Mitochondrial dynamics and energy metabolism interference therapy for promoting photothermal sensitization

The targeting-mitochondrial degradable TPP-CBS-2DG JNSs improves antitumor effects through synergistically interfering with mitochondrial dynamics and inhibiting glycolysis, thereby improving the efficacy of photothermal therapy. [Display omitted] •TPP-CBS-2DG JNSs can disrupt mitochondrial dynamic...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 680; no. Pt A; pp. 429 - 440
Main Authors Liu, Cuimei, Cheng, Sihang, Zhou, Xue, Li, Lu, Wang, Chungang, Zhang, Lingyu
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.02.2025
Subjects
Online AccessGet full text
ISSN0021-9797
1095-7103
1095-7103
DOI10.1016/j.jcis.2024.10.180

Cover

Loading…
Abstract The targeting-mitochondrial degradable TPP-CBS-2DG JNSs improves antitumor effects through synergistically interfering with mitochondrial dynamics and inhibiting glycolysis, thereby improving the efficacy of photothermal therapy. [Display omitted] •TPP-CBS-2DG JNSs can disrupt mitochondrial dynamic homeostasis and inhibit energy metabolism.•TPP-CBS-2DG JNSs can radically inhibit the production of heat shock proteins, achieving superior photothermal efficacy.•This multifunctional 2D-dimensional material provides a candidate strategy for synergistic therapy targeting subcellular organelles. Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu3BiS3 (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs.
AbstractList The targeting-mitochondrial degradable TPP-CBS-2DG JNSs improves antitumor effects through synergistically interfering with mitochondrial dynamics and inhibiting glycolysis, thereby improving the efficacy of photothermal therapy. [Display omitted] •TPP-CBS-2DG JNSs can disrupt mitochondrial dynamic homeostasis and inhibit energy metabolism.•TPP-CBS-2DG JNSs can radically inhibit the production of heat shock proteins, achieving superior photothermal efficacy.•This multifunctional 2D-dimensional material provides a candidate strategy for synergistic therapy targeting subcellular organelles. Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu3BiS3 (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs.
Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu₃BiS₃ (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs.
Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu BiS (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs.
Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu3BiS3 (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs.Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu3BiS3 (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs.
Author Cheng, Sihang
Zhang, Lingyu
Liu, Cuimei
Li, Lu
Zhou, Xue
Wang, Chungang
Author_xml – sequence: 1
  givenname: Cuimei
  surname: Liu
  fullname: Liu, Cuimei
  organization: College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
– sequence: 2
  givenname: Sihang
  surname: Cheng
  fullname: Cheng, Sihang
  organization: College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
– sequence: 3
  givenname: Xue
  surname: Zhou
  fullname: Zhou, Xue
  organization: College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
– sequence: 4
  givenname: Lu
  surname: Li
  fullname: Li, Lu
  organization: College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
– sequence: 5
  givenname: Chungang
  surname: Wang
  fullname: Wang, Chungang
  organization: College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
– sequence: 6
  givenname: Lingyu
  orcidid: 0000-0002-4297-903X
  surname: Zhang
  fullname: Zhang, Lingyu
  email: zhangly827@nenu.edu.cn
  organization: College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39522238$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvFDEQhC0URDaBP8AB-chllvZjHpa4oCgkkYK4JGfL42lnPZqxF9uLtPx6ZrKBI-LUUvVXrVbVBTkLMSAh7xlsGbDm07gdrc9bDlxuV62DV2TDQNVVy0CckQ0AZ5VqVXtOLnIeARira_WGnAtVc85FtyHjN1-i3cUwJG8mOhyDmb3N1ISBYsD0dKQzFtPHyeeZ-lAwOUwYLNKyw2T2R-piovsU51h8eKL7XSxxXc3LuYwh--J_meJjeEteOzNlfPcyL8nj1-uHq9vq_vvN3dWX-8oKCaVStnZd14MTzAiFooG6d7AM66DrlVi2rEbZmoH3TqGBRgxMOCVV00ghlbgkH093l6d-HDAXPftscZpMwHjIWrBactk0bfsfKO9a2XbAFvTDC3roZxz0PvnZpKP-E-UC8BNgU8w5ofuLMNBrX3rUa1967etZ62AxfT6ZcAnkp8eks_VruoNPaIseov-X_TcUCJ9W
Cites_doi 10.1002/advs.201902847
10.1002/advs.201600327
10.1080/15548627.2016.1226734
10.1002/anie.202002306
10.1016/j.actbio.2020.01.019
10.1021/acsnano.6b08720
10.1016/j.aspen.2021.05.005
10.1021/acsnano.6b06658
10.1002/adma.201900192
10.1016/j.biopha.2019.108825
10.1002/adma.201700448
10.1083/jcb.201511036
10.1016/j.radonc.2017.11.019
10.1158/0008-5472.CAN-11-3928
10.1016/j.ceb.2016.02.001
10.1080/10799893.2019.1655051
10.1126/science.1219855
10.2174/1871520620666200211091451
10.1186/s12964-019-0468-6
10.3390/cancers12082252
10.1038/s41571-020-0410-2
10.1016/j.canlet.2014.09.003
10.1016/j.actbio.2021.04.054
10.1016/j.ymgme.2018.10.003
10.1016/j.cell.2016.07.002
10.1002/smll.202003398
10.1534/genetics.105.043653
10.1039/C7CS00522A
10.1016/j.biomaterials.2017.06.035
10.1021/acsnano.8b00309
10.1002/adfm.201909391
10.1002/adfm.202113397
10.1038/ncomms13193
10.1126/science.2814477
10.1126/science.1160809
10.1002/cac2.12404
10.1002/adfm.201600035
10.1039/C9BM01171D
10.1016/j.cej.2020.125933
10.1038/nrd.2018.174
10.1126/sciadv.aav1848
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2024.10.180
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 440
ExternalDocumentID 39522238
10_1016_j_jcis_2024_10_180
S0021979724025359
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
53G
6TJ
AAQXK
AATTM
AAXUO
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SSH
VH1
WUQ
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c340t-9c5f88b0f31a39e3605bf0360cf08b935f815e47ad2bf9ea063d13f9496643493
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 16:05:42 EDT 2025
Tue Aug 05 11:37:30 EDT 2025
Thu Apr 03 06:58:53 EDT 2025
Tue Jul 01 04:19:39 EDT 2025
Sat Dec 14 16:14:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords Degradation
Energy metabolism
Janus nanosheets
Targeting mitochondria
Sensitized photothermal therapy
Mitochondrial dynamics
Language English
License Copyright © 2024 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-9c5f88b0f31a39e3605bf0360cf08b935f815e47ad2bf9ea063d13f9496643493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4297-903X
PMID 39522238
PQID 3128747801
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3154246677
proquest_miscellaneous_3128747801
pubmed_primary_39522238
crossref_primary_10_1016_j_jcis_2024_10_180
elsevier_sciencedirect_doi_10_1016_j_jcis_2024_10_180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-15
PublicationDateYYYYMMDD 2025-02-15
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – sequence: 0
  name: Elsevier Inc
References She, Peng, Liu, Huang, Zheng, Lu, Geng, Yin (b0030) 2020; 400
Bao, Li, Lin (b0095) 2019; 39
Turner, Granycome, Hurst, Pohler, Juhola, Juhola, Jacobs, Sutherland, Holt (b0175) 2005; 170
King, Attardi (b0170) 1989; 246
Wang, Gao, Liu, Liu, Ma, Liu, Du, Zhou (b0125) 2016; 26
Tabish, Narayan (b0220) 2021; 129
Gao, Jiang, Guo, Jia, Cheng, Deng, Yu, Zhu, Guo, Sun, Liu, Zhao, Yang, Yu, Raya, Liang, Wu (b0135) 2020; 30
Yang, Ding, Chen, Shi (b0200) 2020; 7
Vyas, Zaganjor, Haigis (b0060) 2016; 166
Han, Ren, Qu, Meng (b0080) 2021; 36
Zhang, Li, Wang, Hu, Wang, Sun (b0140) 2014; 355
Mishra, Chan (b0065) 2016; 212
Truong Hoang, Huynh, Nguyen Cao, Kang, Dang, Ravichandran, Kang, Lee, Kim, Ko, Lee, Shim (b0070) 2023; 35
Vander Heiden, Cantley, Thompson (b0180) 2009; 324
Luo, Xu, Sun, Huang, Zhang, Ma, Wan, Liu, Pardeshi, Li (b0185) 2020; 105
Guo, Yang, Ji, Zhang, Dong, Zhou, Li, Shen, Yao, Huang (b0210) 2021; 33
Malena, Pantic, Borgia, Sgarbi, Solaini, Holt, Spinazzola, Perissinotto, Sandri, Baracca, Vergani (b0165) 2016; 12
Varghese, Samuel, Líšková, Samec, Kubatka, Büsselberg (b0150) 2020; 12
Sang, Han, Luo, Qu, Zheng, Zhang, Liu, Xue, Liu, Feng (b0155) 2020; 8
Yang, Chen, Shi (b0195) 2020; 59
El-Hattab, Suleiman, Almannai, Scaglia (b0050) 2018; 125
Zhang, Jin, Liu, Wang, Zhang, Liu, Zhao, Yin, Niu, Xue, Yu, Yang (b0215) 2022; 32
Zhou, Li, Hou, Luo, Chen, Cao, Huo, Xue, Sutrisno, Hao, Cao, Ran, Lu, Li, Cai (b0110) 2018; 12
Li, Lovell, Yoon, Chen (b0020) 2020; 17
He, Xiao, Wang, Guo, Lu (b0190) 2023; 43
Q. Chen, Q. Hu, E. Dukhovlinova, G. Chen, S. Ahn, C. Wang, E.A. Ogunnaike, F.S. Ligler, G. Dotti, Z. Gu, Photothermal therapy: photothermal therapy promotes tumor infiltration and antitumor activity of car T cells, Adv. Mater. 31(23) (2019) 1970166.
Wang, Li, Zhang, Ma, Liu, Gao, Zhang, Gu (b0120) 2017; 4
Chen, Xu, Liang, Wang, Peng, Liu (b0010) 2016; 7
Chen, Luo, Lei, Hong, Qiu, Liu, Cheng, Zhang (b0160) 2017; 11
Cheng, Zielonka, Dranka, McAllister, Mackinnon, Joseph, Kalyanaraman (b0145) 2012; 72
Jin, Zheng, Li, Liu, Li, Hirayama, Li, Liu, Shen, Li (b0085) 2018; 129
Moghaddam, Mortazavi, Hamedi, Nabiuni, Roodbari (b0105) 2020; 20
Hu, Chi, Wang, Wang, Liang, Liu, Shang, Wang, Zhang, Li, Shen, Yu, Liu, Tian (b0025) 2017; 29
Li, Peris, Hittinger, Sia, Fay (b0040) 2019; 5
Shao, Li, Guo, Jin, Zhang, Ou, Xie, Tan, Wang, Zheng, Wang (b0100) 2019; 17
Youle, van der Bliek (b0055) 2012; 337
Zhang, Guo, Wei, Li, Liang, Yin (b0115) 2017; 11
Jung, Verwilst, Sharma, Shin, Sessler, Kim (b0005) 2018; 47
Senft, Ronai (b0075) 2016; 39
Zhang, Li, Wang, Chen, Ma, Cai (b0090) 2019; 114
Li, Huang, Lei, Xu, Li, Chen, Liu (b0045) 2021; 24
Liu, Wang, Hu, Shi, Xu (b0130) 2020; 16
Murphy, Hartley (b0035) 2018; 17
Hu, Wu, Fan, Chen, Liu, Ni, Bu, Shi (b0205) 2017; 141
Gao (10.1016/j.jcis.2024.10.180_b0135) 2020; 30
Malena (10.1016/j.jcis.2024.10.180_b0165) 2016; 12
Varghese (10.1016/j.jcis.2024.10.180_b0150) 2020; 12
El-Hattab (10.1016/j.jcis.2024.10.180_b0050) 2018; 125
Mishra (10.1016/j.jcis.2024.10.180_b0065) 2016; 212
He (10.1016/j.jcis.2024.10.180_b0190) 2023; 43
Chen (10.1016/j.jcis.2024.10.180_b0010) 2016; 7
Yang (10.1016/j.jcis.2024.10.180_b0200) 2020; 7
Zhang (10.1016/j.jcis.2024.10.180_b0215) 2022; 32
Senft (10.1016/j.jcis.2024.10.180_b0075) 2016; 39
Li (10.1016/j.jcis.2024.10.180_b0040) 2019; 5
Han (10.1016/j.jcis.2024.10.180_b0080) 2021; 36
King (10.1016/j.jcis.2024.10.180_b0170) 1989; 246
Shao (10.1016/j.jcis.2024.10.180_b0100) 2019; 17
Vyas (10.1016/j.jcis.2024.10.180_b0060) 2016; 166
Hu (10.1016/j.jcis.2024.10.180_b0205) 2017; 141
Li (10.1016/j.jcis.2024.10.180_b0020) 2020; 17
Liu (10.1016/j.jcis.2024.10.180_b0130) 2020; 16
Bao (10.1016/j.jcis.2024.10.180_b0095) 2019; 39
Luo (10.1016/j.jcis.2024.10.180_b0185) 2020; 105
Zhang (10.1016/j.jcis.2024.10.180_b0115) 2017; 11
Li (10.1016/j.jcis.2024.10.180_b0045) 2021; 24
Wang (10.1016/j.jcis.2024.10.180_b0125) 2016; 26
10.1016/j.jcis.2024.10.180_b0015
Zhang (10.1016/j.jcis.2024.10.180_b0090) 2019; 114
Yang (10.1016/j.jcis.2024.10.180_b0195) 2020; 59
Jin (10.1016/j.jcis.2024.10.180_b0085) 2018; 129
Sang (10.1016/j.jcis.2024.10.180_b0155) 2020; 8
Vander Heiden (10.1016/j.jcis.2024.10.180_b0180) 2009; 324
Guo (10.1016/j.jcis.2024.10.180_b0210) 2021; 33
She (10.1016/j.jcis.2024.10.180_b0030) 2020; 400
Tabish (10.1016/j.jcis.2024.10.180_b0220) 2021; 129
Zhang (10.1016/j.jcis.2024.10.180_b0140) 2014; 355
Truong Hoang (10.1016/j.jcis.2024.10.180_b0070) 2023; 35
Moghaddam (10.1016/j.jcis.2024.10.180_b0105) 2020; 20
Chen (10.1016/j.jcis.2024.10.180_b0160) 2017; 11
Jung (10.1016/j.jcis.2024.10.180_b0005) 2018; 47
Hu (10.1016/j.jcis.2024.10.180_b0025) 2017; 29
Murphy (10.1016/j.jcis.2024.10.180_b0035) 2018; 17
Youle (10.1016/j.jcis.2024.10.180_b0055) 2012; 337
Cheng (10.1016/j.jcis.2024.10.180_b0145) 2012; 72
Zhou (10.1016/j.jcis.2024.10.180_b0110) 2018; 12
Wang (10.1016/j.jcis.2024.10.180_b0120) 2017; 4
Turner (10.1016/j.jcis.2024.10.180_b0175) 2005; 170
References_xml – volume: 24
  start-page: 597
  year: 2021
  end-page: 605
  ident: b0045
  article-title: Identification of six heat shock protein 70 genes in Lasioderma serricorne (Coleoptera: Anobiidae) and their responses to temperature stress
  publication-title: J. Asia Pac. Entomol.
– volume: 11
  start-page: 1419
  year: 2017
  end-page: 1431
  ident: b0160
  article-title: Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for photothermal therapy
  publication-title: ACS Nano
– volume: 20
  start-page: 790
  year: 2020
  end-page: 799
  ident: b0105
  article-title: Apoptotic effects of melittin on 4T1 breast cancer cell line is associated with up regulation of Mfn1 and Drp1 mRNA expression
  publication-title: Anticancer Agents Med Chem.
– volume: 4
  year: 2017
  ident: b0120
  article-title: Laser-triggered small interfering RNA releasing gold nanoshells against heat shock protein for sensitized photothermal therapy
  publication-title: Adv. Sci.
– volume: 36
  start-page: 10
  year: 2021
  end-page: 17
  ident: b0080
  article-title: The regulatory mechanisms of dynamin-related protein 1 in tumor development and therapy
  publication-title: Cancer Biother.
– volume: 12
  start-page: 2098
  year: 2016
  end-page: 2112
  ident: b0165
  article-title: Mitochondrial quality control: cell-type-dependent responses to pathological mutant mitochondrial DNA
  publication-title: Autophagy
– volume: 166
  start-page: 555
  year: 2016
  end-page: 566
  ident: b0060
  article-title: Mitochondria and cancer
  publication-title: Cell
– volume: 16
  year: 2020
  ident: b0130
  article-title: Enhanced photothermal therapy through the in situ activation of a temperature and redox dual-sensitive nanoreservoir of triptolide
  publication-title: Small
– volume: 43
  start-page: 387
  year: 2023
  end-page: 390
  ident: b0190
  article-title: Aerobic glycolysis promotes tumor immune evasion and tumor cell stemness through the noncanonical function of hexokinase 2
  publication-title: Cancer Commun.
– volume: 39
  start-page: 215
  year: 2019
  end-page: 225
  ident: b0095
  article-title: PTEN overexpression promotes glioblastoma death through triggering mitochondrial division and inactivating the Akt pathway
  publication-title: J. Recept. Sig. Transd
– volume: 125
  start-page: 315
  year: 2018
  end-page: 321
  ident: b0050
  article-title: Mitochondrial dynamics: biological roles, molecular machinery, and related diseases
  publication-title: Mol. Genet. Metab.
– volume: 72
  start-page: 2634
  year: 2012
  end-page: 2644
  ident: b0145
  article-title: Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death
  publication-title: Cancer Res.
– volume: 47
  start-page: 2280
  year: 2018
  end-page: 2297
  ident: b0005
  article-title: Organic molecule-based photothermal agents: an expanding photothermal therapy universe
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 3797
  year: 2017
  end-page: 3805
  ident: b0115
  article-title: Terrylenediimide-based intrinsic theranostic nanomedicines with high photothermal conversion efficiency for photoacoustic imaging-guided cancer therapy
  publication-title: ACS Nano
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  ident: b0180
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
– volume: 17
  start-page: 657
  year: 2020
  end-page: 674
  ident: b0020
  article-title: Clinical development and potential of photothermal and photodynamic therapies for cancer
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 33
  year: 2021
  ident: b0210
  article-title: Mito-bomb: targeting mitochondria for cancer therapy
  publication-title: Adv. Mater.
– volume: 5
  year: 2019
  ident: b0040
  article-title: Mitochondria-encoded genes contribute to evolution of heat and cold tolerance in yeast
  publication-title: Sci. Adv.
– volume: 337
  start-page: 1062
  year: 2012
  end-page: 1065
  ident: b0055
  article-title: Mitochondrial fission, fusion, and stress
  publication-title: Science
– volume: 129
  start-page: 43
  year: 2021
  end-page: 56
  ident: b0220
  article-title: Mitochondria-targeted graphene for advanced cancer therapeutics
  publication-title: Acta Biomater.
– volume: 7
  start-page: 13193
  year: 2016
  ident: b0010
  article-title: Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy
  publication-title: Nat. Commun.
– reference: Q. Chen, Q. Hu, E. Dukhovlinova, G. Chen, S. Ahn, C. Wang, E.A. Ogunnaike, F.S. Ligler, G. Dotti, Z. Gu, Photothermal therapy: photothermal therapy promotes tumor infiltration and antitumor activity of car T cells, Adv. Mater. 31(23) (2019) 1970166.
– volume: 29
  year: 2017
  ident: b0025
  article-title: A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer
  publication-title: Adv. Mater.
– volume: 105
  start-page: 239
  year: 2020
  end-page: 252
  ident: b0185
  article-title: Co-delivery of 2-deoxyglucose and a glutamine metabolism inhibitor V9302 via a prodrug micellar formulation for synergistic targeting of metabolism in cancer
  publication-title: Acta Biomater.
– volume: 212
  start-page: 379
  year: 2016
  end-page: 387
  ident: b0065
  article-title: Metabolic regulation of mitochondrial dynamics
  publication-title: J. Cell Bio
– volume: 17
  start-page: 865
  year: 2018
  end-page: 886
  ident: b0035
  article-title: Mitochondria as a therapeutic target for common pathologies
  publication-title: Nat. Rev. Drug Discov.
– volume: 39
  start-page: 43
  year: 2016
  end-page: 52
  ident: b0075
  article-title: Regulators of mitochondrial dynamics in cancer
  publication-title: Curr. Opin. Cell Biol.
– volume: 355
  start-page: 176
  year: 2014
  end-page: 183
  ident: b0140
  article-title: 2-deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy
  publication-title: Cancer Lett.
– volume: 35
  year: 2023
  ident: b0070
  article-title: Piezocatalytic 2D WS
  publication-title: Adv. Mater.
– volume: 170
  start-page: 1879
  year: 2005
  end-page: 1885
  ident: b0175
  article-title: Systematic segregation to mutant mitochondrial DNA and accompanying loss of mitochondrial DNA in human NT2 teratocarcinoma cybrids
  publication-title: Genetics
– volume: 30
  year: 2020
  ident: b0135
  article-title: Enzyme-mediated tumor starvation and phototherapy enhance mild-temperature photothermal therapy
  publication-title: Adv. Funct. Mater.
– volume: 246
  start-page: 500
  year: 1989
  end-page: 503
  ident: b0170
  article-title: Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation
  publication-title: Science
– volume: 141
  start-page: 86
  year: 2017
  end-page: 95
  ident: b0205
  article-title: Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy
  publication-title: Biomaterials
– volume: 26
  start-page: 3480
  year: 2016
  end-page: 3489
  ident: b0125
  article-title: Cypate-conjugated porous upconversion nanocomposites for programmed delivery of heat shock protein 70 small interfering RNA for gene silencing and photothermal ablation
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2020
  ident: b0200
  article-title: Augmenting tumor-starvation therapy by cancer cell autophagy inhibition
  publication-title: Adv. Sci.
– volume: 32
  year: 2022
  ident: b0215
  article-title: Novel FeF
  publication-title: Adv. Funct. Mater.
– volume: 400
  year: 2020
  ident: b0030
  article-title: Biomimic FeS
  publication-title: Chem. Eng. J.
– volume: 12
  year: 2020
  ident: b0150
  article-title: Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer
  publication-title: Cancers
– volume: 8
  start-page: 212
  year: 2020
  end-page: 223
  ident: b0155
  article-title: CD44 targeted redox-triggered self-assembly with magnetic enhanced EPR effects for effective amplification of gambogic acid to treat triple-negative breast cancer
  publication-title: Biomater. Sci.
– volume: 17
  start-page: 149
  year: 2019
  ident: b0100
  article-title: TPP-related mitochondrial targeting copper (II) complex induces p53-dependent apoptosis in hepatoma cells through ROS-mediated activation of Drp1
  publication-title: Cell Commun. Signal
– volume: 129
  start-page: 75
  year: 2018
  end-page: 83
  ident: b0085
  article-title: Fragmentation level determines mitochondrial damage response and subsequently the fate of cancer cells exposed to carbon ions
  publication-title: Radiother. Oncol.
– volume: 12
  start-page: 2858
  year: 2018
  end-page: 2872
  ident: b0110
  article-title: Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy
  publication-title: ACS Nano
– volume: 114
  year: 2019
  ident: b0090
  article-title: Anti-tumor effect of LATS2 on liver cancer death: Role of DRP1-mediated mitochondrial division and the Wnt/β-catenin pathway
  publication-title: Biomed. Pharmacother.
– volume: 59
  start-page: 9693
  year: 2020
  end-page: 9701
  ident: b0195
  article-title: Tumor-specific chemotherapy by nanomedicine-enabled differential stress sensitization
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  issue: 6
  year: 2020
  ident: 10.1016/j.jcis.2024.10.180_b0200
  article-title: Augmenting tumor-starvation therapy by cancer cell autophagy inhibition
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902847
– volume: 33
  issue: 43
  year: 2021
  ident: 10.1016/j.jcis.2024.10.180_b0210
  article-title: Mito-bomb: targeting mitochondria for cancer therapy
  publication-title: Adv. Mater.
– volume: 4
  issue: 2
  year: 2017
  ident: 10.1016/j.jcis.2024.10.180_b0120
  article-title: Laser-triggered small interfering RNA releasing gold nanoshells against heat shock protein for sensitized photothermal therapy
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600327
– volume: 12
  start-page: 2098
  issue: 11
  year: 2016
  ident: 10.1016/j.jcis.2024.10.180_b0165
  article-title: Mitochondrial quality control: cell-type-dependent responses to pathological mutant mitochondrial DNA
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1226734
– volume: 36
  start-page: 10
  issue: 1
  year: 2021
  ident: 10.1016/j.jcis.2024.10.180_b0080
  article-title: The regulatory mechanisms of dynamin-related protein 1 in tumor development and therapy
  publication-title: Cancer Biother.
– volume: 59
  start-page: 9693
  issue: 24
  year: 2020
  ident: 10.1016/j.jcis.2024.10.180_b0195
  article-title: Tumor-specific chemotherapy by nanomedicine-enabled differential stress sensitization
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202002306
– volume: 105
  start-page: 239
  year: 2020
  ident: 10.1016/j.jcis.2024.10.180_b0185
  article-title: Co-delivery of 2-deoxyglucose and a glutamine metabolism inhibitor V9302 via a prodrug micellar formulation for synergistic targeting of metabolism in cancer
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.01.019
– volume: 11
  start-page: 3797
  issue: 4
  year: 2017
  ident: 10.1016/j.jcis.2024.10.180_b0115
  article-title: Terrylenediimide-based intrinsic theranostic nanomedicines with high photothermal conversion efficiency for photoacoustic imaging-guided cancer therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b08720
– volume: 24
  start-page: 597
  issue: 3
  year: 2021
  ident: 10.1016/j.jcis.2024.10.180_b0045
  article-title: Identification of six heat shock protein 70 genes in Lasioderma serricorne (Coleoptera: Anobiidae) and their responses to temperature stress
  publication-title: J. Asia Pac. Entomol.
  doi: 10.1016/j.aspen.2021.05.005
– volume: 11
  start-page: 1419
  issue: 2
  year: 2017
  ident: 10.1016/j.jcis.2024.10.180_b0160
  article-title: Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for photothermal therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06658
– ident: 10.1016/j.jcis.2024.10.180_b0015
  doi: 10.1002/adma.201900192
– volume: 114
  year: 2019
  ident: 10.1016/j.jcis.2024.10.180_b0090
  article-title: Anti-tumor effect of LATS2 on liver cancer death: Role of DRP1-mediated mitochondrial division and the Wnt/β-catenin pathway
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2019.108825
– volume: 29
  issue: 33
  year: 2017
  ident: 10.1016/j.jcis.2024.10.180_b0025
  article-title: A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700448
– volume: 212
  start-page: 379
  issue: 4
  year: 2016
  ident: 10.1016/j.jcis.2024.10.180_b0065
  article-title: Metabolic regulation of mitochondrial dynamics
  publication-title: J. Cell Bio
  doi: 10.1083/jcb.201511036
– volume: 129
  start-page: 75
  issue: 1
  year: 2018
  ident: 10.1016/j.jcis.2024.10.180_b0085
  article-title: Fragmentation level determines mitochondrial damage response and subsequently the fate of cancer cells exposed to carbon ions
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2017.11.019
– volume: 72
  start-page: 2634
  issue: 10
  year: 2012
  ident: 10.1016/j.jcis.2024.10.180_b0145
  article-title: Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-3928
– volume: 35
  year: 2023
  ident: 10.1016/j.jcis.2024.10.180_b0070
  article-title: Piezocatalytic 2D WS2 nanosheets for ultrasound-triggered and mitochondria-targeted piezodynamic cancer therapy synergized with energy metabolism-targeted chemotherapy
  publication-title: Adv. Mater.
– volume: 39
  start-page: 43
  year: 2016
  ident: 10.1016/j.jcis.2024.10.180_b0075
  article-title: Regulators of mitochondrial dynamics in cancer
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2016.02.001
– volume: 39
  start-page: 215
  issue: 3
  year: 2019
  ident: 10.1016/j.jcis.2024.10.180_b0095
  article-title: PTEN overexpression promotes glioblastoma death through triggering mitochondrial division and inactivating the Akt pathway
  publication-title: J. Recept. Sig. Transd
  doi: 10.1080/10799893.2019.1655051
– volume: 337
  start-page: 1062
  issue: 6098
  year: 2012
  ident: 10.1016/j.jcis.2024.10.180_b0055
  article-title: Mitochondrial fission, fusion, and stress
  publication-title: Science
  doi: 10.1126/science.1219855
– volume: 20
  start-page: 790
  issue: 7
  year: 2020
  ident: 10.1016/j.jcis.2024.10.180_b0105
  article-title: Apoptotic effects of melittin on 4T1 breast cancer cell line is associated with up regulation of Mfn1 and Drp1 mRNA expression
  publication-title: Anticancer Agents Med Chem.
  doi: 10.2174/1871520620666200211091451
– volume: 17
  start-page: 149
  issue: 1
  year: 2019
  ident: 10.1016/j.jcis.2024.10.180_b0100
  article-title: TPP-related mitochondrial targeting copper (II) complex induces p53-dependent apoptosis in hepatoma cells through ROS-mediated activation of Drp1
  publication-title: Cell Commun. Signal
  doi: 10.1186/s12964-019-0468-6
– volume: 12
  issue: 8
  year: 2020
  ident: 10.1016/j.jcis.2024.10.180_b0150
  article-title: Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer
  publication-title: Cancers
  doi: 10.3390/cancers12082252
– volume: 17
  start-page: 657
  issue: 11
  year: 2020
  ident: 10.1016/j.jcis.2024.10.180_b0020
  article-title: Clinical development and potential of photothermal and photodynamic therapies for cancer
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-020-0410-2
– volume: 355
  start-page: 176
  issue: 2
  year: 2014
  ident: 10.1016/j.jcis.2024.10.180_b0140
  article-title: 2-deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2014.09.003
– volume: 129
  start-page: 43
  year: 2021
  ident: 10.1016/j.jcis.2024.10.180_b0220
  article-title: Mitochondria-targeted graphene for advanced cancer therapeutics
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.04.054
– volume: 125
  start-page: 315
  issue: 4
  year: 2018
  ident: 10.1016/j.jcis.2024.10.180_b0050
  article-title: Mitochondrial dynamics: biological roles, molecular machinery, and related diseases
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2018.10.003
– volume: 166
  start-page: 555
  issue: 3
  year: 2016
  ident: 10.1016/j.jcis.2024.10.180_b0060
  article-title: Mitochondria and cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.002
– volume: 16
  issue: 38
  year: 2020
  ident: 10.1016/j.jcis.2024.10.180_b0130
  article-title: Enhanced photothermal therapy through the in situ activation of a temperature and redox dual-sensitive nanoreservoir of triptolide
  publication-title: Small
  doi: 10.1002/smll.202003398
– volume: 170
  start-page: 1879
  issue: 4
  year: 2005
  ident: 10.1016/j.jcis.2024.10.180_b0175
  article-title: Systematic segregation to mutant mitochondrial DNA and accompanying loss of mitochondrial DNA in human NT2 teratocarcinoma cybrids
  publication-title: Genetics
  doi: 10.1534/genetics.105.043653
– volume: 47
  start-page: 2280
  issue: 7
  year: 2018
  ident: 10.1016/j.jcis.2024.10.180_b0005
  article-title: Organic molecule-based photothermal agents: an expanding photothermal therapy universe
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00522A
– volume: 141
  start-page: 86
  year: 2017
  ident: 10.1016/j.jcis.2024.10.180_b0205
  article-title: Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.06.035
– volume: 12
  start-page: 2858
  issue: 3
  year: 2018
  ident: 10.1016/j.jcis.2024.10.180_b0110
  article-title: Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00309
– volume: 30
  issue: 16
  year: 2020
  ident: 10.1016/j.jcis.2024.10.180_b0135
  article-title: Enzyme-mediated tumor starvation and phototherapy enhance mild-temperature photothermal therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909391
– volume: 32
  issue: 23
  year: 2022
  ident: 10.1016/j.jcis.2024.10.180_b0215
  article-title: Novel FeF2/Fe1–xS nanoreactor-mediated mitochondrial dysfunction via oxidative stress and fluoride ions overloaded for synergistic chemodynamic therapy and photothermal therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202113397
– volume: 7
  start-page: 13193
  issue: 1
  year: 2016
  ident: 10.1016/j.jcis.2024.10.180_b0010
  article-title: Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13193
– volume: 246
  start-page: 500
  issue: 4929
  year: 1989
  ident: 10.1016/j.jcis.2024.10.180_b0170
  article-title: Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation
  publication-title: Science
  doi: 10.1126/science.2814477
– volume: 324
  start-page: 1029
  issue: 5930
  year: 2009
  ident: 10.1016/j.jcis.2024.10.180_b0180
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 43
  start-page: 387
  issue: 3
  year: 2023
  ident: 10.1016/j.jcis.2024.10.180_b0190
  article-title: Aerobic glycolysis promotes tumor immune evasion and tumor cell stemness through the noncanonical function of hexokinase 2
  publication-title: Cancer Commun.
  doi: 10.1002/cac2.12404
– volume: 26
  start-page: 3480
  issue: 20
  year: 2016
  ident: 10.1016/j.jcis.2024.10.180_b0125
  article-title: Cypate-conjugated porous upconversion nanocomposites for programmed delivery of heat shock protein 70 small interfering RNA for gene silencing and photothermal ablation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600035
– volume: 8
  start-page: 212
  issue: 1
  year: 2020
  ident: 10.1016/j.jcis.2024.10.180_b0155
  article-title: CD44 targeted redox-triggered self-assembly with magnetic enhanced EPR effects for effective amplification of gambogic acid to treat triple-negative breast cancer
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM01171D
– volume: 400
  year: 2020
  ident: 10.1016/j.jcis.2024.10.180_b0030
  article-title: Biomimic FeS2 nanodrug with hypothermal photothermal effect by clinical approved NIR-Ⅱ light for augmented chemodynamic therapy
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125933
– volume: 17
  start-page: 865
  issue: 12
  year: 2018
  ident: 10.1016/j.jcis.2024.10.180_b0035
  article-title: Mitochondria as a therapeutic target for common pathologies
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2018.174
– volume: 5
  issue: 1
  year: 2019
  ident: 10.1016/j.jcis.2024.10.180_b0040
  article-title: Mitochondria-encoded genes contribute to evolution of heat and cold tolerance in yeast
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav1848
SSID ssj0011559
Score 2.471728
Snippet The targeting-mitochondrial degradable TPP-CBS-2DG JNSs improves antitumor effects through synergistically interfering with mitochondrial dynamics and...
Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 429
SubjectTerms 2-deoxyglucose
adenosine triphosphate
Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
carboxylation
Cell Survival - drug effects
Degradation
Drug Screening Assays, Antitumor
energy
Energy metabolism
Energy Metabolism - drug effects
face
glycolysis
heat stress
heat tolerance
homeostasis
Humans
Janus nanosheets
Mice
mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondrial dynamics
Mitochondrial Dynamics - drug effects
nanosheets
neoplasms
Particle Size
Photothermal Therapy
photothermotherapy
reactive oxygen species
Reactive Oxygen Species - metabolism
Sensitized photothermal therapy
starvation
Surface Properties
Targeting mitochondria
Title Mitochondrial dynamics and energy metabolism interference therapy for promoting photothermal sensitization
URI https://dx.doi.org/10.1016/j.jcis.2024.10.180
https://www.ncbi.nlm.nih.gov/pubmed/39522238
https://www.proquest.com/docview/3128747801
https://www.proquest.com/docview/3154246677
Volume 680
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcCg9VJSWlkeRkXpD2Y1jO46PaAVaqJYTSNwiO7bbXbHZFRsOXPjtzMQJAqnl0OvYiUYz45mxPN8MIT9lYF6ZXCZOBp0Io3liUxYSUYRU6cCtTBE7PL3KJzfi8lbeDsi4x8JgWWXn-6NPb711Rxl10hytZjPE-MJpU1rh-4DkEkF8Qii08uHTS5kHw2e3WObBEtzdAWdijde8mmHL7kwMkYatIf8enP6VfLZB6HybfOqyR3oaGfxMBr7eIR_G_dC2HfLxVX_BL2Q-hfMK_q12aGbUxenza2pqR30L-qML34AZ3M3WC4qdI-47-B-NuKxHCjktXcWSvfo3Xf1ZNi1kawG_W2Pte9PhOL-Sm_Oz6_Ek6YYrJBUXaZPoSoaisGngzHDtOVxrbIBwllYhLazmsMqkF8q4zAbtDaQyjvGgBdyPBBea75KNeln774RmztlQmarA5dxWhuXKeu6kchbyNbVHTnqplqvYQ6Psi8vmJeqgRB20tCLdI7IXfPnGEkpw8u9-d9xrqQSh47uHqf3yYV1yhk39FcTi9_ZIkYk8V8Dtt6jiF165lphFFfv_ydkB2cpwajCOkZGHZKO5f_A_IJVp7FFrq0dk8_Ti1-TqGcTP9R8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UB7qCh9Ufpwpd6qlCS24_iIVqClsHsCiZtlx3bZVTe7YsOBf48ndhCVWg692nE0mhnPjDXzzQB8475wQlc8s9zLjGlJM5MXPmO1z4X01PAcscPTWTW5ZD-v-NUWjAcsDJZVJtsfbXpvrdPKYeLm4Xo-R4xvuG1CCswPcMrlM9jG7lR8BNtHp2eT2UMyATNvsdKjyPBAws7EMq9FM8eu3SX7gWvYHfLv_ulf8Wfvh0524WUKIMlRpPEVbLl2D3bGw9y2PXjxqMXga1hMw5UNJq61qGnExgH0G6JbS1yP-yNL1wVN-D3fLAk2j7hJCEASoVl3JIS1ZB2r9tpfZH296nrU1jL8boPl712Ccr6By5Pji_EkS_MVsoayvMtkw31dm9zTQlPpaHjZGB88Wt74vDaSht2COya0LY2XTodoxhbUSxaeSIwySd_CqF217j2Q0lrjG93UuF2ZRheVMI5aLqwJIZvYh-8DV9U6ttFQQ33ZQqEMFMqgX6vzfeAD49UfyqCCnX_y3NdBSiowHVMfunWr242iBfb1F8EdP_UNZyWrKhGofRdF_EArlRwDqfrDf1L2BXYmF9NzdX46OzuA5yUOEcapMvwjjLqbW_cpRDad-Zw09x4mkffQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+dynamics+and+energy+metabolism+interference+therapy+for+promoting+photothermal+sensitization&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Liu%2C+Cuimei&rft.au=Cheng%2C+Sihang&rft.au=Zhou%2C+Xue&rft.au=Li%2C+Lu&rft.date=2025-02-15&rft.issn=0021-9797&rft.volume=680+p.429-440&rft.spage=429&rft.epage=440&rft_id=info:doi/10.1016%2Fj.jcis.2024.10.180&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon