A crystal plasticity model for porous HCP crystals in titanium alloys under multiaxial loading conditions

•Crystal plasticity model for porous HCP single crystals, e.g. Ti alloys.•Novel penalty-free scheme developed for maintaining specified stress-states, e.g. traxiality.•Tension and compression, axisymmetric and non-axisymmetric loadings are considered.•The effects of initial porosity, crystal orienta...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of solids and structures Vol. 238; p. 111400
Main Authors Yang, Qingcheng, Ghosh, Somnath
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.03.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Crystal plasticity model for porous HCP single crystals, e.g. Ti alloys.•Novel penalty-free scheme developed for maintaining specified stress-states, e.g. traxiality.•Tension and compression, axisymmetric and non-axisymmetric loadings are considered.•The effects of initial porosity, crystal orientation, and stress state are explored.•The porous CP model is capable of modeling polycrystalline microstructures containing voids. In this paper, an efficient and effective crystal plasticity model is proposed for porous HCP crystals subject to a variety of multiaxial loading conditions. These conditions include (i) uniaxial, biaxial, and triaxial, (ii) tension and compression, (iii) low and high triaxiality, and (iv) axisymmetric and non-axisymmetric loadings. The framework is based on a combination of variational homogenization, phenomenological extensions, and assumptions motivated by observations from the high-fidelity micromechanical analysis. A novel penalty-free algorithm is employed to reach and maintain a specified stress state while performing representative volume element (RVE)-based crystal plasticity finite element (CPFE) analysis with porosity. The RVE studies demonstrate that the initial porosity, crystallographic orientation, and stress states have a significant effect on the homogenized mechanical responses of microscopically porous RVEs. The proposed porous crystal plasticity model is developed and calibrated using a database generated from the results of micromechanical RVE analysis. The calibrated porous model is reasonably effective in predicting the response of porous crystalline RVEs.
AbstractList •Crystal plasticity model for porous HCP single crystals, e.g. Ti alloys.•Novel penalty-free scheme developed for maintaining specified stress-states, e.g. traxiality.•Tension and compression, axisymmetric and non-axisymmetric loadings are considered.•The effects of initial porosity, crystal orientation, and stress state are explored.•The porous CP model is capable of modeling polycrystalline microstructures containing voids. In this paper, an efficient and effective crystal plasticity model is proposed for porous HCP crystals subject to a variety of multiaxial loading conditions. These conditions include (i) uniaxial, biaxial, and triaxial, (ii) tension and compression, (iii) low and high triaxiality, and (iv) axisymmetric and non-axisymmetric loadings. The framework is based on a combination of variational homogenization, phenomenological extensions, and assumptions motivated by observations from the high-fidelity micromechanical analysis. A novel penalty-free algorithm is employed to reach and maintain a specified stress state while performing representative volume element (RVE)-based crystal plasticity finite element (CPFE) analysis with porosity. The RVE studies demonstrate that the initial porosity, crystallographic orientation, and stress states have a significant effect on the homogenized mechanical responses of microscopically porous RVEs. The proposed porous crystal plasticity model is developed and calibrated using a database generated from the results of micromechanical RVE analysis. The calibrated porous model is reasonably effective in predicting the response of porous crystalline RVEs.
In this paper, an efficient and effective crystal plasticity model is proposed for porous HCP crystals subject to a variety of multiaxial loading conditions. These conditions include (i) uniaxial, biaxial, and triaxial, (ii) tension and compression, (iii) low and high triaxiality, and (iv) axisymmetric and non-axisymmetric loadings. The framework is based on a combination of variational homogenization, phenomenological extensions, and assumptions motivated by observations from the high-fidelity micromechanical analysis. A novel penalty-free algorithm is employed to reach and maintain a specified stress state while performing representative volume element (RVE)-based crystal plasticity finite element (CPFE) analysis with porosity. The RVE studies demonstrate that the initial porosity, crystallographic orientation, and stress states have a significant effect on the homogenized mechanical responses of microscopically porous RVEs. The proposed porous crystal plasticity model is developed and calibrated using a database generated from the results of micromechanical RVE analysis. The calibrated porous model is reasonably effective in predicting the response of porous crystalline RVEs.
ArticleNumber 111400
Author Ghosh, Somnath
Yang, Qingcheng
Author_xml – sequence: 1
  givenname: Qingcheng
  surname: Yang
  fullname: Yang, Qingcheng
  organization: Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 2
  givenname: Somnath
  surname: Ghosh
  fullname: Ghosh, Somnath
  email: sghosh20@jhu.edu
  organization: Department of Civil and Systems, Mechanical and Materials Science & Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
BookMark eNqFkE1r4zAQhsXSwqbZ_QuLoGenGsuWbdhDS-gXBNpDexayLC9jFCmV5NL8-1VIc-mlJ8HwPu9ongty5rwzhPwBtgIG4mpa4RS9jSmsSlbCCgAqxn6QBbRNV5RQiTOyYKxkRSNa_pNcxDgxxiresQXBG6rDPiZl6c6qmFBj2tOtH4ylow9054OfI31YP59ykaKjCZNyOG-pstbvI53dYALdzjah-sBcZr0a0P2j2rsBE3oXf5HzMdPm9-e7JK93ty_rh2LzdP-4vtkUmlcsFd3Yj3WrteBdC3yEulJG9HlooKtL1vYV1KIEXqu-HvlQdb1pBAilNIimFpovyeWxdxf822xikpOfg8srZZlLGe_Ktsmpv8eUDj7GYEaZD1eHj6ag0Epg8iBXTvIkVx7kyqPcjIsv-C7gVoX99-D1ETRZwTuaIKNG47QZMBid5ODxu4r_KqycbA
CitedBy_id crossref_primary_10_1016_j_msea_2025_148221
crossref_primary_10_1016_j_ijplas_2023_103781
crossref_primary_10_1615_IntJMultCompEng_2022043582
crossref_primary_10_1016_j_ijplas_2022_103254
crossref_primary_10_1016_j_engfailanal_2023_107262
crossref_primary_10_1016_j_ijsolstr_2024_113051
crossref_primary_10_1016_j_jmps_2022_104923
crossref_primary_10_1016_j_pmatsci_2023_101085
Cites_doi 10.1016/j.jnucmat.2017.04.013
10.1016/0022-5096(69)90033-7
10.1002/nme.3014
10.1016/j.jmps.2013.01.006
10.1016/j.actamat.2012.06.043
10.1016/j.ijplas.2009.10.009
10.1016/j.jmps.2018.03.002
10.1016/j.mechmat.2015.01.015
10.1016/j.ijplas.2005.06.003
10.1016/j.commatsci.2019.02.005
10.1016/0020-7683(92)90191-U
10.1016/j.mechmat.2018.08.004
10.1002/nme.5722
10.1115/1.4024074
10.1016/j.jmps.2017.06.008
10.1016/j.ijplas.2005.01.009
10.1115/1.3443401
10.1016/j.ijplas.2016.05.001
10.1016/0001-6160(84)90213-X
10.1016/S0997-7538(01)01147-0
10.1016/j.ijplas.2019.05.008
10.1016/j.actamat.2015.12.034
10.1016/j.ijsolstr.2013.02.005
10.1016/j.addma.2017.06.011
10.1016/j.jmps.2018.12.012
10.1016/j.ijplas.2019.07.002
10.1016/j.ijplas.2007.08.008
10.1016/j.ijplas.2012.01.008
10.1016/j.ijplas.2020.102701
10.1016/j.euromechsol.2007.08.002
10.1016/j.ijplas.2020.102881
10.1155/TSM.14-18.1121
10.1016/j.ijplas.2016.09.002
10.1016/j.commatsci.2009.04.034
10.1016/j.ijplas.2019.04.009
10.1115/1.3601204
10.1016/j.jmps.2018.10.018
10.1088/0965-0393/13/6/007
10.1016/j.jmps.2009.04.002
10.1016/j.commatsci.2010.02.028
10.1016/j.actamat.2006.09.041
10.1016/S0167-6636(98)00073-8
10.6028/jres.119.019
10.1007/s10704-016-0142-6
10.1016/j.euromechsol.2014.11.004
10.1016/j.ijsolstr.2012.08.019
10.1177/1056789509103482
10.1016/j.jmps.2011.05.008
10.1016/S0065-2156(10)44003-X
10.1016/j.jmps.2018.03.001
10.1016/j.ijsolstr.2009.12.019
10.1115/1.4033552
10.1016/S1359-6454(96)00093-6
10.1177/1056789518757294
10.1007/s10704-015-0063-9
10.1016/j.ijsolstr.2017.02.002
10.1016/j.ijmecsci.2010.03.001
10.1016/j.jmps.2015.07.011
10.1016/j.ijsolstr.2014.09.001
10.1016/j.jmps.2017.06.003
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Mar 1, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 1, 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijsolstr.2021.111400
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2146
ExternalDocumentID 10_1016_j_ijsolstr_2021_111400
S0020768321004625
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABVKL
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
E3Z
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXB
J1W
JJJVA
KOM
LY7
M24
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSZ
T5K
TN5
TR2
XPP
ZMT
~02
~G-
29J
6TJ
AAFWJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SET
SEW
SMS
SSH
VH1
WUQ
ZY4
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c340t-9fbf58cc639813f154ae6bfbfe195208b41562135ab5f3d49be7616aac16756c3
IEDL.DBID .~1
ISSN 0020-7683
IngestDate Fri Jul 25 06:27:04 EDT 2025
Tue Jul 01 01:20:03 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Sat May 25 15:41:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Homogenization
Crystal plasticity
HCP crystals
Porous RVE analysis
Porosity
Language English
License This article is made available under the Elsevier license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-9fbf58cc639813f154ae6bfbfe195208b41562135ab5f3d49be7616aac16756c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0020768321004625
PQID 2639039287
PQPubID 2045457
ParticipantIDs proquest_journals_2639039287
crossref_citationtrail_10_1016_j_ijsolstr_2021_111400
crossref_primary_10_1016_j_ijsolstr_2021_111400
elsevier_sciencedirect_doi_10_1016_j_ijsolstr_2021_111400
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of solids and structures
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Paux, Morin, Brenner, Kondo (b0165) 2015; 51
Segurado, LLorca, J. (b0205) 2010; 26
Nahshon, Hutchinson (b0155) 2008; 27
Ghosh, Bai, Paquet (b0070) 2009; 57
DeBotton, Castañeda (b0055) 1995; 448
Rousselier (b0195) 2021; 136
Huang, Li, Wang (b0095) 2007; 55
Cazacu, Revil-Baudard, Lebensohn, Gărăjeu (b0040) 2013; 80
Crépin, Bretheau, Caldemaison (b0050) 1996; 44
Kotha, Ozturk, Ghosh (b0110) 2019; 120
Ling, Tanguy, Besson, Forest, Latourte (b0125) 2017; 492
Zhao, Chen, Shen, Lu (b0305) 2009; 46
Arminjon (b0005) 1991; 14
Mbiakop, Constantinescu, Danas (b0135) 2015; 84
Benzerga, Besson (b0020) 2001; 20
Gan, Kysar, Morse (b0065) 2006; 22
Chen, Lorentz, Besson (b0045) 2020; 130
Gambin (b0060) 1992; 29
Nemat-Nasser (b0160) 1999; 31
Perić, de Souza Neto, Feijóo, Partovi, Molina (b0170) 2011; 87
Lebensohn, Cazacu (b0115) 2012; 49
Song, Castañeda (b0245) 2018; 115
Asim, Siddiq, Kartal (b0010) 2019; 122
Benzerga, Leblond, Needleman, Tvergaard (b0030) 2016; 201
Kim, Moylan, Garboczi, Slotwinski (b0105) 2017; 17
Song, Castañeda (b0235) 2017; 107
Besson (b0035) 2010; 19
Rice, Tracey (b0190) 1969; 17
Gurson (b0080) 1977; 99
Liu, Reina (b0130) 2016; 83
Slotwinski, Garboczi, Hebenstreit (b0230) 2014; 119
Savage, Chandola, Cazacu, McWilliams, Knezevic (b0200) 2018; 126
Mi, Buttry, Sharma, Kouris (b0145) 2011; 59
Srivastava, Revil-Baudard, Cazacu, Needleman (b0270) 2017; 110
Potirniche, Hearndon, Horstemeyer, Ling (b0180) 2006; 22
Han, Besson, Forest, Tanguy, Bugat (b0090) 2013; 50
Srivastava, Needleman (b0260) 2013; 61
Song, Castañeda (b0250) 2018; 115
McClintock (b0140) 1968; 35
Wan, Yue, Lu (b0285) 2005; 13
Yu, Hou, Yue (b0295) 2010; 48
Song, Castañeda (b0240) 2017; 107
Benzerga, Leblond (b0025) 2010; 44
Prasad, Narasimhan, Suwas (b0185) 2016; 200
Ha, Kim (b0085) 2010; 52
Tekoglu (b0275) 2014; 51
Pineau, Benzerga, Pardoen (b0175) 2016; 107
Selvarajou, Joshi, Benzerga (b0210) 2019; 125
Shanthraj, Zikry (b0220) 2012; 34
Tvergaard, Needleman (b0280) 1984; 32
Srivastava, Gopagoni, Needleman, Seetharaman, Staroselsky, Banerjee (b0255) 2012; 60
Guo, Ling, Busso, Zhong, Li (b0075) 2020; 129
Zhang, Lorentz, Besson (b0300) 2018; 113
Monchiet, Cazacu, Charkaluk, Kondo (b0150) 2008; 24
Yerra, Tekog, Scheyvaerts, Delannay, Van Houtte, Pardoen (b0290) 2010; 47
Zhou, Zhang, Wang, Lu (b0310) 2019; 119
Siddiq (b0225) 2019; 28
Asim, Siddiq, Kartal (b0015) 2019; 161
Ling, Besson, Forest, Tanguy, Latourte, Bosso (b0120) 2016; 84
Shahba, Ghosh (b0215) 2016; 87
Srivastava, Needleman (b0265) 2015; 90
Hure (b0100) 2019; 124
Ling (10.1016/j.ijsolstr.2021.111400_b0120) 2016; 84
Benzerga (10.1016/j.ijsolstr.2021.111400_b0020) 2001; 20
Benzerga (10.1016/j.ijsolstr.2021.111400_b0025) 2010; 44
Perić (10.1016/j.ijsolstr.2021.111400_b0170) 2011; 87
Hure (10.1016/j.ijsolstr.2021.111400_b0100) 2019; 124
Han (10.1016/j.ijsolstr.2021.111400_b0090) 2013; 50
Cazacu (10.1016/j.ijsolstr.2021.111400_b0040) 2013; 80
Guo (10.1016/j.ijsolstr.2021.111400_b0075) 2020; 129
Song (10.1016/j.ijsolstr.2021.111400_b0235) 2017; 107
Yerra (10.1016/j.ijsolstr.2021.111400_b0290) 2010; 47
Chen (10.1016/j.ijsolstr.2021.111400_b0045) 2020; 130
Segurado (10.1016/j.ijsolstr.2021.111400_b0205) 2010; 26
Ha (10.1016/j.ijsolstr.2021.111400_b0085) 2010; 52
DeBotton (10.1016/j.ijsolstr.2021.111400_b0055) 1995; 448
Liu (10.1016/j.ijsolstr.2021.111400_b0130) 2016; 83
Nemat-Nasser (10.1016/j.ijsolstr.2021.111400_b0160) 1999; 31
Shanthraj (10.1016/j.ijsolstr.2021.111400_b0220) 2012; 34
Mbiakop (10.1016/j.ijsolstr.2021.111400_b0135) 2015; 84
Mi (10.1016/j.ijsolstr.2021.111400_b0145) 2011; 59
Zhang (10.1016/j.ijsolstr.2021.111400_b0300) 2018; 113
Slotwinski (10.1016/j.ijsolstr.2021.111400_b0230) 2014; 119
Srivastava (10.1016/j.ijsolstr.2021.111400_b0255) 2012; 60
Tekoglu (10.1016/j.ijsolstr.2021.111400_b0275) 2014; 51
Srivastava (10.1016/j.ijsolstr.2021.111400_b0270) 2017; 110
Nahshon (10.1016/j.ijsolstr.2021.111400_b0155) 2008; 27
Asim (10.1016/j.ijsolstr.2021.111400_b0010) 2019; 122
Ling (10.1016/j.ijsolstr.2021.111400_b0125) 2017; 492
Song (10.1016/j.ijsolstr.2021.111400_b0245) 2018; 115
Ghosh (10.1016/j.ijsolstr.2021.111400_b0070) 2009; 57
Arminjon (10.1016/j.ijsolstr.2021.111400_b0005) 1991; 14
Besson (10.1016/j.ijsolstr.2021.111400_b0035) 2010; 19
Monchiet (10.1016/j.ijsolstr.2021.111400_b0150) 2008; 24
Srivastava (10.1016/j.ijsolstr.2021.111400_b0265) 2015; 90
Kim (10.1016/j.ijsolstr.2021.111400_b0105) 2017; 17
Benzerga (10.1016/j.ijsolstr.2021.111400_b0030) 2016; 201
Paux (10.1016/j.ijsolstr.2021.111400_b0165) 2015; 51
Wan (10.1016/j.ijsolstr.2021.111400_b0285) 2005; 13
Zhou (10.1016/j.ijsolstr.2021.111400_b0310) 2019; 119
Yu (10.1016/j.ijsolstr.2021.111400_b0295) 2010; 48
McClintock (10.1016/j.ijsolstr.2021.111400_b0140) 1968; 35
Savage (10.1016/j.ijsolstr.2021.111400_b0200) 2018; 126
Rice (10.1016/j.ijsolstr.2021.111400_b0190) 1969; 17
Zhao (10.1016/j.ijsolstr.2021.111400_b0305) 2009; 46
Crépin (10.1016/j.ijsolstr.2021.111400_b0050) 1996; 44
Rousselier (10.1016/j.ijsolstr.2021.111400_b0195) 2021; 136
Siddiq (10.1016/j.ijsolstr.2021.111400_b0225) 2019; 28
Potirniche (10.1016/j.ijsolstr.2021.111400_b0180) 2006; 22
Kotha (10.1016/j.ijsolstr.2021.111400_b0110) 2019; 120
Huang (10.1016/j.ijsolstr.2021.111400_b0095) 2007; 55
Lebensohn (10.1016/j.ijsolstr.2021.111400_b0115) 2012; 49
Gambin (10.1016/j.ijsolstr.2021.111400_b0060) 1992; 29
Gan (10.1016/j.ijsolstr.2021.111400_b0065) 2006; 22
Selvarajou (10.1016/j.ijsolstr.2021.111400_b0210) 2019; 125
Tvergaard (10.1016/j.ijsolstr.2021.111400_b0280) 1984; 32
Prasad (10.1016/j.ijsolstr.2021.111400_b0185) 2016; 200
Shahba (10.1016/j.ijsolstr.2021.111400_b0215) 2016; 87
Song (10.1016/j.ijsolstr.2021.111400_b0250) 2018; 115
Pineau (10.1016/j.ijsolstr.2021.111400_b0175) 2016; 107
Asim (10.1016/j.ijsolstr.2021.111400_b0015) 2019; 161
Srivastava (10.1016/j.ijsolstr.2021.111400_b0260) 2013; 61
Gurson (10.1016/j.ijsolstr.2021.111400_b0080) 1977; 99
Song (10.1016/j.ijsolstr.2021.111400_b0240) 2017; 107
References_xml – volume: 115
  start-page: 77
  year: 2018
  end-page: 101
  ident: b0250
  article-title: A multi-scale homogenization model for fine-grained porous viscoplastic polycrystals: II–Applications to FCC and HCP materials
  publication-title: J. Mech. Phys. Sol.
– volume: 99
  start-page: 2
  year: 1977
  end-page: 15
  ident: b0080
  article-title: Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media
  publication-title: J. Eng. Mater. Technol.
– volume: 448
  start-page: 121
  year: 1995
  end-page: 142
  ident: b0055
  article-title: Variational estimates for the creep behaviour of polycrystals
  publication-title: Proc. Royal Soc. London Ser. A: Math. Phys. Sci.
– volume: 17
  start-page: 23
  year: 2017
  end-page: 38
  ident: b0105
  article-title: Investigation of pore structure in cobalt chrome additively manufactured parts using X-ray computed tomography and three-dimensional image analysis
  publication-title: Additive Manuf.
– volume: 107
  start-page: 424
  year: 2016
  end-page: 483
  ident: b0175
  article-title: Failure of metals I: brittle and ductile fracture
  publication-title: Acta Mater.
– volume: 44
  start-page: 169
  year: 2010
  end-page: 305
  ident: b0025
  article-title: Ductile fracture by void growth to coalescence
  publication-title: Adv. Appl. Mech.
– volume: 31
  start-page: 493
  year: 1999
  end-page: 523
  ident: b0160
  article-title: Averaging theorems in finite deformation plasticity
  publication-title: Mech. Mater.
– volume: 119
  start-page: 494
  year: 2014
  ident: b0230
  article-title: Porosity measurements and analysis for metal additive manufacturing process control
  publication-title: J. Res. Nat. Inst. Stand. Techn.
– volume: 107
  start-page: 580
  year: 2017
  end-page: 602
  ident: b0240
  article-title: A finite-strain homogenization model for viscoplastic porous single crystals: II–Applications
  publication-title: J. Mech. Phys. Sol.
– volume: 492
  start-page: 157
  year: 2017
  end-page: 170
  ident: b0125
  article-title: Void growth and coalescence in triaxial stress fields in irradiated FCC single crystals
  publication-title: J. Nucl. Mater.
– volume: 51
  start-page: 4544
  year: 2014
  end-page: 4553
  ident: b0275
  article-title: Representative volume element calculations under constant stress triaxiality, lode parameter, and shear ratio
  publication-title: Int. J. Sol. Struct.
– volume: 50
  start-page: 2115
  year: 2013
  end-page: 2131
  ident: b0090
  article-title: A yield function for single crystals containing voids
  publication-title: Int. J. Sol. Struct.
– volume: 125
  start-page: 198
  year: 2019
  end-page: 224
  ident: b0210
  article-title: Void growth and coalescence in hexagonal close packed crystals
  publication-title: J. Mech. Phys. Sol.
– volume: 61
  start-page: 1169
  year: 2013
  end-page: 1184
  ident: b0260
  article-title: Void growth versus void collapse in a creeping single crystal
  publication-title: J. Mech. Phys. Sol.
– volume: 46
  start-page: 749
  year: 2009
  end-page: 754
  ident: b0305
  article-title: Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper
  publication-title: Comp. Mater. Sci.
– volume: 129
  year: 2020
  ident: b0075
  article-title: Crystal plasticity based investigation of micro-void evolution under multi-axial loading conditions
  publication-title: Int. Jour. Plast.
– volume: 84
  start-page: 436
  year: 2015
  end-page: 467
  ident: b0135
  article-title: An analytical model for porous single crystals with ellipsoidal voids
  publication-title: J. Mech. Phys. Sol.
– volume: 49
  start-page: 3838
  year: 2012
  end-page: 3852
  ident: b0115
  article-title: Effect of single-crystal plastic deformation mechanisms on the dilatational plastic response of porous polycrystals
  publication-title: Int. J. Sol. Struct.
– volume: 22
  start-page: 39
  year: 2006
  end-page: 72
  ident: b0065
  article-title: Cylindrical void in a rigid-ideally plastic single crystal II: experiments and simulations
  publication-title: Int. J. Plast.
– volume: 22
  start-page: 921
  year: 2006
  end-page: 942
  ident: b0180
  article-title: Lattice orientation effects on void growth and coalescence in fcc single crystals
  publication-title: Int. J. Plast.
– volume: 24
  start-page: 1158
  year: 2008
  end-page: 1189
  ident: b0150
  article-title: Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids
  publication-title: Int. J. Plast.
– volume: 126
  start-page: 148
  year: 2018
  end-page: 162
  ident: b0200
  article-title: Validation of recent analytical dilatational models for porous polycrystals using crystal plasticity finite element models with Schmid and non-Schmid activation laws
  publication-title: Mech. Mater.
– volume: 60
  start-page: 5697
  year: 2012
  end-page: 5711
  ident: b0255
  article-title: Effect of specimen thickness on the creep response of a Ni-based single-crystal superalloy
  publication-title: Acta Mater.
– volume: 17
  start-page: 201
  year: 1969
  end-page: 217
  ident: b0190
  article-title: On the ductile enlargement of voids in triaxial stress fields∗
  publication-title: J. Mech. Phys. Sol.
– volume: 130
  year: 2020
  ident: b0045
  article-title: Crack initiation and propagation in small-scale yielding using a nonlocal GTN model
  publication-title: Int. J. Plast.
– volume: 161
  start-page: 346
  year: 2019
  end-page: 350
  ident: b0015
  article-title: Representative volume element (RVE) based crystal plasticity study of void growth on phase boundary in titanium alloys
  publication-title: Comp. Mater. Sci.
– volume: 84
  start-page: 58
  year: 2016
  end-page: 87
  ident: b0120
  article-title: An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations
  publication-title: Int. J. Plast.
– volume: 35
  start-page: 363
  year: 1968
  end-page: 371
  ident: b0140
  article-title: A criterion for ductile fracture by the growth of holes
  publication-title: J. Appl. Mech.
– volume: 47
  start-page: 1016
  year: 2010
  end-page: 1029
  ident: b0290
  article-title: Void growth and coalescence in single crystals
  publication-title: Int. J. Sol. Struct.
– volume: 59
  start-page: 1858
  year: 2011
  end-page: 1871
  ident: b0145
  article-title: Atomistic insights into dislocation-based mechanisms of void growth and coalescence
  publication-title: J. Mech. Phys. Solids
– volume: 48
  start-page: 597
  year: 2010
  end-page: 608
  ident: b0295
  article-title: Finite element analysis of void growth behavior in nickel-based single crystal superalloys
  publication-title: Comp. Mater. Sci.
– volume: 201
  start-page: 29
  year: 2016
  end-page: 80
  ident: b0030
  article-title: Ductile failure modeling
  publication-title: Int. J. Fract.
– volume: 124
  start-page: 505
  year: 2019
  end-page: 525
  ident: b0100
  article-title: A coalescence criterion for porous single crystals
  publication-title: J. Mech. Phys. Solids
– volume: 115
  start-page: 102
  year: 2018
  end-page: 122
  ident: b0245
  article-title: A multi-scale homogenization model for fine-grained porous viscoplastic polycrystals: I-Finite-strain theory
  publication-title: J. Mech. Phys. Sol.
– volume: 26
  start-page: 806
  year: 2010
  end-page: 819
  ident: b0205
  article-title: Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals
  publication-title: Int. J. Plast.
– volume: 28
  start-page: 233
  year: 2019
  end-page: 248
  ident: b0225
  article-title: A porous crystal plasticity constitutive model for ductile deformation and failure in porous single crystals
  publication-title: Int. J. Damage Mech.
– volume: 55
  start-page: 1387
  year: 2007
  end-page: 1396
  ident: b0095
  article-title: Discrete dislocation dynamics modelling of microvoid growth and its intrinsic mechanism in single crystals
  publication-title: Acta Mater.
– volume: 122
  start-page: 188
  year: 2019
  end-page: 211
  ident: b0010
  article-title: A CPFEM based study to understand the void growth in high strength dual-phase titanium alloy (Ti-10V-2Fe-3Al)
  publication-title: Int. J. Plast.
– volume: 44
  start-page: 4927
  year: 1996
  end-page: 4935
  ident: b0050
  article-title: Cavity growth and rupture of β-treated zirconium: a crystallographic model
  publication-title: Acta Mater.
– volume: 83
  year: 2016
  ident: b0130
  article-title: Discrete averaging relations for micro to macro transition
  publication-title: J. Appl. Mech.
– volume: 19
  start-page: 3
  year: 2010
  end-page: 52
  ident: b0035
  article-title: Continuum models of ductile fracture: a review
  publication-title: Int. J. Damage Mech.
– volume: 110
  start-page: 67
  year: 2017
  end-page: 79
  ident: b0270
  article-title: A model for creep of porous crystals with cubic symmetry
  publication-title: Int. J. Sol. Struct.
– volume: 57
  start-page: 1017
  year: 2009
  end-page: 1044
  ident: b0070
  article-title: Homogenization-based continuum plasticity-damage model for ductile failure of materials containing heterogeneities
  publication-title: Jour. Mech. Phys. Solids
– volume: 90
  start-page: 10
  year: 2015
  end-page: 29
  ident: b0265
  article-title: Effect of crystal orientation on porosity evolution in a creeping single crystal
  publication-title: Mech. Mater.
– volume: 113
  start-page: 1871
  year: 2018
  end-page: 1903
  ident: b0300
  article-title: Ductile damage modelling with locking-free regularised GTN model
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 51
  start-page: 1
  year: 2015
  end-page: 10
  ident: b0165
  article-title: An approximate yield criterion for porous single crystals
  publication-title: Eur. J. Mech.-A/Solids
– volume: 87
  start-page: 149
  year: 2011
  end-page: 170
  ident: b0170
  article-title: On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation
  publication-title: Int. J. Num. Meth. Eng.
– volume: 80
  start-page: 064501
  year: 2013
  end-page: 064505
  ident: b0040
  article-title: On the combined effect of pressure and third invariant on yielding of porous solids with von Mises matrix
  publication-title: J. Appl. Mech.
– volume: 13
  start-page: 875
  year: 2005
  ident: b0285
  article-title: Casting microporosity growth in single-crystal superalloys by a three-dimensional unit cell analysis
  publication-title: Model. Simul. Mater. Sci. Eng.
– volume: 200
  start-page: 159
  year: 2016
  end-page: 183
  ident: b0185
  article-title: Numerical simulations of cylindrical void growth in Mg single crystals
  publication-title: Int. J. Fract.
– volume: 107
  start-page: 560
  year: 2017
  end-page: 579
  ident: b0235
  article-title: A finite-strain homogenization model for viscoplastic porous single crystals: I-Theory
  publication-title: J. Mech. Phys. Sol.
– volume: 20
  start-page: 397
  year: 2001
  end-page: 434
  ident: b0020
  article-title: Plastic potentials for anisotropic porous solids
  publication-title: Eur. J. Mech.-A/Solids
– volume: 27
  start-page: 1
  year: 2008
  end-page: 17
  ident: b0155
  article-title: Modification of the Gurson model for shear failure
  publication-title: Eur. J. Mech.-A/Solids
– volume: 136
  year: 2021
  ident: b0195
  article-title: Porous plasticity revisited: macroscopic and multiscale modeling
  publication-title: Int. J. Plast.
– volume: 34
  start-page: 154
  year: 2012
  end-page: 163
  ident: b0220
  article-title: Dislocation-density mechanisms for void interactions in crystalline materials
  publication-title: Int. J. Plast.
– volume: 14
  start-page: 1121
  year: 1991
  end-page: 1128
  ident: b0005
  article-title: A regular form of the Schmid law. Application to the ambiguity problem
  publication-title: Text. Microstuct.
– volume: 29
  start-page: 2013
  year: 1992
  end-page: 2021
  ident: b0060
  article-title: Refined analysis of elastic-plastic crystals
  publication-title: Int. J. Sol. Struct.
– volume: 87
  start-page: 48
  year: 2016
  end-page: 68
  ident: b0215
  article-title: Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part I: a unified constitutive model and flow rule
  publication-title: Int. J. Plast.
– volume: 52
  start-page: 863
  year: 2010
  end-page: 873
  ident: b0085
  article-title: Void growth and coalescence in fcc single crystals
  publication-title: Int. J. Mech. Sci.
– volume: 32
  start-page: 157
  year: 1984
  end-page: 169
  ident: b0280
  article-title: Analysis of the cup-cone fracture in a round tensile bar
  publication-title: Acta Metall.
– volume: 120
  start-page: 296
  year: 2019
  end-page: 319
  ident: b0110
  article-title: Parametrically homogenized constitutive models (PHCMs) from micromechanical crystal plasticity FE simulations, part I: sensitivity analysis and parameter identification for Titanium alloys
  publication-title: Int. J. Plast.
– volume: 119
  start-page: 249
  year: 2019
  end-page: 272
  ident: b0310
  article-title: Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations
  publication-title: Int. J. Plast.
– volume: 492
  start-page: 157
  year: 2017
  ident: 10.1016/j.ijsolstr.2021.111400_b0125
  article-title: Void growth and coalescence in triaxial stress fields in irradiated FCC single crystals
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2017.04.013
– volume: 17
  start-page: 201
  year: 1969
  ident: 10.1016/j.ijsolstr.2021.111400_b0190
  article-title: On the ductile enlargement of voids in triaxial stress fields∗
  publication-title: J. Mech. Phys. Sol.
  doi: 10.1016/0022-5096(69)90033-7
– volume: 87
  start-page: 149
  year: 2011
  ident: 10.1016/j.ijsolstr.2021.111400_b0170
  article-title: On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation
  publication-title: Int. J. Num. Meth. Eng.
  doi: 10.1002/nme.3014
– volume: 61
  start-page: 1169
  year: 2013
  ident: 10.1016/j.ijsolstr.2021.111400_b0260
  article-title: Void growth versus void collapse in a creeping single crystal
  publication-title: J. Mech. Phys. Sol.
  doi: 10.1016/j.jmps.2013.01.006
– volume: 60
  start-page: 5697
  year: 2012
  ident: 10.1016/j.ijsolstr.2021.111400_b0255
  article-title: Effect of specimen thickness on the creep response of a Ni-based single-crystal superalloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.06.043
– volume: 26
  start-page: 806
  year: 2010
  ident: 10.1016/j.ijsolstr.2021.111400_b0205
  article-title: Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2009.10.009
– volume: 115
  start-page: 77
  year: 2018
  ident: 10.1016/j.ijsolstr.2021.111400_b0250
  article-title: A multi-scale homogenization model for fine-grained porous viscoplastic polycrystals: II–Applications to FCC and HCP materials
  publication-title: J. Mech. Phys. Sol.
  doi: 10.1016/j.jmps.2018.03.002
– volume: 90
  start-page: 10
  year: 2015
  ident: 10.1016/j.ijsolstr.2021.111400_b0265
  article-title: Effect of crystal orientation on porosity evolution in a creeping single crystal
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2015.01.015
– volume: 22
  start-page: 921
  year: 2006
  ident: 10.1016/j.ijsolstr.2021.111400_b0180
  article-title: Lattice orientation effects on void growth and coalescence in fcc single crystals
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2005.06.003
– volume: 161
  start-page: 346
  year: 2019
  ident: 10.1016/j.ijsolstr.2021.111400_b0015
  article-title: Representative volume element (RVE) based crystal plasticity study of void growth on phase boundary in titanium alloys
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/j.commatsci.2019.02.005
– volume: 29
  start-page: 2013
  year: 1992
  ident: 10.1016/j.ijsolstr.2021.111400_b0060
  article-title: Refined analysis of elastic-plastic crystals
  publication-title: Int. J. Sol. Struct.
  doi: 10.1016/0020-7683(92)90191-U
– volume: 126
  start-page: 148
  year: 2018
  ident: 10.1016/j.ijsolstr.2021.111400_b0200
  article-title: Validation of recent analytical dilatational models for porous polycrystals using crystal plasticity finite element models with Schmid and non-Schmid activation laws
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2018.08.004
– volume: 113
  start-page: 1871
  year: 2018
  ident: 10.1016/j.ijsolstr.2021.111400_b0300
  article-title: Ductile damage modelling with locking-free regularised GTN model
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.5722
– volume: 80
  start-page: 064501
  year: 2013
  ident: 10.1016/j.ijsolstr.2021.111400_b0040
  article-title: On the combined effect of pressure and third invariant on yielding of porous solids with von Mises matrix
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4024074
– volume: 107
  start-page: 560
  year: 2017
  ident: 10.1016/j.ijsolstr.2021.111400_b0235
  article-title: A finite-strain homogenization model for viscoplastic porous single crystals: I-Theory
  publication-title: J. Mech. Phys. Sol.
  doi: 10.1016/j.jmps.2017.06.008
– volume: 22
  start-page: 39
  year: 2006
  ident: 10.1016/j.ijsolstr.2021.111400_b0065
  article-title: Cylindrical void in a rigid-ideally plastic single crystal II: experiments and simulations
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2005.01.009
– volume: 99
  start-page: 2
  issue: 1
  year: 1977
  ident: 10.1016/j.ijsolstr.2021.111400_b0080
  article-title: Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.3443401
– volume: 84
  start-page: 58
  year: 2016
  ident: 10.1016/j.ijsolstr.2021.111400_b0120
  article-title: An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2016.05.001
– volume: 32
  start-page: 157
  year: 1984
  ident: 10.1016/j.ijsolstr.2021.111400_b0280
  article-title: Analysis of the cup-cone fracture in a round tensile bar
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(84)90213-X
– volume: 20
  start-page: 397
  year: 2001
  ident: 10.1016/j.ijsolstr.2021.111400_b0020
  article-title: Plastic potentials for anisotropic porous solids
  publication-title: Eur. J. Mech.-A/Solids
  doi: 10.1016/S0997-7538(01)01147-0
– volume: 120
  start-page: 296
  year: 2019
  ident: 10.1016/j.ijsolstr.2021.111400_b0110
  article-title: Parametrically homogenized constitutive models (PHCMs) from micromechanical crystal plasticity FE simulations, part I: sensitivity analysis and parameter identification for Titanium alloys
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.05.008
– volume: 107
  start-page: 424
  year: 2016
  ident: 10.1016/j.ijsolstr.2021.111400_b0175
  article-title: Failure of metals I: brittle and ductile fracture
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.12.034
– volume: 50
  start-page: 2115
  year: 2013
  ident: 10.1016/j.ijsolstr.2021.111400_b0090
  article-title: A yield function for single crystals containing voids
  publication-title: Int. J. Sol. Struct.
  doi: 10.1016/j.ijsolstr.2013.02.005
– volume: 17
  start-page: 23
  year: 2017
  ident: 10.1016/j.ijsolstr.2021.111400_b0105
  article-title: Investigation of pore structure in cobalt chrome additively manufactured parts using X-ray computed tomography and three-dimensional image analysis
  publication-title: Additive Manuf.
  doi: 10.1016/j.addma.2017.06.011
– volume: 125
  start-page: 198
  year: 2019
  ident: 10.1016/j.ijsolstr.2021.111400_b0210
  article-title: Void growth and coalescence in hexagonal close packed crystals
  publication-title: J. Mech. Phys. Sol.
  doi: 10.1016/j.jmps.2018.12.012
– volume: 122
  start-page: 188
  year: 2019
  ident: 10.1016/j.ijsolstr.2021.111400_b0010
  article-title: A CPFEM based study to understand the void growth in high strength dual-phase titanium alloy (Ti-10V-2Fe-3Al)
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.07.002
– volume: 24
  start-page: 1158
  year: 2008
  ident: 10.1016/j.ijsolstr.2021.111400_b0150
  article-title: Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2007.08.008
– volume: 34
  start-page: 154
  year: 2012
  ident: 10.1016/j.ijsolstr.2021.111400_b0220
  article-title: Dislocation-density mechanisms for void interactions in crystalline materials
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2012.01.008
– volume: 130
  year: 2020
  ident: 10.1016/j.ijsolstr.2021.111400_b0045
  article-title: Crack initiation and propagation in small-scale yielding using a nonlocal GTN model
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2020.102701
– volume: 27
  start-page: 1
  year: 2008
  ident: 10.1016/j.ijsolstr.2021.111400_b0155
  article-title: Modification of the Gurson model for shear failure
  publication-title: Eur. J. Mech.-A/Solids
  doi: 10.1016/j.euromechsol.2007.08.002
– volume: 136
  year: 2021
  ident: 10.1016/j.ijsolstr.2021.111400_b0195
  article-title: Porous plasticity revisited: macroscopic and multiscale modeling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2020.102881
– volume: 14
  start-page: 1121
  year: 1991
  ident: 10.1016/j.ijsolstr.2021.111400_b0005
  article-title: A regular form of the Schmid law. Application to the ambiguity problem
  publication-title: Text. Microstuct.
  doi: 10.1155/TSM.14-18.1121
– volume: 87
  start-page: 48
  year: 2016
  ident: 10.1016/j.ijsolstr.2021.111400_b0215
  article-title: Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part I: a unified constitutive model and flow rule
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2016.09.002
– volume: 46
  start-page: 749
  year: 2009
  ident: 10.1016/j.ijsolstr.2021.111400_b0305
  article-title: Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/j.commatsci.2009.04.034
– volume: 119
  start-page: 249
  year: 2019
  ident: 10.1016/j.ijsolstr.2021.111400_b0310
  article-title: Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.04.009
– volume: 35
  start-page: 363
  issue: 2
  year: 1968
  ident: 10.1016/j.ijsolstr.2021.111400_b0140
  article-title: A criterion for ductile fracture by the growth of holes
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3601204
– volume: 124
  start-page: 505
  year: 2019
  ident: 10.1016/j.ijsolstr.2021.111400_b0100
  article-title: A coalescence criterion for porous single crystals
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2018.10.018
– volume: 448
  start-page: 121
  year: 1995
  ident: 10.1016/j.ijsolstr.2021.111400_b0055
  article-title: Variational estimates for the creep behaviour of polycrystals
  publication-title: Proc. Royal Soc. London Ser. A: Math. Phys. Sci.
– volume: 13
  start-page: 875
  year: 2005
  ident: 10.1016/j.ijsolstr.2021.111400_b0285
  article-title: Casting microporosity growth in single-crystal superalloys by a three-dimensional unit cell analysis
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/13/6/007
– volume: 57
  start-page: 1017
  year: 2009
  ident: 10.1016/j.ijsolstr.2021.111400_b0070
  article-title: Homogenization-based continuum plasticity-damage model for ductile failure of materials containing heterogeneities
  publication-title: Jour. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2009.04.002
– volume: 48
  start-page: 597
  year: 2010
  ident: 10.1016/j.ijsolstr.2021.111400_b0295
  article-title: Finite element analysis of void growth behavior in nickel-based single crystal superalloys
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/j.commatsci.2010.02.028
– volume: 55
  start-page: 1387
  year: 2007
  ident: 10.1016/j.ijsolstr.2021.111400_b0095
  article-title: Discrete dislocation dynamics modelling of microvoid growth and its intrinsic mechanism in single crystals
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.09.041
– volume: 31
  start-page: 493
  year: 1999
  ident: 10.1016/j.ijsolstr.2021.111400_b0160
  article-title: Averaging theorems in finite deformation plasticity
  publication-title: Mech. Mater.
  doi: 10.1016/S0167-6636(98)00073-8
– volume: 119
  start-page: 494
  year: 2014
  ident: 10.1016/j.ijsolstr.2021.111400_b0230
  article-title: Porosity measurements and analysis for metal additive manufacturing process control
  publication-title: J. Res. Nat. Inst. Stand. Techn.
  doi: 10.6028/jres.119.019
– volume: 201
  start-page: 29
  year: 2016
  ident: 10.1016/j.ijsolstr.2021.111400_b0030
  article-title: Ductile failure modeling
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-016-0142-6
– volume: 51
  start-page: 1
  year: 2015
  ident: 10.1016/j.ijsolstr.2021.111400_b0165
  article-title: An approximate yield criterion for porous single crystals
  publication-title: Eur. J. Mech.-A/Solids
  doi: 10.1016/j.euromechsol.2014.11.004
– volume: 49
  start-page: 3838
  year: 2012
  ident: 10.1016/j.ijsolstr.2021.111400_b0115
  article-title: Effect of single-crystal plastic deformation mechanisms on the dilatational plastic response of porous polycrystals
  publication-title: Int. J. Sol. Struct.
  doi: 10.1016/j.ijsolstr.2012.08.019
– volume: 19
  start-page: 3
  year: 2010
  ident: 10.1016/j.ijsolstr.2021.111400_b0035
  article-title: Continuum models of ductile fracture: a review
  publication-title: Int. J. Damage Mech.
  doi: 10.1177/1056789509103482
– volume: 59
  start-page: 1858
  year: 2011
  ident: 10.1016/j.ijsolstr.2021.111400_b0145
  article-title: Atomistic insights into dislocation-based mechanisms of void growth and coalescence
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2011.05.008
– volume: 44
  start-page: 169
  year: 2010
  ident: 10.1016/j.ijsolstr.2021.111400_b0025
  article-title: Ductile fracture by void growth to coalescence
  publication-title: Adv. Appl. Mech.
  doi: 10.1016/S0065-2156(10)44003-X
– volume: 115
  start-page: 102
  year: 2018
  ident: 10.1016/j.ijsolstr.2021.111400_b0245
  article-title: A multi-scale homogenization model for fine-grained porous viscoplastic polycrystals: I-Finite-strain theory
  publication-title: J. Mech. Phys. Sol.
  doi: 10.1016/j.jmps.2018.03.001
– volume: 47
  start-page: 1016
  year: 2010
  ident: 10.1016/j.ijsolstr.2021.111400_b0290
  article-title: Void growth and coalescence in single crystals
  publication-title: Int. J. Sol. Struct.
  doi: 10.1016/j.ijsolstr.2009.12.019
– volume: 83
  issue: 8
  year: 2016
  ident: 10.1016/j.ijsolstr.2021.111400_b0130
  article-title: Discrete averaging relations for micro to macro transition
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4033552
– volume: 44
  start-page: 4927
  year: 1996
  ident: 10.1016/j.ijsolstr.2021.111400_b0050
  article-title: Cavity growth and rupture of β-treated zirconium: a crystallographic model
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(96)00093-6
– volume: 28
  start-page: 233
  year: 2019
  ident: 10.1016/j.ijsolstr.2021.111400_b0225
  article-title: A porous crystal plasticity constitutive model for ductile deformation and failure in porous single crystals
  publication-title: Int. J. Damage Mech.
  doi: 10.1177/1056789518757294
– volume: 200
  start-page: 159
  year: 2016
  ident: 10.1016/j.ijsolstr.2021.111400_b0185
  article-title: Numerical simulations of cylindrical void growth in Mg single crystals
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-015-0063-9
– volume: 110
  start-page: 67
  year: 2017
  ident: 10.1016/j.ijsolstr.2021.111400_b0270
  article-title: A model for creep of porous crystals with cubic symmetry
  publication-title: Int. J. Sol. Struct.
  doi: 10.1016/j.ijsolstr.2017.02.002
– volume: 52
  start-page: 863
  year: 2010
  ident: 10.1016/j.ijsolstr.2021.111400_b0085
  article-title: Void growth and coalescence in fcc single crystals
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2010.03.001
– volume: 84
  start-page: 436
  year: 2015
  ident: 10.1016/j.ijsolstr.2021.111400_b0135
  article-title: An analytical model for porous single crystals with ellipsoidal voids
  publication-title: J. Mech. Phys. Sol.
  doi: 10.1016/j.jmps.2015.07.011
– volume: 129
  year: 2020
  ident: 10.1016/j.ijsolstr.2021.111400_b0075
  article-title: Crystal plasticity based investigation of micro-void evolution under multi-axial loading conditions
  publication-title: Int. Jour. Plast.
– volume: 51
  start-page: 4544
  year: 2014
  ident: 10.1016/j.ijsolstr.2021.111400_b0275
  article-title: Representative volume element calculations under constant stress triaxiality, lode parameter, and shear ratio
  publication-title: Int. J. Sol. Struct.
  doi: 10.1016/j.ijsolstr.2014.09.001
– volume: 107
  start-page: 580
  year: 2017
  ident: 10.1016/j.ijsolstr.2021.111400_b0240
  article-title: A finite-strain homogenization model for viscoplastic porous single crystals: II–Applications
  publication-title: J. Mech. Phys. Sol.
  doi: 10.1016/j.jmps.2017.06.003
SSID ssj0004390
Score 2.4336624
Snippet •Crystal plasticity model for porous HCP single crystals, e.g. Ti alloys.•Novel penalty-free scheme developed for maintaining specified stress-states, e.g....
In this paper, an efficient and effective crystal plasticity model is proposed for porous HCP crystals subject to a variety of multiaxial loading conditions....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111400
SubjectTerms Algorithms
Axial stress
Crystal plasticity
Crystallography
Crystals
Finite element method
HCP crystals
Homogenization
Plastic properties
Porosity
Porous RVE analysis
Titanium alloys
Titanium base alloys
Title A crystal plasticity model for porous HCP crystals in titanium alloys under multiaxial loading conditions
URI https://dx.doi.org/10.1016/j.ijsolstr.2021.111400
https://www.proquest.com/docview/2639039287
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWBAPEV5VB5YQxPHcZyxVKAWRMVApW5W7DhSqpJWbZDowm_nLg9eQurAaMuOorvL3XfxfWdCrkwUJl4ouKMlixwu3cjRATOOlSK1CeAkqfGH_uNIDMb8fhJMtki_4cJgWWXt-yufXnrreqZbS7O7yDLk-DI8RkISCjIskWjOeYhWfv3-VeYBAbeioUCahKu_sYSn19kUFLwqsC8o89B7cGS6_R2gfrnqMv7c7ZO9GjjSXvVuB2TL5odk91s7wSOS9ahZrgHuzegCQDHWSxdrWt51QwGbUoDakOfTQf-pWbeiWU6RZpZnry8Uz-DXK4q0siUtKw3jNzBPOpuXhfYUUuekqvA6JuO72-f-wKmvUnCMz93CiVKdBtIYwCPS81PATbEVGiatFwXMlRrzOOb5QayD1E94pG0oPBHHxoOMQhj_hLTyeW5PCZUy4YbHUnIecOuFMATlSsOtjV3BojYJGvkpU_cZx-suZqopKJuqRu4K5a4qubdJ93Pfouq0sXFH1KhH_bAZBeFg496LRp-q_mpXioF4XACMMjz7x6PPyQ5DjkRZqHZBWsXy1V4Ccil0pzTNDtnuDR8GIxgNJzcfJlXwlg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RSPAh5YQxPHTpyxqkAFCmIAic2KHUdKVdKqDRJd-O3c5QEFITEwxrKj6M6--y6-746QcxOFiRcG3NGSRQ6XbuRowYxjZZDaBHCS1PhD_-4-GDzxm2fx3CL9hguDaZW17a9semmt65FuLc3uNMuQ48vwGglJKMiwFCtklcPxxTYGF-9feR7gcSseCsRJOH2JJjy6yEag4XmBhUGZh-aDI9Xtdw_1w1aXDuhqi2zWyJH2qo_bJi2b75CNpXqCuyTrUTNbAN4b0ymgYkyYLha0bHZDAZxSwNoQ6NNB_6GZN6dZTpFnlmevLxQv4RdziryyGS1TDeM32J90PCkz7SnEzkmV4rVHnq4uH_sDp-6l4Bifu4UTpToV0hgAJNLzUwBOsQ00DFovEsyVGgM55vki1iL1Ex5pGwZeEMfGg5AiMP4-aeeT3B4QKmXCDY-l5Fxw64XwCNqVhlsbuwGLDolo5KdMXWgc-12MVZNRNlKN3BXKXVVyPyTdz3XTqtTGnyuiRj3q26ZR4A_-XNtp9KnqYztXDMTjAmKU4dE_Xn1G1gaPd0M1vL6_PSbrDAkTZdZah7SL2as9ARhT6NNym34ABA7xIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+crystal+plasticity+model+for+porous+HCP+crystals+in+titanium+alloys+under+multiaxial+loading+conditions&rft.jtitle=International+journal+of+solids+and+structures&rft.au=Yang%2C+Qingcheng&rft.au=Ghosh%2C+Somnath&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0020-7683&rft.eissn=1879-2146&rft.volume=238&rft_id=info:doi/10.1016%2Fj.ijsolstr.2021.111400&rft.externalDocID=S0020768321004625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7683&client=summon