A Novel Shape Retrieval Method for 3D Mechanical Components Based on Object Projection, Pre-Trained Deep Learning Models and Autoencoder

The reuse of existing design models offers great potential in saving resources and generating an efficient workflow. In order to fully benefit from these advantages, it is necessary to develop methods that are able to retrieve mechanical engineering geometry from a query input. This paper aims to ad...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 154; p. 103417
Main Authors Bickel, S., Schleich, B., Wartzack, S.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN0010-4485
1879-2685
DOI10.1016/j.cad.2022.103417

Cover

Loading…
Abstract The reuse of existing design models offers great potential in saving resources and generating an efficient workflow. In order to fully benefit from these advantages, it is necessary to develop methods that are able to retrieve mechanical engineering geometry from a query input. This paper aims to address this problem by presenting a method that focuses on the needs of product development to retrieve similar components by comparing the geometrical similarity of existing parts. Therefore, a method is described, which first converts surface meshes into point clouds, rotates them, and then transforms the results into matrices. These are subsequently passed to a pre-trained Deep Learning network to extract the feature vector. A similarity between different geometries is calculated and evaluated based on this vector. The procedure employs a new type of part alignment, especially developed for mechanical engineering geometries. The method is presented in detail and several parameters affecting the accuracy of the retrieval are discussed. This is followed by a critical comparison with other shape retrieval approaches through a mechanical engineering benchmark data set. [Display omitted] •Method for retrieval of mechanical engineering components.•Transformation of geometries with the projection method into matrices.•Application of pre-trained Deep Learning networks to generate the feature vector.•Improving retrieval results through new alignment method.•Comparison of the new procedure with state of the art methods.
AbstractList The reuse of existing design models offers great potential in saving resources and generating an efficient workflow. In order to fully benefit from these advantages, it is necessary to develop methods that are able to retrieve mechanical engineering geometry from a query input. This paper aims to address this problem by presenting a method that focuses on the needs of product development to retrieve similar components by comparing the geometrical similarity of existing parts. Therefore, a method is described, which first converts surface meshes into point clouds, rotates them, and then transforms the results into matrices. These are subsequently passed to a pre-trained Deep Learning network to extract the feature vector. A similarity between different geometries is calculated and evaluated based on this vector. The procedure employs a new type of part alignment, especially developed for mechanical engineering geometries. The method is presented in detail and several parameters affecting the accuracy of the retrieval are discussed. This is followed by a critical comparison with other shape retrieval approaches through a mechanical engineering benchmark data set. [Display omitted] •Method for retrieval of mechanical engineering components.•Transformation of geometries with the projection method into matrices.•Application of pre-trained Deep Learning networks to generate the feature vector.•Improving retrieval results through new alignment method.•Comparison of the new procedure with state of the art methods.
ArticleNumber 103417
Author Schleich, B.
Bickel, S.
Wartzack, S.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0002-9558-3506
  surname: Bickel
  fullname: Bickel, S.
  email: bickel@mfk.fau.de
– sequence: 2
  givenname: B.
  surname: Schleich
  fullname: Schleich, B.
– sequence: 3
  givenname: S.
  surname: Wartzack
  fullname: Wartzack, S.
BookMark eNp9kMtOAyEUhonRxLb6AO54AKcCw9ziqrbektYarWtC4WBpptDA2MQ38LGlqSsXXR0O8MH5vz46dd4BQleUDCmh5c16qKQeMsJY6nNOqxPUo3XVZKysi1PUI4SSjPO6OEf9GNeEEEbzpod-RvjF76DF7yu5BfwGXbCwky2eQbfyGhsfcD5JnVpJZ1U6GPvNNv3tuojvZASNvcPz5RpUh1-D31fr3XVaQ7YI0rp0YwKwxVOQwVn3iWdeQxuxdBqPvjoPTqWNcIHOjGwjXP7VAfp4uF-Mn7Lp_PF5PJpmKuekyxpoJFkSIxnXxGjdlIwWylCojamBqbwuq0IaXi2LPJdas5SfyRJ4pcuCa54PUHV4VwUfYwAjlO3kfuYuTdsKSsReqFiLJFTshYqD0ETSf-Q22I0M30eZ2wOTEsPOQhBR2ZQYtA3JlNDeHqF_AXPokKk
CitedBy_id crossref_primary_10_1016_j_eswa_2023_122140
crossref_primary_10_1007_s11042_023_16376_9
crossref_primary_10_1016_j_aei_2025_103182
crossref_primary_10_1080_0951192X_2024_2382196
crossref_primary_10_1093_jcde_qwad070
crossref_primary_10_3103_S1068798X24703283
crossref_primary_10_1016_j_cad_2024_103752
crossref_primary_10_3390_su151712683
crossref_primary_10_1016_j_aei_2023_102259
crossref_primary_10_1016_j_cad_2024_103820
Cites_doi 10.1145/1060244.1060275
10.1016/j.procir.2016.04.173
10.1007/978-0-387-78414-4_1
10.1109/ICCV.2015.114
10.1007/s00371-008-0304-2
10.1109/5.726791
10.1016/j.procir.2021.01.065
10.1145/3095140.3095147
10.3722/cadaps.2013.789-802
10.1504/IJCAT.2005.006466
10.1016/j.cad.2005.02.011
10.1016/S0031-2023(97)00122-2
10.1109/CVPR.2015.7298845
10.1007/s11042-011-0873-3
10.1007/s11042-013-1850-9
10.1016/j.patrec.2011.01.003
10.1016/j.cad.2004.07.002
10.1007/s11263-010-0395-x
10.1007/s11704-015-4291-y
10.1007/s41095-020-0174-8
10.1007/s11042-007-0181-0
10.1109/CVPR.2018.00716
10.1109/TPAMI.2015.2424863
10.1016/j.cviu.2014.10.006
10.1016/j.cviu.2013.11.008
10.1016/j.cad.2006.06.007
10.1007/s00371-014-0935-4
10.1145/304012.304020
10.1007/s10669-019-09732-4
10.1109/CVPR.2016.308
10.1115/1.1577356
10.1016/j.cad.2019.03.005
10.1145/2377576.2377584
10.1145/1118890.1118893
10.1109/PROC.1984.13073
10.1109/TIP.2014.2336542
10.1016/j.patcog.2006.06.006
10.1145/3065386
10.1007/s00371-013-0819-z
10.1155/2017/6049750
10.1016/j.compind.2020.103320
10.1109/CVPR.2015.7298594
10.1007/s11263-009-0281-6
10.1016/S0010-4485(01)00178-6
10.1016/j.neucom.2015.08.127
10.1109/CVPR.2017.243
10.1109/CVPR.2018.00907
10.1007/s11042-012-1130-0
10.1007/s11042-020-10283-z
10.1145/571647.571648
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.cad.2022.103417
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2685
ExternalDocumentID 10_1016_j_cad_2022_103417
S0010448522001506
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACAZW
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c340t-9e9a0b0fa24d0fdd96215cf1e8ff8e2c38675af47b533add22682a6e47d654d43
IEDL.DBID .~1
ISSN 0010-4485
IngestDate Tue Jul 01 03:34:36 EDT 2025
Thu Apr 24 22:57:50 EDT 2025
Fri Feb 23 02:42:28 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Projection method
Part alignment
Shape retrieval
3D object retrieval
Autoencoder
Deep Learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-9e9a0b0fa24d0fdd96215cf1e8ff8e2c38675af47b533add22682a6e47d654d43
ORCID 0000-0002-9558-3506
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0010448522001506
ParticipantIDs crossref_citationtrail_10_1016_j_cad_2022_103417
crossref_primary_10_1016_j_cad_2022_103417
elsevier_sciencedirect_doi_10_1016_j_cad_2022_103417
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Computer aided design
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yavartanoo, Kim, Lee (b44) 2018
Iyer, Jayanti, Lou, Kalyanaraman, Ramani (b4) 2005; 37
Székely, Rizzo, Bakirov (b52) 2007
Pakkanen, Huhtala, Juuti, Lehtonen (b1) 2016; 50
Lecun, Bottou, Bengio, Haffner (b36) 1998; 86
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, p. 2818–2826.
Li, Johan (b79) 2013; 62
Su H, Maji S, Kalogerakis E, Learned-Miller E. Multi-view convo-lutional neural networks for 3d shape recognition. In: Proceedings of the IEEE international conference on computer vision, 2015, p. 945–53.
Horn (b25) 1984; 72
Shih, Lee, Hou, Yeh (b75) 2017; 15
Getto R, Kuijper A, Fellner DW. Unsupervised 3D object retrieval with parameter-free hierarchical clustering. In: Proceedings of the computer graphics international conference, 2017, p. 1–6.
Li, Lu, Godil, Schreck, Bustos, Ferreira, Furuya, Fonseca, Johan, Matsuda (b14) 2014; 119
Bickel, Sauer, Schleich, Wartzack (b43) 2021; 96
Bae, Park (b84) 2013; 29
Singh, Yadav, Rana (b50) 2013; 67
Aono, Koyanagi, Tatsuma (b70) 2013
Qi, Su, Mo, Guibas (b42) 2016
Ankerst, Kastenmüller, Kriegel, Seidl (b24) 1999
McWherter, Peabody, Regli, Shokoufandeh (b11) 2001
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. 2017. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, p. 4700–8.
Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (b60) 2016
Tangelder, Veltkamp (b21) 2008; 39
Godil (b57) 2020
Zhuang, Zhang, Hou, Zuo, Liu (b72) 2017; 2017
Cardone, Gupta, Karnik (b3) 2003; 3
Sfikas, Theoharis, Pratikakis (b73) 2011; 91
Zhu, Wang, Bai, Yao, Bai (b78) 2016; 204
Li, Zhang, Bai, Shao (b32) 2013
Liu (b33) 2012
Papadakis, Pratikakis, Theoharis, Perantonis (b34) 2010; 89
Stenholm, Corin Stig, Ivansen, Bergsjö (b2) 2019; 39
(b19) 2022
(b20) 2022
Chen, Tian, Shen, Ouhyoung (b29) 2003
Fang Y, Xie J, Dai G, Wang M, Zhu F, Xu T, Wong E. 3d deep shape descriptor. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, p. 2319–28.
Vranic (b83) 2005
Jagadeesan P, Wenzel J, Corney JR, Yan XT, Sherlock A, Torres-Sanchez C, Regli W. Validation of purdue engineer-ing shape benchmark clusters by crowdsourcing. In: Proceedings of the International Conference on Product Lifecycle Management, Bath, UK, 2009.
Hou, Zhang, Liu (b85) 2007
Cicirello VA, Regli WC. Resolving non-uniqueness in design feature histories. In: Proceedings of the fifth ACM symposium on solid modeling and applications, 1999, p. 76–84.
Lian, Godil, Sun (b30) 2010
(b7) 2022
Deng, Dong, Socher, Li, Li, Fei-Fei (b49) 2009
Spruegel, Bickel, Schleich, Wartzack (b45) 2021; 8
Vajna, Weber, Zeman, Hehenberger, Gerhard, Wartzack (b8) 2018
(b18) 2022
Loncaric (b9) 1998; 31
Chaudhari, Bilionis, Panchal (b6) 2019
Bustos, Keim, Saupe, Schreck, Vranić (b15) 2005; 37
Tatsuma, Aono (b66) 2009; 25
Vranic, Saupe (b35) 2004
Lupinetti, Pernot, Monti, Giannini (b23) 2019; 113
Sundar, Silver, Gagvani, Dickinson (b27) 2003
Li, Lu, Li, Godil, Schreck, Aono, Burtscher, Chen, Chowdhury, Fang (b13) 2015; 131
Zehtaban, Roller (b22) 2013; 10
El-Mehalawi, Miller (b26) 2003; 35
Cha (b51) 2007; 1
Kazhdan, Funkhouser, Rusinkiewicz (b86) 2003
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, p. 1–9.
Tatsuma, Aono (b76) 2009; 25
Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, p. 8697–8710.
Leifman G, Katz S, Tal A, Meir R. Signatures of 3D models for retrieval. In: Proceedings of the 4th Israel-Korea bi-national conference on geometric modeling and computer graphics, 2003, p. 159–63.
He, Zhang, Ren, Sun (b38) 2016
Kim, Yeo, Lee, Mun (b47) 2020; 123
Zhang X, Zhou X, Lin M, Sun J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, p. 6848–56.
Kim, Yeo, Cha, Mun (b46) 2021; 80
Chen, Fang, Yu, Tang (b74) 2015; 74
Zou, Ip, Wu, Chen, Yung, Chan (b82) 2014; 69
Shilane, Min, Kazhdan, Funkhouser (b54) 2004
Bai, Bai, Zhu, Latecki (b67) 2015; 37
Iyer, Jayanti, Lou, Kalyanaraman, Ramani (b5) 2005; 37
Xiao, Lai, Zhang, Li, Gao (b39) 2020; 6
Kalyanaraman, Iyer, Ramani (b48) 2006; 38
Madelmis, Daras, Tzovaras, Strintzis (b16) 2008
Krizhevsky, Sutskever, Hinton (b37) 2017; 60
Pan, You, Liu, Chen (b81) 2011; 32
Osada, Funkhouser, Chazelle, Dobkin (b88) 2002; 21
Ohbuchi, Minamitani, Takei (b89) 2005; 23
Alcantarilla, Bartoli, Davison (b31) 2012
Chowdhury, Tatsuma, Aono (b65) 2013
Bai, Rao, Wang (b77) 2014; 23
Kuo, Cheng (b87) 2007; 40
Qin, Jia, Qin (b17) 2008
Mehrdad, Ebrahimnezhad (b69) 2015; 9
Kim, Chi, Hu, Huang, Ramani (b90) 2020
Bespalov D, Ip CY, Regli WC, Shaffer J. Benchmarking CAD search techniques. In: Proceedings of the 2005 ACM symposium on solid and physical modeling, 2005, p. 275–86.
Redmon, Farhadi (b63) 2018
Hilaga, Shinagawa, Kohmura, Kunii (b28) 2001
Papadakis, Pratikakis, Theoharis, Passalis, Perantonis (b80) 2008
Godil A, Lian Z, Dutagaci H, Fang R, Vanamali T, Cheung CP. Benchmarks, performance evaluation and contests for 3D shape retrieval. In: Proceedings of the 10th performance metrics for intelligent systems workshop, 2010, p. 42–7.
Sfikas, Theoharis, Pratikakis (b71) 2014; 30
10.1016/j.cad.2022.103417_b10
10.1016/j.cad.2022.103417_b55
Redmon (10.1016/j.cad.2022.103417_b63) 2018
Vajna (10.1016/j.cad.2022.103417_b8) 2018
10.1016/j.cad.2022.103417_b12
10.1016/j.cad.2022.103417_b56
Sfikas (10.1016/j.cad.2022.103417_b71) 2014; 30
(10.1016/j.cad.2022.103417_b18) 2022
Yavartanoo (10.1016/j.cad.2022.103417_b44) 2018
10.1016/j.cad.2022.103417_b58
El-Mehalawi (10.1016/j.cad.2022.103417_b26) 2003; 35
10.1016/j.cad.2022.103417_b59
Qi (10.1016/j.cad.2022.103417_b42) 2016
Kuo (10.1016/j.cad.2022.103417_b87) 2007; 40
(10.1016/j.cad.2022.103417_b7) 2022
Iandola (10.1016/j.cad.2022.103417_b60) 2016
Li (10.1016/j.cad.2022.103417_b14) 2014; 119
Székely (10.1016/j.cad.2022.103417_b52) 2007
Bickel (10.1016/j.cad.2022.103417_b43) 2021; 96
Iyer (10.1016/j.cad.2022.103417_b4) 2005; 37
Osada (10.1016/j.cad.2022.103417_b88) 2002; 21
Zehtaban (10.1016/j.cad.2022.103417_b22) 2013; 10
Lupinetti (10.1016/j.cad.2022.103417_b23) 2019; 113
Cha (10.1016/j.cad.2022.103417_b51) 2007; 1
Sundar (10.1016/j.cad.2022.103417_b27) 2003
10.1016/j.cad.2022.103417_b53
Ankerst (10.1016/j.cad.2022.103417_b24) 1999
Li (10.1016/j.cad.2022.103417_b13) 2015; 131
10.1016/j.cad.2022.103417_b68
Sfikas (10.1016/j.cad.2022.103417_b73) 2011; 91
Spruegel (10.1016/j.cad.2022.103417_b45) 2021; 8
Vranic (10.1016/j.cad.2022.103417_b83) 2005
Kim (10.1016/j.cad.2022.103417_b47) 2020; 123
Cardone (10.1016/j.cad.2022.103417_b3) 2003; 3
Zou (10.1016/j.cad.2022.103417_b82) 2014; 69
(10.1016/j.cad.2022.103417_b19) 2022
Godil (10.1016/j.cad.2022.103417_b57) 2020
Chen (10.1016/j.cad.2022.103417_b74) 2015; 74
Lian (10.1016/j.cad.2022.103417_b30) 2010
Lecun (10.1016/j.cad.2022.103417_b36) 1998; 86
Chaudhari (10.1016/j.cad.2022.103417_b6) 2019
Madelmis (10.1016/j.cad.2022.103417_b16) 2008
Pan (10.1016/j.cad.2022.103417_b81) 2011; 32
Loncaric (10.1016/j.cad.2022.103417_b9) 1998; 31
Kim (10.1016/j.cad.2022.103417_b46) 2021; 80
Kalyanaraman (10.1016/j.cad.2022.103417_b48) 2006; 38
Tatsuma (10.1016/j.cad.2022.103417_b76) 2009; 25
10.1016/j.cad.2022.103417_b61
10.1016/j.cad.2022.103417_b62
Papadakis (10.1016/j.cad.2022.103417_b80) 2008
Ohbuchi (10.1016/j.cad.2022.103417_b89) 2005; 23
10.1016/j.cad.2022.103417_b64
Xiao (10.1016/j.cad.2022.103417_b39) 2020; 6
Alcantarilla (10.1016/j.cad.2022.103417_b31) 2012
Shih (10.1016/j.cad.2022.103417_b75) 2017; 15
Liu (10.1016/j.cad.2022.103417_b33) 2012
Tatsuma (10.1016/j.cad.2022.103417_b66) 2009; 25
Li (10.1016/j.cad.2022.103417_b32) 2013
Bai (10.1016/j.cad.2022.103417_b67) 2015; 37
Qin (10.1016/j.cad.2022.103417_b17) 2008
Bai (10.1016/j.cad.2022.103417_b77) 2014; 23
Iyer (10.1016/j.cad.2022.103417_b5) 2005; 37
Singh (10.1016/j.cad.2022.103417_b50) 2013; 67
Tangelder (10.1016/j.cad.2022.103417_b21) 2008; 39
Horn (10.1016/j.cad.2022.103417_b25) 1984; 72
Hou (10.1016/j.cad.2022.103417_b85) 2007
Bustos (10.1016/j.cad.2022.103417_b15) 2005; 37
Stenholm (10.1016/j.cad.2022.103417_b2) 2019; 39
Vranic (10.1016/j.cad.2022.103417_b35) 2004
Chen (10.1016/j.cad.2022.103417_b29) 2003
Zhu (10.1016/j.cad.2022.103417_b78) 2016; 204
Chowdhury (10.1016/j.cad.2022.103417_b65) 2013
(10.1016/j.cad.2022.103417_b20) 2022
Krizhevsky (10.1016/j.cad.2022.103417_b37) 2017; 60
He (10.1016/j.cad.2022.103417_b38) 2016
McWherter (10.1016/j.cad.2022.103417_b11) 2001
Hilaga (10.1016/j.cad.2022.103417_b28) 2001
Aono (10.1016/j.cad.2022.103417_b70) 2013
Kazhdan (10.1016/j.cad.2022.103417_b86) 2003
Kim (10.1016/j.cad.2022.103417_b90) 2020
Shilane (10.1016/j.cad.2022.103417_b54) 2004
Mehrdad (10.1016/j.cad.2022.103417_b69) 2015; 9
Bae (10.1016/j.cad.2022.103417_b84) 2013; 29
Pakkanen (10.1016/j.cad.2022.103417_b1) 2016; 50
Papadakis (10.1016/j.cad.2022.103417_b34) 2010; 89
Zhuang (10.1016/j.cad.2022.103417_b72) 2017; 2017
Li (10.1016/j.cad.2022.103417_b79) 2013; 62
10.1016/j.cad.2022.103417_b40
10.1016/j.cad.2022.103417_b41
Deng (10.1016/j.cad.2022.103417_b49) 2009
References_xml – start-page: 249
  year: 2008
  end-page: 256
  ident: b17
  article-title: Content based 3D model retrieval: A survey
  publication-title: 2008 international workshop on content-based multimedia indexing
– volume: 23
  start-page: 70
  year: 2005
  ident: b89
  article-title: Shape-similarity search of 3D models by using enhanced shape functions
  publication-title: Int J Comput Appl Technol
– year: 2008
  ident: b80
  article-title: 3D object retrieval using an efficient and compact hybrid shape descriptor
  publication-title: Eurographics workshop on 3d object retrieval
– volume: 6
  start-page: 113
  year: 2020
  end-page: 133
  ident: b39
  article-title: A survey on deep geometry learning: From a representation perspective
  publication-title: Comput Vis Media
– reference: Godil A, Lian Z, Dutagaci H, Fang R, Vanamali T, Cheung CP. Benchmarks, performance evaluation and contests for 3D shape retrieval. In: Proceedings of the 10th performance metrics for intelligent systems workshop, 2010, p. 42–7.
– reference: Leifman G, Katz S, Tal A, Meir R. Signatures of 3D models for retrieval. In: Proceedings of the 4th Israel-Korea bi-national conference on geometric modeling and computer graphics, 2003, p. 159–63.
– reference: Cicirello VA, Regli WC. Resolving non-uniqueness in design feature histories. In: Proceedings of the fifth ACM symposium on solid modeling and applications, 1999, p. 76–84.
– volume: 25
  start-page: 785
  year: 2009
  end-page: 804
  ident: b76
  article-title: Multi-Fourier spectra descriptor and augmentation with spectral clustering for 3D shape retrieval
  publication-title: Vis Comput
– year: 2020
  ident: b57
  article-title: SHREC’14 track: Large scale comprehensive 3D shape retrieval
– reference: Getto R, Kuijper A, Fellner DW. Unsupervised 3D object retrieval with parameter-free hierarchical clustering. In: Proceedings of the computer graphics international conference, 2017, p. 1–6.
– volume: 72
  start-page: 1671
  year: 1984
  end-page: 1686
  ident: b25
  article-title: Extended gaussian images
  publication-title: Proc IEEE
– reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, p. 2818–2826.
– start-page: 19
  year: 2013
  end-page: 22
  ident: b65
  article-title: A New Shape Descriptor based on Local and Global Feature for 3D Shape Retrieval
– start-page: 853
  year: 2008
  end-page: 859
  ident: b16
  article-title: Three dimensional content-based search and retrieval of CAD objects
  publication-title: Encyclopedia of multimedia
– volume: 123
  year: 2020
  ident: b47
  article-title: Deep-learning-based retrieval of piping component catalogs for plant 3D CAD model reconstruction
  publication-title: Comput Ind
– year: 2019
  ident: b6
  article-title: Similarity in engineering design: A knowledge-based approach
  publication-title: International design engineering technical conferences and computers and information in engineering conference, Vol. 59278
– volume: 35
  start-page: 95
  year: 2003
  end-page: 105
  ident: b26
  article-title: A database system of mechanical components based on geometric and topological similarity. Part II: indexing, retrieval, matching, and similarity assessment
  publication-title: Comput Aided Des
– volume: 1
  year: 2007
  ident: b51
  article-title: Comprehensive survey on distance/similarity measures be-tween probability density functions
  publication-title: City
– volume: 29
  start-page: 555
  year: 2013
  end-page: 564
  ident: b84
  article-title: Content-based 3D model retrieval using a single depth image from a low-cost 3D camera
  publication-title: Vis Comput
– reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, p. 1–9.
– volume: 23
  start-page: 3935
  year: 2014
  end-page: 3949
  ident: b77
  article-title: Shape vocabulary: a robust and efficient shape representation for shape matching
  publication-title: IEEE Trans Image Process
– volume: 69
  start-page: 799
  year: 2014
  end-page: 818
  ident: b82
  article-title: A novel 3D model retrieval approach using combined shape distribution
  publication-title: Multimedia Tools Appl
– year: 2001
  ident: b28
  article-title: Topology matching for fully automatic similarity estimation of 3D shapes
  publication-title: Proceedings of the 28th annual conference on computer graphics and interactive techniques - SIGGRAPH ’01
– volume: 204
  start-page: 41
  year: 2016
  end-page: 50
  ident: b78
  article-title: Deep learning representation using autoencoder for 3D shape retrieval
  publication-title: Neurocomputing
– year: 2018
  ident: b8
  article-title: CAx für ingenieure: Eine praxisbezogene einführung
– reference: Su H, Maji S, Kalogerakis E, Learned-Miller E. Multi-view convo-lutional neural networks for 3d shape recognition. In: Proceedings of the IEEE international conference on computer vision, 2015, p. 945–53.
– start-page: 156
  year: 2003
  end-page: 164
  ident: b86
  article-title: Rotation invariant spherical harmonic representation of 3 d shape descriptors
  publication-title: Symposium on geometry processing, Vol. 6
– start-page: 214
  year: 2012
  end-page: 227
  ident: b31
  article-title: KAZE features
  publication-title: European conference on computer vision
– start-page: 207
  year: 1999
  end-page: 226
  ident: b24
  article-title: 3D shape histograms for similarity search and classification in spatial databases
  publication-title: Advances in spatial databases
– volume: 38
  start-page: 939
  year: 2006
  end-page: 953
  ident: b48
  article-title: Developing an engineering shape benchmark for CAD models
  publication-title: Comput Aided Des
– volume: 32
  start-page: 787
  year: 2011
  end-page: 794
  ident: b81
  article-title: 3D shape retrieval by Poisson histogram
  publication-title: Pattern Recognit Lett
– volume: 31
  start-page: 983
  year: 1998
  end-page: 1001
  ident: b9
  article-title: A survey of shape analysis techniques
  publication-title: Pattern Recognit
– year: 2022
  ident: b18
  article-title: 3Dsémantix
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: b37
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– year: 2010
  ident: b30
  article-title: Visual similarity based 3D shape retrieval using bag-of-features
  publication-title: 2010 shape modeling international conference
– volume: 10
  start-page: 789
  year: 2013
  end-page: 802
  ident: b22
  article-title: Beyond similarity comparison: Intelligent data retrieval for CAD/CAM designs
  publication-title: Comput Aided Des Appl
– year: 2009
  ident: b49
  article-title: ImageNet: A large-scale hierarchical image database
  publication-title: 2009 IEEE conference on computer vision and pattern recognition
– volume: 40
  start-page: 742
  year: 2007
  end-page: 755
  ident: b87
  article-title: 3D model retrieval using principal plane analysis and dynamic programming
  publication-title: Pattern Recognit
– volume: 113
  start-page: 62
  year: 2019
  end-page: 81
  ident: b23
  article-title: Content-based CAD assembly model retrieval: Survey and future challenges
  publication-title: Comput Aided Des
– year: 2004
  ident: b54
  article-title: The princeton shape benchmark
  publication-title: Proceedings shape modeling applications, 2004
– year: 2016
  ident: b60
  article-title: Squeezenet: AlexNet-level accuracy with 50x fewer parameters and¡ 0.5 MB model size
– start-page: 223
  year: 2003
  end-page: 232
  ident: b29
  article-title: On visual similarity based 3D model retrieval
  publication-title: Computer graphics forum, Vol. 22
– start-page: 691
  year: 2018
  end-page: 706
  ident: b44
  article-title: Spnet: Deep 3d ob-ject classification and retrieval using stereographic projection
  publication-title: Asian confer-ence on computer vision
– year: 2018
  ident: b63
  article-title: Yolov3: An incremental improvement
– volume: 80
  start-page: 10859
  year: 2021
  end-page: 10880
  ident: b46
  article-title: A method of generating depth images for view-based shape retrieval of 3D CAD models from partial point clouds
  publication-title: Multimedia Tools Appl
– volume: 21
  start-page: 807
  year: 2002
  end-page: 832
  ident: b88
  article-title: Shape distributions
  publication-title: ACM Trans Graph
– volume: 39
  start-page: 128
  year: 2019
  end-page: 145
  ident: b2
  article-title: A framework of practices supporting the reuse of technological knowledge
  publication-title: Environ Syst Decis
– start-page: 385
  year: 2007
  end-page: 388
  ident: b85
  article-title: Using enhanced shape distributions to compare CAD models
  publication-title: Advances in multimedia information processing – PCM 2007
– volume: 8
  start-page: 298
  year: 2021
  end-page: 315
  ident: b45
  article-title: Approach and application to transfer heterogeneous simulation data from finite element anal-ysis to neural networks
  publication-title: J Comput Des Eng
– reference: Zhang X, Zhou X, Lin M, Sun J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, p. 6848–56.
– reference: Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, p. 8697–8710.
– volume: 9
  start-page: 990
  year: 2015
  end-page: 1005
  ident: b69
  article-title: 3D object retrieval based on histogram of local orientation using one-shot score support vector machine
  publication-title: Front Comput Sci
– volume: 96
  start-page: 133
  year: 2021
  end-page: 138
  ident: b43
  article-title: Comparing CAD part models for geometrical similarity: A concept using machine learning algo-rithms
  publication-title: Proc CIRP
– volume: 37
  start-page: 509
  year: 2005
  end-page: 530
  ident: b5
  article-title: Three-dimensional shape searching: state-of-the-art review and future trends
  publication-title: Comput Aided Des
– reference: Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. 2017. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, p. 4700–8.
– year: 2022
  ident: b19
  article-title: iSEEK corporation
– volume: 62
  start-page: 821
  year: 2013
  end-page: 846
  ident: b79
  article-title: 3D model retrieval using hybrid features and class information
  publication-title: Multimedia Tools Appl
– volume: 37
  start-page: 1435
  year: 2005
  end-page: 1446
  ident: b4
  article-title: Shape-based searching for product lifecycle applications
  publication-title: Comput Aided Des
– volume: 89
  start-page: 177
  year: 2010
  end-page: 192
  ident: b34
  article-title: PANORAMA: A 3D shape descriptor based on panoramic views for unsupervised 3D object retrieval
  publication-title: Int J Comput Vis
– volume: 3
  start-page: 109
  year: 2003
  end-page: 118
  ident: b3
  article-title: A survey of shape similarity assessment algorithms for product design and manufacturing applications
  publication-title: J Comput Inf Sci Eng
– year: 2005
  ident: b83
  article-title: Desire: A composite 3D-shape descriptor
  publication-title: 2005 IEEE international conference on multimedia and expo
– volume: 119
  start-page: 57
  year: 2014
  end-page: 80
  ident: b14
  article-title: A comparison of methods for sketch-based 3D shape retrieval
  publication-title: Comput Vis Image Underst
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 12
  ident: b72
  article-title: A novel 3D CAD model retrieval method based on vertices classification and weights combination optimization
  publication-title: Math Probl Eng
– year: 2004
  ident: b35
  article-title: 3D model retrieval
– year: 2007
  ident: b52
  article-title: Measuring and testing dependence by jayanti
– volume: 74
  start-page: 4907
  year: 2015
  end-page: 4925
  ident: b74
  article-title: 3D CAD model retrieval based on the combination of features
  publication-title: Multimedia Tools Appl
– volume: 25
  start-page: 785
  year: 2009
  end-page: 804
  ident: b66
  article-title: Multi-Fourier spectra descriptor and augmentation with spectral clustering for 3D shape retrieval
  publication-title: Vis Comput
– volume: 30
  start-page: 1261
  year: 2014
  end-page: 1274
  ident: b71
  article-title: Pose normalization of 3D models via reflective symmetry on panoramic views
  publication-title: Vis Comput
– volume: 91
  start-page: 262
  year: 2011
  end-page: 279
  ident: b73
  article-title: ROSy+: 3D object pose normalization based on PCA and reflective object symmetry with application in 3D object retrieval
  publication-title: Int J Comput Vis
– year: 2022
  ident: b20
  article-title: Shape search
– volume: 67
  start-page: 13
  year: 2013
  end-page: 17
  ident: b50
  article-title: K-means with three different distance metrics
  publication-title: Int J Comput Appl
– volume: 37
  start-page: 2361
  year: 2015
  end-page: 2373
  ident: b67
  article-title: 3D shape matching via two layer coding
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 50
  start-page: 8
  year: 2016
  end-page: 13
  ident: b1
  article-title: Achieving benefits with design reuse in manufacturing industry
  publication-title: Proc CIRP
– volume: 39
  start-page: 441
  year: 2008
  end-page: 471
  ident: b21
  article-title: A survey of content based 3D shape retrieval methods
  publication-title: Multimedia Tools Appl
– reference: Fang Y, Xie J, Dai G, Wang M, Zhu F, Xu T, Wong E. 3d deep shape descriptor. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, p. 2319–28.
– start-page: 175
  year: 2020
  end-page: 191
  ident: b90
  article-title: A large-scale annotated mechanical components benchmark for classification and retrieval tasks with deep neural networks
  publication-title: Computer vision – ECCV 2020
– volume: 15
  start-page: 169
  year: 2017
  end-page: 177
  ident: b75
  article-title: Three-dimensional model retrieval using dynamic multi-descriptor fusion
  publication-title: J Electron Sci Technol
– start-page: 172
  year: 2013
  end-page: 179
  ident: b32
  article-title: Retrieving 3D model using compound-eye vis-ual representation
  publication-title: Computer-aided design and computer graphics (CAD/ Graphics) 2013 international conference on
– year: 2016
  ident: b38
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 303
  year: 2001
  end-page: 312
  ident: b11
  article-title: Transformation invariant shape similarity comparison of solid models
  publication-title: International design engineering technical conferences and computers and information in engineering conference, Vol. 80241
– year: 2016
  ident: b42
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
– year: 2022
  ident: b7
  article-title: Dudenredaktion (Hrsg.). (o.j.), aehnlich. Duden online
– year: 2013
  ident: b70
  article-title: 3D shape retrieval focused on holes and surface roughness
  publication-title: 2013 Asia-Pacific signal and information processing association annual summit and conference
– start-page: 130
  year: 2003
  end-page: 139
  ident: b27
  article-title: Skeleton based shape matching and retrieval
  publication-title: 2003 shape modeling international
– year: 2012
  ident: b33
  article-title: A survey of recent view-based 3D model retrieval methods
– volume: 37
  start-page: 345
  year: 2005
  end-page: 387
  ident: b15
  article-title: Feature-based similarity search in 3D object databases
  publication-title: ACM Comput Surv
– reference: Bespalov D, Ip CY, Regli WC, Shaffer J. Benchmarking CAD search techniques. In: Proceedings of the 2005 ACM symposium on solid and physical modeling, 2005, p. 275–86.
– volume: 131
  start-page: 1
  year: 2015
  end-page: 27
  ident: b13
  article-title: A comparison of 3D shape retrieval methods based on a large-scale benchmark supporting multimodal queries
  publication-title: Comput Vis Image Underst
– reference: Jagadeesan P, Wenzel J, Corney JR, Yan XT, Sherlock A, Torres-Sanchez C, Regli W. Validation of purdue engineer-ing shape benchmark clusters by crowdsourcing. In: Proceedings of the International Conference on Product Lifecycle Management, Bath, UK, 2009.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b36
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE Inst Electr Electron Eng
– volume: 8
  start-page: 298
  issue: 1
  year: 2021
  ident: 10.1016/j.cad.2022.103417_b45
  article-title: Approach and application to transfer heterogeneous simulation data from finite element anal-ysis to neural networks
  publication-title: J Comput Des Eng
– ident: 10.1016/j.cad.2022.103417_b10
  doi: 10.1145/1060244.1060275
– year: 2018
  ident: 10.1016/j.cad.2022.103417_b63
– volume: 50
  start-page: 8
  year: 2016
  ident: 10.1016/j.cad.2022.103417_b1
  article-title: Achieving benefits with design reuse in manufacturing industry
  publication-title: Proc CIRP
  doi: 10.1016/j.procir.2016.04.173
– start-page: 303
  year: 2001
  ident: 10.1016/j.cad.2022.103417_b11
  article-title: Transformation invariant shape similarity comparison of solid models
– start-page: 249
  year: 2008
  ident: 10.1016/j.cad.2022.103417_b17
  article-title: Content based 3D model retrieval: A survey
– start-page: 853
  year: 2008
  ident: 10.1016/j.cad.2022.103417_b16
  article-title: Three dimensional content-based search and retrieval of CAD objects
  doi: 10.1007/978-0-387-78414-4_1
– ident: 10.1016/j.cad.2022.103417_b41
  doi: 10.1109/ICCV.2015.114
– volume: 25
  start-page: 785
  issue: 8
  year: 2009
  ident: 10.1016/j.cad.2022.103417_b66
  article-title: Multi-Fourier spectra descriptor and augmentation with spectral clustering for 3D shape retrieval
  publication-title: Vis Comput
  doi: 10.1007/s00371-008-0304-2
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.cad.2022.103417_b36
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE Inst Electr Electron Eng
  doi: 10.1109/5.726791
– volume: 96
  start-page: 133
  year: 2021
  ident: 10.1016/j.cad.2022.103417_b43
  article-title: Comparing CAD part models for geometrical similarity: A concept using machine learning algo-rithms
  publication-title: Proc CIRP
  doi: 10.1016/j.procir.2021.01.065
– ident: 10.1016/j.cad.2022.103417_b68
  doi: 10.1145/3095140.3095147
– year: 2001
  ident: 10.1016/j.cad.2022.103417_b28
  article-title: Topology matching for fully automatic similarity estimation of 3D shapes
– year: 2010
  ident: 10.1016/j.cad.2022.103417_b30
  article-title: Visual similarity based 3D shape retrieval using bag-of-features
– volume: 10
  start-page: 789
  issue: 5
  year: 2013
  ident: 10.1016/j.cad.2022.103417_b22
  article-title: Beyond similarity comparison: Intelligent data retrieval for CAD/CAM designs
  publication-title: Comput Aided Des Appl
  doi: 10.3722/cadaps.2013.789-802
– volume: 23
  start-page: 70
  issue: 2/3/4
  year: 2005
  ident: 10.1016/j.cad.2022.103417_b89
  article-title: Shape-similarity search of 3D models by using enhanced shape functions
  publication-title: Int J Comput Appl Technol
  doi: 10.1504/IJCAT.2005.006466
– start-page: 385
  year: 2007
  ident: 10.1016/j.cad.2022.103417_b85
  article-title: Using enhanced shape distributions to compare CAD models
– year: 2009
  ident: 10.1016/j.cad.2022.103417_b49
  article-title: ImageNet: A large-scale hierarchical image database
– start-page: 214
  year: 2012
  ident: 10.1016/j.cad.2022.103417_b31
  article-title: KAZE features
– volume: 37
  start-page: 1435
  issue: 13
  year: 2005
  ident: 10.1016/j.cad.2022.103417_b4
  article-title: Shape-based searching for product lifecycle applications
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2005.02.011
– volume: 31
  start-page: 983
  issue: 8
  year: 1998
  ident: 10.1016/j.cad.2022.103417_b9
  article-title: A survey of shape analysis techniques
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-2023(97)00122-2
– ident: 10.1016/j.cad.2022.103417_b40
  doi: 10.1109/CVPR.2015.7298845
– year: 2016
  ident: 10.1016/j.cad.2022.103417_b60
– year: 2016
  ident: 10.1016/j.cad.2022.103417_b38
  article-title: Deep residual learning for image recognition
– volume: 62
  start-page: 821
  issue: 3
  year: 2013
  ident: 10.1016/j.cad.2022.103417_b79
  article-title: 3D model retrieval using hybrid features and class information
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-011-0873-3
– volume: 74
  start-page: 4907
  issue: 13
  year: 2015
  ident: 10.1016/j.cad.2022.103417_b74
  article-title: 3D CAD model retrieval based on the combination of features
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-013-1850-9
– volume: 25
  start-page: 785
  issue: 8
  year: 2009
  ident: 10.1016/j.cad.2022.103417_b76
  article-title: Multi-Fourier spectra descriptor and augmentation with spectral clustering for 3D shape retrieval
  publication-title: Vis Comput
  doi: 10.1007/s00371-008-0304-2
– volume: 32
  start-page: 787
  issue: 6
  year: 2011
  ident: 10.1016/j.cad.2022.103417_b81
  article-title: 3D shape retrieval by Poisson histogram
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2011.01.003
– start-page: 175
  year: 2020
  ident: 10.1016/j.cad.2022.103417_b90
  article-title: A large-scale annotated mechanical components benchmark for classification and retrieval tasks with deep neural networks
– volume: 37
  start-page: 509
  issue: 5
  year: 2005
  ident: 10.1016/j.cad.2022.103417_b5
  article-title: Three-dimensional shape searching: state-of-the-art review and future trends
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2004.07.002
– volume: 91
  start-page: 262
  issue: 3
  year: 2011
  ident: 10.1016/j.cad.2022.103417_b73
  article-title: ROSy+: 3D object pose normalization based on PCA and reflective object symmetry with application in 3D object retrieval
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-010-0395-x
– year: 2005
  ident: 10.1016/j.cad.2022.103417_b83
  article-title: Desire: A composite 3D-shape descriptor
– year: 2022
  ident: 10.1016/j.cad.2022.103417_b19
– volume: 9
  start-page: 990
  issue: 6
  year: 2015
  ident: 10.1016/j.cad.2022.103417_b69
  article-title: 3D object retrieval based on histogram of local orientation using one-shot score support vector machine
  publication-title: Front Comput Sci
  doi: 10.1007/s11704-015-4291-y
– volume: 6
  start-page: 113
  issue: 2
  year: 2020
  ident: 10.1016/j.cad.2022.103417_b39
  article-title: A survey on deep geometry learning: From a representation perspective
  publication-title: Comput Vis Media
  doi: 10.1007/s41095-020-0174-8
– volume: 39
  start-page: 441
  issue: 3
  year: 2008
  ident: 10.1016/j.cad.2022.103417_b21
  article-title: A survey of content based 3D shape retrieval methods
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-007-0181-0
– start-page: 130
  year: 2003
  ident: 10.1016/j.cad.2022.103417_b27
  article-title: Skeleton based shape matching and retrieval
– ident: 10.1016/j.cad.2022.103417_b59
  doi: 10.1109/CVPR.2018.00716
– volume: 37
  start-page: 2361
  issue: 12
  year: 2015
  ident: 10.1016/j.cad.2022.103417_b67
  article-title: 3D shape matching via two layer coding
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2424863
– volume: 131
  start-page: 1
  year: 2015
  ident: 10.1016/j.cad.2022.103417_b13
  article-title: A comparison of 3D shape retrieval methods based on a large-scale benchmark supporting multimodal queries
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2014.10.006
– year: 2013
  ident: 10.1016/j.cad.2022.103417_b70
  article-title: 3D shape retrieval focused on holes and surface roughness
– year: 2004
  ident: 10.1016/j.cad.2022.103417_b54
  article-title: The princeton shape benchmark
– volume: 119
  start-page: 57
  year: 2014
  ident: 10.1016/j.cad.2022.103417_b14
  article-title: A comparison of methods for sketch-based 3D shape retrieval
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2013.11.008
– volume: 38
  start-page: 939
  issue: 9
  year: 2006
  ident: 10.1016/j.cad.2022.103417_b48
  article-title: Developing an engineering shape benchmark for CAD models
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2006.06.007
– start-page: 156
  year: 2003
  ident: 10.1016/j.cad.2022.103417_b86
  article-title: Rotation invariant spherical harmonic representation of 3 d shape descriptors
– start-page: 223
  year: 2003
  ident: 10.1016/j.cad.2022.103417_b29
  article-title: On visual similarity based 3D model retrieval
– year: 2012
  ident: 10.1016/j.cad.2022.103417_b33
– volume: 15
  start-page: 169
  issue: 2
  year: 2017
  ident: 10.1016/j.cad.2022.103417_b75
  article-title: Three-dimensional model retrieval using dynamic multi-descriptor fusion
  publication-title: J Electron Sci Technol
– volume: 30
  start-page: 1261
  issue: 11
  year: 2014
  ident: 10.1016/j.cad.2022.103417_b71
  article-title: Pose normalization of 3D models via reflective symmetry on panoramic views
  publication-title: Vis Comput
  doi: 10.1007/s00371-014-0935-4
– year: 2019
  ident: 10.1016/j.cad.2022.103417_b6
  article-title: Similarity in engineering design: A knowledge-based approach
– ident: 10.1016/j.cad.2022.103417_b12
  doi: 10.1145/304012.304020
– year: 2016
  ident: 10.1016/j.cad.2022.103417_b42
– volume: 39
  start-page: 128
  issue: 2
  year: 2019
  ident: 10.1016/j.cad.2022.103417_b2
  article-title: A framework of practices supporting the reuse of technological knowledge
  publication-title: Environ Syst Decis
  doi: 10.1007/s10669-019-09732-4
– year: 2020
  ident: 10.1016/j.cad.2022.103417_b57
– ident: 10.1016/j.cad.2022.103417_b61
  doi: 10.1109/CVPR.2016.308
– volume: 3
  start-page: 109
  issue: 2
  year: 2003
  ident: 10.1016/j.cad.2022.103417_b3
  article-title: A survey of shape similarity assessment algorithms for product design and manufacturing applications
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.1577356
– volume: 113
  start-page: 62
  year: 2019
  ident: 10.1016/j.cad.2022.103417_b23
  article-title: Content-based CAD assembly model retrieval: Survey and future challenges
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2019.03.005
– ident: 10.1016/j.cad.2022.103417_b55
  doi: 10.1145/2377576.2377584
– volume: 37
  start-page: 345
  issue: 4
  year: 2005
  ident: 10.1016/j.cad.2022.103417_b15
  article-title: Feature-based similarity search in 3D object databases
  publication-title: ACM Comput Surv
  doi: 10.1145/1118890.1118893
– start-page: 19
  year: 2013
  ident: 10.1016/j.cad.2022.103417_b65
– start-page: 172
  year: 2013
  ident: 10.1016/j.cad.2022.103417_b32
  article-title: Retrieving 3D model using compound-eye vis-ual representation
– year: 2022
  ident: 10.1016/j.cad.2022.103417_b7
– volume: 72
  start-page: 1671
  issue: 12
  year: 1984
  ident: 10.1016/j.cad.2022.103417_b25
  article-title: Extended gaussian images
  publication-title: Proc IEEE
  doi: 10.1109/PROC.1984.13073
– ident: 10.1016/j.cad.2022.103417_b53
– volume: 23
  start-page: 3935
  issue: 9
  year: 2014
  ident: 10.1016/j.cad.2022.103417_b77
  article-title: Shape vocabulary: a robust and efficient shape representation for shape matching
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2014.2336542
– volume: 40
  start-page: 742
  issue: 2
  year: 2007
  ident: 10.1016/j.cad.2022.103417_b87
  article-title: 3D model retrieval using principal plane analysis and dynamic programming
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2006.06.006
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.cad.2022.103417_b37
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 29
  start-page: 555
  issue: 6–8
  year: 2013
  ident: 10.1016/j.cad.2022.103417_b84
  article-title: Content-based 3D model retrieval using a single depth image from a low-cost 3D camera
  publication-title: Vis Comput
  doi: 10.1007/s00371-013-0819-z
– volume: 1
  issue: 2
  year: 2007
  ident: 10.1016/j.cad.2022.103417_b51
  article-title: Comprehensive survey on distance/similarity measures be-tween probability density functions
  publication-title: City
– year: 2008
  ident: 10.1016/j.cad.2022.103417_b80
  article-title: 3D object retrieval using an efficient and compact hybrid shape descriptor
– year: 2004
  ident: 10.1016/j.cad.2022.103417_b35
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.cad.2022.103417_b72
  article-title: A novel 3D CAD model retrieval method based on vertices classification and weights combination optimization
  publication-title: Math Probl Eng
  doi: 10.1155/2017/6049750
– volume: 123
  year: 2020
  ident: 10.1016/j.cad.2022.103417_b47
  article-title: Deep-learning-based retrieval of piping component catalogs for plant 3D CAD model reconstruction
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2020.103320
– ident: 10.1016/j.cad.2022.103417_b62
  doi: 10.1109/CVPR.2015.7298594
– volume: 89
  start-page: 177
  issue: 2–3
  year: 2010
  ident: 10.1016/j.cad.2022.103417_b34
  article-title: PANORAMA: A 3D shape descriptor based on panoramic views for unsupervised 3D object retrieval
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-009-0281-6
– year: 2022
  ident: 10.1016/j.cad.2022.103417_b18
– year: 2007
  ident: 10.1016/j.cad.2022.103417_b52
– year: 2018
  ident: 10.1016/j.cad.2022.103417_b8
– volume: 35
  start-page: 95
  issue: 1
  year: 2003
  ident: 10.1016/j.cad.2022.103417_b26
  article-title: A database system of mechanical components based on geometric and topological similarity. Part II: indexing, retrieval, matching, and similarity assessment
  publication-title: Comput Aided Des
  doi: 10.1016/S0010-4485(01)00178-6
– volume: 204
  start-page: 41
  year: 2016
  ident: 10.1016/j.cad.2022.103417_b78
  article-title: Deep learning representation using autoencoder for 3D shape retrieval
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.127
– ident: 10.1016/j.cad.2022.103417_b58
  doi: 10.1109/CVPR.2017.243
– ident: 10.1016/j.cad.2022.103417_b64
  doi: 10.1109/CVPR.2018.00907
– volume: 69
  start-page: 799
  issue: 3
  year: 2014
  ident: 10.1016/j.cad.2022.103417_b82
  article-title: A novel 3D model retrieval approach using combined shape distribution
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-012-1130-0
– volume: 80
  start-page: 10859
  issue: 7
  year: 2021
  ident: 10.1016/j.cad.2022.103417_b46
  article-title: A method of generating depth images for view-based shape retrieval of 3D CAD models from partial point clouds
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-020-10283-z
– year: 2022
  ident: 10.1016/j.cad.2022.103417_b20
– volume: 67
  start-page: 13
  issue: 10
  year: 2013
  ident: 10.1016/j.cad.2022.103417_b50
  article-title: K-means with three different distance metrics
  publication-title: Int J Comput Appl
– start-page: 207
  year: 1999
  ident: 10.1016/j.cad.2022.103417_b24
  article-title: 3D shape histograms for similarity search and classification in spatial databases
– ident: 10.1016/j.cad.2022.103417_b56
– volume: 21
  start-page: 807
  issue: 4
  year: 2002
  ident: 10.1016/j.cad.2022.103417_b88
  article-title: Shape distributions
  publication-title: ACM Trans Graph
  doi: 10.1145/571647.571648
– start-page: 691
  year: 2018
  ident: 10.1016/j.cad.2022.103417_b44
  article-title: Spnet: Deep 3d ob-ject classification and retrieval using stereographic projection
SSID ssj0002139
Score 2.4498432
Snippet The reuse of existing design models offers great potential in saving resources and generating an efficient workflow. In order to fully benefit from these...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103417
SubjectTerms 3D object retrieval
Autoencoder
Deep Learning
Part alignment
Projection method
Shape retrieval
Title A Novel Shape Retrieval Method for 3D Mechanical Components Based on Object Projection, Pre-Trained Deep Learning Models and Autoencoder
URI https://dx.doi.org/10.1016/j.cad.2022.103417
Volume 154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYED4inGY_KBE6Ksa9KuPY6NaYAYCDZptypNUhiaumlsHDnzs7H7gCEBB25tFUtRPtd2EtsfY8ci9hS6YW01Ite3BOqEFQglrIayjeSK-5FOE2R7XncgrobusMRaRS0MpVXmtj-z6am1zr_U8tWsTUcjqvHFrYTwMYDI-uRRBbtokJafvX2leTh1noXAaG9odHGzmeZ4KUnNQh2HSs9Fyln2g29a8jedDbaeB4rQzOayyUom2WJrS-0Dt9l7E3qTVzOGhyc5NXCfkmOh5sBNSgsNGI8Cb-MbVfcSGEB__ySh3Ak4R_elYZLAbURHMXCXHckgTKf4bKw-cUfgiLYxU8i7sD4CUaeNX0AmGpqL-YS6YGoz22GDzkW_1bVyZgVLcWHPrcAE0o7sWDpC27HWgYeeX8V148exbxyECPcRMhYIIOdoATFG8x3pGdHQniu04LusnOB09xjY0taO8XkURK5AUd8NTKy0DKSrqJ6rwuxiTUOVtx0n9otxWOSXPYcIQ0gwhBkMFXbyKTLNem78NVgUQIXfFCdEn_C72P7_xA7YKvHNZ2cwh6w8ny3MEUYl86iaql2VrTQvr7u9D8Jm4EM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VcgAOiFXszIETIiLETpocy1K1LAVBkbhFju1AUZVWUPgGPpuZLBVIwIFbEnkky8-aGTsz7wHsyTTQFIaN00j80JG0J5xIauk0tGuV0CJMTF4g2w3a9_L8wX-owUnVC8NllaXvL3x67q3LL4flah6O-n3u8aWjhAwpgSh48qZgmtmp_DpMNzsX7e7EIXtHosiCyeWwQfVzMy_z0or5Qj2Pu89lLlv2Q3j6EnJaCzBf5orYLKazCDWbLcHcFwbBZfhoYnf4bgd496RGFm9zfSzaPHiVK0MjpaQoTumNG3wZD2QHMMy4fAKPKYIZHGZ4nfBtDN4UtzKE1AE9W6fH8hE04tTaEZZErI_I6mmDV1SZwebbeMhEmMa-rMB966x30nZKcQVHC-mOnchGyk3cVHnSuKkxUUDBX6dHNkzT0HqEEh0lVCoJQyHICVKaFnoqsLJhAl8aKVahntF01wBd5RrPhiKJEl-SaehHNtVGRcrX3NK1Dm61prEumcdZAGMQVyVmzzHBEDMMcQHDOuxPTEYF7cZfg2UFVPxt78QUFn432_if2S7MtHtXl_Flp3uxCbMsP19cyWxBffzyZrcpSRknO-Um_AR9v-L0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Shape+Retrieval+Method+for+3D+Mechanical+Components+Based+on+Object+Projection%2C+Pre-Trained+Deep+Learning+Models+and+Autoencoder&rft.jtitle=Computer+aided+design&rft.au=Bickel%2C+S.&rft.au=Schleich%2C+B.&rft.au=Wartzack%2C+S.&rft.date=2023-01-01&rft.issn=0010-4485&rft.volume=154&rft.spage=103417&rft_id=info:doi/10.1016%2Fj.cad.2022.103417&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cad_2022_103417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon