Study on the impact resistance of polyurea-steel composite plates to low velocity impact
•Impact resistance of polyurea-steel composite plates to low velocity impact is researched experimentally and numerically.•A numerical simulation method for the simulation of the impact processes is introduced.•The mechanisms of the polyurea layers on the improvements of impact resistance of the com...
Saved in:
Published in | International journal of impact engineering Vol. 133; p. 103357 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.11.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Impact resistance of polyurea-steel composite plates to low velocity impact is researched experimentally and numerically.•A numerical simulation method for the simulation of the impact processes is introduced.•The mechanisms of the polyurea layers on the improvements of impact resistance of the composite plates are investigated and presented.•The relationships of the thicknesses of polyurea layers and the impact resistances of the composite plates are presented and discussed.•A parameter was introduced to characterize the energy absorption efficiency of the composite plates.
Experimental and numerical studies on the response of polyurea coated steel plates to low velocity impact of a cylindrical hammer are presented in this paper. Low carbon steel plates were made and coated with polyurea layers to enhance their impact resistances. The polyurea-steel composite plates were constrained by a test rig and impacted by a blunt cylinder hammer using a drop weight machine. Numerical simulations of the impact processes were performed using the finite element code LS-DYNA. The numerical simulation method was validated by comparing its results with the experiments’. The experimental results showed that the polyurea coatings can effectively improve the ultimate energy absorption capacity of the steel plates. The decreasing order of the ultimate energy absorption capacity of the composite plates when coated with same thickness of polyurea layers was: the upper-side-coated plates, the double-side coated plates and the lower-side-coated plates. In order to quantify the energy absorption efficiency of the composite plates, a parameter Ed was proposed, and it was found that the composite plate coated with 4 mm polyurea on its upper side had the greatest value of Ed among all the plates. |
---|---|
AbstractList | Experimental and numerical studies on the response of polyurea coated steel plates to low velocity impact of a cylindrical hammer are presented in this paper. Low carbon steel plates were made and coated with polyurea layers to enhance their impact resistances. The polyurea-steel composite plates were constrained by a test rig and impacted by a blunt cylinder hammer using a drop weight machine. Numerical simulations of the impact processes were performed using the finite element code LS-DYNA. The numerical simulation method was validated by comparing its results with the experiments'. The experimental results showed that the polyurea coatings can effectively improve the ultimate energy absorption capacity of the steel plates. The decreasing order of the ultimate energy absorption capacity of the composite plates when coated with same thickness of polyurea layers was: the upper-side-coated plates, the double-side coated plates and the lower-side-coated plates. In order to quantify the energy absorption efficiency of the composite plates, a parameter Ed was proposed, and it was found that the composite plate coated with 4 mm polyurea on its upper side had the greatest value of Ed among all the plates. •Impact resistance of polyurea-steel composite plates to low velocity impact is researched experimentally and numerically.•A numerical simulation method for the simulation of the impact processes is introduced.•The mechanisms of the polyurea layers on the improvements of impact resistance of the composite plates are investigated and presented.•The relationships of the thicknesses of polyurea layers and the impact resistances of the composite plates are presented and discussed.•A parameter was introduced to characterize the energy absorption efficiency of the composite plates. Experimental and numerical studies on the response of polyurea coated steel plates to low velocity impact of a cylindrical hammer are presented in this paper. Low carbon steel plates were made and coated with polyurea layers to enhance their impact resistances. The polyurea-steel composite plates were constrained by a test rig and impacted by a blunt cylinder hammer using a drop weight machine. Numerical simulations of the impact processes were performed using the finite element code LS-DYNA. The numerical simulation method was validated by comparing its results with the experiments’. The experimental results showed that the polyurea coatings can effectively improve the ultimate energy absorption capacity of the steel plates. The decreasing order of the ultimate energy absorption capacity of the composite plates when coated with same thickness of polyurea layers was: the upper-side-coated plates, the double-side coated plates and the lower-side-coated plates. In order to quantify the energy absorption efficiency of the composite plates, a parameter Ed was proposed, and it was found that the composite plate coated with 4 mm polyurea on its upper side had the greatest value of Ed among all the plates. |
ArticleNumber | 103357 |
Author | Zhang, Boyi Wei, Jianshu Wang, Wei Jiang, Yuexin |
Author_xml | – sequence: 1 givenname: Yuexin surname: Jiang fullname: Jiang, Yuexin organization: School of Civil Engineering, Harbin Institute of Technology, No. 73, Huanghe Road, Nan'gang District, Harbin, Heilongjiang Province, China – sequence: 2 givenname: Boyi surname: Zhang fullname: Zhang, Boyi email: zhangby@hit.edu.cn organization: School of Civil Engineering, Harbin Institute of Technology, No. 73, Huanghe Road, Nan'gang District, Harbin, Heilongjiang Province, China – sequence: 3 givenname: Jianshu surname: Wei fullname: Wei, Jianshu organization: Shanghai Dragon Industrial Engineering Co. Ltd., Shanghai 200122, China – sequence: 4 givenname: Wei surname: Wang fullname: Wang, Wei email: wwang@hit.edu.cn organization: School of Civil Engineering, Harbin Institute of Technology, No. 73, Huanghe Road, Nan'gang District, Harbin, Heilongjiang Province, China |
BookMark | eNqFkE9LxDAQxYOs4O7qV5CA565J0zYteFAW_8GCBxX2FtJ0qindpibpSr-9WaoXL3saGN57M--3QLPOdIDQJSUrSmh23ax0o3c9dB-rmNAiLBlL-Qma05wXEUtJMUNzwlkS8YRtz9DCuYYQyklK5mj76odqxKbD_hNwiJHKYwtOOy87BdjUuDftOFiQkfMALVZm1xunPeC-lR4c9ga35hvvoTVK-_E35Byd1rJ1cPE7l-j94f5t_RRtXh6f13ebSLGE-KiAEoBkPE8UJWVKE1rmJJNFLTmtU6KkKvOiqliZZyxmLCNpzbOEhzZpovIa2BJdTbm9NV8DOC8aM9gunBQxCyVjHud5UN1MKmWNcxZqEV6VXpvOW6lbQYk4sBSN-GMpDizFxDLYs3_23uqdtONx4-1khIBgr8EKpzQEsJW2oLyojD4W8QP-NJVj |
CitedBy_id | crossref_primary_10_1016_j_istruc_2024_106090 crossref_primary_10_1016_j_istruc_2025_108194 crossref_primary_10_1016_j_porgcoat_2025_109127 crossref_primary_10_1016_j_mechmat_2024_104979 crossref_primary_10_1016_j_jlp_2020_104234 crossref_primary_10_1080_15376494_2025_2471034 crossref_primary_10_1115_1_4051238 crossref_primary_10_1016_j_jcis_2023_04_047 crossref_primary_10_3390_polym16233286 crossref_primary_10_1142_S0219455422500377 crossref_primary_10_1016_j_mechmat_2022_104548 crossref_primary_10_3390_polym16030440 crossref_primary_10_1007_s11665_023_08749_w crossref_primary_10_1016_j_istruc_2023_01_089 crossref_primary_10_1016_j_finel_2020_103501 crossref_primary_10_1016_j_mtcomm_2023_105577 crossref_primary_10_3390_ma15113918 crossref_primary_10_1016_j_jiec_2021_10_017 crossref_primary_10_3390_polym17030385 crossref_primary_10_1016_j_conbuildmat_2022_127749 crossref_primary_10_1016_j_tws_2021_107747 crossref_primary_10_1016_j_jobe_2024_109882 crossref_primary_10_1021_acsabm_3c01134 crossref_primary_10_1002_app_55366 crossref_primary_10_1016_j_ijimpeng_2022_104265 crossref_primary_10_1016_j_tws_2023_110912 crossref_primary_10_1016_j_ijimpeng_2022_104184 crossref_primary_10_1016_j_cej_2022_138350 crossref_primary_10_1016_j_compstruct_2023_116813 crossref_primary_10_3390_polym11111888 crossref_primary_10_1016_j_commatsci_2021_110504 crossref_primary_10_3390_polym16091249 crossref_primary_10_1007_s10443_023_10160_6 crossref_primary_10_1016_j_commatsci_2020_109951 crossref_primary_10_1007_s12206_021_1113_z crossref_primary_10_1016_j_cscm_2022_e01695 crossref_primary_10_1007_s43452_022_00539_w crossref_primary_10_1016_j_ijimpeng_2022_104256 crossref_primary_10_1115_1_4048319 crossref_primary_10_1016_j_ceramint_2024_08_009 crossref_primary_10_1016_j_ijimpeng_2022_104250 crossref_primary_10_1177_13694332221088945 crossref_primary_10_3390_polym15010041 crossref_primary_10_1016_j_porgcoat_2024_108249 crossref_primary_10_1016_j_ijimpeng_2025_105284 crossref_primary_10_1080_13588265_2022_2075122 crossref_primary_10_1016_j_eml_2021_101238 crossref_primary_10_1016_j_jobe_2021_103763 crossref_primary_10_1016_j_mtcomm_2021_102089 crossref_primary_10_1142_S0219455423300021 crossref_primary_10_1080_13588265_2022_2111487 crossref_primary_10_1016_j_tws_2020_106819 crossref_primary_10_1016_j_commatsci_2021_111166 crossref_primary_10_3390_polym14132670 crossref_primary_10_1016_j_dt_2023_01_020 crossref_primary_10_1016_j_ijimpeng_2023_104516 |
Cites_doi | 10.1061/(ASCE)0733-9445(2005)131:8(1194) 10.1016/j.mechmat.2010.08.004 10.1016/j.matdes.2013.07.020 10.1016/j.polymer.2006.11.051 10.21236/AD0144762 10.1016/j.polymer.2005.10.107 10.1080/1023666X.2011.587944 10.1016/j.polymer.2012.06.030 10.1080/14786430600833198 10.1016/j.ijsolstr.2008.03.017 10.1016/j.ijimpeng.2008.12.010 10.1016/j.ijimpeng.2009.04.002 10.1016/j.mechmat.2013.03.008 10.1016/j.matdes.2013.05.060 10.1007/s11665-011-9875-6 10.1061/(ASCE)0887-3828(2004)18:2(100) 10.1016/j.matdes.2013.11.063 10.1016/j.mechmat.2009.09.009 10.1016/j.compstruct.2009.09.057 10.1016/j.mechmat.2006.08.002 10.1016/j.ijimpeng.2009.04.005 10.1016/j.matdes.2013.02.063 10.1007/s11340-008-9201-x 10.1016/0013-7944(85)90052-9 10.1016/j.jmps.2016.04.027 10.1016/j.polymer.2007.02.058 10.1557/jmr.2011.405 10.1016/j.ijimpeng.2012.08.005 10.1016/j.ijplas.2010.10.001 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Nov 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Nov 2019 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2019.103357 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
ExternalDocumentID | 10_1016_j_ijimpeng_2019_103357 S0734743X19301538 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c340t-9ebee06784c10b5141b806a9fa71f50cacb89dd3b863233605f764773454c8fe3 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Sun Jul 13 03:41:37 EDT 2025 Thu Apr 24 23:00:25 EDT 2025 Tue Jul 01 03:54:28 EDT 2025 Fri Feb 23 02:28:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polyurea Impact resistance Fracture Polyurea-steel composite plate Low velocity impact |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-9ebee06784c10b5141b806a9fa71f50cacb89dd3b863233605f764773454c8fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2317027288 |
PQPubID | 2045463 |
ParticipantIDs | proquest_journals_2317027288 crossref_citationtrail_10_1016_j_ijimpeng_2019_103357 crossref_primary_10_1016_j_ijimpeng_2019_103357 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2019_103357 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2019 2019-11-00 20191101 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Roland, Fragiadakis, Gamache (bib0022) 2010; 92 Mohotti, Ngo, Raman (bib0025) 2014; 56 Shim, Mohr (bib0010) 2011; 27 Mohotti, Ngo, Mendis (bib0024) 2013; 52 Roland, Twigg, Vu (bib0002) 2007; 48 Johnson G.J., Cook W.H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the Seventh International Symposium on Ballistics, The Hague, 541–7. Grujicic, He, Pandurangan (bib0011) 2012; 21 Cowper G.R., Symonds P.S.Strain-hardening and strain-rate effects in the impact loading of cantilever beams. Division of applied mathematics, Brown University, 1957. Yi, Boyce, Lee (bib0001) 2006; 47 Amini, Simon, Nemat-Nasser (bib0021) 2010; 42 Sarva, Deschanel, Boyce (bib0003) 2007; 48 Davidson, Fisher, Hammons (bib0014) 2005; 131 Clifton, Wang, Jiao (bib0009) 2016; 93 Mohotti, Ali, Ngo (bib0013) 2014; 53 Amirkhizi, Isaacs (bib0008) 2006; 86 Raman, Ngo, Lu (bib0006) 2013; 50 Qiao, Wu (bib0007) 2011; 16 Xue, Mock, Belytschko (bib0023) 2010; 42 Ackland, Anderson, Ngo (bib0019) 2013; 51 Dorogoy, Rittel (bib0027) 2009; 49 Youssef, Gupta (bib0005) 2012; 27 Amini, Isaacs, Nemat-Nasser (bib0016) 2010; 37 Xue, Hutchinson (bib0031) 2007; 39 Samiee, Amirkhizi, Nemat-Nasser (bib0017) 2013; 64 Shim, Mohr (bib0004) 2009; 36 shanbin, luyao, sai (bib0029) 2014; 37 Hammons, Davidson, Connell (bib0015) 2004; 18 Gamonpilas, McCuiston (bib0012) 2012; 53 Amini, Amirkhizi, Nemat-Nasser (bib0020) 2010; 37 McShane, Stewart, Aronson (bib0018) 2008; 45 Johnson, Cook (bib0028) 1985; 21 Shim (10.1016/j.ijimpeng.2019.103357_bib0010) 2011; 27 Davidson (10.1016/j.ijimpeng.2019.103357_bib0014) 2005; 131 Mohotti (10.1016/j.ijimpeng.2019.103357_bib0024) 2013; 52 Gamonpilas (10.1016/j.ijimpeng.2019.103357_bib0012) 2012; 53 10.1016/j.ijimpeng.2019.103357_bib0026 Mohotti (10.1016/j.ijimpeng.2019.103357_bib0013) 2014; 53 Shim (10.1016/j.ijimpeng.2019.103357_bib0004) 2009; 36 Ackland (10.1016/j.ijimpeng.2019.103357_bib0019) 2013; 51 Raman (10.1016/j.ijimpeng.2019.103357_bib0006) 2013; 50 Samiee (10.1016/j.ijimpeng.2019.103357_bib0017) 2013; 64 Roland (10.1016/j.ijimpeng.2019.103357_bib0002) 2007; 48 Youssef (10.1016/j.ijimpeng.2019.103357_bib0005) 2012; 27 10.1016/j.ijimpeng.2019.103357_bib0030 Xue (10.1016/j.ijimpeng.2019.103357_bib0023) 2010; 42 Sarva (10.1016/j.ijimpeng.2019.103357_bib0003) 2007; 48 Mohotti (10.1016/j.ijimpeng.2019.103357_bib0025) 2014; 56 Hammons (10.1016/j.ijimpeng.2019.103357_bib0015) 2004; 18 McShane (10.1016/j.ijimpeng.2019.103357_bib0018) 2008; 45 Dorogoy (10.1016/j.ijimpeng.2019.103357_bib0027) 2009; 49 Amini (10.1016/j.ijimpeng.2019.103357_bib0020) 2010; 37 Amini (10.1016/j.ijimpeng.2019.103357_bib0021) 2010; 42 Grujicic (10.1016/j.ijimpeng.2019.103357_bib0011) 2012; 21 Yi (10.1016/j.ijimpeng.2019.103357_bib0001) 2006; 47 Qiao (10.1016/j.ijimpeng.2019.103357_bib0007) 2011; 16 Clifton (10.1016/j.ijimpeng.2019.103357_bib0009) 2016; 93 Roland (10.1016/j.ijimpeng.2019.103357_bib0022) 2010; 92 Xue (10.1016/j.ijimpeng.2019.103357_bib0031) 2007; 39 Johnson (10.1016/j.ijimpeng.2019.103357_bib0028) 1985; 21 Amini (10.1016/j.ijimpeng.2019.103357_bib0016) 2010; 37 shanbin (10.1016/j.ijimpeng.2019.103357_bib0029) 2014; 37 Amirkhizi (10.1016/j.ijimpeng.2019.103357_bib0008) 2006; 86 |
References_xml | – volume: 48 start-page: 2208 year: 2007 end-page: 2213 ident: bib0003 article-title: Stress-strain behavior of a polyurea and a polyurethane from low to high strain rates publication-title: Polymer (Guildf) – volume: 93 start-page: 8 year: 2016 end-page: 15 ident: bib0009 article-title: A physically-based, quasilinear viscoelasticity model for the dynamic response of polyurea publication-title: J Mech Phys Solids – volume: 52 start-page: 1 year: 2013 end-page: 16 ident: bib0024 article-title: Polyurea coated composite aluminium plates subjected to high velocity projectile impact publication-title: Mater Des – volume: 37 start-page: 90 year: 2010 end-page: 102 ident: bib0020 article-title: Numerical modeling of response of monolithic and bilayer plates to impulsive loads publication-title: Int J Impact Eng – volume: 16 start-page: 290 year: 2011 end-page: 297 ident: bib0007 article-title: Rate-Dependent tensile behavior of polyurea at low strain Rates publication-title: Int J Polymer Anal Charactreizat – reference: Cowper G.R., Symonds P.S.Strain-hardening and strain-rate effects in the impact loading of cantilever beams. Division of applied mathematics, Brown University, 1957. – volume: 86 start-page: 5847 year: 2006 end-page: 5866 ident: bib0008 article-title: An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects publication-title: Philosoph Mag – volume: 27 start-page: 494 year: 2012 end-page: 499 ident: bib0005 article-title: Dynamic tensile strength of polyurea publication-title: J Mater Res – volume: 53 start-page: 830 year: 2014 end-page: 837 ident: bib0013 article-title: Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading publication-title: Mater Des – volume: 92 start-page: 1059 year: 2010 end-page: 1064 ident: bib0022 article-title: Elastomer–steel laminate armor publication-title: Compos Struct – reference: Johnson G.J., Cook W.H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the Seventh International Symposium on Ballistics, The Hague, 541–7. – volume: 18 start-page: 100 year: 2004 end-page: 106 ident: bib0015 article-title: Explosive testing of polymer retrofit masonry Walls[J] publication-title: J Perform Constr Fac – volume: 37 start-page: 641 year: 2014 end-page: 694 ident: bib0029 article-title: Characterization of mechanical properties of aluminium alloy 6061t6 and low carbon steel q235 based on gurson-jc model (China) publication-title: J Hefei Univ Technol – volume: 53 start-page: 3655 year: 2012 end-page: 3658 ident: bib0012 article-title: A non-linear viscoelastic material constitutive model for polyurea publication-title: Polymer (Guildf) – volume: 42 start-page: 615 year: 2010 end-page: 627 ident: bib0021 article-title: Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments publication-title: Mech Mater – volume: 21 start-page: 2 year: 2012 end-page: 16 ident: bib0011 article-title: Experimental characterization and material-model development for microphase-segregated Polyurea: an Overview publication-title: J Mater Eng Perform – volume: 50 start-page: 124 year: 2013 end-page: 129 ident: bib0006 article-title: Experimental investigation on the tensile behavior of polyurea at high strain rates publication-title: Mater Des – volume: 48 start-page: 574 year: 2007 end-page: 578 ident: bib0002 article-title: High strain rate mechanical behavior of polyurea publication-title: Polymer (Guildf) – volume: 64 start-page: 1 year: 2013 end-page: 10 ident: bib0017 article-title: Numerical study of the effect of polyurea on the performance of steel plates under blast loads publication-title: Mech Mater – volume: 36 start-page: 1116 year: 2009 end-page: 1127 ident: bib0004 article-title: Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates publication-title: Int J Impact Eng – volume: 49 start-page: 881 year: 2009 end-page: 885 ident: bib0027 article-title: Determination of the johnson-cook material parameters using the SCS Specimen publication-title: Exp Mech – volume: 51 start-page: 13 year: 2013 end-page: 22 ident: bib0019 article-title: Deformation of polyurea-coated steel plates under localised blast loading publication-title: Int J Impact Eng – volume: 56 start-page: 696 year: 2014 end-page: 713 ident: bib0025 article-title: Plastic deformation of polyurea coated composite aluminium plates subjected to low velocity impact publication-title: Mater Des – volume: 47 start-page: 319 year: 2006 end-page: 329 ident: bib0001 article-title: Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes publication-title: Polymer (Guildf) – volume: 131 start-page: 1194 year: 2005 end-page: 1205 ident: bib0014 article-title: Failure mechanisms of polymer-reinforced concrete masonry walls subjected to Blast publication-title: J Struct Eng – volume: 21 start-page: 31 year: 1985 end-page: 48 ident: bib0028 article-title: Fracture characteristics of three metals subjected to various Strains, strain Rates, temperatures and Pressures publication-title: Eng Fract Mech – volume: 39 start-page: 473 year: 2007 end-page: 487 ident: bib0031 article-title: Neck retardation and enhanced energy absorption in metal–elastomer bilayers publication-title: Mech Mater – volume: 37 start-page: 82 year: 2010 end-page: 89 ident: bib0016 article-title: Experimental investigation of response of monolithic and bilayer plates to impulsive loads publication-title: Int J Impact Eng – volume: 42 start-page: 981 year: 2010 end-page: 1003 ident: bib0023 article-title: Penetration of DH-36 steel plates with and without polyurea coating publication-title: Mech Mater – volume: 27 start-page: 868 year: 2011 end-page: 886 ident: bib0010 article-title: Rate dependent finite strain constitutive model of polyurea publication-title: Int J Plasticity – volume: 45 start-page: 4407 year: 2008 end-page: 4426 ident: bib0018 article-title: Dynamic rupture of polymer–metal bilayer plates publication-title: Int J Solids Struct – volume: 131 start-page: 1194 issue: 8 year: 2005 ident: 10.1016/j.ijimpeng.2019.103357_bib0014 article-title: Failure mechanisms of polymer-reinforced concrete masonry walls subjected to Blast publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2005)131:8(1194) – volume: 42 start-page: 981 issue: 11 year: 2010 ident: 10.1016/j.ijimpeng.2019.103357_bib0023 article-title: Penetration of DH-36 steel plates with and without polyurea coating publication-title: Mech Mater doi: 10.1016/j.mechmat.2010.08.004 – volume: 53 start-page: 830 year: 2014 ident: 10.1016/j.ijimpeng.2019.103357_bib0013 article-title: Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading publication-title: Mater Des doi: 10.1016/j.matdes.2013.07.020 – volume: 37 start-page: 641 issue: 6 year: 2014 ident: 10.1016/j.ijimpeng.2019.103357_bib0029 article-title: Characterization of mechanical properties of aluminium alloy 6061t6 and low carbon steel q235 based on gurson-jc model (China) publication-title: J Hefei Univ Technol – volume: 48 start-page: 574 issue: 2 year: 2007 ident: 10.1016/j.ijimpeng.2019.103357_bib0002 article-title: High strain rate mechanical behavior of polyurea publication-title: Polymer (Guildf) doi: 10.1016/j.polymer.2006.11.051 – ident: 10.1016/j.ijimpeng.2019.103357_bib0030 doi: 10.21236/AD0144762 – volume: 47 start-page: 319 issue: 1 year: 2006 ident: 10.1016/j.ijimpeng.2019.103357_bib0001 article-title: Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes publication-title: Polymer (Guildf) doi: 10.1016/j.polymer.2005.10.107 – volume: 16 start-page: 290 issue: 5 year: 2011 ident: 10.1016/j.ijimpeng.2019.103357_bib0007 article-title: Rate-Dependent tensile behavior of polyurea at low strain Rates publication-title: Int J Polymer Anal Charactreizat doi: 10.1080/1023666X.2011.587944 – volume: 53 start-page: 3655 issue: 17 year: 2012 ident: 10.1016/j.ijimpeng.2019.103357_bib0012 article-title: A non-linear viscoelastic material constitutive model for polyurea publication-title: Polymer (Guildf) doi: 10.1016/j.polymer.2012.06.030 – volume: 86 start-page: 5847 issue: 36 year: 2006 ident: 10.1016/j.ijimpeng.2019.103357_bib0008 article-title: An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects publication-title: Philosoph Mag doi: 10.1080/14786430600833198 – volume: 45 start-page: 4407 issue: 16 year: 2008 ident: 10.1016/j.ijimpeng.2019.103357_bib0018 article-title: Dynamic rupture of polymer–metal bilayer plates publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2008.03.017 – volume: 36 start-page: 1116 issue: 9 year: 2009 ident: 10.1016/j.ijimpeng.2019.103357_bib0004 article-title: Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2008.12.010 – volume: 37 start-page: 82 issue: 1 year: 2010 ident: 10.1016/j.ijimpeng.2019.103357_bib0016 article-title: Experimental investigation of response of monolithic and bilayer plates to impulsive loads publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2009.04.002 – volume: 64 start-page: 1 year: 2013 ident: 10.1016/j.ijimpeng.2019.103357_bib0017 article-title: Numerical study of the effect of polyurea on the performance of steel plates under blast loads publication-title: Mech Mater doi: 10.1016/j.mechmat.2013.03.008 – volume: 52 start-page: 1 year: 2013 ident: 10.1016/j.ijimpeng.2019.103357_bib0024 article-title: Polyurea coated composite aluminium plates subjected to high velocity projectile impact publication-title: Mater Des doi: 10.1016/j.matdes.2013.05.060 – volume: 21 start-page: 2 issue: 1 year: 2012 ident: 10.1016/j.ijimpeng.2019.103357_bib0011 article-title: Experimental characterization and material-model development for microphase-segregated Polyurea: an Overview publication-title: J Mater Eng Perform doi: 10.1007/s11665-011-9875-6 – volume: 18 start-page: 100 issue: 2 year: 2004 ident: 10.1016/j.ijimpeng.2019.103357_bib0015 article-title: Explosive testing of polymer retrofit masonry Walls[J] publication-title: J Perform Constr Fac doi: 10.1061/(ASCE)0887-3828(2004)18:2(100) – volume: 56 start-page: 696 year: 2014 ident: 10.1016/j.ijimpeng.2019.103357_bib0025 article-title: Plastic deformation of polyurea coated composite aluminium plates subjected to low velocity impact publication-title: Mater Des doi: 10.1016/j.matdes.2013.11.063 – volume: 42 start-page: 615 issue: 6 year: 2010 ident: 10.1016/j.ijimpeng.2019.103357_bib0021 article-title: Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments publication-title: Mech Mater doi: 10.1016/j.mechmat.2009.09.009 – volume: 92 start-page: 1059 issue: 5 year: 2010 ident: 10.1016/j.ijimpeng.2019.103357_bib0022 article-title: Elastomer–steel laminate armor publication-title: Compos Struct doi: 10.1016/j.compstruct.2009.09.057 – volume: 39 start-page: 473 issue: 5 year: 2007 ident: 10.1016/j.ijimpeng.2019.103357_bib0031 article-title: Neck retardation and enhanced energy absorption in metal–elastomer bilayers publication-title: Mech Mater doi: 10.1016/j.mechmat.2006.08.002 – volume: 37 start-page: 90 issue: 1 year: 2010 ident: 10.1016/j.ijimpeng.2019.103357_bib0020 article-title: Numerical modeling of response of monolithic and bilayer plates to impulsive loads publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2009.04.005 – volume: 50 start-page: 124 year: 2013 ident: 10.1016/j.ijimpeng.2019.103357_bib0006 article-title: Experimental investigation on the tensile behavior of polyurea at high strain rates publication-title: Mater Des doi: 10.1016/j.matdes.2013.02.063 – volume: 49 start-page: 881 issue: 6 year: 2009 ident: 10.1016/j.ijimpeng.2019.103357_bib0027 article-title: Determination of the johnson-cook material parameters using the SCS Specimen publication-title: Exp Mech doi: 10.1007/s11340-008-9201-x – volume: 21 start-page: 31 issue: 1 year: 1985 ident: 10.1016/j.ijimpeng.2019.103357_bib0028 article-title: Fracture characteristics of three metals subjected to various Strains, strain Rates, temperatures and Pressures publication-title: Eng Fract Mech doi: 10.1016/0013-7944(85)90052-9 – volume: 93 start-page: 8 year: 2016 ident: 10.1016/j.ijimpeng.2019.103357_bib0009 article-title: A physically-based, quasilinear viscoelasticity model for the dynamic response of polyurea publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2016.04.027 – volume: 48 start-page: 2208 issue: 8 year: 2007 ident: 10.1016/j.ijimpeng.2019.103357_bib0003 article-title: Stress-strain behavior of a polyurea and a polyurethane from low to high strain rates publication-title: Polymer (Guildf) doi: 10.1016/j.polymer.2007.02.058 – volume: 27 start-page: 494 issue: 02 year: 2012 ident: 10.1016/j.ijimpeng.2019.103357_bib0005 article-title: Dynamic tensile strength of polyurea publication-title: J Mater Res doi: 10.1557/jmr.2011.405 – ident: 10.1016/j.ijimpeng.2019.103357_bib0026 – volume: 51 start-page: 13 year: 2013 ident: 10.1016/j.ijimpeng.2019.103357_bib0019 article-title: Deformation of polyurea-coated steel plates under localised blast loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2012.08.005 – volume: 27 start-page: 868 issue: 6 year: 2011 ident: 10.1016/j.ijimpeng.2019.103357_bib0010 article-title: Rate dependent finite strain constitutive model of polyurea publication-title: Int J Plasticity doi: 10.1016/j.ijplas.2010.10.001 |
SSID | ssj0017050 |
Score | 2.5109963 |
Snippet | •Impact resistance of polyurea-steel composite plates to low velocity impact is researched experimentally and numerically.•A numerical simulation method for... Experimental and numerical studies on the response of polyurea coated steel plates to low velocity impact of a cylindrical hammer are presented in this paper.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103357 |
SubjectTerms | Composite structures Computer simulation Drop hammers Energy absorption Fracture Impact resistance Low carbon steels Low velocity impact Paper machines Polyurea Polyurea-steel composite plate Steel plates Thickness |
Title | Study on the impact resistance of polyurea-steel composite plates to low velocity impact |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2019.103357 https://www.proquest.com/docview/2317027288 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jXvQg_sQfc-TgtWu7JG16HMMxFXfRwW6hSVPZKO3Qiuzi3-57azumCDt4bElC-_Ly3pfwfS-E3EaBgbiYcEdaljrcMu1EVniO9VgahjaOmMED_adJMJ7yh5mYtciw0cIgrbKO_VVMX0fr-o1bW9NdzufuMzgnh_w3Awji4bpFBTsP0ct7XxuaB1aLWZ-zQGMHW2-phBe9-WIO4DR_RYpXhPpzhmnq7wT1K1Sv88_oiBzWwJEOqm87Ji2bn5CDrXKCp2SGpMAVLXIKqI5W-kcK22mEiPBftEjpsshWyEN3YHJtRpFQjqwtS5cZgk5aFjQrPikSiQzg83qQMzId3b0Mx059c4JjGPdKMLe2FvMQN76nARP5WnpBHKVx6KfCM7HRMkoSpmXA-ozBliYNUZHKuOBGppadk3Ze5PaCUBmbRGjZD3UU8yQWcd8EnjSBYaHxA5FcEtGYS5m6rDjebpGphj-2UI2ZFZpZVWa-JO6m37IqrLGzR9TMhvrhIgqi_86-nWb6VL1I3xVA2xB25X0pr_4x9DXZx6dKn9gh7fLtw94AUCl1d-2JXbI3uH8cT74BwJ3pew |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VMgAD4inK0wNrqFvn4YyoArWUdgGkblbsOKhVlFRQhPj33DVOBQiJgTXJWcln--6z890Z4DIODfrF1PekFZnnW6G92Abcs1xkUWSTWBja0B-Nw_6TfzcJJg3o1bkwJKt0vr_y6Utv7a60HZrt-XTafsDB6WP8myAF4TRv12CdqlMFTVi_Hgz749XPhIgvD2ql5z0y-JIoPLuazqbIT4tnUnnFlIIuKFL9HqN-eOtlCLrdgW3HHdl19Xq70LDFHmx9qSi4DxPSBX6wsmBI7FiVAslwRU0sET-NlRmbl_kHSdE97F-bM9KUk3DLsnlOvJMtSpaX74y0RAYpumvkAJ5ubx57fc8dnuAZ4fMFIq6tpVDkmw7XSIs6WvIwibMk6mQBN4nRMk5ToWUoukLgqiaLKClVIIZGZlYcQrMoC3sETCYmDbTsRjpO_DQJkq4JuTShEZHphEHagqCGSxlXWZwOuMhVLSGbqRpmRTCrCuYWtFd286q2xp8Wcd0b6tsoURgA_rQ9rbtPuXn6qpDdRrgw70p5_I-mL2Cj_zi6V_eD8fAENulOla54Cs3Fy5s9Q96y0OduXH4CwtXsLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+the+impact+resistance+of+polyurea-steel+composite+plates+to+low+velocity+impact&rft.jtitle=International+journal+of+impact+engineering&rft.au=Jiang%2C+Yuexin&rft.au=Zhang%2C+Boyi&rft.au=Wei%2C+Jianshu&rft.au=Wang%2C+Wei&rft.date=2019-11-01&rft.pub=Elsevier+BV&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=133&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijimpeng.2019.103357&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |