Mitochondrial dynamics and energy metabolism interference therapy for promoting photothermal sensitization
The targeting-mitochondrial degradable TPP-CBS-2DG JNSs improves antitumor effects through synergistically interfering with mitochondrial dynamics and inhibiting glycolysis, thereby improving the efficacy of photothermal therapy. [Display omitted] •TPP-CBS-2DG JNSs can disrupt mitochondrial dynamic...
Saved in:
Published in | Journal of colloid and interface science Vol. 680; no. Pt A; pp. 429 - 440 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9797 1095-7103 1095-7103 |
DOI | 10.1016/j.jcis.2024.10.180 |
Cover
Loading…
Abstract | The targeting-mitochondrial degradable TPP-CBS-2DG JNSs improves antitumor effects through synergistically interfering with mitochondrial dynamics and inhibiting glycolysis, thereby improving the efficacy of photothermal therapy.
[Display omitted]
•TPP-CBS-2DG JNSs can disrupt mitochondrial dynamic homeostasis and inhibit energy metabolism.•TPP-CBS-2DG JNSs can radically inhibit the production of heat shock proteins, achieving superior photothermal efficacy.•This multifunctional 2D-dimensional material provides a candidate strategy for synergistic therapy targeting subcellular organelles.
Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu3BiS3 (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs. |
---|---|
AbstractList | The targeting-mitochondrial degradable TPP-CBS-2DG JNSs improves antitumor effects through synergistically interfering with mitochondrial dynamics and inhibiting glycolysis, thereby improving the efficacy of photothermal therapy.
[Display omitted]
•TPP-CBS-2DG JNSs can disrupt mitochondrial dynamic homeostasis and inhibit energy metabolism.•TPP-CBS-2DG JNSs can radically inhibit the production of heat shock proteins, achieving superior photothermal efficacy.•This multifunctional 2D-dimensional material provides a candidate strategy for synergistic therapy targeting subcellular organelles.
Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu3BiS3 (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs. Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu₃BiS₃ (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs. Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu BiS (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs. Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu3BiS3 (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs.Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu3BiS3 (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs. |
Author | Cheng, Sihang Zhang, Lingyu Liu, Cuimei Li, Lu Zhou, Xue Wang, Chungang |
Author_xml | – sequence: 1 givenname: Cuimei surname: Liu fullname: Liu, Cuimei organization: College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China – sequence: 2 givenname: Sihang surname: Cheng fullname: Cheng, Sihang organization: College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China – sequence: 3 givenname: Xue surname: Zhou fullname: Zhou, Xue organization: College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China – sequence: 4 givenname: Lu surname: Li fullname: Li, Lu organization: College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China – sequence: 5 givenname: Chungang surname: Wang fullname: Wang, Chungang organization: College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China – sequence: 6 givenname: Lingyu orcidid: 0000-0002-4297-903X surname: Zhang fullname: Zhang, Lingyu email: zhangly827@nenu.edu.cn organization: College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39522238$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvFDEQhC0URDaBP8AB-chllvZjHpa4oCgkkYK4JGfL42lnPZqxF9uLtPx6ZrKBI-LUUvVXrVbVBTkLMSAh7xlsGbDm07gdrc9bDlxuV62DV2TDQNVVy0CckQ0AZ5VqVXtOLnIeARira_WGnAtVc85FtyHjN1-i3cUwJG8mOhyDmb3N1ISBYsD0dKQzFtPHyeeZ-lAwOUwYLNKyw2T2R-piovsU51h8eKL7XSxxXc3LuYwh--J_meJjeEteOzNlfPcyL8nj1-uHq9vq_vvN3dWX-8oKCaVStnZd14MTzAiFooG6d7AM66DrlVi2rEbZmoH3TqGBRgxMOCVV00ghlbgkH093l6d-HDAXPftscZpMwHjIWrBactk0bfsfKO9a2XbAFvTDC3roZxz0PvnZpKP-E-UC8BNgU8w5ofuLMNBrX3rUa1967etZ62AxfT6ZcAnkp8eks_VruoNPaIseov-X_TcUCJ9W |
Cites_doi | 10.1002/advs.201902847 10.1002/advs.201600327 10.1080/15548627.2016.1226734 10.1002/anie.202002306 10.1016/j.actbio.2020.01.019 10.1021/acsnano.6b08720 10.1016/j.aspen.2021.05.005 10.1021/acsnano.6b06658 10.1002/adma.201900192 10.1016/j.biopha.2019.108825 10.1002/adma.201700448 10.1083/jcb.201511036 10.1016/j.radonc.2017.11.019 10.1158/0008-5472.CAN-11-3928 10.1016/j.ceb.2016.02.001 10.1080/10799893.2019.1655051 10.1126/science.1219855 10.2174/1871520620666200211091451 10.1186/s12964-019-0468-6 10.3390/cancers12082252 10.1038/s41571-020-0410-2 10.1016/j.canlet.2014.09.003 10.1016/j.actbio.2021.04.054 10.1016/j.ymgme.2018.10.003 10.1016/j.cell.2016.07.002 10.1002/smll.202003398 10.1534/genetics.105.043653 10.1039/C7CS00522A 10.1016/j.biomaterials.2017.06.035 10.1021/acsnano.8b00309 10.1002/adfm.201909391 10.1002/adfm.202113397 10.1038/ncomms13193 10.1126/science.2814477 10.1126/science.1160809 10.1002/cac2.12404 10.1002/adfm.201600035 10.1039/C9BM01171D 10.1016/j.cej.2020.125933 10.1038/nrd.2018.174 10.1126/sciadv.aav1848 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2024.10.180 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 440 |
ExternalDocumentID | 39522238 10_1016_j_jcis_2024_10_180 S0021979724025359 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 53G 6TJ AAQXK AATTM AAXUO AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SSH VH1 WUQ ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c340t-9c5f88b0f31a39e3605bf0360cf08b935f815e47ad2bf9ea063d13f9496643493 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 16:05:42 EDT 2025 Tue Aug 05 11:37:30 EDT 2025 Thu Apr 03 06:58:53 EDT 2025 Tue Jul 01 04:19:39 EDT 2025 Sat Dec 14 16:14:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | Degradation Energy metabolism Janus nanosheets Targeting mitochondria Sensitized photothermal therapy Mitochondrial dynamics |
Language | English |
License | Copyright © 2024 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-9c5f88b0f31a39e3605bf0360cf08b935f815e47ad2bf9ea063d13f9496643493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4297-903X |
PMID | 39522238 |
PQID | 3128747801 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3154246677 proquest_miscellaneous_3128747801 pubmed_primary_39522238 crossref_primary_10_1016_j_jcis_2024_10_180 elsevier_sciencedirect_doi_10_1016_j_jcis_2024_10_180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-15 |
PublicationDateYYYYMMDD | 2025-02-15 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – sequence: 0 name: Elsevier Inc |
References | She, Peng, Liu, Huang, Zheng, Lu, Geng, Yin (b0030) 2020; 400 Bao, Li, Lin (b0095) 2019; 39 Turner, Granycome, Hurst, Pohler, Juhola, Juhola, Jacobs, Sutherland, Holt (b0175) 2005; 170 King, Attardi (b0170) 1989; 246 Wang, Gao, Liu, Liu, Ma, Liu, Du, Zhou (b0125) 2016; 26 Tabish, Narayan (b0220) 2021; 129 Gao, Jiang, Guo, Jia, Cheng, Deng, Yu, Zhu, Guo, Sun, Liu, Zhao, Yang, Yu, Raya, Liang, Wu (b0135) 2020; 30 Yang, Ding, Chen, Shi (b0200) 2020; 7 Vyas, Zaganjor, Haigis (b0060) 2016; 166 Han, Ren, Qu, Meng (b0080) 2021; 36 Zhang, Li, Wang, Hu, Wang, Sun (b0140) 2014; 355 Mishra, Chan (b0065) 2016; 212 Truong Hoang, Huynh, Nguyen Cao, Kang, Dang, Ravichandran, Kang, Lee, Kim, Ko, Lee, Shim (b0070) 2023; 35 Vander Heiden, Cantley, Thompson (b0180) 2009; 324 Luo, Xu, Sun, Huang, Zhang, Ma, Wan, Liu, Pardeshi, Li (b0185) 2020; 105 Guo, Yang, Ji, Zhang, Dong, Zhou, Li, Shen, Yao, Huang (b0210) 2021; 33 Malena, Pantic, Borgia, Sgarbi, Solaini, Holt, Spinazzola, Perissinotto, Sandri, Baracca, Vergani (b0165) 2016; 12 Varghese, Samuel, Líšková, Samec, Kubatka, Büsselberg (b0150) 2020; 12 Sang, Han, Luo, Qu, Zheng, Zhang, Liu, Xue, Liu, Feng (b0155) 2020; 8 Yang, Chen, Shi (b0195) 2020; 59 El-Hattab, Suleiman, Almannai, Scaglia (b0050) 2018; 125 Zhang, Jin, Liu, Wang, Zhang, Liu, Zhao, Yin, Niu, Xue, Yu, Yang (b0215) 2022; 32 Zhou, Li, Hou, Luo, Chen, Cao, Huo, Xue, Sutrisno, Hao, Cao, Ran, Lu, Li, Cai (b0110) 2018; 12 Li, Lovell, Yoon, Chen (b0020) 2020; 17 He, Xiao, Wang, Guo, Lu (b0190) 2023; 43 Q. Chen, Q. Hu, E. Dukhovlinova, G. Chen, S. Ahn, C. Wang, E.A. Ogunnaike, F.S. Ligler, G. Dotti, Z. Gu, Photothermal therapy: photothermal therapy promotes tumor infiltration and antitumor activity of car T cells, Adv. Mater. 31(23) (2019) 1970166. Wang, Li, Zhang, Ma, Liu, Gao, Zhang, Gu (b0120) 2017; 4 Chen, Xu, Liang, Wang, Peng, Liu (b0010) 2016; 7 Chen, Luo, Lei, Hong, Qiu, Liu, Cheng, Zhang (b0160) 2017; 11 Cheng, Zielonka, Dranka, McAllister, Mackinnon, Joseph, Kalyanaraman (b0145) 2012; 72 Jin, Zheng, Li, Liu, Li, Hirayama, Li, Liu, Shen, Li (b0085) 2018; 129 Moghaddam, Mortazavi, Hamedi, Nabiuni, Roodbari (b0105) 2020; 20 Hu, Chi, Wang, Wang, Liang, Liu, Shang, Wang, Zhang, Li, Shen, Yu, Liu, Tian (b0025) 2017; 29 Li, Peris, Hittinger, Sia, Fay (b0040) 2019; 5 Shao, Li, Guo, Jin, Zhang, Ou, Xie, Tan, Wang, Zheng, Wang (b0100) 2019; 17 Youle, van der Bliek (b0055) 2012; 337 Zhang, Guo, Wei, Li, Liang, Yin (b0115) 2017; 11 Jung, Verwilst, Sharma, Shin, Sessler, Kim (b0005) 2018; 47 Senft, Ronai (b0075) 2016; 39 Zhang, Li, Wang, Chen, Ma, Cai (b0090) 2019; 114 Li, Huang, Lei, Xu, Li, Chen, Liu (b0045) 2021; 24 Liu, Wang, Hu, Shi, Xu (b0130) 2020; 16 Murphy, Hartley (b0035) 2018; 17 Hu, Wu, Fan, Chen, Liu, Ni, Bu, Shi (b0205) 2017; 141 Gao (10.1016/j.jcis.2024.10.180_b0135) 2020; 30 Malena (10.1016/j.jcis.2024.10.180_b0165) 2016; 12 Varghese (10.1016/j.jcis.2024.10.180_b0150) 2020; 12 El-Hattab (10.1016/j.jcis.2024.10.180_b0050) 2018; 125 Mishra (10.1016/j.jcis.2024.10.180_b0065) 2016; 212 He (10.1016/j.jcis.2024.10.180_b0190) 2023; 43 Chen (10.1016/j.jcis.2024.10.180_b0010) 2016; 7 Yang (10.1016/j.jcis.2024.10.180_b0200) 2020; 7 Zhang (10.1016/j.jcis.2024.10.180_b0215) 2022; 32 Senft (10.1016/j.jcis.2024.10.180_b0075) 2016; 39 Li (10.1016/j.jcis.2024.10.180_b0040) 2019; 5 Han (10.1016/j.jcis.2024.10.180_b0080) 2021; 36 King (10.1016/j.jcis.2024.10.180_b0170) 1989; 246 Shao (10.1016/j.jcis.2024.10.180_b0100) 2019; 17 Vyas (10.1016/j.jcis.2024.10.180_b0060) 2016; 166 Hu (10.1016/j.jcis.2024.10.180_b0205) 2017; 141 Li (10.1016/j.jcis.2024.10.180_b0020) 2020; 17 Liu (10.1016/j.jcis.2024.10.180_b0130) 2020; 16 Bao (10.1016/j.jcis.2024.10.180_b0095) 2019; 39 Luo (10.1016/j.jcis.2024.10.180_b0185) 2020; 105 Zhang (10.1016/j.jcis.2024.10.180_b0115) 2017; 11 Li (10.1016/j.jcis.2024.10.180_b0045) 2021; 24 Wang (10.1016/j.jcis.2024.10.180_b0125) 2016; 26 10.1016/j.jcis.2024.10.180_b0015 Zhang (10.1016/j.jcis.2024.10.180_b0090) 2019; 114 Yang (10.1016/j.jcis.2024.10.180_b0195) 2020; 59 Jin (10.1016/j.jcis.2024.10.180_b0085) 2018; 129 Sang (10.1016/j.jcis.2024.10.180_b0155) 2020; 8 Vander Heiden (10.1016/j.jcis.2024.10.180_b0180) 2009; 324 Guo (10.1016/j.jcis.2024.10.180_b0210) 2021; 33 She (10.1016/j.jcis.2024.10.180_b0030) 2020; 400 Tabish (10.1016/j.jcis.2024.10.180_b0220) 2021; 129 Zhang (10.1016/j.jcis.2024.10.180_b0140) 2014; 355 Truong Hoang (10.1016/j.jcis.2024.10.180_b0070) 2023; 35 Moghaddam (10.1016/j.jcis.2024.10.180_b0105) 2020; 20 Chen (10.1016/j.jcis.2024.10.180_b0160) 2017; 11 Jung (10.1016/j.jcis.2024.10.180_b0005) 2018; 47 Hu (10.1016/j.jcis.2024.10.180_b0025) 2017; 29 Murphy (10.1016/j.jcis.2024.10.180_b0035) 2018; 17 Youle (10.1016/j.jcis.2024.10.180_b0055) 2012; 337 Cheng (10.1016/j.jcis.2024.10.180_b0145) 2012; 72 Zhou (10.1016/j.jcis.2024.10.180_b0110) 2018; 12 Wang (10.1016/j.jcis.2024.10.180_b0120) 2017; 4 Turner (10.1016/j.jcis.2024.10.180_b0175) 2005; 170 |
References_xml | – volume: 24 start-page: 597 year: 2021 end-page: 605 ident: b0045 article-title: Identification of six heat shock protein 70 genes in Lasioderma serricorne (Coleoptera: Anobiidae) and their responses to temperature stress publication-title: J. Asia Pac. Entomol. – volume: 11 start-page: 1419 year: 2017 end-page: 1431 ident: b0160 article-title: Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for photothermal therapy publication-title: ACS Nano – volume: 20 start-page: 790 year: 2020 end-page: 799 ident: b0105 article-title: Apoptotic effects of melittin on 4T1 breast cancer cell line is associated with up regulation of Mfn1 and Drp1 mRNA expression publication-title: Anticancer Agents Med Chem. – volume: 4 year: 2017 ident: b0120 article-title: Laser-triggered small interfering RNA releasing gold nanoshells against heat shock protein for sensitized photothermal therapy publication-title: Adv. Sci. – volume: 36 start-page: 10 year: 2021 end-page: 17 ident: b0080 article-title: The regulatory mechanisms of dynamin-related protein 1 in tumor development and therapy publication-title: Cancer Biother. – volume: 12 start-page: 2098 year: 2016 end-page: 2112 ident: b0165 article-title: Mitochondrial quality control: cell-type-dependent responses to pathological mutant mitochondrial DNA publication-title: Autophagy – volume: 166 start-page: 555 year: 2016 end-page: 566 ident: b0060 article-title: Mitochondria and cancer publication-title: Cell – volume: 16 year: 2020 ident: b0130 article-title: Enhanced photothermal therapy through the in situ activation of a temperature and redox dual-sensitive nanoreservoir of triptolide publication-title: Small – volume: 43 start-page: 387 year: 2023 end-page: 390 ident: b0190 article-title: Aerobic glycolysis promotes tumor immune evasion and tumor cell stemness through the noncanonical function of hexokinase 2 publication-title: Cancer Commun. – volume: 39 start-page: 215 year: 2019 end-page: 225 ident: b0095 article-title: PTEN overexpression promotes glioblastoma death through triggering mitochondrial division and inactivating the Akt pathway publication-title: J. Recept. Sig. Transd – volume: 125 start-page: 315 year: 2018 end-page: 321 ident: b0050 article-title: Mitochondrial dynamics: biological roles, molecular machinery, and related diseases publication-title: Mol. Genet. Metab. – volume: 72 start-page: 2634 year: 2012 end-page: 2644 ident: b0145 article-title: Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death publication-title: Cancer Res. – volume: 47 start-page: 2280 year: 2018 end-page: 2297 ident: b0005 article-title: Organic molecule-based photothermal agents: an expanding photothermal therapy universe publication-title: Chem. Soc. Rev. – volume: 11 start-page: 3797 year: 2017 end-page: 3805 ident: b0115 article-title: Terrylenediimide-based intrinsic theranostic nanomedicines with high photothermal conversion efficiency for photoacoustic imaging-guided cancer therapy publication-title: ACS Nano – volume: 324 start-page: 1029 year: 2009 end-page: 1033 ident: b0180 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science – volume: 17 start-page: 657 year: 2020 end-page: 674 ident: b0020 article-title: Clinical development and potential of photothermal and photodynamic therapies for cancer publication-title: Nat. Rev. Clin. Oncol. – volume: 33 year: 2021 ident: b0210 article-title: Mito-bomb: targeting mitochondria for cancer therapy publication-title: Adv. Mater. – volume: 5 year: 2019 ident: b0040 article-title: Mitochondria-encoded genes contribute to evolution of heat and cold tolerance in yeast publication-title: Sci. Adv. – volume: 337 start-page: 1062 year: 2012 end-page: 1065 ident: b0055 article-title: Mitochondrial fission, fusion, and stress publication-title: Science – volume: 129 start-page: 43 year: 2021 end-page: 56 ident: b0220 article-title: Mitochondria-targeted graphene for advanced cancer therapeutics publication-title: Acta Biomater. – volume: 7 start-page: 13193 year: 2016 ident: b0010 article-title: Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy publication-title: Nat. Commun. – reference: Q. Chen, Q. Hu, E. Dukhovlinova, G. Chen, S. Ahn, C. Wang, E.A. Ogunnaike, F.S. Ligler, G. Dotti, Z. Gu, Photothermal therapy: photothermal therapy promotes tumor infiltration and antitumor activity of car T cells, Adv. Mater. 31(23) (2019) 1970166. – volume: 29 year: 2017 ident: b0025 article-title: A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer publication-title: Adv. Mater. – volume: 105 start-page: 239 year: 2020 end-page: 252 ident: b0185 article-title: Co-delivery of 2-deoxyglucose and a glutamine metabolism inhibitor V9302 via a prodrug micellar formulation for synergistic targeting of metabolism in cancer publication-title: Acta Biomater. – volume: 212 start-page: 379 year: 2016 end-page: 387 ident: b0065 article-title: Metabolic regulation of mitochondrial dynamics publication-title: J. Cell Bio – volume: 17 start-page: 865 year: 2018 end-page: 886 ident: b0035 article-title: Mitochondria as a therapeutic target for common pathologies publication-title: Nat. Rev. Drug Discov. – volume: 39 start-page: 43 year: 2016 end-page: 52 ident: b0075 article-title: Regulators of mitochondrial dynamics in cancer publication-title: Curr. Opin. Cell Biol. – volume: 355 start-page: 176 year: 2014 end-page: 183 ident: b0140 article-title: 2-deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy publication-title: Cancer Lett. – volume: 35 year: 2023 ident: b0070 article-title: Piezocatalytic 2D WS publication-title: Adv. Mater. – volume: 170 start-page: 1879 year: 2005 end-page: 1885 ident: b0175 article-title: Systematic segregation to mutant mitochondrial DNA and accompanying loss of mitochondrial DNA in human NT2 teratocarcinoma cybrids publication-title: Genetics – volume: 30 year: 2020 ident: b0135 article-title: Enzyme-mediated tumor starvation and phototherapy enhance mild-temperature photothermal therapy publication-title: Adv. Funct. Mater. – volume: 246 start-page: 500 year: 1989 end-page: 503 ident: b0170 article-title: Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation publication-title: Science – volume: 141 start-page: 86 year: 2017 end-page: 95 ident: b0205 article-title: Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy publication-title: Biomaterials – volume: 26 start-page: 3480 year: 2016 end-page: 3489 ident: b0125 article-title: Cypate-conjugated porous upconversion nanocomposites for programmed delivery of heat shock protein 70 small interfering RNA for gene silencing and photothermal ablation publication-title: Adv. Funct. Mater. – volume: 7 year: 2020 ident: b0200 article-title: Augmenting tumor-starvation therapy by cancer cell autophagy inhibition publication-title: Adv. Sci. – volume: 32 year: 2022 ident: b0215 article-title: Novel FeF publication-title: Adv. Funct. Mater. – volume: 400 year: 2020 ident: b0030 article-title: Biomimic FeS publication-title: Chem. Eng. J. – volume: 12 year: 2020 ident: b0150 article-title: Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer publication-title: Cancers – volume: 8 start-page: 212 year: 2020 end-page: 223 ident: b0155 article-title: CD44 targeted redox-triggered self-assembly with magnetic enhanced EPR effects for effective amplification of gambogic acid to treat triple-negative breast cancer publication-title: Biomater. Sci. – volume: 17 start-page: 149 year: 2019 ident: b0100 article-title: TPP-related mitochondrial targeting copper (II) complex induces p53-dependent apoptosis in hepatoma cells through ROS-mediated activation of Drp1 publication-title: Cell Commun. Signal – volume: 129 start-page: 75 year: 2018 end-page: 83 ident: b0085 article-title: Fragmentation level determines mitochondrial damage response and subsequently the fate of cancer cells exposed to carbon ions publication-title: Radiother. Oncol. – volume: 12 start-page: 2858 year: 2018 end-page: 2872 ident: b0110 article-title: Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy publication-title: ACS Nano – volume: 114 year: 2019 ident: b0090 article-title: Anti-tumor effect of LATS2 on liver cancer death: Role of DRP1-mediated mitochondrial division and the Wnt/β-catenin pathway publication-title: Biomed. Pharmacother. – volume: 59 start-page: 9693 year: 2020 end-page: 9701 ident: b0195 article-title: Tumor-specific chemotherapy by nanomedicine-enabled differential stress sensitization publication-title: Angew. Chem. Int. Ed. – volume: 7 issue: 6 year: 2020 ident: 10.1016/j.jcis.2024.10.180_b0200 article-title: Augmenting tumor-starvation therapy by cancer cell autophagy inhibition publication-title: Adv. Sci. doi: 10.1002/advs.201902847 – volume: 33 issue: 43 year: 2021 ident: 10.1016/j.jcis.2024.10.180_b0210 article-title: Mito-bomb: targeting mitochondria for cancer therapy publication-title: Adv. Mater. – volume: 4 issue: 2 year: 2017 ident: 10.1016/j.jcis.2024.10.180_b0120 article-title: Laser-triggered small interfering RNA releasing gold nanoshells against heat shock protein for sensitized photothermal therapy publication-title: Adv. Sci. doi: 10.1002/advs.201600327 – volume: 12 start-page: 2098 issue: 11 year: 2016 ident: 10.1016/j.jcis.2024.10.180_b0165 article-title: Mitochondrial quality control: cell-type-dependent responses to pathological mutant mitochondrial DNA publication-title: Autophagy doi: 10.1080/15548627.2016.1226734 – volume: 36 start-page: 10 issue: 1 year: 2021 ident: 10.1016/j.jcis.2024.10.180_b0080 article-title: The regulatory mechanisms of dynamin-related protein 1 in tumor development and therapy publication-title: Cancer Biother. – volume: 59 start-page: 9693 issue: 24 year: 2020 ident: 10.1016/j.jcis.2024.10.180_b0195 article-title: Tumor-specific chemotherapy by nanomedicine-enabled differential stress sensitization publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002306 – volume: 105 start-page: 239 year: 2020 ident: 10.1016/j.jcis.2024.10.180_b0185 article-title: Co-delivery of 2-deoxyglucose and a glutamine metabolism inhibitor V9302 via a prodrug micellar formulation for synergistic targeting of metabolism in cancer publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.01.019 – volume: 11 start-page: 3797 issue: 4 year: 2017 ident: 10.1016/j.jcis.2024.10.180_b0115 article-title: Terrylenediimide-based intrinsic theranostic nanomedicines with high photothermal conversion efficiency for photoacoustic imaging-guided cancer therapy publication-title: ACS Nano doi: 10.1021/acsnano.6b08720 – volume: 24 start-page: 597 issue: 3 year: 2021 ident: 10.1016/j.jcis.2024.10.180_b0045 article-title: Identification of six heat shock protein 70 genes in Lasioderma serricorne (Coleoptera: Anobiidae) and their responses to temperature stress publication-title: J. Asia Pac. Entomol. doi: 10.1016/j.aspen.2021.05.005 – volume: 11 start-page: 1419 issue: 2 year: 2017 ident: 10.1016/j.jcis.2024.10.180_b0160 article-title: Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for photothermal therapy publication-title: ACS Nano doi: 10.1021/acsnano.6b06658 – ident: 10.1016/j.jcis.2024.10.180_b0015 doi: 10.1002/adma.201900192 – volume: 114 year: 2019 ident: 10.1016/j.jcis.2024.10.180_b0090 article-title: Anti-tumor effect of LATS2 on liver cancer death: Role of DRP1-mediated mitochondrial division and the Wnt/β-catenin pathway publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2019.108825 – volume: 29 issue: 33 year: 2017 ident: 10.1016/j.jcis.2024.10.180_b0025 article-title: A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer publication-title: Adv. Mater. doi: 10.1002/adma.201700448 – volume: 212 start-page: 379 issue: 4 year: 2016 ident: 10.1016/j.jcis.2024.10.180_b0065 article-title: Metabolic regulation of mitochondrial dynamics publication-title: J. Cell Bio doi: 10.1083/jcb.201511036 – volume: 129 start-page: 75 issue: 1 year: 2018 ident: 10.1016/j.jcis.2024.10.180_b0085 article-title: Fragmentation level determines mitochondrial damage response and subsequently the fate of cancer cells exposed to carbon ions publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2017.11.019 – volume: 72 start-page: 2634 issue: 10 year: 2012 ident: 10.1016/j.jcis.2024.10.180_b0145 article-title: Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-3928 – volume: 35 year: 2023 ident: 10.1016/j.jcis.2024.10.180_b0070 article-title: Piezocatalytic 2D WS2 nanosheets for ultrasound-triggered and mitochondria-targeted piezodynamic cancer therapy synergized with energy metabolism-targeted chemotherapy publication-title: Adv. Mater. – volume: 39 start-page: 43 year: 2016 ident: 10.1016/j.jcis.2024.10.180_b0075 article-title: Regulators of mitochondrial dynamics in cancer publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2016.02.001 – volume: 39 start-page: 215 issue: 3 year: 2019 ident: 10.1016/j.jcis.2024.10.180_b0095 article-title: PTEN overexpression promotes glioblastoma death through triggering mitochondrial division and inactivating the Akt pathway publication-title: J. Recept. Sig. Transd doi: 10.1080/10799893.2019.1655051 – volume: 337 start-page: 1062 issue: 6098 year: 2012 ident: 10.1016/j.jcis.2024.10.180_b0055 article-title: Mitochondrial fission, fusion, and stress publication-title: Science doi: 10.1126/science.1219855 – volume: 20 start-page: 790 issue: 7 year: 2020 ident: 10.1016/j.jcis.2024.10.180_b0105 article-title: Apoptotic effects of melittin on 4T1 breast cancer cell line is associated with up regulation of Mfn1 and Drp1 mRNA expression publication-title: Anticancer Agents Med Chem. doi: 10.2174/1871520620666200211091451 – volume: 17 start-page: 149 issue: 1 year: 2019 ident: 10.1016/j.jcis.2024.10.180_b0100 article-title: TPP-related mitochondrial targeting copper (II) complex induces p53-dependent apoptosis in hepatoma cells through ROS-mediated activation of Drp1 publication-title: Cell Commun. Signal doi: 10.1186/s12964-019-0468-6 – volume: 12 issue: 8 year: 2020 ident: 10.1016/j.jcis.2024.10.180_b0150 article-title: Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer publication-title: Cancers doi: 10.3390/cancers12082252 – volume: 17 start-page: 657 issue: 11 year: 2020 ident: 10.1016/j.jcis.2024.10.180_b0020 article-title: Clinical development and potential of photothermal and photodynamic therapies for cancer publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-020-0410-2 – volume: 355 start-page: 176 issue: 2 year: 2014 ident: 10.1016/j.jcis.2024.10.180_b0140 article-title: 2-deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy publication-title: Cancer Lett. doi: 10.1016/j.canlet.2014.09.003 – volume: 129 start-page: 43 year: 2021 ident: 10.1016/j.jcis.2024.10.180_b0220 article-title: Mitochondria-targeted graphene for advanced cancer therapeutics publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.04.054 – volume: 125 start-page: 315 issue: 4 year: 2018 ident: 10.1016/j.jcis.2024.10.180_b0050 article-title: Mitochondrial dynamics: biological roles, molecular machinery, and related diseases publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2018.10.003 – volume: 166 start-page: 555 issue: 3 year: 2016 ident: 10.1016/j.jcis.2024.10.180_b0060 article-title: Mitochondria and cancer publication-title: Cell doi: 10.1016/j.cell.2016.07.002 – volume: 16 issue: 38 year: 2020 ident: 10.1016/j.jcis.2024.10.180_b0130 article-title: Enhanced photothermal therapy through the in situ activation of a temperature and redox dual-sensitive nanoreservoir of triptolide publication-title: Small doi: 10.1002/smll.202003398 – volume: 170 start-page: 1879 issue: 4 year: 2005 ident: 10.1016/j.jcis.2024.10.180_b0175 article-title: Systematic segregation to mutant mitochondrial DNA and accompanying loss of mitochondrial DNA in human NT2 teratocarcinoma cybrids publication-title: Genetics doi: 10.1534/genetics.105.043653 – volume: 47 start-page: 2280 issue: 7 year: 2018 ident: 10.1016/j.jcis.2024.10.180_b0005 article-title: Organic molecule-based photothermal agents: an expanding photothermal therapy universe publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00522A – volume: 141 start-page: 86 year: 2017 ident: 10.1016/j.jcis.2024.10.180_b0205 article-title: Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.06.035 – volume: 12 start-page: 2858 issue: 3 year: 2018 ident: 10.1016/j.jcis.2024.10.180_b0110 article-title: Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy publication-title: ACS Nano doi: 10.1021/acsnano.8b00309 – volume: 30 issue: 16 year: 2020 ident: 10.1016/j.jcis.2024.10.180_b0135 article-title: Enzyme-mediated tumor starvation and phototherapy enhance mild-temperature photothermal therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909391 – volume: 32 issue: 23 year: 2022 ident: 10.1016/j.jcis.2024.10.180_b0215 article-title: Novel FeF2/Fe1–xS nanoreactor-mediated mitochondrial dysfunction via oxidative stress and fluoride ions overloaded for synergistic chemodynamic therapy and photothermal therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202113397 – volume: 7 start-page: 13193 issue: 1 year: 2016 ident: 10.1016/j.jcis.2024.10.180_b0010 article-title: Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy publication-title: Nat. Commun. doi: 10.1038/ncomms13193 – volume: 246 start-page: 500 issue: 4929 year: 1989 ident: 10.1016/j.jcis.2024.10.180_b0170 article-title: Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation publication-title: Science doi: 10.1126/science.2814477 – volume: 324 start-page: 1029 issue: 5930 year: 2009 ident: 10.1016/j.jcis.2024.10.180_b0180 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science doi: 10.1126/science.1160809 – volume: 43 start-page: 387 issue: 3 year: 2023 ident: 10.1016/j.jcis.2024.10.180_b0190 article-title: Aerobic glycolysis promotes tumor immune evasion and tumor cell stemness through the noncanonical function of hexokinase 2 publication-title: Cancer Commun. doi: 10.1002/cac2.12404 – volume: 26 start-page: 3480 issue: 20 year: 2016 ident: 10.1016/j.jcis.2024.10.180_b0125 article-title: Cypate-conjugated porous upconversion nanocomposites for programmed delivery of heat shock protein 70 small interfering RNA for gene silencing and photothermal ablation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600035 – volume: 8 start-page: 212 issue: 1 year: 2020 ident: 10.1016/j.jcis.2024.10.180_b0155 article-title: CD44 targeted redox-triggered self-assembly with magnetic enhanced EPR effects for effective amplification of gambogic acid to treat triple-negative breast cancer publication-title: Biomater. Sci. doi: 10.1039/C9BM01171D – volume: 400 year: 2020 ident: 10.1016/j.jcis.2024.10.180_b0030 article-title: Biomimic FeS2 nanodrug with hypothermal photothermal effect by clinical approved NIR-Ⅱ light for augmented chemodynamic therapy publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125933 – volume: 17 start-page: 865 issue: 12 year: 2018 ident: 10.1016/j.jcis.2024.10.180_b0035 article-title: Mitochondria as a therapeutic target for common pathologies publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2018.174 – volume: 5 issue: 1 year: 2019 ident: 10.1016/j.jcis.2024.10.180_b0040 article-title: Mitochondria-encoded genes contribute to evolution of heat and cold tolerance in yeast publication-title: Sci. Adv. doi: 10.1126/sciadv.aav1848 |
SSID | ssj0011559 |
Score | 2.471728 |
Snippet | The targeting-mitochondrial degradable TPP-CBS-2DG JNSs improves antitumor effects through synergistically interfering with mitochondrial dynamics and... Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 429 |
SubjectTerms | 2-deoxyglucose adenosine triphosphate Animals Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology carboxylation Cell Survival - drug effects Degradation Drug Screening Assays, Antitumor energy Energy metabolism Energy Metabolism - drug effects face glycolysis heat stress heat tolerance homeostasis Humans Janus nanosheets Mice mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondrial dynamics Mitochondrial Dynamics - drug effects nanosheets neoplasms Particle Size Photothermal Therapy photothermotherapy reactive oxygen species Reactive Oxygen Species - metabolism Sensitized photothermal therapy starvation Surface Properties Targeting mitochondria |
Title | Mitochondrial dynamics and energy metabolism interference therapy for promoting photothermal sensitization |
URI | https://dx.doi.org/10.1016/j.jcis.2024.10.180 https://www.ncbi.nlm.nih.gov/pubmed/39522238 https://www.proquest.com/docview/3128747801 https://www.proquest.com/docview/3154246677 |
Volume | 680 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcCg9VJSWlkeRkXpD2Y1jO46PaAVaqJYTSNwiO7bbXbHZFRsOXPjtzMQJAqnl0OvYiUYz45mxPN8MIT9lYF6ZXCZOBp0Io3liUxYSUYRU6cCtTBE7PL3KJzfi8lbeDsi4x8JgWWXn-6NPb711Rxl10hytZjPE-MJpU1rh-4DkEkF8Qii08uHTS5kHw2e3WObBEtzdAWdijde8mmHL7kwMkYatIf8enP6VfLZB6HybfOqyR3oaGfxMBr7eIR_G_dC2HfLxVX_BL2Q-hfMK_q12aGbUxenza2pqR30L-qML34AZ3M3WC4qdI-47-B-NuKxHCjktXcWSvfo3Xf1ZNi1kawG_W2Pte9PhOL-Sm_Oz6_Ek6YYrJBUXaZPoSoaisGngzHDtOVxrbIBwllYhLazmsMqkF8q4zAbtDaQyjvGgBdyPBBea75KNeln774RmztlQmarA5dxWhuXKeu6kchbyNbVHTnqplqvYQ6Psi8vmJeqgRB20tCLdI7IXfPnGEkpw8u9-d9xrqQSh47uHqf3yYV1yhk39FcTi9_ZIkYk8V8Dtt6jiF165lphFFfv_ydkB2cpwajCOkZGHZKO5f_A_IJVp7FFrq0dk8_Ti1-TqGcTP9R8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UB7qCh9Ufpwpd6qlCS24_iIVqClsHsCiZtlx3bZVTe7YsOBf48ndhCVWg692nE0mhnPjDXzzQB8475wQlc8s9zLjGlJM5MXPmO1z4X01PAcscPTWTW5ZD-v-NUWjAcsDJZVJtsfbXpvrdPKYeLm4Xo-R4xvuG1CCswPcMrlM9jG7lR8BNtHp2eT2UMyATNvsdKjyPBAws7EMq9FM8eu3SX7gWvYHfLv_ulf8Wfvh0524WUKIMlRpPEVbLl2D3bGw9y2PXjxqMXga1hMw5UNJq61qGnExgH0G6JbS1yP-yNL1wVN-D3fLAk2j7hJCEASoVl3JIS1ZB2r9tpfZH296nrU1jL8boPl712Ccr6By5Pji_EkS_MVsoayvMtkw31dm9zTQlPpaHjZGB88Wt74vDaSht2COya0LY2XTodoxhbUSxaeSIwySd_CqF217j2Q0lrjG93UuF2ZRheVMI5aLqwJIZvYh-8DV9U6ttFQQ33ZQqEMFMqgX6vzfeAD49UfyqCCnX_y3NdBSiowHVMfunWr242iBfb1F8EdP_UNZyWrKhGofRdF_EArlRwDqfrDf1L2BXYmF9NzdX46OzuA5yUOEcapMvwjjLqbW_cpRDad-Zw09x4mkffQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+dynamics+and+energy+metabolism+interference+therapy+for+promoting+photothermal+sensitization&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Liu%2C+Cuimei&rft.au=Cheng%2C+Sihang&rft.au=Zhou%2C+Xue&rft.au=Li%2C+Lu&rft.date=2025-02-15&rft.issn=0021-9797&rft.volume=680+p.429-440&rft.spage=429&rft.epage=440&rft_id=info:doi/10.1016%2Fj.jcis.2024.10.180&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |