A crystal plasticity model for porous HCP crystals in titanium alloys under multiaxial loading conditions
•Crystal plasticity model for porous HCP single crystals, e.g. Ti alloys.•Novel penalty-free scheme developed for maintaining specified stress-states, e.g. traxiality.•Tension and compression, axisymmetric and non-axisymmetric loadings are considered.•The effects of initial porosity, crystal orienta...
Saved in:
Published in | International journal of solids and structures Vol. 238; p. 111400 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.03.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Crystal plasticity model for porous HCP single crystals, e.g. Ti alloys.•Novel penalty-free scheme developed for maintaining specified stress-states, e.g. traxiality.•Tension and compression, axisymmetric and non-axisymmetric loadings are considered.•The effects of initial porosity, crystal orientation, and stress state are explored.•The porous CP model is capable of modeling polycrystalline microstructures containing voids.
In this paper, an efficient and effective crystal plasticity model is proposed for porous HCP crystals subject to a variety of multiaxial loading conditions. These conditions include (i) uniaxial, biaxial, and triaxial, (ii) tension and compression, (iii) low and high triaxiality, and (iv) axisymmetric and non-axisymmetric loadings. The framework is based on a combination of variational homogenization, phenomenological extensions, and assumptions motivated by observations from the high-fidelity micromechanical analysis. A novel penalty-free algorithm is employed to reach and maintain a specified stress state while performing representative volume element (RVE)-based crystal plasticity finite element (CPFE) analysis with porosity. The RVE studies demonstrate that the initial porosity, crystallographic orientation, and stress states have a significant effect on the homogenized mechanical responses of microscopically porous RVEs. The proposed porous crystal plasticity model is developed and calibrated using a database generated from the results of micromechanical RVE analysis. The calibrated porous model is reasonably effective in predicting the response of porous crystalline RVEs. |
---|---|
AbstractList | •Crystal plasticity model for porous HCP single crystals, e.g. Ti alloys.•Novel penalty-free scheme developed for maintaining specified stress-states, e.g. traxiality.•Tension and compression, axisymmetric and non-axisymmetric loadings are considered.•The effects of initial porosity, crystal orientation, and stress state are explored.•The porous CP model is capable of modeling polycrystalline microstructures containing voids.
In this paper, an efficient and effective crystal plasticity model is proposed for porous HCP crystals subject to a variety of multiaxial loading conditions. These conditions include (i) uniaxial, biaxial, and triaxial, (ii) tension and compression, (iii) low and high triaxiality, and (iv) axisymmetric and non-axisymmetric loadings. The framework is based on a combination of variational homogenization, phenomenological extensions, and assumptions motivated by observations from the high-fidelity micromechanical analysis. A novel penalty-free algorithm is employed to reach and maintain a specified stress state while performing representative volume element (RVE)-based crystal plasticity finite element (CPFE) analysis with porosity. The RVE studies demonstrate that the initial porosity, crystallographic orientation, and stress states have a significant effect on the homogenized mechanical responses of microscopically porous RVEs. The proposed porous crystal plasticity model is developed and calibrated using a database generated from the results of micromechanical RVE analysis. The calibrated porous model is reasonably effective in predicting the response of porous crystalline RVEs. In this paper, an efficient and effective crystal plasticity model is proposed for porous HCP crystals subject to a variety of multiaxial loading conditions. These conditions include (i) uniaxial, biaxial, and triaxial, (ii) tension and compression, (iii) low and high triaxiality, and (iv) axisymmetric and non-axisymmetric loadings. The framework is based on a combination of variational homogenization, phenomenological extensions, and assumptions motivated by observations from the high-fidelity micromechanical analysis. A novel penalty-free algorithm is employed to reach and maintain a specified stress state while performing representative volume element (RVE)-based crystal plasticity finite element (CPFE) analysis with porosity. The RVE studies demonstrate that the initial porosity, crystallographic orientation, and stress states have a significant effect on the homogenized mechanical responses of microscopically porous RVEs. The proposed porous crystal plasticity model is developed and calibrated using a database generated from the results of micromechanical RVE analysis. The calibrated porous model is reasonably effective in predicting the response of porous crystalline RVEs. |
ArticleNumber | 111400 |
Author | Ghosh, Somnath Yang, Qingcheng |
Author_xml | – sequence: 1 givenname: Qingcheng surname: Yang fullname: Yang, Qingcheng organization: Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD 21218, USA – sequence: 2 givenname: Somnath surname: Ghosh fullname: Ghosh, Somnath email: sghosh20@jhu.edu organization: Department of Civil and Systems, Mechanical and Materials Science & Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA |
BookMark | eNqFkE1r4zAQhsXSwqbZ_QuLoGenGsuWbdhDS-gXBNpDexayLC9jFCmV5NL8-1VIc-mlJ8HwPu9ongty5rwzhPwBtgIG4mpa4RS9jSmsSlbCCgAqxn6QBbRNV5RQiTOyYKxkRSNa_pNcxDgxxiresQXBG6rDPiZl6c6qmFBj2tOtH4ylow9054OfI31YP59ykaKjCZNyOG-pstbvI53dYALdzjah-sBcZr0a0P2j2rsBE3oXf5HzMdPm9-e7JK93ty_rh2LzdP-4vtkUmlcsFd3Yj3WrteBdC3yEulJG9HlooKtL1vYV1KIEXqu-HvlQdb1pBAilNIimFpovyeWxdxf822xikpOfg8srZZlLGe_Ktsmpv8eUDj7GYEaZD1eHj6ag0Epg8iBXTvIkVx7kyqPcjIsv-C7gVoX99-D1ETRZwTuaIKNG47QZMBid5ODxu4r_KqycbA |
CitedBy_id | crossref_primary_10_1016_j_msea_2025_148221 crossref_primary_10_1016_j_ijplas_2023_103781 crossref_primary_10_1615_IntJMultCompEng_2022043582 crossref_primary_10_1016_j_ijplas_2022_103254 crossref_primary_10_1016_j_engfailanal_2023_107262 crossref_primary_10_1016_j_ijsolstr_2024_113051 crossref_primary_10_1016_j_jmps_2022_104923 crossref_primary_10_1016_j_pmatsci_2023_101085 |
Cites_doi | 10.1016/j.jnucmat.2017.04.013 10.1016/0022-5096(69)90033-7 10.1002/nme.3014 10.1016/j.jmps.2013.01.006 10.1016/j.actamat.2012.06.043 10.1016/j.ijplas.2009.10.009 10.1016/j.jmps.2018.03.002 10.1016/j.mechmat.2015.01.015 10.1016/j.ijplas.2005.06.003 10.1016/j.commatsci.2019.02.005 10.1016/0020-7683(92)90191-U 10.1016/j.mechmat.2018.08.004 10.1002/nme.5722 10.1115/1.4024074 10.1016/j.jmps.2017.06.008 10.1016/j.ijplas.2005.01.009 10.1115/1.3443401 10.1016/j.ijplas.2016.05.001 10.1016/0001-6160(84)90213-X 10.1016/S0997-7538(01)01147-0 10.1016/j.ijplas.2019.05.008 10.1016/j.actamat.2015.12.034 10.1016/j.ijsolstr.2013.02.005 10.1016/j.addma.2017.06.011 10.1016/j.jmps.2018.12.012 10.1016/j.ijplas.2019.07.002 10.1016/j.ijplas.2007.08.008 10.1016/j.ijplas.2012.01.008 10.1016/j.ijplas.2020.102701 10.1016/j.euromechsol.2007.08.002 10.1016/j.ijplas.2020.102881 10.1155/TSM.14-18.1121 10.1016/j.ijplas.2016.09.002 10.1016/j.commatsci.2009.04.034 10.1016/j.ijplas.2019.04.009 10.1115/1.3601204 10.1016/j.jmps.2018.10.018 10.1088/0965-0393/13/6/007 10.1016/j.jmps.2009.04.002 10.1016/j.commatsci.2010.02.028 10.1016/j.actamat.2006.09.041 10.1016/S0167-6636(98)00073-8 10.6028/jres.119.019 10.1007/s10704-016-0142-6 10.1016/j.euromechsol.2014.11.004 10.1016/j.ijsolstr.2012.08.019 10.1177/1056789509103482 10.1016/j.jmps.2011.05.008 10.1016/S0065-2156(10)44003-X 10.1016/j.jmps.2018.03.001 10.1016/j.ijsolstr.2009.12.019 10.1115/1.4033552 10.1016/S1359-6454(96)00093-6 10.1177/1056789518757294 10.1007/s10704-015-0063-9 10.1016/j.ijsolstr.2017.02.002 10.1016/j.ijmecsci.2010.03.001 10.1016/j.jmps.2015.07.011 10.1016/j.ijsolstr.2014.09.001 10.1016/j.jmps.2017.06.003 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Mar 1, 2022 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Mar 1, 2022 |
DBID | 6I. AAFTH AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijsolstr.2021.111400 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2146 |
ExternalDocumentID | 10_1016_j_ijsolstr_2021_111400 S0020768321004625 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABVKL ACBEA ACDAQ ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXB J1W JJJVA KOM LY7 M24 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSZ T5K TN5 TR2 XPP ZMT ~02 ~G- 29J 6TJ AAFWJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SET SEW SMS SSH VH1 WUQ ZY4 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c340t-9fbf58cc639813f154ae6bfbfe195208b41562135ab5f3d49be7616aac16756c3 |
IEDL.DBID | .~1 |
ISSN | 0020-7683 |
IngestDate | Fri Jul 25 06:27:04 EDT 2025 Tue Jul 01 01:20:03 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Sat May 25 15:41:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Homogenization Crystal plasticity HCP crystals Porous RVE analysis Porosity |
Language | English |
License | This article is made available under the Elsevier license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-9fbf58cc639813f154ae6bfbfe195208b41562135ab5f3d49be7616aac16756c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0020768321004625 |
PQID | 2639039287 |
PQPubID | 2045457 |
ParticipantIDs | proquest_journals_2639039287 crossref_citationtrail_10_1016_j_ijsolstr_2021_111400 crossref_primary_10_1016_j_ijsolstr_2021_111400 elsevier_sciencedirect_doi_10_1016_j_ijsolstr_2021_111400 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of solids and structures |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Paux, Morin, Brenner, Kondo (b0165) 2015; 51 Segurado, LLorca, J. (b0205) 2010; 26 Nahshon, Hutchinson (b0155) 2008; 27 Ghosh, Bai, Paquet (b0070) 2009; 57 DeBotton, Castañeda (b0055) 1995; 448 Rousselier (b0195) 2021; 136 Huang, Li, Wang (b0095) 2007; 55 Cazacu, Revil-Baudard, Lebensohn, Gărăjeu (b0040) 2013; 80 Crépin, Bretheau, Caldemaison (b0050) 1996; 44 Kotha, Ozturk, Ghosh (b0110) 2019; 120 Ling, Tanguy, Besson, Forest, Latourte (b0125) 2017; 492 Zhao, Chen, Shen, Lu (b0305) 2009; 46 Arminjon (b0005) 1991; 14 Mbiakop, Constantinescu, Danas (b0135) 2015; 84 Benzerga, Besson (b0020) 2001; 20 Gan, Kysar, Morse (b0065) 2006; 22 Chen, Lorentz, Besson (b0045) 2020; 130 Gambin (b0060) 1992; 29 Nemat-Nasser (b0160) 1999; 31 Perić, de Souza Neto, Feijóo, Partovi, Molina (b0170) 2011; 87 Lebensohn, Cazacu (b0115) 2012; 49 Song, Castañeda (b0245) 2018; 115 Asim, Siddiq, Kartal (b0010) 2019; 122 Benzerga, Leblond, Needleman, Tvergaard (b0030) 2016; 201 Kim, Moylan, Garboczi, Slotwinski (b0105) 2017; 17 Song, Castañeda (b0235) 2017; 107 Besson (b0035) 2010; 19 Rice, Tracey (b0190) 1969; 17 Gurson (b0080) 1977; 99 Liu, Reina (b0130) 2016; 83 Slotwinski, Garboczi, Hebenstreit (b0230) 2014; 119 Savage, Chandola, Cazacu, McWilliams, Knezevic (b0200) 2018; 126 Mi, Buttry, Sharma, Kouris (b0145) 2011; 59 Srivastava, Revil-Baudard, Cazacu, Needleman (b0270) 2017; 110 Potirniche, Hearndon, Horstemeyer, Ling (b0180) 2006; 22 Han, Besson, Forest, Tanguy, Bugat (b0090) 2013; 50 Srivastava, Needleman (b0260) 2013; 61 Song, Castañeda (b0250) 2018; 115 McClintock (b0140) 1968; 35 Wan, Yue, Lu (b0285) 2005; 13 Yu, Hou, Yue (b0295) 2010; 48 Song, Castañeda (b0240) 2017; 107 Benzerga, Leblond (b0025) 2010; 44 Prasad, Narasimhan, Suwas (b0185) 2016; 200 Ha, Kim (b0085) 2010; 52 Tekoglu (b0275) 2014; 51 Pineau, Benzerga, Pardoen (b0175) 2016; 107 Selvarajou, Joshi, Benzerga (b0210) 2019; 125 Shanthraj, Zikry (b0220) 2012; 34 Tvergaard, Needleman (b0280) 1984; 32 Srivastava, Gopagoni, Needleman, Seetharaman, Staroselsky, Banerjee (b0255) 2012; 60 Guo, Ling, Busso, Zhong, Li (b0075) 2020; 129 Zhang, Lorentz, Besson (b0300) 2018; 113 Monchiet, Cazacu, Charkaluk, Kondo (b0150) 2008; 24 Yerra, Tekog, Scheyvaerts, Delannay, Van Houtte, Pardoen (b0290) 2010; 47 Zhou, Zhang, Wang, Lu (b0310) 2019; 119 Siddiq (b0225) 2019; 28 Asim, Siddiq, Kartal (b0015) 2019; 161 Ling, Besson, Forest, Tanguy, Latourte, Bosso (b0120) 2016; 84 Shahba, Ghosh (b0215) 2016; 87 Srivastava, Needleman (b0265) 2015; 90 Hure (b0100) 2019; 124 Ling (10.1016/j.ijsolstr.2021.111400_b0120) 2016; 84 Benzerga (10.1016/j.ijsolstr.2021.111400_b0020) 2001; 20 Benzerga (10.1016/j.ijsolstr.2021.111400_b0025) 2010; 44 Perić (10.1016/j.ijsolstr.2021.111400_b0170) 2011; 87 Hure (10.1016/j.ijsolstr.2021.111400_b0100) 2019; 124 Han (10.1016/j.ijsolstr.2021.111400_b0090) 2013; 50 Cazacu (10.1016/j.ijsolstr.2021.111400_b0040) 2013; 80 Guo (10.1016/j.ijsolstr.2021.111400_b0075) 2020; 129 Song (10.1016/j.ijsolstr.2021.111400_b0235) 2017; 107 Yerra (10.1016/j.ijsolstr.2021.111400_b0290) 2010; 47 Chen (10.1016/j.ijsolstr.2021.111400_b0045) 2020; 130 Segurado (10.1016/j.ijsolstr.2021.111400_b0205) 2010; 26 Ha (10.1016/j.ijsolstr.2021.111400_b0085) 2010; 52 DeBotton (10.1016/j.ijsolstr.2021.111400_b0055) 1995; 448 Liu (10.1016/j.ijsolstr.2021.111400_b0130) 2016; 83 Nemat-Nasser (10.1016/j.ijsolstr.2021.111400_b0160) 1999; 31 Shanthraj (10.1016/j.ijsolstr.2021.111400_b0220) 2012; 34 Mbiakop (10.1016/j.ijsolstr.2021.111400_b0135) 2015; 84 Mi (10.1016/j.ijsolstr.2021.111400_b0145) 2011; 59 Zhang (10.1016/j.ijsolstr.2021.111400_b0300) 2018; 113 Slotwinski (10.1016/j.ijsolstr.2021.111400_b0230) 2014; 119 Srivastava (10.1016/j.ijsolstr.2021.111400_b0255) 2012; 60 Tekoglu (10.1016/j.ijsolstr.2021.111400_b0275) 2014; 51 Srivastava (10.1016/j.ijsolstr.2021.111400_b0270) 2017; 110 Nahshon (10.1016/j.ijsolstr.2021.111400_b0155) 2008; 27 Asim (10.1016/j.ijsolstr.2021.111400_b0010) 2019; 122 Ling (10.1016/j.ijsolstr.2021.111400_b0125) 2017; 492 Song (10.1016/j.ijsolstr.2021.111400_b0245) 2018; 115 Ghosh (10.1016/j.ijsolstr.2021.111400_b0070) 2009; 57 Arminjon (10.1016/j.ijsolstr.2021.111400_b0005) 1991; 14 Besson (10.1016/j.ijsolstr.2021.111400_b0035) 2010; 19 Monchiet (10.1016/j.ijsolstr.2021.111400_b0150) 2008; 24 Srivastava (10.1016/j.ijsolstr.2021.111400_b0265) 2015; 90 Kim (10.1016/j.ijsolstr.2021.111400_b0105) 2017; 17 Benzerga (10.1016/j.ijsolstr.2021.111400_b0030) 2016; 201 Paux (10.1016/j.ijsolstr.2021.111400_b0165) 2015; 51 Wan (10.1016/j.ijsolstr.2021.111400_b0285) 2005; 13 Zhou (10.1016/j.ijsolstr.2021.111400_b0310) 2019; 119 Yu (10.1016/j.ijsolstr.2021.111400_b0295) 2010; 48 McClintock (10.1016/j.ijsolstr.2021.111400_b0140) 1968; 35 Savage (10.1016/j.ijsolstr.2021.111400_b0200) 2018; 126 Rice (10.1016/j.ijsolstr.2021.111400_b0190) 1969; 17 Zhao (10.1016/j.ijsolstr.2021.111400_b0305) 2009; 46 Crépin (10.1016/j.ijsolstr.2021.111400_b0050) 1996; 44 Rousselier (10.1016/j.ijsolstr.2021.111400_b0195) 2021; 136 Siddiq (10.1016/j.ijsolstr.2021.111400_b0225) 2019; 28 Potirniche (10.1016/j.ijsolstr.2021.111400_b0180) 2006; 22 Kotha (10.1016/j.ijsolstr.2021.111400_b0110) 2019; 120 Huang (10.1016/j.ijsolstr.2021.111400_b0095) 2007; 55 Lebensohn (10.1016/j.ijsolstr.2021.111400_b0115) 2012; 49 Gambin (10.1016/j.ijsolstr.2021.111400_b0060) 1992; 29 Gan (10.1016/j.ijsolstr.2021.111400_b0065) 2006; 22 Selvarajou (10.1016/j.ijsolstr.2021.111400_b0210) 2019; 125 Tvergaard (10.1016/j.ijsolstr.2021.111400_b0280) 1984; 32 Prasad (10.1016/j.ijsolstr.2021.111400_b0185) 2016; 200 Shahba (10.1016/j.ijsolstr.2021.111400_b0215) 2016; 87 Song (10.1016/j.ijsolstr.2021.111400_b0250) 2018; 115 Pineau (10.1016/j.ijsolstr.2021.111400_b0175) 2016; 107 Asim (10.1016/j.ijsolstr.2021.111400_b0015) 2019; 161 Srivastava (10.1016/j.ijsolstr.2021.111400_b0260) 2013; 61 Gurson (10.1016/j.ijsolstr.2021.111400_b0080) 1977; 99 Song (10.1016/j.ijsolstr.2021.111400_b0240) 2017; 107 |
References_xml | – volume: 115 start-page: 77 year: 2018 end-page: 101 ident: b0250 article-title: A multi-scale homogenization model for fine-grained porous viscoplastic polycrystals: II–Applications to FCC and HCP materials publication-title: J. Mech. Phys. Sol. – volume: 99 start-page: 2 year: 1977 end-page: 15 ident: b0080 article-title: Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media publication-title: J. Eng. Mater. Technol. – volume: 448 start-page: 121 year: 1995 end-page: 142 ident: b0055 article-title: Variational estimates for the creep behaviour of polycrystals publication-title: Proc. Royal Soc. London Ser. A: Math. Phys. Sci. – volume: 17 start-page: 23 year: 2017 end-page: 38 ident: b0105 article-title: Investigation of pore structure in cobalt chrome additively manufactured parts using X-ray computed tomography and three-dimensional image analysis publication-title: Additive Manuf. – volume: 107 start-page: 424 year: 2016 end-page: 483 ident: b0175 article-title: Failure of metals I: brittle and ductile fracture publication-title: Acta Mater. – volume: 44 start-page: 169 year: 2010 end-page: 305 ident: b0025 article-title: Ductile fracture by void growth to coalescence publication-title: Adv. Appl. Mech. – volume: 31 start-page: 493 year: 1999 end-page: 523 ident: b0160 article-title: Averaging theorems in finite deformation plasticity publication-title: Mech. Mater. – volume: 119 start-page: 494 year: 2014 ident: b0230 article-title: Porosity measurements and analysis for metal additive manufacturing process control publication-title: J. Res. Nat. Inst. Stand. Techn. – volume: 107 start-page: 580 year: 2017 end-page: 602 ident: b0240 article-title: A finite-strain homogenization model for viscoplastic porous single crystals: II–Applications publication-title: J. Mech. Phys. Sol. – volume: 492 start-page: 157 year: 2017 end-page: 170 ident: b0125 article-title: Void growth and coalescence in triaxial stress fields in irradiated FCC single crystals publication-title: J. Nucl. Mater. – volume: 51 start-page: 4544 year: 2014 end-page: 4553 ident: b0275 article-title: Representative volume element calculations under constant stress triaxiality, lode parameter, and shear ratio publication-title: Int. J. Sol. Struct. – volume: 50 start-page: 2115 year: 2013 end-page: 2131 ident: b0090 article-title: A yield function for single crystals containing voids publication-title: Int. J. Sol. Struct. – volume: 125 start-page: 198 year: 2019 end-page: 224 ident: b0210 article-title: Void growth and coalescence in hexagonal close packed crystals publication-title: J. Mech. Phys. Sol. – volume: 61 start-page: 1169 year: 2013 end-page: 1184 ident: b0260 article-title: Void growth versus void collapse in a creeping single crystal publication-title: J. Mech. Phys. Sol. – volume: 46 start-page: 749 year: 2009 end-page: 754 ident: b0305 article-title: Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper publication-title: Comp. Mater. Sci. – volume: 129 year: 2020 ident: b0075 article-title: Crystal plasticity based investigation of micro-void evolution under multi-axial loading conditions publication-title: Int. Jour. Plast. – volume: 84 start-page: 436 year: 2015 end-page: 467 ident: b0135 article-title: An analytical model for porous single crystals with ellipsoidal voids publication-title: J. Mech. Phys. Sol. – volume: 49 start-page: 3838 year: 2012 end-page: 3852 ident: b0115 article-title: Effect of single-crystal plastic deformation mechanisms on the dilatational plastic response of porous polycrystals publication-title: Int. J. Sol. Struct. – volume: 22 start-page: 39 year: 2006 end-page: 72 ident: b0065 article-title: Cylindrical void in a rigid-ideally plastic single crystal II: experiments and simulations publication-title: Int. J. Plast. – volume: 22 start-page: 921 year: 2006 end-page: 942 ident: b0180 article-title: Lattice orientation effects on void growth and coalescence in fcc single crystals publication-title: Int. J. Plast. – volume: 24 start-page: 1158 year: 2008 end-page: 1189 ident: b0150 article-title: Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids publication-title: Int. J. Plast. – volume: 126 start-page: 148 year: 2018 end-page: 162 ident: b0200 article-title: Validation of recent analytical dilatational models for porous polycrystals using crystal plasticity finite element models with Schmid and non-Schmid activation laws publication-title: Mech. Mater. – volume: 60 start-page: 5697 year: 2012 end-page: 5711 ident: b0255 article-title: Effect of specimen thickness on the creep response of a Ni-based single-crystal superalloy publication-title: Acta Mater. – volume: 17 start-page: 201 year: 1969 end-page: 217 ident: b0190 article-title: On the ductile enlargement of voids in triaxial stress fields∗ publication-title: J. Mech. Phys. Sol. – volume: 130 year: 2020 ident: b0045 article-title: Crack initiation and propagation in small-scale yielding using a nonlocal GTN model publication-title: Int. J. Plast. – volume: 161 start-page: 346 year: 2019 end-page: 350 ident: b0015 article-title: Representative volume element (RVE) based crystal plasticity study of void growth on phase boundary in titanium alloys publication-title: Comp. Mater. Sci. – volume: 84 start-page: 58 year: 2016 end-page: 87 ident: b0120 article-title: An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations publication-title: Int. J. Plast. – volume: 35 start-page: 363 year: 1968 end-page: 371 ident: b0140 article-title: A criterion for ductile fracture by the growth of holes publication-title: J. Appl. Mech. – volume: 47 start-page: 1016 year: 2010 end-page: 1029 ident: b0290 article-title: Void growth and coalescence in single crystals publication-title: Int. J. Sol. Struct. – volume: 59 start-page: 1858 year: 2011 end-page: 1871 ident: b0145 article-title: Atomistic insights into dislocation-based mechanisms of void growth and coalescence publication-title: J. Mech. Phys. Solids – volume: 48 start-page: 597 year: 2010 end-page: 608 ident: b0295 article-title: Finite element analysis of void growth behavior in nickel-based single crystal superalloys publication-title: Comp. Mater. Sci. – volume: 201 start-page: 29 year: 2016 end-page: 80 ident: b0030 article-title: Ductile failure modeling publication-title: Int. J. Fract. – volume: 124 start-page: 505 year: 2019 end-page: 525 ident: b0100 article-title: A coalescence criterion for porous single crystals publication-title: J. Mech. Phys. Solids – volume: 115 start-page: 102 year: 2018 end-page: 122 ident: b0245 article-title: A multi-scale homogenization model for fine-grained porous viscoplastic polycrystals: I-Finite-strain theory publication-title: J. Mech. Phys. Sol. – volume: 26 start-page: 806 year: 2010 end-page: 819 ident: b0205 article-title: Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals publication-title: Int. J. Plast. – volume: 28 start-page: 233 year: 2019 end-page: 248 ident: b0225 article-title: A porous crystal plasticity constitutive model for ductile deformation and failure in porous single crystals publication-title: Int. J. Damage Mech. – volume: 55 start-page: 1387 year: 2007 end-page: 1396 ident: b0095 article-title: Discrete dislocation dynamics modelling of microvoid growth and its intrinsic mechanism in single crystals publication-title: Acta Mater. – volume: 122 start-page: 188 year: 2019 end-page: 211 ident: b0010 article-title: A CPFEM based study to understand the void growth in high strength dual-phase titanium alloy (Ti-10V-2Fe-3Al) publication-title: Int. J. Plast. – volume: 44 start-page: 4927 year: 1996 end-page: 4935 ident: b0050 article-title: Cavity growth and rupture of β-treated zirconium: a crystallographic model publication-title: Acta Mater. – volume: 83 year: 2016 ident: b0130 article-title: Discrete averaging relations for micro to macro transition publication-title: J. Appl. Mech. – volume: 19 start-page: 3 year: 2010 end-page: 52 ident: b0035 article-title: Continuum models of ductile fracture: a review publication-title: Int. J. Damage Mech. – volume: 110 start-page: 67 year: 2017 end-page: 79 ident: b0270 article-title: A model for creep of porous crystals with cubic symmetry publication-title: Int. J. Sol. Struct. – volume: 57 start-page: 1017 year: 2009 end-page: 1044 ident: b0070 article-title: Homogenization-based continuum plasticity-damage model for ductile failure of materials containing heterogeneities publication-title: Jour. Mech. Phys. Solids – volume: 90 start-page: 10 year: 2015 end-page: 29 ident: b0265 article-title: Effect of crystal orientation on porosity evolution in a creeping single crystal publication-title: Mech. Mater. – volume: 113 start-page: 1871 year: 2018 end-page: 1903 ident: b0300 article-title: Ductile damage modelling with locking-free regularised GTN model publication-title: Int. J. Numer. Meth. Eng. – volume: 51 start-page: 1 year: 2015 end-page: 10 ident: b0165 article-title: An approximate yield criterion for porous single crystals publication-title: Eur. J. Mech.-A/Solids – volume: 87 start-page: 149 year: 2011 end-page: 170 ident: b0170 article-title: On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation publication-title: Int. J. Num. Meth. Eng. – volume: 80 start-page: 064501 year: 2013 end-page: 064505 ident: b0040 article-title: On the combined effect of pressure and third invariant on yielding of porous solids with von Mises matrix publication-title: J. Appl. Mech. – volume: 13 start-page: 875 year: 2005 ident: b0285 article-title: Casting microporosity growth in single-crystal superalloys by a three-dimensional unit cell analysis publication-title: Model. Simul. Mater. Sci. Eng. – volume: 200 start-page: 159 year: 2016 end-page: 183 ident: b0185 article-title: Numerical simulations of cylindrical void growth in Mg single crystals publication-title: Int. J. Fract. – volume: 107 start-page: 560 year: 2017 end-page: 579 ident: b0235 article-title: A finite-strain homogenization model for viscoplastic porous single crystals: I-Theory publication-title: J. Mech. Phys. Sol. – volume: 20 start-page: 397 year: 2001 end-page: 434 ident: b0020 article-title: Plastic potentials for anisotropic porous solids publication-title: Eur. J. Mech.-A/Solids – volume: 27 start-page: 1 year: 2008 end-page: 17 ident: b0155 article-title: Modification of the Gurson model for shear failure publication-title: Eur. J. Mech.-A/Solids – volume: 136 year: 2021 ident: b0195 article-title: Porous plasticity revisited: macroscopic and multiscale modeling publication-title: Int. J. Plast. – volume: 34 start-page: 154 year: 2012 end-page: 163 ident: b0220 article-title: Dislocation-density mechanisms for void interactions in crystalline materials publication-title: Int. J. Plast. – volume: 14 start-page: 1121 year: 1991 end-page: 1128 ident: b0005 article-title: A regular form of the Schmid law. Application to the ambiguity problem publication-title: Text. Microstuct. – volume: 29 start-page: 2013 year: 1992 end-page: 2021 ident: b0060 article-title: Refined analysis of elastic-plastic crystals publication-title: Int. J. Sol. Struct. – volume: 87 start-page: 48 year: 2016 end-page: 68 ident: b0215 article-title: Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part I: a unified constitutive model and flow rule publication-title: Int. J. Plast. – volume: 52 start-page: 863 year: 2010 end-page: 873 ident: b0085 article-title: Void growth and coalescence in fcc single crystals publication-title: Int. J. Mech. Sci. – volume: 32 start-page: 157 year: 1984 end-page: 169 ident: b0280 article-title: Analysis of the cup-cone fracture in a round tensile bar publication-title: Acta Metall. – volume: 120 start-page: 296 year: 2019 end-page: 319 ident: b0110 article-title: Parametrically homogenized constitutive models (PHCMs) from micromechanical crystal plasticity FE simulations, part I: sensitivity analysis and parameter identification for Titanium alloys publication-title: Int. J. Plast. – volume: 119 start-page: 249 year: 2019 end-page: 272 ident: b0310 article-title: Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations publication-title: Int. J. Plast. – volume: 492 start-page: 157 year: 2017 ident: 10.1016/j.ijsolstr.2021.111400_b0125 article-title: Void growth and coalescence in triaxial stress fields in irradiated FCC single crystals publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2017.04.013 – volume: 17 start-page: 201 year: 1969 ident: 10.1016/j.ijsolstr.2021.111400_b0190 article-title: On the ductile enlargement of voids in triaxial stress fields∗ publication-title: J. Mech. Phys. Sol. doi: 10.1016/0022-5096(69)90033-7 – volume: 87 start-page: 149 year: 2011 ident: 10.1016/j.ijsolstr.2021.111400_b0170 article-title: On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation publication-title: Int. J. Num. Meth. Eng. doi: 10.1002/nme.3014 – volume: 61 start-page: 1169 year: 2013 ident: 10.1016/j.ijsolstr.2021.111400_b0260 article-title: Void growth versus void collapse in a creeping single crystal publication-title: J. Mech. Phys. Sol. doi: 10.1016/j.jmps.2013.01.006 – volume: 60 start-page: 5697 year: 2012 ident: 10.1016/j.ijsolstr.2021.111400_b0255 article-title: Effect of specimen thickness on the creep response of a Ni-based single-crystal superalloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.06.043 – volume: 26 start-page: 806 year: 2010 ident: 10.1016/j.ijsolstr.2021.111400_b0205 article-title: Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2009.10.009 – volume: 115 start-page: 77 year: 2018 ident: 10.1016/j.ijsolstr.2021.111400_b0250 article-title: A multi-scale homogenization model for fine-grained porous viscoplastic polycrystals: II–Applications to FCC and HCP materials publication-title: J. Mech. Phys. Sol. doi: 10.1016/j.jmps.2018.03.002 – volume: 90 start-page: 10 year: 2015 ident: 10.1016/j.ijsolstr.2021.111400_b0265 article-title: Effect of crystal orientation on porosity evolution in a creeping single crystal publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2015.01.015 – volume: 22 start-page: 921 year: 2006 ident: 10.1016/j.ijsolstr.2021.111400_b0180 article-title: Lattice orientation effects on void growth and coalescence in fcc single crystals publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2005.06.003 – volume: 161 start-page: 346 year: 2019 ident: 10.1016/j.ijsolstr.2021.111400_b0015 article-title: Representative volume element (RVE) based crystal plasticity study of void growth on phase boundary in titanium alloys publication-title: Comp. Mater. Sci. doi: 10.1016/j.commatsci.2019.02.005 – volume: 29 start-page: 2013 year: 1992 ident: 10.1016/j.ijsolstr.2021.111400_b0060 article-title: Refined analysis of elastic-plastic crystals publication-title: Int. J. Sol. Struct. doi: 10.1016/0020-7683(92)90191-U – volume: 126 start-page: 148 year: 2018 ident: 10.1016/j.ijsolstr.2021.111400_b0200 article-title: Validation of recent analytical dilatational models for porous polycrystals using crystal plasticity finite element models with Schmid and non-Schmid activation laws publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2018.08.004 – volume: 113 start-page: 1871 year: 2018 ident: 10.1016/j.ijsolstr.2021.111400_b0300 article-title: Ductile damage modelling with locking-free regularised GTN model publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.5722 – volume: 80 start-page: 064501 year: 2013 ident: 10.1016/j.ijsolstr.2021.111400_b0040 article-title: On the combined effect of pressure and third invariant on yielding of porous solids with von Mises matrix publication-title: J. Appl. Mech. doi: 10.1115/1.4024074 – volume: 107 start-page: 560 year: 2017 ident: 10.1016/j.ijsolstr.2021.111400_b0235 article-title: A finite-strain homogenization model for viscoplastic porous single crystals: I-Theory publication-title: J. Mech. Phys. Sol. doi: 10.1016/j.jmps.2017.06.008 – volume: 22 start-page: 39 year: 2006 ident: 10.1016/j.ijsolstr.2021.111400_b0065 article-title: Cylindrical void in a rigid-ideally plastic single crystal II: experiments and simulations publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2005.01.009 – volume: 99 start-page: 2 issue: 1 year: 1977 ident: 10.1016/j.ijsolstr.2021.111400_b0080 article-title: Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.3443401 – volume: 84 start-page: 58 year: 2016 ident: 10.1016/j.ijsolstr.2021.111400_b0120 article-title: An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2016.05.001 – volume: 32 start-page: 157 year: 1984 ident: 10.1016/j.ijsolstr.2021.111400_b0280 article-title: Analysis of the cup-cone fracture in a round tensile bar publication-title: Acta Metall. doi: 10.1016/0001-6160(84)90213-X – volume: 20 start-page: 397 year: 2001 ident: 10.1016/j.ijsolstr.2021.111400_b0020 article-title: Plastic potentials for anisotropic porous solids publication-title: Eur. J. Mech.-A/Solids doi: 10.1016/S0997-7538(01)01147-0 – volume: 120 start-page: 296 year: 2019 ident: 10.1016/j.ijsolstr.2021.111400_b0110 article-title: Parametrically homogenized constitutive models (PHCMs) from micromechanical crystal plasticity FE simulations, part I: sensitivity analysis and parameter identification for Titanium alloys publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.05.008 – volume: 107 start-page: 424 year: 2016 ident: 10.1016/j.ijsolstr.2021.111400_b0175 article-title: Failure of metals I: brittle and ductile fracture publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.12.034 – volume: 50 start-page: 2115 year: 2013 ident: 10.1016/j.ijsolstr.2021.111400_b0090 article-title: A yield function for single crystals containing voids publication-title: Int. J. Sol. Struct. doi: 10.1016/j.ijsolstr.2013.02.005 – volume: 17 start-page: 23 year: 2017 ident: 10.1016/j.ijsolstr.2021.111400_b0105 article-title: Investigation of pore structure in cobalt chrome additively manufactured parts using X-ray computed tomography and three-dimensional image analysis publication-title: Additive Manuf. doi: 10.1016/j.addma.2017.06.011 – volume: 125 start-page: 198 year: 2019 ident: 10.1016/j.ijsolstr.2021.111400_b0210 article-title: Void growth and coalescence in hexagonal close packed crystals publication-title: J. Mech. Phys. Sol. doi: 10.1016/j.jmps.2018.12.012 – volume: 122 start-page: 188 year: 2019 ident: 10.1016/j.ijsolstr.2021.111400_b0010 article-title: A CPFEM based study to understand the void growth in high strength dual-phase titanium alloy (Ti-10V-2Fe-3Al) publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.07.002 – volume: 24 start-page: 1158 year: 2008 ident: 10.1016/j.ijsolstr.2021.111400_b0150 article-title: Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2007.08.008 – volume: 34 start-page: 154 year: 2012 ident: 10.1016/j.ijsolstr.2021.111400_b0220 article-title: Dislocation-density mechanisms for void interactions in crystalline materials publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2012.01.008 – volume: 130 year: 2020 ident: 10.1016/j.ijsolstr.2021.111400_b0045 article-title: Crack initiation and propagation in small-scale yielding using a nonlocal GTN model publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2020.102701 – volume: 27 start-page: 1 year: 2008 ident: 10.1016/j.ijsolstr.2021.111400_b0155 article-title: Modification of the Gurson model for shear failure publication-title: Eur. J. Mech.-A/Solids doi: 10.1016/j.euromechsol.2007.08.002 – volume: 136 year: 2021 ident: 10.1016/j.ijsolstr.2021.111400_b0195 article-title: Porous plasticity revisited: macroscopic and multiscale modeling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2020.102881 – volume: 14 start-page: 1121 year: 1991 ident: 10.1016/j.ijsolstr.2021.111400_b0005 article-title: A regular form of the Schmid law. Application to the ambiguity problem publication-title: Text. Microstuct. doi: 10.1155/TSM.14-18.1121 – volume: 87 start-page: 48 year: 2016 ident: 10.1016/j.ijsolstr.2021.111400_b0215 article-title: Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part I: a unified constitutive model and flow rule publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2016.09.002 – volume: 46 start-page: 749 year: 2009 ident: 10.1016/j.ijsolstr.2021.111400_b0305 article-title: Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper publication-title: Comp. Mater. Sci. doi: 10.1016/j.commatsci.2009.04.034 – volume: 119 start-page: 249 year: 2019 ident: 10.1016/j.ijsolstr.2021.111400_b0310 article-title: Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.04.009 – volume: 35 start-page: 363 issue: 2 year: 1968 ident: 10.1016/j.ijsolstr.2021.111400_b0140 article-title: A criterion for ductile fracture by the growth of holes publication-title: J. Appl. Mech. doi: 10.1115/1.3601204 – volume: 124 start-page: 505 year: 2019 ident: 10.1016/j.ijsolstr.2021.111400_b0100 article-title: A coalescence criterion for porous single crystals publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.10.018 – volume: 448 start-page: 121 year: 1995 ident: 10.1016/j.ijsolstr.2021.111400_b0055 article-title: Variational estimates for the creep behaviour of polycrystals publication-title: Proc. Royal Soc. London Ser. A: Math. Phys. Sci. – volume: 13 start-page: 875 year: 2005 ident: 10.1016/j.ijsolstr.2021.111400_b0285 article-title: Casting microporosity growth in single-crystal superalloys by a three-dimensional unit cell analysis publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/13/6/007 – volume: 57 start-page: 1017 year: 2009 ident: 10.1016/j.ijsolstr.2021.111400_b0070 article-title: Homogenization-based continuum plasticity-damage model for ductile failure of materials containing heterogeneities publication-title: Jour. Mech. Phys. Solids doi: 10.1016/j.jmps.2009.04.002 – volume: 48 start-page: 597 year: 2010 ident: 10.1016/j.ijsolstr.2021.111400_b0295 article-title: Finite element analysis of void growth behavior in nickel-based single crystal superalloys publication-title: Comp. Mater. Sci. doi: 10.1016/j.commatsci.2010.02.028 – volume: 55 start-page: 1387 year: 2007 ident: 10.1016/j.ijsolstr.2021.111400_b0095 article-title: Discrete dislocation dynamics modelling of microvoid growth and its intrinsic mechanism in single crystals publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.09.041 – volume: 31 start-page: 493 year: 1999 ident: 10.1016/j.ijsolstr.2021.111400_b0160 article-title: Averaging theorems in finite deformation plasticity publication-title: Mech. Mater. doi: 10.1016/S0167-6636(98)00073-8 – volume: 119 start-page: 494 year: 2014 ident: 10.1016/j.ijsolstr.2021.111400_b0230 article-title: Porosity measurements and analysis for metal additive manufacturing process control publication-title: J. Res. Nat. Inst. Stand. Techn. doi: 10.6028/jres.119.019 – volume: 201 start-page: 29 year: 2016 ident: 10.1016/j.ijsolstr.2021.111400_b0030 article-title: Ductile failure modeling publication-title: Int. J. Fract. doi: 10.1007/s10704-016-0142-6 – volume: 51 start-page: 1 year: 2015 ident: 10.1016/j.ijsolstr.2021.111400_b0165 article-title: An approximate yield criterion for porous single crystals publication-title: Eur. J. Mech.-A/Solids doi: 10.1016/j.euromechsol.2014.11.004 – volume: 49 start-page: 3838 year: 2012 ident: 10.1016/j.ijsolstr.2021.111400_b0115 article-title: Effect of single-crystal plastic deformation mechanisms on the dilatational plastic response of porous polycrystals publication-title: Int. J. Sol. Struct. doi: 10.1016/j.ijsolstr.2012.08.019 – volume: 19 start-page: 3 year: 2010 ident: 10.1016/j.ijsolstr.2021.111400_b0035 article-title: Continuum models of ductile fracture: a review publication-title: Int. J. Damage Mech. doi: 10.1177/1056789509103482 – volume: 59 start-page: 1858 year: 2011 ident: 10.1016/j.ijsolstr.2021.111400_b0145 article-title: Atomistic insights into dislocation-based mechanisms of void growth and coalescence publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2011.05.008 – volume: 44 start-page: 169 year: 2010 ident: 10.1016/j.ijsolstr.2021.111400_b0025 article-title: Ductile fracture by void growth to coalescence publication-title: Adv. Appl. Mech. doi: 10.1016/S0065-2156(10)44003-X – volume: 115 start-page: 102 year: 2018 ident: 10.1016/j.ijsolstr.2021.111400_b0245 article-title: A multi-scale homogenization model for fine-grained porous viscoplastic polycrystals: I-Finite-strain theory publication-title: J. Mech. Phys. Sol. doi: 10.1016/j.jmps.2018.03.001 – volume: 47 start-page: 1016 year: 2010 ident: 10.1016/j.ijsolstr.2021.111400_b0290 article-title: Void growth and coalescence in single crystals publication-title: Int. J. Sol. Struct. doi: 10.1016/j.ijsolstr.2009.12.019 – volume: 83 issue: 8 year: 2016 ident: 10.1016/j.ijsolstr.2021.111400_b0130 article-title: Discrete averaging relations for micro to macro transition publication-title: J. Appl. Mech. doi: 10.1115/1.4033552 – volume: 44 start-page: 4927 year: 1996 ident: 10.1016/j.ijsolstr.2021.111400_b0050 article-title: Cavity growth and rupture of β-treated zirconium: a crystallographic model publication-title: Acta Mater. doi: 10.1016/S1359-6454(96)00093-6 – volume: 28 start-page: 233 year: 2019 ident: 10.1016/j.ijsolstr.2021.111400_b0225 article-title: A porous crystal plasticity constitutive model for ductile deformation and failure in porous single crystals publication-title: Int. J. Damage Mech. doi: 10.1177/1056789518757294 – volume: 200 start-page: 159 year: 2016 ident: 10.1016/j.ijsolstr.2021.111400_b0185 article-title: Numerical simulations of cylindrical void growth in Mg single crystals publication-title: Int. J. Fract. doi: 10.1007/s10704-015-0063-9 – volume: 110 start-page: 67 year: 2017 ident: 10.1016/j.ijsolstr.2021.111400_b0270 article-title: A model for creep of porous crystals with cubic symmetry publication-title: Int. J. Sol. Struct. doi: 10.1016/j.ijsolstr.2017.02.002 – volume: 52 start-page: 863 year: 2010 ident: 10.1016/j.ijsolstr.2021.111400_b0085 article-title: Void growth and coalescence in fcc single crystals publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2010.03.001 – volume: 84 start-page: 436 year: 2015 ident: 10.1016/j.ijsolstr.2021.111400_b0135 article-title: An analytical model for porous single crystals with ellipsoidal voids publication-title: J. Mech. Phys. Sol. doi: 10.1016/j.jmps.2015.07.011 – volume: 129 year: 2020 ident: 10.1016/j.ijsolstr.2021.111400_b0075 article-title: Crystal plasticity based investigation of micro-void evolution under multi-axial loading conditions publication-title: Int. Jour. Plast. – volume: 51 start-page: 4544 year: 2014 ident: 10.1016/j.ijsolstr.2021.111400_b0275 article-title: Representative volume element calculations under constant stress triaxiality, lode parameter, and shear ratio publication-title: Int. J. Sol. Struct. doi: 10.1016/j.ijsolstr.2014.09.001 – volume: 107 start-page: 580 year: 2017 ident: 10.1016/j.ijsolstr.2021.111400_b0240 article-title: A finite-strain homogenization model for viscoplastic porous single crystals: II–Applications publication-title: J. Mech. Phys. Sol. doi: 10.1016/j.jmps.2017.06.003 |
SSID | ssj0004390 |
Score | 2.4336624 |
Snippet | •Crystal plasticity model for porous HCP single crystals, e.g. Ti alloys.•Novel penalty-free scheme developed for maintaining specified stress-states, e.g.... In this paper, an efficient and effective crystal plasticity model is proposed for porous HCP crystals subject to a variety of multiaxial loading conditions.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111400 |
SubjectTerms | Algorithms Axial stress Crystal plasticity Crystallography Crystals Finite element method HCP crystals Homogenization Plastic properties Porosity Porous RVE analysis Titanium alloys Titanium base alloys |
Title | A crystal plasticity model for porous HCP crystals in titanium alloys under multiaxial loading conditions |
URI | https://dx.doi.org/10.1016/j.ijsolstr.2021.111400 https://www.proquest.com/docview/2639039287 |
Volume | 238 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWBAPEV5VB5YQxPHcZyxVKAWRMVApW5W7DhSqpJWbZDowm_nLg9eQurAaMuOorvL3XfxfWdCrkwUJl4ouKMlixwu3cjRATOOlSK1CeAkqfGH_uNIDMb8fhJMtki_4cJgWWXt-yufXnrreqZbS7O7yDLk-DI8RkISCjIskWjOeYhWfv3-VeYBAbeioUCahKu_sYSn19kUFLwqsC8o89B7cGS6_R2gfrnqMv7c7ZO9GjjSXvVuB2TL5odk91s7wSOS9ahZrgHuzegCQDHWSxdrWt51QwGbUoDakOfTQf-pWbeiWU6RZpZnry8Uz-DXK4q0siUtKw3jNzBPOpuXhfYUUuekqvA6JuO72-f-wKmvUnCMz93CiVKdBtIYwCPS81PATbEVGiatFwXMlRrzOOb5QayD1E94pG0oPBHHxoOMQhj_hLTyeW5PCZUy4YbHUnIecOuFMATlSsOtjV3BojYJGvkpU_cZx-suZqopKJuqRu4K5a4qubdJ93Pfouq0sXFH1KhH_bAZBeFg496LRp-q_mpXioF4XACMMjz7x6PPyQ5DjkRZqHZBWsXy1V4Ccil0pzTNDtnuDR8GIxgNJzcfJlXwlg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RSPAh5YQxPHTpyxqkAFCmIAic2KHUdKVdKqDRJd-O3c5QEFITEwxrKj6M6--y6-746QcxOFiRcG3NGSRQ6XbuRowYxjZZDaBHCS1PhD_-4-GDzxm2fx3CL9hguDaZW17a9semmt65FuLc3uNMuQ48vwGglJKMiwFCtklcPxxTYGF-9feR7gcSseCsRJOH2JJjy6yEag4XmBhUGZh-aDI9Xtdw_1w1aXDuhqi2zWyJH2qo_bJi2b75CNpXqCuyTrUTNbAN4b0ymgYkyYLha0bHZDAZxSwNoQ6NNB_6GZN6dZTpFnlmevLxQv4RdziryyGS1TDeM32J90PCkz7SnEzkmV4rVHnq4uH_sDp-6l4Bifu4UTpToV0hgAJNLzUwBOsQ00DFovEsyVGgM55vki1iL1Ex5pGwZeEMfGg5AiMP4-aeeT3B4QKmXCDY-l5Fxw64XwCNqVhlsbuwGLDolo5KdMXWgc-12MVZNRNlKN3BXKXVVyPyTdz3XTqtTGnyuiRj3q26ZR4A_-XNtp9KnqYztXDMTjAmKU4dE_Xn1G1gaPd0M1vL6_PSbrDAkTZdZah7SL2as9ARhT6NNym34ABA7xIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+crystal+plasticity+model+for+porous+HCP+crystals+in+titanium+alloys+under+multiaxial+loading+conditions&rft.jtitle=International+journal+of+solids+and+structures&rft.au=Yang%2C+Qingcheng&rft.au=Ghosh%2C+Somnath&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0020-7683&rft.eissn=1879-2146&rft.volume=238&rft_id=info:doi/10.1016%2Fj.ijsolstr.2021.111400&rft.externalDocID=S0020768321004625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7683&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7683&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7683&client=summon |