Study on the impact resistance of polyurea-steel composite plates to low velocity impact

•Impact resistance of polyurea-steel composite plates to low velocity impact is researched experimentally and numerically.•A numerical simulation method for the simulation of the impact processes is introduced.•The mechanisms of the polyurea layers on the improvements of impact resistance of the com...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 133; p. 103357
Main Authors Jiang, Yuexin, Zhang, Boyi, Wei, Jianshu, Wang, Wei
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Impact resistance of polyurea-steel composite plates to low velocity impact is researched experimentally and numerically.•A numerical simulation method for the simulation of the impact processes is introduced.•The mechanisms of the polyurea layers on the improvements of impact resistance of the composite plates are investigated and presented.•The relationships of the thicknesses of polyurea layers and the impact resistances of the composite plates are presented and discussed.•A parameter was introduced to characterize the energy absorption efficiency of the composite plates. Experimental and numerical studies on the response of polyurea coated steel plates to low velocity impact of a cylindrical hammer are presented in this paper. Low carbon steel plates were made and coated with polyurea layers to enhance their impact resistances. The polyurea-steel composite plates were constrained by a test rig and impacted by a blunt cylinder hammer using a drop weight machine. Numerical simulations of the impact processes were performed using the finite element code LS-DYNA. The numerical simulation method was validated by comparing its results with the experiments’. The experimental results showed that the polyurea coatings can effectively improve the ultimate energy absorption capacity of the steel plates. The decreasing order of the ultimate energy absorption capacity of the composite plates when coated with same thickness of polyurea layers was: the upper-side-coated plates, the double-side coated plates and the lower-side-coated plates. In order to quantify the energy absorption efficiency of the composite plates, a parameter Ed was proposed, and it was found that the composite plate coated with 4 mm polyurea on its upper side had the greatest value of Ed among all the plates.
AbstractList Experimental and numerical studies on the response of polyurea coated steel plates to low velocity impact of a cylindrical hammer are presented in this paper. Low carbon steel plates were made and coated with polyurea layers to enhance their impact resistances. The polyurea-steel composite plates were constrained by a test rig and impacted by a blunt cylinder hammer using a drop weight machine. Numerical simulations of the impact processes were performed using the finite element code LS-DYNA. The numerical simulation method was validated by comparing its results with the experiments'. The experimental results showed that the polyurea coatings can effectively improve the ultimate energy absorption capacity of the steel plates. The decreasing order of the ultimate energy absorption capacity of the composite plates when coated with same thickness of polyurea layers was: the upper-side-coated plates, the double-side coated plates and the lower-side-coated plates. In order to quantify the energy absorption efficiency of the composite plates, a parameter Ed was proposed, and it was found that the composite plate coated with 4 mm polyurea on its upper side had the greatest value of Ed among all the plates.
•Impact resistance of polyurea-steel composite plates to low velocity impact is researched experimentally and numerically.•A numerical simulation method for the simulation of the impact processes is introduced.•The mechanisms of the polyurea layers on the improvements of impact resistance of the composite plates are investigated and presented.•The relationships of the thicknesses of polyurea layers and the impact resistances of the composite plates are presented and discussed.•A parameter was introduced to characterize the energy absorption efficiency of the composite plates. Experimental and numerical studies on the response of polyurea coated steel plates to low velocity impact of a cylindrical hammer are presented in this paper. Low carbon steel plates were made and coated with polyurea layers to enhance their impact resistances. The polyurea-steel composite plates were constrained by a test rig and impacted by a blunt cylinder hammer using a drop weight machine. Numerical simulations of the impact processes were performed using the finite element code LS-DYNA. The numerical simulation method was validated by comparing its results with the experiments’. The experimental results showed that the polyurea coatings can effectively improve the ultimate energy absorption capacity of the steel plates. The decreasing order of the ultimate energy absorption capacity of the composite plates when coated with same thickness of polyurea layers was: the upper-side-coated plates, the double-side coated plates and the lower-side-coated plates. In order to quantify the energy absorption efficiency of the composite plates, a parameter Ed was proposed, and it was found that the composite plate coated with 4 mm polyurea on its upper side had the greatest value of Ed among all the plates.
ArticleNumber 103357
Author Zhang, Boyi
Wei, Jianshu
Wang, Wei
Jiang, Yuexin
Author_xml – sequence: 1
  givenname: Yuexin
  surname: Jiang
  fullname: Jiang, Yuexin
  organization: School of Civil Engineering, Harbin Institute of Technology, No. 73, Huanghe Road, Nan'gang District, Harbin, Heilongjiang Province, China
– sequence: 2
  givenname: Boyi
  surname: Zhang
  fullname: Zhang, Boyi
  email: zhangby@hit.edu.cn
  organization: School of Civil Engineering, Harbin Institute of Technology, No. 73, Huanghe Road, Nan'gang District, Harbin, Heilongjiang Province, China
– sequence: 3
  givenname: Jianshu
  surname: Wei
  fullname: Wei, Jianshu
  organization: Shanghai Dragon Industrial Engineering Co. Ltd., Shanghai 200122, China
– sequence: 4
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  email: wwang@hit.edu.cn
  organization: School of Civil Engineering, Harbin Institute of Technology, No. 73, Huanghe Road, Nan'gang District, Harbin, Heilongjiang Province, China
BookMark eNqFkE9LxDAQxYOs4O7qV5CA565J0zYteFAW_8GCBxX2FtJ0qindpibpSr-9WaoXL3saGN57M--3QLPOdIDQJSUrSmh23ax0o3c9dB-rmNAiLBlL-Qma05wXEUtJMUNzwlkS8YRtz9DCuYYQyklK5mj76odqxKbD_hNwiJHKYwtOOy87BdjUuDftOFiQkfMALVZm1xunPeC-lR4c9ga35hvvoTVK-_E35Byd1rJ1cPE7l-j94f5t_RRtXh6f13ebSLGE-KiAEoBkPE8UJWVKE1rmJJNFLTmtU6KkKvOiqliZZyxmLCNpzbOEhzZpovIa2BJdTbm9NV8DOC8aM9gunBQxCyVjHud5UN1MKmWNcxZqEV6VXpvOW6lbQYk4sBSN-GMpDizFxDLYs3_23uqdtONx4-1khIBgr8EKpzQEsJW2oLyojD4W8QP-NJVj
CitedBy_id crossref_primary_10_1016_j_istruc_2024_106090
crossref_primary_10_1016_j_istruc_2025_108194
crossref_primary_10_1016_j_porgcoat_2025_109127
crossref_primary_10_1016_j_mechmat_2024_104979
crossref_primary_10_1016_j_jlp_2020_104234
crossref_primary_10_1080_15376494_2025_2471034
crossref_primary_10_1115_1_4051238
crossref_primary_10_1016_j_jcis_2023_04_047
crossref_primary_10_3390_polym16233286
crossref_primary_10_1142_S0219455422500377
crossref_primary_10_1016_j_mechmat_2022_104548
crossref_primary_10_3390_polym16030440
crossref_primary_10_1007_s11665_023_08749_w
crossref_primary_10_1016_j_istruc_2023_01_089
crossref_primary_10_1016_j_finel_2020_103501
crossref_primary_10_1016_j_mtcomm_2023_105577
crossref_primary_10_3390_ma15113918
crossref_primary_10_1016_j_jiec_2021_10_017
crossref_primary_10_3390_polym17030385
crossref_primary_10_1016_j_conbuildmat_2022_127749
crossref_primary_10_1016_j_tws_2021_107747
crossref_primary_10_1016_j_jobe_2024_109882
crossref_primary_10_1021_acsabm_3c01134
crossref_primary_10_1002_app_55366
crossref_primary_10_1016_j_ijimpeng_2022_104265
crossref_primary_10_1016_j_tws_2023_110912
crossref_primary_10_1016_j_ijimpeng_2022_104184
crossref_primary_10_1016_j_cej_2022_138350
crossref_primary_10_1016_j_compstruct_2023_116813
crossref_primary_10_3390_polym11111888
crossref_primary_10_1016_j_commatsci_2021_110504
crossref_primary_10_3390_polym16091249
crossref_primary_10_1007_s10443_023_10160_6
crossref_primary_10_1016_j_commatsci_2020_109951
crossref_primary_10_1007_s12206_021_1113_z
crossref_primary_10_1016_j_cscm_2022_e01695
crossref_primary_10_1007_s43452_022_00539_w
crossref_primary_10_1016_j_ijimpeng_2022_104256
crossref_primary_10_1115_1_4048319
crossref_primary_10_1016_j_ceramint_2024_08_009
crossref_primary_10_1016_j_ijimpeng_2022_104250
crossref_primary_10_1177_13694332221088945
crossref_primary_10_3390_polym15010041
crossref_primary_10_1016_j_porgcoat_2024_108249
crossref_primary_10_1016_j_ijimpeng_2025_105284
crossref_primary_10_1080_13588265_2022_2075122
crossref_primary_10_1016_j_eml_2021_101238
crossref_primary_10_1016_j_jobe_2021_103763
crossref_primary_10_1016_j_mtcomm_2021_102089
crossref_primary_10_1142_S0219455423300021
crossref_primary_10_1080_13588265_2022_2111487
crossref_primary_10_1016_j_tws_2020_106819
crossref_primary_10_1016_j_commatsci_2021_111166
crossref_primary_10_3390_polym14132670
crossref_primary_10_1016_j_dt_2023_01_020
crossref_primary_10_1016_j_ijimpeng_2023_104516
Cites_doi 10.1061/(ASCE)0733-9445(2005)131:8(1194)
10.1016/j.mechmat.2010.08.004
10.1016/j.matdes.2013.07.020
10.1016/j.polymer.2006.11.051
10.21236/AD0144762
10.1016/j.polymer.2005.10.107
10.1080/1023666X.2011.587944
10.1016/j.polymer.2012.06.030
10.1080/14786430600833198
10.1016/j.ijsolstr.2008.03.017
10.1016/j.ijimpeng.2008.12.010
10.1016/j.ijimpeng.2009.04.002
10.1016/j.mechmat.2013.03.008
10.1016/j.matdes.2013.05.060
10.1007/s11665-011-9875-6
10.1061/(ASCE)0887-3828(2004)18:2(100)
10.1016/j.matdes.2013.11.063
10.1016/j.mechmat.2009.09.009
10.1016/j.compstruct.2009.09.057
10.1016/j.mechmat.2006.08.002
10.1016/j.ijimpeng.2009.04.005
10.1016/j.matdes.2013.02.063
10.1007/s11340-008-9201-x
10.1016/0013-7944(85)90052-9
10.1016/j.jmps.2016.04.027
10.1016/j.polymer.2007.02.058
10.1557/jmr.2011.405
10.1016/j.ijimpeng.2012.08.005
10.1016/j.ijplas.2010.10.001
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Nov 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 2019
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijimpeng.2019.103357
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3509
ExternalDocumentID 10_1016_j_ijimpeng_2019_103357
S0734743X19301538
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c340t-9ebee06784c10b5141b806a9fa71f50cacb89dd3b863233605f764773454c8fe3
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Sun Jul 13 03:41:37 EDT 2025
Thu Apr 24 23:00:25 EDT 2025
Tue Jul 01 03:54:28 EDT 2025
Fri Feb 23 02:28:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Polyurea
Impact resistance
Fracture
Polyurea-steel composite plate
Low velocity impact
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-9ebee06784c10b5141b806a9fa71f50cacb89dd3b863233605f764773454c8fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2317027288
PQPubID 2045463
ParticipantIDs proquest_journals_2317027288
crossref_citationtrail_10_1016_j_ijimpeng_2019_103357
crossref_primary_10_1016_j_ijimpeng_2019_103357
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2019_103357
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of impact engineering
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Roland, Fragiadakis, Gamache (bib0022) 2010; 92
Mohotti, Ngo, Raman (bib0025) 2014; 56
Shim, Mohr (bib0010) 2011; 27
Mohotti, Ngo, Mendis (bib0024) 2013; 52
Roland, Twigg, Vu (bib0002) 2007; 48
Johnson G.J., Cook W.H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the Seventh International Symposium on Ballistics, The Hague, 541–7.
Grujicic, He, Pandurangan (bib0011) 2012; 21
Cowper G.R., Symonds P.S.Strain-hardening and strain-rate effects in the impact loading of cantilever beams. Division of applied mathematics, Brown University, 1957.
Yi, Boyce, Lee (bib0001) 2006; 47
Amini, Simon, Nemat-Nasser (bib0021) 2010; 42
Sarva, Deschanel, Boyce (bib0003) 2007; 48
Davidson, Fisher, Hammons (bib0014) 2005; 131
Clifton, Wang, Jiao (bib0009) 2016; 93
Mohotti, Ali, Ngo (bib0013) 2014; 53
Amirkhizi, Isaacs (bib0008) 2006; 86
Raman, Ngo, Lu (bib0006) 2013; 50
Qiao, Wu (bib0007) 2011; 16
Xue, Mock, Belytschko (bib0023) 2010; 42
Ackland, Anderson, Ngo (bib0019) 2013; 51
Dorogoy, Rittel (bib0027) 2009; 49
Youssef, Gupta (bib0005) 2012; 27
Amini, Isaacs, Nemat-Nasser (bib0016) 2010; 37
Xue, Hutchinson (bib0031) 2007; 39
Samiee, Amirkhizi, Nemat-Nasser (bib0017) 2013; 64
Shim, Mohr (bib0004) 2009; 36
shanbin, luyao, sai (bib0029) 2014; 37
Hammons, Davidson, Connell (bib0015) 2004; 18
Gamonpilas, McCuiston (bib0012) 2012; 53
Amini, Amirkhizi, Nemat-Nasser (bib0020) 2010; 37
McShane, Stewart, Aronson (bib0018) 2008; 45
Johnson, Cook (bib0028) 1985; 21
Shim (10.1016/j.ijimpeng.2019.103357_bib0010) 2011; 27
Davidson (10.1016/j.ijimpeng.2019.103357_bib0014) 2005; 131
Mohotti (10.1016/j.ijimpeng.2019.103357_bib0024) 2013; 52
Gamonpilas (10.1016/j.ijimpeng.2019.103357_bib0012) 2012; 53
10.1016/j.ijimpeng.2019.103357_bib0026
Mohotti (10.1016/j.ijimpeng.2019.103357_bib0013) 2014; 53
Shim (10.1016/j.ijimpeng.2019.103357_bib0004) 2009; 36
Ackland (10.1016/j.ijimpeng.2019.103357_bib0019) 2013; 51
Raman (10.1016/j.ijimpeng.2019.103357_bib0006) 2013; 50
Samiee (10.1016/j.ijimpeng.2019.103357_bib0017) 2013; 64
Roland (10.1016/j.ijimpeng.2019.103357_bib0002) 2007; 48
Youssef (10.1016/j.ijimpeng.2019.103357_bib0005) 2012; 27
10.1016/j.ijimpeng.2019.103357_bib0030
Xue (10.1016/j.ijimpeng.2019.103357_bib0023) 2010; 42
Sarva (10.1016/j.ijimpeng.2019.103357_bib0003) 2007; 48
Mohotti (10.1016/j.ijimpeng.2019.103357_bib0025) 2014; 56
Hammons (10.1016/j.ijimpeng.2019.103357_bib0015) 2004; 18
McShane (10.1016/j.ijimpeng.2019.103357_bib0018) 2008; 45
Dorogoy (10.1016/j.ijimpeng.2019.103357_bib0027) 2009; 49
Amini (10.1016/j.ijimpeng.2019.103357_bib0020) 2010; 37
Amini (10.1016/j.ijimpeng.2019.103357_bib0021) 2010; 42
Grujicic (10.1016/j.ijimpeng.2019.103357_bib0011) 2012; 21
Yi (10.1016/j.ijimpeng.2019.103357_bib0001) 2006; 47
Qiao (10.1016/j.ijimpeng.2019.103357_bib0007) 2011; 16
Clifton (10.1016/j.ijimpeng.2019.103357_bib0009) 2016; 93
Roland (10.1016/j.ijimpeng.2019.103357_bib0022) 2010; 92
Xue (10.1016/j.ijimpeng.2019.103357_bib0031) 2007; 39
Johnson (10.1016/j.ijimpeng.2019.103357_bib0028) 1985; 21
Amini (10.1016/j.ijimpeng.2019.103357_bib0016) 2010; 37
shanbin (10.1016/j.ijimpeng.2019.103357_bib0029) 2014; 37
Amirkhizi (10.1016/j.ijimpeng.2019.103357_bib0008) 2006; 86
References_xml – volume: 48
  start-page: 2208
  year: 2007
  end-page: 2213
  ident: bib0003
  article-title: Stress-strain behavior of a polyurea and a polyurethane from low to high strain rates
  publication-title: Polymer (Guildf)
– volume: 93
  start-page: 8
  year: 2016
  end-page: 15
  ident: bib0009
  article-title: A physically-based, quasilinear viscoelasticity model for the dynamic response of polyurea
  publication-title: J Mech Phys Solids
– volume: 52
  start-page: 1
  year: 2013
  end-page: 16
  ident: bib0024
  article-title: Polyurea coated composite aluminium plates subjected to high velocity projectile impact
  publication-title: Mater Des
– volume: 37
  start-page: 90
  year: 2010
  end-page: 102
  ident: bib0020
  article-title: Numerical modeling of response of monolithic and bilayer plates to impulsive loads
  publication-title: Int J Impact Eng
– volume: 16
  start-page: 290
  year: 2011
  end-page: 297
  ident: bib0007
  article-title: Rate-Dependent tensile behavior of polyurea at low strain Rates
  publication-title: Int J Polymer Anal Charactreizat
– reference: Cowper G.R., Symonds P.S.Strain-hardening and strain-rate effects in the impact loading of cantilever beams. Division of applied mathematics, Brown University, 1957.
– volume: 86
  start-page: 5847
  year: 2006
  end-page: 5866
  ident: bib0008
  article-title: An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects
  publication-title: Philosoph Mag
– volume: 27
  start-page: 494
  year: 2012
  end-page: 499
  ident: bib0005
  article-title: Dynamic tensile strength of polyurea
  publication-title: J Mater Res
– volume: 53
  start-page: 830
  year: 2014
  end-page: 837
  ident: bib0013
  article-title: Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading
  publication-title: Mater Des
– volume: 92
  start-page: 1059
  year: 2010
  end-page: 1064
  ident: bib0022
  article-title: Elastomer–steel laminate armor
  publication-title: Compos Struct
– reference: Johnson G.J., Cook W.H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the Seventh International Symposium on Ballistics, The Hague, 541–7.
– volume: 18
  start-page: 100
  year: 2004
  end-page: 106
  ident: bib0015
  article-title: Explosive testing of polymer retrofit masonry Walls[J]
  publication-title: J Perform Constr Fac
– volume: 37
  start-page: 641
  year: 2014
  end-page: 694
  ident: bib0029
  article-title: Characterization of mechanical properties of aluminium alloy 6061t6 and low carbon steel q235 based on gurson-jc model (China)
  publication-title: J Hefei Univ Technol
– volume: 53
  start-page: 3655
  year: 2012
  end-page: 3658
  ident: bib0012
  article-title: A non-linear viscoelastic material constitutive model for polyurea
  publication-title: Polymer (Guildf)
– volume: 42
  start-page: 615
  year: 2010
  end-page: 627
  ident: bib0021
  article-title: Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments
  publication-title: Mech Mater
– volume: 21
  start-page: 2
  year: 2012
  end-page: 16
  ident: bib0011
  article-title: Experimental characterization and material-model development for microphase-segregated Polyurea: an Overview
  publication-title: J Mater Eng Perform
– volume: 50
  start-page: 124
  year: 2013
  end-page: 129
  ident: bib0006
  article-title: Experimental investigation on the tensile behavior of polyurea at high strain rates
  publication-title: Mater Des
– volume: 48
  start-page: 574
  year: 2007
  end-page: 578
  ident: bib0002
  article-title: High strain rate mechanical behavior of polyurea
  publication-title: Polymer (Guildf)
– volume: 64
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib0017
  article-title: Numerical study of the effect of polyurea on the performance of steel plates under blast loads
  publication-title: Mech Mater
– volume: 36
  start-page: 1116
  year: 2009
  end-page: 1127
  ident: bib0004
  article-title: Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates
  publication-title: Int J Impact Eng
– volume: 49
  start-page: 881
  year: 2009
  end-page: 885
  ident: bib0027
  article-title: Determination of the johnson-cook material parameters using the SCS Specimen
  publication-title: Exp Mech
– volume: 51
  start-page: 13
  year: 2013
  end-page: 22
  ident: bib0019
  article-title: Deformation of polyurea-coated steel plates under localised blast loading
  publication-title: Int J Impact Eng
– volume: 56
  start-page: 696
  year: 2014
  end-page: 713
  ident: bib0025
  article-title: Plastic deformation of polyurea coated composite aluminium plates subjected to low velocity impact
  publication-title: Mater Des
– volume: 47
  start-page: 319
  year: 2006
  end-page: 329
  ident: bib0001
  article-title: Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes
  publication-title: Polymer (Guildf)
– volume: 131
  start-page: 1194
  year: 2005
  end-page: 1205
  ident: bib0014
  article-title: Failure mechanisms of polymer-reinforced concrete masonry walls subjected to Blast
  publication-title: J Struct Eng
– volume: 21
  start-page: 31
  year: 1985
  end-page: 48
  ident: bib0028
  article-title: Fracture characteristics of three metals subjected to various Strains, strain Rates, temperatures and Pressures
  publication-title: Eng Fract Mech
– volume: 39
  start-page: 473
  year: 2007
  end-page: 487
  ident: bib0031
  article-title: Neck retardation and enhanced energy absorption in metal–elastomer bilayers
  publication-title: Mech Mater
– volume: 37
  start-page: 82
  year: 2010
  end-page: 89
  ident: bib0016
  article-title: Experimental investigation of response of monolithic and bilayer plates to impulsive loads
  publication-title: Int J Impact Eng
– volume: 42
  start-page: 981
  year: 2010
  end-page: 1003
  ident: bib0023
  article-title: Penetration of DH-36 steel plates with and without polyurea coating
  publication-title: Mech Mater
– volume: 27
  start-page: 868
  year: 2011
  end-page: 886
  ident: bib0010
  article-title: Rate dependent finite strain constitutive model of polyurea
  publication-title: Int J Plasticity
– volume: 45
  start-page: 4407
  year: 2008
  end-page: 4426
  ident: bib0018
  article-title: Dynamic rupture of polymer–metal bilayer plates
  publication-title: Int J Solids Struct
– volume: 131
  start-page: 1194
  issue: 8
  year: 2005
  ident: 10.1016/j.ijimpeng.2019.103357_bib0014
  article-title: Failure mechanisms of polymer-reinforced concrete masonry walls subjected to Blast
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2005)131:8(1194)
– volume: 42
  start-page: 981
  issue: 11
  year: 2010
  ident: 10.1016/j.ijimpeng.2019.103357_bib0023
  article-title: Penetration of DH-36 steel plates with and without polyurea coating
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2010.08.004
– volume: 53
  start-page: 830
  year: 2014
  ident: 10.1016/j.ijimpeng.2019.103357_bib0013
  article-title: Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.07.020
– volume: 37
  start-page: 641
  issue: 6
  year: 2014
  ident: 10.1016/j.ijimpeng.2019.103357_bib0029
  article-title: Characterization of mechanical properties of aluminium alloy 6061t6 and low carbon steel q235 based on gurson-jc model (China)
  publication-title: J Hefei Univ Technol
– volume: 48
  start-page: 574
  issue: 2
  year: 2007
  ident: 10.1016/j.ijimpeng.2019.103357_bib0002
  article-title: High strain rate mechanical behavior of polyurea
  publication-title: Polymer (Guildf)
  doi: 10.1016/j.polymer.2006.11.051
– ident: 10.1016/j.ijimpeng.2019.103357_bib0030
  doi: 10.21236/AD0144762
– volume: 47
  start-page: 319
  issue: 1
  year: 2006
  ident: 10.1016/j.ijimpeng.2019.103357_bib0001
  article-title: Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes
  publication-title: Polymer (Guildf)
  doi: 10.1016/j.polymer.2005.10.107
– volume: 16
  start-page: 290
  issue: 5
  year: 2011
  ident: 10.1016/j.ijimpeng.2019.103357_bib0007
  article-title: Rate-Dependent tensile behavior of polyurea at low strain Rates
  publication-title: Int J Polymer Anal Charactreizat
  doi: 10.1080/1023666X.2011.587944
– volume: 53
  start-page: 3655
  issue: 17
  year: 2012
  ident: 10.1016/j.ijimpeng.2019.103357_bib0012
  article-title: A non-linear viscoelastic material constitutive model for polyurea
  publication-title: Polymer (Guildf)
  doi: 10.1016/j.polymer.2012.06.030
– volume: 86
  start-page: 5847
  issue: 36
  year: 2006
  ident: 10.1016/j.ijimpeng.2019.103357_bib0008
  article-title: An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects
  publication-title: Philosoph Mag
  doi: 10.1080/14786430600833198
– volume: 45
  start-page: 4407
  issue: 16
  year: 2008
  ident: 10.1016/j.ijimpeng.2019.103357_bib0018
  article-title: Dynamic rupture of polymer–metal bilayer plates
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2008.03.017
– volume: 36
  start-page: 1116
  issue: 9
  year: 2009
  ident: 10.1016/j.ijimpeng.2019.103357_bib0004
  article-title: Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2008.12.010
– volume: 37
  start-page: 82
  issue: 1
  year: 2010
  ident: 10.1016/j.ijimpeng.2019.103357_bib0016
  article-title: Experimental investigation of response of monolithic and bilayer plates to impulsive loads
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2009.04.002
– volume: 64
  start-page: 1
  year: 2013
  ident: 10.1016/j.ijimpeng.2019.103357_bib0017
  article-title: Numerical study of the effect of polyurea on the performance of steel plates under blast loads
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2013.03.008
– volume: 52
  start-page: 1
  year: 2013
  ident: 10.1016/j.ijimpeng.2019.103357_bib0024
  article-title: Polyurea coated composite aluminium plates subjected to high velocity projectile impact
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.05.060
– volume: 21
  start-page: 2
  issue: 1
  year: 2012
  ident: 10.1016/j.ijimpeng.2019.103357_bib0011
  article-title: Experimental characterization and material-model development for microphase-segregated Polyurea: an Overview
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-011-9875-6
– volume: 18
  start-page: 100
  issue: 2
  year: 2004
  ident: 10.1016/j.ijimpeng.2019.103357_bib0015
  article-title: Explosive testing of polymer retrofit masonry Walls[J]
  publication-title: J Perform Constr Fac
  doi: 10.1061/(ASCE)0887-3828(2004)18:2(100)
– volume: 56
  start-page: 696
  year: 2014
  ident: 10.1016/j.ijimpeng.2019.103357_bib0025
  article-title: Plastic deformation of polyurea coated composite aluminium plates subjected to low velocity impact
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.11.063
– volume: 42
  start-page: 615
  issue: 6
  year: 2010
  ident: 10.1016/j.ijimpeng.2019.103357_bib0021
  article-title: Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2009.09.009
– volume: 92
  start-page: 1059
  issue: 5
  year: 2010
  ident: 10.1016/j.ijimpeng.2019.103357_bib0022
  article-title: Elastomer–steel laminate armor
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2009.09.057
– volume: 39
  start-page: 473
  issue: 5
  year: 2007
  ident: 10.1016/j.ijimpeng.2019.103357_bib0031
  article-title: Neck retardation and enhanced energy absorption in metal–elastomer bilayers
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2006.08.002
– volume: 37
  start-page: 90
  issue: 1
  year: 2010
  ident: 10.1016/j.ijimpeng.2019.103357_bib0020
  article-title: Numerical modeling of response of monolithic and bilayer plates to impulsive loads
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2009.04.005
– volume: 50
  start-page: 124
  year: 2013
  ident: 10.1016/j.ijimpeng.2019.103357_bib0006
  article-title: Experimental investigation on the tensile behavior of polyurea at high strain rates
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.02.063
– volume: 49
  start-page: 881
  issue: 6
  year: 2009
  ident: 10.1016/j.ijimpeng.2019.103357_bib0027
  article-title: Determination of the johnson-cook material parameters using the SCS Specimen
  publication-title: Exp Mech
  doi: 10.1007/s11340-008-9201-x
– volume: 21
  start-page: 31
  issue: 1
  year: 1985
  ident: 10.1016/j.ijimpeng.2019.103357_bib0028
  article-title: Fracture characteristics of three metals subjected to various Strains, strain Rates, temperatures and Pressures
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(85)90052-9
– volume: 93
  start-page: 8
  year: 2016
  ident: 10.1016/j.ijimpeng.2019.103357_bib0009
  article-title: A physically-based, quasilinear viscoelasticity model for the dynamic response of polyurea
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2016.04.027
– volume: 48
  start-page: 2208
  issue: 8
  year: 2007
  ident: 10.1016/j.ijimpeng.2019.103357_bib0003
  article-title: Stress-strain behavior of a polyurea and a polyurethane from low to high strain rates
  publication-title: Polymer (Guildf)
  doi: 10.1016/j.polymer.2007.02.058
– volume: 27
  start-page: 494
  issue: 02
  year: 2012
  ident: 10.1016/j.ijimpeng.2019.103357_bib0005
  article-title: Dynamic tensile strength of polyurea
  publication-title: J Mater Res
  doi: 10.1557/jmr.2011.405
– ident: 10.1016/j.ijimpeng.2019.103357_bib0026
– volume: 51
  start-page: 13
  year: 2013
  ident: 10.1016/j.ijimpeng.2019.103357_bib0019
  article-title: Deformation of polyurea-coated steel plates under localised blast loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2012.08.005
– volume: 27
  start-page: 868
  issue: 6
  year: 2011
  ident: 10.1016/j.ijimpeng.2019.103357_bib0010
  article-title: Rate dependent finite strain constitutive model of polyurea
  publication-title: Int J Plasticity
  doi: 10.1016/j.ijplas.2010.10.001
SSID ssj0017050
Score 2.5109963
Snippet •Impact resistance of polyurea-steel composite plates to low velocity impact is researched experimentally and numerically.•A numerical simulation method for...
Experimental and numerical studies on the response of polyurea coated steel plates to low velocity impact of a cylindrical hammer are presented in this paper....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103357
SubjectTerms Composite structures
Computer simulation
Drop hammers
Energy absorption
Fracture
Impact resistance
Low carbon steels
Low velocity impact
Paper machines
Polyurea
Polyurea-steel composite plate
Steel plates
Thickness
Title Study on the impact resistance of polyurea-steel composite plates to low velocity impact
URI https://dx.doi.org/10.1016/j.ijimpeng.2019.103357
https://www.proquest.com/docview/2317027288
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jXvQg_sQfc-TgtWu7JG16HMMxFXfRwW6hSVPZKO3Qiuzi3-57azumCDt4bElC-_Ly3pfwfS-E3EaBgbiYcEdaljrcMu1EVniO9VgahjaOmMED_adJMJ7yh5mYtciw0cIgrbKO_VVMX0fr-o1bW9NdzufuMzgnh_w3Awji4bpFBTsP0ct7XxuaB1aLWZ-zQGMHW2-phBe9-WIO4DR_RYpXhPpzhmnq7wT1K1Sv88_oiBzWwJEOqm87Ji2bn5CDrXKCp2SGpMAVLXIKqI5W-kcK22mEiPBftEjpsshWyEN3YHJtRpFQjqwtS5cZgk5aFjQrPikSiQzg83qQMzId3b0Mx059c4JjGPdKMLe2FvMQN76nARP5WnpBHKVx6KfCM7HRMkoSpmXA-ozBliYNUZHKuOBGppadk3Ze5PaCUBmbRGjZD3UU8yQWcd8EnjSBYaHxA5FcEtGYS5m6rDjebpGphj-2UI2ZFZpZVWa-JO6m37IqrLGzR9TMhvrhIgqi_86-nWb6VL1I3xVA2xB25X0pr_4x9DXZx6dKn9gh7fLtw94AUCl1d-2JXbI3uH8cT74BwJ3pew
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VMgAD4inK0wNrqFvn4YyoArWUdgGkblbsOKhVlFRQhPj33DVOBQiJgTXJWcln--6z890Z4DIODfrF1PekFZnnW6G92Abcs1xkUWSTWBja0B-Nw_6TfzcJJg3o1bkwJKt0vr_y6Utv7a60HZrt-XTafsDB6WP8myAF4TRv12CdqlMFTVi_Hgz749XPhIgvD2ql5z0y-JIoPLuazqbIT4tnUnnFlIIuKFL9HqN-eOtlCLrdgW3HHdl19Xq70LDFHmx9qSi4DxPSBX6wsmBI7FiVAslwRU0sET-NlRmbl_kHSdE97F-bM9KUk3DLsnlOvJMtSpaX74y0RAYpumvkAJ5ubx57fc8dnuAZ4fMFIq6tpVDkmw7XSIs6WvIwibMk6mQBN4nRMk5ToWUoukLgqiaLKClVIIZGZlYcQrMoC3sETCYmDbTsRjpO_DQJkq4JuTShEZHphEHagqCGSxlXWZwOuMhVLSGbqRpmRTCrCuYWtFd286q2xp8Wcd0b6tsoURgA_rQ9rbtPuXn6qpDdRrgw70p5_I-mL2Cj_zi6V_eD8fAENulOla54Cs3Fy5s9Q96y0OduXH4CwtXsLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+the+impact+resistance+of+polyurea-steel+composite+plates+to+low+velocity+impact&rft.jtitle=International+journal+of+impact+engineering&rft.au=Jiang%2C+Yuexin&rft.au=Zhang%2C+Boyi&rft.au=Wei%2C+Jianshu&rft.au=Wang%2C+Wei&rft.date=2019-11-01&rft.pub=Elsevier+BV&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=133&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijimpeng.2019.103357&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon