bruaset, H. P. Langtangen (Eds.), Modern Software Tools in Scientific Computing, Birkhäuser Press, 1997, pp. 163–202.
– reference: T. Dubos, S. Dubey, M. Tort, R. Mittal, Y. Meurdesoif, F. Hourdin, Dynamico-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geoscientific Model Development 8 (10) (2015) 3131–3150.
– reference: D. Jacobsen, M. Gunzburger, T. Ringler, J. Burkardt, J. Peterson, Parallel algorithms for planar and spherical delaunay construction with an application to centroidal voronoi tessellations, Geoscientific Model Development 6 (4) (2013) 1353–1365.
– reference: M. Wang, P. Jagad, A. N. Hirani, R. Samtaney, Discrete exterior calculus discretization of two-phase incompressible navier-stokes equations with a conservative phase field method, arXiv preprint arXiv:2203.13070.
– reference: J. Thuburn, T. D. Ringler, W. C. Skamarock, J. B. Klemp, Numerical representation of geostrophic modes on arbitrarily structured c-grids, Journal of Computational Physics 228 (22) (2009) 8321–8335.
– reference: T. Frankel, The geometry of physics: an introduction, Cambridge university press, 2011.
– reference: R. Aris, Vectors, tensors and the basic equations of fluid mechanics, Courier Corporation, 2012.
– reference: E. A. Spiegel, Convection in stars: I. basic boussinesq convection, Annual review of astronomy and astrophysics 9 (1971) 323.
– reference: N. Wang, J.-L. Lee, Geometric properties of the icosahedral-hexagonal grid on the two-sphere, SIAM Journal on Scientific Computing 33 (5) (2011) 2536–2559.
– reference: A. N. Hirani, Discrete exterior calculus, California Institute of Technology, 2003.
– reference: T. Itano, T. Ninomiya, K. Konno, M. Sugihara-Seki, Spiral roll state in heat convection between nonrotating concentric double spherical boundaries, Journal of the Physical Society of Japan 84 (10) (2015) 103401.
– reference: T. D. Ringler, J. Thuburn, J. B. Klemp, W. C. Skamarock, A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured c-grids, Journal of Computational Physics 229 (9) (2010) 3065–3090.
– reference: I. Nitschke, A. Voigt, J. Wensch, A finite element approach to incompressible two-phase flow on manifolds, Journal of Fluid Mechanics 708 (2012) 418–438.
– reference: S.-i. Iga, H. Tomita, Improved smoothness and homogeneity of icosahedral grids using the spring dynamics method, Journal of Computational Physics 258 (2014) 208–226.
– reference: M. G. Knepley, D. A. Karpeev, Mesh algorithms for pde with sieve i: Mesh distribution, Scientific Programming 17 (3) (2009) 215–230.
– reference: M. S. Mohamed, A. N. Hirani, R. Samtaney, Numerical convergence of discrete exterior calculus on arbitrary surface meshes, International Journal for Computational Methods in Engineering Science and Mechanics 19 (3) (2018) 194–206.
– reference: H. Flanders, Differential forms with applications to the physical sciences, Vol. 11, Courier Corporation, 1963.
– reference: Y. Fan, Magnetic fields in the solar convection zone, Living Reviews in Solar Physics 18 (1) (2021) 1–96.
– reference: H. C. Spruit, A. Nordlund, et al., Solar convection, Annual review of astronomy and astrophysics 28 (1990) 263–301.
– reference: T. Gastine, J. Wicht, J. M. Aurnou, Turbulent rayleigh–bénard convection in spherical shells, Journal of Fluid Mechanics 778 (2015) 721–764.
– reference: M. K. Verma, Physics of buoyant flows: from instabilities to turbulence, World Scientific, 2018.
– reference: J. Thuburn, C. J. Cotter, A framework for mimetic discretization of the rotating shallow-water equations on arbitrary polygonal grids, SIAM Journal on Scientific Computing 34 (3) (2012) B203–B225.
– reference: K. Crane, Discrete differential geometry: An applied introduction, Notices of the AMS, Communication (2018) 1153–1159.
– reference: F. Garcia, F. R. Chambers, A. L. Watts, Onset of low prandtl number thermal convection in thin spherical shells, Physical Review Fluids 3 (2) (2018) 024801.
– reference: D. Hughes, M. Proctor, Magnetic fields in the solar convection zone: magnetoconvection and magnetic buoyancy, Annual review of fluid mechanics 20 (1988) 187–223.
– reference: T. Gastine, J. Wicht, J. Aubert, Scaling regimes in spherical shell rotating convection, Journal of Fluid Mechanics 808 (2016) 690–732.
– reference: A. N. Hirani, K. B. Nakshatrala, J. H. Chaudhry, Numerical method for darcy flow derived using discrete exterior calculus, International Journal for Computational Methods in Engineering Science and Mechanics 16 (3) (2015) 151–169.
– reference: C. J. Cotter, J. Thuburn, A finite element exterior calculus framework for the rotating shallow-water equations, Journal of Computational Physics 257 (2014) 1506–1526.
– reference: M. Desbrun, A. N. Hirani, J. E. Marsden, Discrete exterior calculus for variational problems in computer vision and graphics, in: 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), Vol. 5, IEEE, 2003, pp. 4902–4907.
– reference: P.-A. Arrial, N. Flyer, G. B. Wright, L. H. Kellogg, On the sensitivity of 3-d thermal convection codes to numerical discretization: a model intercomparison, Geoscientific Model Development 7 (5) (2014) 2065–2076.
– reference: P. R. Amestoy, I. S. Duff, J.-Y. L'Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications 23 (1) (2001) 15–41.
– reference: M. Desbrun, A. N. Hirani, M. Leok, J. E. Marsden, Discrete exterior calculus, arXiv preprint math/0508341.
– reference: R. C. Kirby, Algorithm 839: Fiat, a new paradigm for computing finite element basis functions, ACM Transactions on Mathematical Software 30 (4) (2004) 502–516. doi:10.1145/1039813.1039820.
– reference: P. Jagad, M. S. Mohamed, R. Samtaney, Investigation of flow past a cylinder embedded on curved and flat surfaces, Physical Review Fluids 5 (4) (2020) 044701.
– reference: P. R. Amestoy, A. Guermouche, J.-Y. L'Excellent, S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Computing 32 (2) (2006) 136–156.
– reference: F. H. Busse, Patterns of convection in spherical shells, Journal of Fluid Mechanics 72 (1) (1975) 67–85. doi:10.1017/S0022112075002947.
– reference: S. Chen, W. C. Chew, Discrete electromagnetic theory with exterior calculus, in: 2016 Progress in Electromagnetic Research Symposium (PIERS), IEEE, 2016, pp. 896–897.
– reference: S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Courier Corporation, 2013.
– reference: P. Jagad, R. Samtaney, Effects of rotation on vorticity dynamics on a sphere with discrete exterior calculus, Physics of Fluids 33 (10) (2021) 107117.
– reference: J. Munkres, Elements of algebraic topology. vol. 4586 (1984).
– reference: F. Al-Shamali, M. Heimpel, J. Aurnou, Varying the spherical shell geometry in rotating thermal convection, Geophysical & Astrophysical Fluid Dynamics 98 (2) (2004) 153–169.
– reference: E. Schulz, G. Tsogtgerel, Convergence of discrete exterior calculus approximations for poisson problems, Discrete & Computational Geometry 63 (2) (2020) 346–376.
– reference: .
– reference: S. Hanasoge, L. Gizon, K. R. Sreenivasan, Seismic sounding of convection in the sun, Annual Review of Fluid Mechanics 48 (2016) 191–217.
– reference: R. Heikes, D. A. Randall, Numerical integration of the shallow-water equations on a twisted icosahedral grid. part ii. a detailed description of the grid and an analysis of numerical accuracy, Monthly Weather Review 123 (6) (1995) 1881–1887.
– reference: P. Jagad, A. Abukhwejah, M. Mohamed, R. Samtaney, A primitive variable discrete exterior calculus discretization of incompressible navier–stokes equations over surface simplicial meshes, Physics of Fluids 33 (1) (2021) 017114.
– reference: M. S. Miesch, Large-scale dynamics of the convection zone and tachocline, Living Reviews in Solar Physics 2 (1) (2005) 1–139.
– reference: K. P. Iyer, J. D. Scheel, J. Schumacher, K. R. Sreenivasan, Classical 1/3 scaling of convection holds up to ra= 1015, Proceedings of the National Academy of Sciences 117 (14) (2020) 7594–7598.
– reference: I. Nitschke, S. Reuther, A. Voigt, Discrete exterior calculus (dec) for the surface navier-stokes equation, in: Transport processes at fluidic interfaces, Springer, 2017, pp. 177–197.
– reference: S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.11, Argonne National Laboratory (2019).
– reference: (2023). URL
– reference: L. Li, P. Zhang, X. Liao, K. Zhang, Multiplicity of nonlinear thermal convection in a spherical shell, Physical Review E 71 (1) (2005) 016301.
– reference: M. S. Mohamed, A. N. Hirani, R. Samtaney, Discrete exterior calculus discretization of incompressible navier–stokes equations over surface simplicial meshes, Journal of Computational Physics 312 (2016) 175–191.
– reference: S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, J. Zhang, PETSc Web page,
– volume: 808
  start-page: 690
  year: 2016
  ident: 10.1016/j.jcp.2023.112397_br0120
  article-title: Scaling regimes in spherical shell rotating convection
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.659
– volume: 229
  start-page: 3065
  issue: 9
  year: 2010
  ident: 10.1016/j.jcp.2023.112397_br0210
  article-title: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured c-grids
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.12.007
– volume: 18
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.jcp.2023.112397_br0040
  article-title: Magnetic fields in the solar convection zone
  publication-title: Living Rev. Sol. Phys.
  doi: 10.1007/s41116-021-00031-2
– volume: 7
  start-page: 2065
  issue: 5
  year: 2014
  ident: 10.1016/j.jcp.2023.112397_br0590
  article-title: On the sensitivity of 3-D thermal convection codes to numerical discretization: a model intercomparison
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-2065-2014
– volume: 72
  start-page: 67
  issue: 1
  year: 1975
  ident: 10.1016/j.jcp.2023.112397_br0580
  article-title: Patterns of convection in spherical shells
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112075002947
– volume: 19
  start-page: 194
  issue: 3
  year: 2018
  ident: 10.1016/j.jcp.2023.112397_br0280
  article-title: Numerical convergence of discrete exterior calculus on arbitrary surface meshes
  publication-title: Int. J. Comput. Methods Eng. Sci. Mech.
  doi: 10.1080/15502287.2018.1446196
– volume: 63
  start-page: 346
  issue: 2
  year: 2020
  ident: 10.1016/j.jcp.2023.112397_br0290
  article-title: Convergence of discrete exterior calculus approximations for Poisson problems
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-019-00159-x
– volume: 33
  start-page: 2536
  issue: 5
  year: 2011
  ident: 10.1016/j.jcp.2023.112397_br0390
  article-title: Geometric properties of the icosahedral-hexagonal grid on the two-sphere
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090761355
– ident: 10.1016/j.jcp.2023.112397_br0300
– volume: 3
  issue: 2
  year: 2018
  ident: 10.1016/j.jcp.2023.112397_br0030
  article-title: Onset of low Prandtl number thermal convection in thin spherical shells
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.3.024801
– year: 1963
  ident: 10.1016/j.jcp.2023.112397_br0450
– volume: 257
  start-page: 1506
  year: 2014
  ident: 10.1016/j.jcp.2023.112397_br0470
  article-title: A finite element exterior calculus framework for the rotating shallow-water equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.10.008
– volume: 32
  start-page: 136
  issue: 2
  year: 2006
  ident: 10.1016/j.jcp.2023.112397_br0550
  article-title: Hybrid scheduling for the parallel solution of linear systems
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2005.07.004
– year: 2013
  ident: 10.1016/j.jcp.2023.112397_br0560
– volume: 312
  start-page: 175
  year: 2016
  ident: 10.1016/j.jcp.2023.112397_br0230
  article-title: Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.02.028
– volume: 224
  start-page: 59
  issue: 1
  year: 2007
  ident: 10.1016/j.jcp.2023.112397_br0140
  article-title: Discrete calculus methods for diffusion
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.12.022
– volume: 6
  start-page: 1353
  issue: 4
  year: 2013
  ident: 10.1016/j.jcp.2023.112397_br0410
  article-title: Parallel algorithms for planar and spherical Delaunay construction with an application to centroidal Voronoi tessellations
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-6-1353-2013
– start-page: 4902
  year: 2003
  ident: 10.1016/j.jcp.2023.112397_br0170
  article-title: Discrete exterior calculus for variational problems in computer vision and graphics
– volume: 228
  start-page: 8321
  issue: 22
  year: 2009
  ident: 10.1016/j.jcp.2023.112397_br0200
  article-title: Numerical representation of geostrophic modes on arbitrarily structured c-grids
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.08.006
– ident: 10.1016/j.jcp.2023.112397_br0270
– year: 2019
  ident: 10.1016/j.jcp.2023.112397_br0490
– ident: 10.1016/j.jcp.2023.112397_br0350
– volume: 16
  start-page: 151
  issue: 3
  year: 2015
  ident: 10.1016/j.jcp.2023.112397_br0220
  article-title: Numerical method for Darcy flow derived using discrete exterior calculus
  publication-title: Int. J. Comput. Methods Eng. Sci. Mech.
  doi: 10.1080/15502287.2014.977500
– year: 2011
  ident: 10.1016/j.jcp.2023.112397_br0460
– year: 2018
  ident: 10.1016/j.jcp.2023.112397_br0610
– volume: 41
  start-page: 317
  year: 2009
  ident: 10.1016/j.jcp.2023.112397_br0080
  article-title: Turbulence, magnetism, and shear in stellar interiors
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.010908.165215
– start-page: 287
  year: 2008
  ident: 10.1016/j.jcp.2023.112397_br0180
  article-title: Discrete differential forms for computational modeling
– volume: 258
  start-page: 208
  year: 2014
  ident: 10.1016/j.jcp.2023.112397_br0420
  article-title: Improved smoothness and homogeneity of icosahedral grids using the spring dynamics method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.10.013
– start-page: 1153
  year: 2018
  ident: 10.1016/j.jcp.2023.112397_br0440
  article-title: Discrete Differential Geometry: An Applied Introduction
– volume: 23
  start-page: 15
  issue: 1
  year: 2001
  ident: 10.1016/j.jcp.2023.112397_br0540
  article-title: A fully asynchronous multifrontal solver using distributed dynamic scheduling
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479899358194
– volume: 8
  start-page: 3131
  issue: 10
  year: 2015
  ident: 10.1016/j.jcp.2023.112397_br0340
  article-title: Dynamico-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-8-3131-2015
– volume: 33
  issue: 10
  year: 2021
  ident: 10.1016/j.jcp.2023.112397_br0260
  article-title: Effects of rotation on vorticity dynamics on a sphere with discrete exterior calculus
  publication-title: Phys. Fluids
  doi: 10.1063/5.0068860
– volume: 9
  start-page: 323
  year: 1971
  ident: 10.1016/j.jcp.2023.112397_br0050
  article-title: Convection in stars: I. Basic Boussinesq convection
  publication-title: Annu. Rev. Astron. Astrophys.
  doi: 10.1146/annurev.aa.09.090171.001543
– volume: 3
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.jcp.2023.112397_br0100
  article-title: Modelling of stellar convection
  publication-title: Living Rev. Comput. Astrophys.
  doi: 10.1007/s41115-017-0001-9
– volume: 20
  start-page: 187
  year: 1988
  ident: 10.1016/j.jcp.2023.112397_br0060
  article-title: Magnetic fields in the solar convection zone: magnetoconvection and magnetic buoyancy
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.20.010188.001155
– volume: 69
  start-page: 211
  year: 2013
  ident: 10.1016/j.jcp.2023.112397_br0330
  article-title: A multi-resolution approach to global ocean modeling
  publication-title: Ocean Model.
  doi: 10.1016/j.ocemod.2013.04.010
– volume: 33
  issue: 1
  year: 2021
  ident: 10.1016/j.jcp.2023.112397_br0250
  article-title: A primitive variable discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes
  publication-title: Phys. Fluids
  doi: 10.1063/5.0035981
– volume: 117
  start-page: 7594
  issue: 14
  year: 2020
  ident: 10.1016/j.jcp.2023.112397_br0130
  article-title: Classical 1/3 scaling of convection holds up to Ra=1015
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1922794117
– start-page: 896
  year: 2016
  ident: 10.1016/j.jcp.2023.112397_br0190
  article-title: Discrete electromagnetic theory with exterior calculus
– year: 1984
  ident: 10.1016/j.jcp.2023.112397_br0400
– volume: 7
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.jcp.2023.112397_br0090
  article-title: The sun's supergranulation
  publication-title: Living Rev. Sol. Phys.
– volume: 10
  start-page: 791
  issue: 2
  year: 2017
  ident: 10.1016/j.jcp.2023.112397_br0320
  article-title: Total energy and potential enstrophy conserving schemes for the shallow water equations using Hamiltonian methods–Part 1: derivation and properties
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-10-791-2017
– volume: 17
  start-page: 215
  issue: 3
  year: 2009
  ident: 10.1016/j.jcp.2023.112397_br0530
  article-title: Mesh algorithms for pde with sieve I: mesh distribution
  publication-title: Sci. Program.
– volume: 123
  start-page: 283
  year: 1982
  ident: 10.1016/j.jcp.2023.112397_br0620
  article-title: Patterns of convection in spherical shells. Part 2
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112082003061
– ident: 10.1016/j.jcp.2023.112397_br0160
– volume: 2
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.jcp.2023.112397_br0020
  article-title: Large-scale dynamics of the convection zone and tachocline
  publication-title: Living Rev. Sol. Phys.
– year: 2003
  ident: 10.1016/j.jcp.2023.112397_br0150
– volume: 71
  issue: 1
  year: 2005
  ident: 10.1016/j.jcp.2023.112397_br0600
  article-title: Multiplicity of nonlinear thermal convection in a spherical shell
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.016301
– volume: 708
  start-page: 418
  year: 2012
  ident: 10.1016/j.jcp.2023.112397_br0630
  article-title: A finite element approach to incompressible two-phase flow on manifolds
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.317
– volume: 98
  start-page: 153
  issue: 2
  year: 2004
  ident: 10.1016/j.jcp.2023.112397_br0570
  article-title: Varying the spherical shell geometry in rotating thermal convection
  publication-title: Geophys. Astrophys. Fluid Dyn.
  doi: 10.1080/03091920410001659281
– volume: 84
  issue: 10
  year: 2015
  ident: 10.1016/j.jcp.2023.112397_br0360
  article-title: Spiral roll state in heat convection between nonrotating concentric double spherical boundaries
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.84.103401
– volume: 48
  start-page: 71
  year: 1998
  ident: 10.1016/j.jcp.2023.112397_br0510
  article-title: A parallel algorithm for multilevel graph partitioning and sparse matrix ordering
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1006/jpdc.1997.1403
– volume: 30
  start-page: 502
  issue: 4
  year: 2004
  ident: 10.1016/j.jcp.2023.112397_br0520
  article-title: Algorithm 839: fiat, a new paradigm for computing finite element basis functions
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1039813.1039820
– volume: 34
  start-page: B203
  issue: 3
  year: 2012
  ident: 10.1016/j.jcp.2023.112397_br0310
  article-title: A framework for mimetic discretization of the rotating shallow-water equations on arbitrary polygonal grids
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/110850293
– volume: 20
  start-page: 145
  issue: 2
  year: 1991
  ident: 10.1016/j.jcp.2023.112397_br0480
  article-title: The dual variable method for solving fluid flow difference equations on Delaunay triangulations
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(91)90017-C
– volume: 5
  issue: 4
  year: 2020
  ident: 10.1016/j.jcp.2023.112397_br0240
  article-title: Investigation of flow past a cylinder embedded on curved and flat surfaces
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.5.044701
– volume: 778
  start-page: 721
  year: 2015
  ident: 10.1016/j.jcp.2023.112397_br0110
  article-title: Turbulent Rayleigh–Bénard convection in spherical shells
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.401
– volume: 48
  start-page: 191
  year: 2016
  ident: 10.1016/j.jcp.2023.112397_br0010
  article-title: Seismic sounding of convection in the sun
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122414-034534
– volume: 28
  start-page: 263
  year: 1990
  ident: 10.1016/j.jcp.2023.112397_br0070
  article-title: Solar convection
  publication-title: Annu. Rev. Astron. Astrophys.
  doi: 10.1146/annurev.aa.28.090190.001403
– volume: 123
  start-page: 1881
  issue: 6
  year: 1995
  ident: 10.1016/j.jcp.2023.112397_br0430
  article-title: Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part II. A detailed description of the grid and an analysis of numerical accuracy
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1995)123<1881:NIOTSW>2.0.CO;2
– year: 2012
  ident: 10.1016/j.jcp.2023.112397_br0370
– start-page: 177
  year: 2017
  ident: 10.1016/j.jcp.2023.112397_br0380
  article-title: Discrete exterior calculus (DEC) for the surface Navier-Stokes equation
– start-page: 163
  year: 1997
  ident: 10.1016/j.jcp.2023.112397_br0500
  article-title: Efficient management of parallelism in object oriented numerical software libraries
SSID ssj0008548
Score 2.4511929
Snippet We present a new hybrid discrete exterior calculus (DEC) and finite difference (FD) method to simulate fully three-dimensional Boussinesq convection in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112397
SubjectTerms Boussinesq convection
Discrete exterior calculus
Finite difference method
Flow in spherical shell
Operator splitting
PETSc
Title A hybrid discrete exterior calculus and finite difference method for Boussinesq convection in spherical shells
URI https://dx.doi.org/10.1016/j.jcp.2023.112397
Volume 491
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqsrDwRpRHdQcmpFA3dupmLBVVAakTlbpFfkWkQmlp2oGFb8c3cXhIwMAYy5asa_v4yDnnXkIu3QGTnEoeMCZ4wK3hgZL4DMdUSNM0xld9VFtMeuMpv59FswYZ1l4YlFV67K8wvURr39Lx0ewssww9viF66B30Is0N0fDLucBdfv32KfPoR7xCY5QiuN71n81S4zXXmLIyZGikYZj36ae76ct9M9ojO54owqCayz5p2PyA7HrSCP5IFockH8DTK9quAA22K8eBocTbbLECF3983StA5gbSDOkl1BVRtIWqejQ42go3i01RKuBfoNShl24HyHIoMO0ALiQUKBktjsh0dPs4HAe-iEKgGafrQHIVMhtGUhq3EkKL0DjSIY3U2oGd6tI4VVLHrsEI66i2lNTonjEs7nNtqWLHpJkvcntCIBI6pjIKbY-n3DDHrDTrdZVVWoh-lOoWoXX4Eu0zjGOhi-eklpLNExfxBCOeVBFvkauPIcsqvcZfnXm9Jsm3PZI4-P992On_hp2RbfzCe6obnZPmerWxF46ArFW73GFtsjW4exhP3gEdeNxA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADLZKO8DCG1GeHpiQItLcpWnGgkAtLZ2KxBbdKyIIpaVpB_495-SCQAIG1kssRfbd50-XzzbAhT1ggvuCe4xF3ONGc08KuoZjMvDTNKZbfVJbTLqDR37_FD414KauhSFZpcP-CtNLtHYrV86bV_MsoxrfgGroLfQSzQ16a9Ci7lRhE1r94Wgw-QTkXsgrQCY1gjWof26WMq8XRV0rA0a1NIxaP_2Unr6knLtt2HRcEfvV5-xAw-S7sOV4I7pTWexB3sfnd6q8QqqxXVgajCXkZrMF2hDQBV-BIteYZsQwsR6KogxWA6TRMle8nq2KUgT_hqUUvSx4wCzHgjoPUCyxINVosQ-Pd7fTm4Hn5ih4inF_6QkuA2aCUAhtgxGpKNCWdwgtlLJ4Jzt-nEqhYrugI2PZthC-Vl2tWdzjyviSHUAzn-XmEDCMVOyLMDBdnnLNLLlSrNuRRqoo6oWpaoNfuy9Rrsk4zbp4TWo12UtiPZ6Qx5PK4224_DSZVx02_nqZ1zFJvm2TxGaA382O_md2DuuD6cM4GQ8no2PYoCeUtjrhCTSXi5U5tXxkKc_cfvsArxze8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+discrete+exterior+calculus+and+finite+difference+method+for+Boussinesq+convection+in+spherical+shells&rft.jtitle=Journal+of+computational+physics&rft.au=Mantravadi%2C+Bhargav&rft.au=Jagad%2C+Pankaj&rft.au=Samtaney%2C+Ravi&rft.date=2023-10-15&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016%2Fj.jcp.2023.112397&rft.externalDocID=S0021999123004928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon