Automated machine learning driven model for predicting platform supply vessel freight market

•Cloud-AI based prediction model for PSV freight rates.•Over 40 explanatory variables are employed model building.•Historical PSV rates are key in forecasting future PSV rates.•Active rig count reveals new insight into PSV rates in the North Sea. Platform Supply Vessels (PSVs) play an essential role...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 191; p. 110153
Main Authors Kjeldsberg, Fabian, Haque Munim, Ziaul
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2024
Subjects
Online AccessGet full text
ISSN0360-8352
1879-0550
DOI10.1016/j.cie.2024.110153

Cover

Loading…
Abstract •Cloud-AI based prediction model for PSV freight rates.•Over 40 explanatory variables are employed model building.•Historical PSV rates are key in forecasting future PSV rates.•Active rig count reveals new insight into PSV rates in the North Sea. Platform Supply Vessels (PSVs) play an essential role in supporting oil and gas platforms, and other offshore structures by transporting crew members, personnel, provisions, and further indispensable equipment from onshore to operational sites. PSV freight rate movements are subject to a complex array of non-linear interconnected influential factors. Reviewed literature reveals an absence of forecasting studies predicting PSV freight rates. Meanwhile, Automated Machine Learning (AutoML) frameworks have never before been employed to forecast maritime freight rates. Therefore, this study investigates factors influencing PSV time charter freight rates and explores AutoML modelling in capturing non-linearities while forecasting PSV freight rates over a 1, 3 and 6-month out-of-sample forecast horizon. A total of 43 relevant factors are included in prediction modelling, the most comprehensive number of explanatory variables in the shipping forecasting literature to date. The data consists of 188 monthly observations collected from two databases: Clarksons Shipping Intelligence Network and Offshore Intelligence Network. Time-lagged variables are utilized as data of explanatory variables are not immediately available at the time of forecasting. A total of 79 complex machine learning models are tested, and the best-performing models are Eureqa Generalized Additive Model, eXtreme Gradient Boosted Trees Regressor, and Ridge Regressor with Forecast Distance Modelling, benchmarked against the proven statistical forecasting model triple exponential smoothing. The most influential factors are historical PSV time charter freight rates, newbuilding prices, number of vessel deliveries, orderbook number, total vessel sales, and the unique variable number of active drilling rigs in the market.
AbstractList •Cloud-AI based prediction model for PSV freight rates.•Over 40 explanatory variables are employed model building.•Historical PSV rates are key in forecasting future PSV rates.•Active rig count reveals new insight into PSV rates in the North Sea. Platform Supply Vessels (PSVs) play an essential role in supporting oil and gas platforms, and other offshore structures by transporting crew members, personnel, provisions, and further indispensable equipment from onshore to operational sites. PSV freight rate movements are subject to a complex array of non-linear interconnected influential factors. Reviewed literature reveals an absence of forecasting studies predicting PSV freight rates. Meanwhile, Automated Machine Learning (AutoML) frameworks have never before been employed to forecast maritime freight rates. Therefore, this study investigates factors influencing PSV time charter freight rates and explores AutoML modelling in capturing non-linearities while forecasting PSV freight rates over a 1, 3 and 6-month out-of-sample forecast horizon. A total of 43 relevant factors are included in prediction modelling, the most comprehensive number of explanatory variables in the shipping forecasting literature to date. The data consists of 188 monthly observations collected from two databases: Clarksons Shipping Intelligence Network and Offshore Intelligence Network. Time-lagged variables are utilized as data of explanatory variables are not immediately available at the time of forecasting. A total of 79 complex machine learning models are tested, and the best-performing models are Eureqa Generalized Additive Model, eXtreme Gradient Boosted Trees Regressor, and Ridge Regressor with Forecast Distance Modelling, benchmarked against the proven statistical forecasting model triple exponential smoothing. The most influential factors are historical PSV time charter freight rates, newbuilding prices, number of vessel deliveries, orderbook number, total vessel sales, and the unique variable number of active drilling rigs in the market.
ArticleNumber 110153
Author Haque Munim, Ziaul
Kjeldsberg, Fabian
Author_xml – sequence: 1
  givenname: Fabian
  orcidid: 0009-0006-5736-9556
  surname: Kjeldsberg
  fullname: Kjeldsberg, Fabian
  email: fabian.kjeldsberg@usn.no
– sequence: 2
  givenname: Ziaul
  surname: Haque Munim
  fullname: Haque Munim, Ziaul
  email: ziaul.h.munim@usn.no
BookMark eNp9kM1qwzAQhEVJoUnaB-hNL2BXK__TUwj9g0Av7a0gZGmdKHVkIymBvH1l0lMPPS3MzrfszILM7GCRkHtgKTAoH_apMphyxvMUolBkV2QOddUkrCjYjMxZVrKkzgp-Qxbe7xljedHAnHytjmE4yICaHqTaGYu0R-mssVuqnTmhpYdBY0-7wdHRoTYqTLuxlyFKB-qP49if6Qm9n1wOzXYX4i33jeGWXHey93j3O5fk8_npY_2abN5f3tarTaKynIWkaVvQ0NS6YC3ToJA3HHgFLQLImssMO95WZVejbDgqrKCDsm0ynsekWrfZklSXu8oN3jvshDJBBjPY4KTpBTAxlST2UUcxlSQuJUUS_pCjM_H587_M44XBGOlk0AkfLVbFbhyqIPRg_qF_ANfigyw
CitedBy_id crossref_primary_10_1016_j_cie_2024_110574
Cites_doi 10.1016/j.procs.2022.01.102
10.1057/mel.2016.1
10.1016/S0169-2070(99)00007-2
10.1016/j.rtbm.2021.100662
10.1080/20464177.2018.1495886
10.1007/978-3-030-99587-4_23
10.1111/joes.12429
10.1016/j.ajsl.2021.06.002
10.1109/ACCESS.2019.2916648
10.1007/978-1-0716-1418-1_2
10.1016/j.knosys.2020.106622
10.1007/978-3-030-05318-5
10.1214/ss/1009213726
10.35611/jkt.2021.25.4.17
10.1057/s41278-020-00156-5
10.1080/01966324.1981.10737061
10.1057/s41278-019-00121-x
10.1057/mel.2009.7
10.1016/j.tre.2018.08.012
10.3354/cr030079
10.1057/mel.2012.10
10.1214/aos/1013203451
10.1007/s42979-021-00592-x
10.1007/978-3-031-26409-2_40
10.1007/s11831-022-09765-0
10.1016/j.martra.2022.100057
10.1080/01621459.1979.10482531
10.1080/00036840802260932
10.1016/j.ijforecast.2006.03.001
10.1007/978-0-387-36795-8_10
10.1145/5666.5673
10.1016/j.procs.2016.09.455
10.1111/j.1467-9868.2005.00503.x
10.1002/for.2780
10.1002/widm.1475
10.1016/0304-4076(92)90104-Y
10.1016/S2092-5212(10)80002-1
10.1016/j.tre.2017.12.008
10.1093/oso/9780190941659.003.0001
10.1080/03088839.2022.2158382
10.5545/sv-jme.2013.947
10.1016/j.iswa.2023.200188
10.3390/jmse10050593
10.1016/j.amc.2019.05.043
10.20544/HORIZONS.B.04.1.17.P05
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.cie.2024.110153
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2024_110153
S0360835224002742
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c340t-9bb1d198d50b0d1ce2921271be11a82a3ef2b76f8ea92ece71f16b9324101ddb3
IEDL.DBID .~1
ISSN 0360-8352
IngestDate Tue Jul 01 03:00:01 EDT 2025
Thu Apr 24 23:07:41 EDT 2025
Sat May 25 15:41:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Offshore oil and gas
Shipping freight rates
Platform Supply Vessel
Feature engineering
Cloud-based AI
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-9bb1d198d50b0d1ce2921271be11a82a3ef2b76f8ea92ece71f16b9324101ddb3
ORCID 0009-0006-5736-9556
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0360835224002742
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2024_110153
crossref_primary_10_1016_j_cie_2024_110153
elsevier_sciencedirect_doi_10_1016_j_cie_2024_110153
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Masini, Medeiros, Mendes (b0300) 2023; 37
Friedman (b0185) 2001; 29
Şahin, Gürgen, Ünver, Altin (b0355) 2018; 26
Uyar, K., Ilhan, Ü., & Ilhan, A. (2016).
Hirata, Matsuda (b0220) 2022; 10
Sarker (b0360) 2021; 2
Gorton, Ihre, Sandevärn (b0210) 2009
Escalante, Tu, Guyon, Silver, Viegas, Chen, Dai, Yang (b0160) 2020
Munim (b0325) 2022; 3
World Health Organization. (n.d.).
Datarobot (b0115) 2022
,
Panayides, P. M. (2018).
.
Chou, Lin (b0045) 2019; 18
Ke, Liu, Ng, Shi (b0265) 2022
Datarobot Docs. Retrieved 23 April 2023, from
Datarobot. (n.d.-a).
World Health Organization. Retrieved 9 April 2023, from https://www.who.int/europe/emergencies/situations/covid-19.
Deng, D., Karl, F., Hutter, F., Bischl, B., & Lindauer, M. (2023). Efficient Automated Deep Learning for
(pp. 289–306). Springer US. https://doi.org/10.1007/978-0-387-36795-8_10.
Fleming, Wallace (b0180) 1986; 29
XGBoost (b0410) 2022
[Database]. Shipping Intelligence Network. Retrieved 18 April 2023, from https://sin.clarksons.net/#!#Login.
Gavriilidis, Kambouroudis, Tsakou, Tsouknidis (b0190) 2018; 118
Meisenbacher, Turowski, Phipps, Rätz, Müller, Hagenmeyer, Mikut (b0310) 2022; 12
Karmaker, Hassan, Smith, Xu, Zhai, Veeramachaneni (b0255) 2021; 54
(pp. 664–680). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-26409-2_40.
(arXiv:2006.14099). arXiv. https://doi.org/10.48550/arXiv.2006.14099.
Datarobot. (n.d.-h).
Stopford (b0380) 2009
Liu, M., Zhao, Y., Wang, J., Liu, C., & Li, G. (2021).
Mallidis, Iakovou, Dekker, Vlachos (b0295) 2018; 111
Breiman (b0025) 2001; 16
Chauhan, Jani, Thakkar, Dave, Bhatia, Tanwar, Obaidat (b0035) 2020
(9.0) [Computer software]. Datarobot Inc. https://app.eu.datarobot.com/new.
Kanamoto, Wada, Shibasaki (b0250) 2019; 10
Thornton, Hutter, Hoos, Leyton-Brown (b0385) 2013
Datarobot Docs. Retrieved 20 April 2023, from
(pp. 1–56).
Leonov, Nikolov (b0280) 2012; 14
Yang, Mehmed (b0415) 2019; 21
Mead, Stiger (b0305) 2015
Khan, I. A., & Hussain, F. K. (2022). Regression Analysis Using Machine Learning Approaches for
(Second edition). Springer. https://doi.org/10.1007/978-1-0716-1418-1.
Schramm, Munim (b0370) 2021; 41
Elliott (b0150) 2011
Zhang, Chen, Wang, Ge, Stanley (b0420) 2019; 361
Datarobot (b0110) 2022
Feurer, Klein, Eggensperger, Springenberg, Blum, Hutter (b0175) 2019
Zhou (b0430) 2021
Datarobot. (n.d.-d).
Zhang, Y., Zame, W., & van der Schaar, M. (2020).
Equinor. (2022).
Hyndman, Koehler (b0240) 2006; 22
Aas, Halskau, Wallace (b0005) 2009; 11
Clarksons Research Offshore Review and Outlook OSV 2023 1 21.
Lyridis, Zacharioudakis, Iordanis, Daleziou (b0290) 2013; 9
Bae, Lee, Park (b0015) 2021; 25
Cios, K. J., Swiniarski, R. W., Pedrycz, W., & Kurgan, L. A. (2007). Unsupervised Learning: Association Rules. In K. J. Cios, R. W. Swiniarski, W. Pedrycz, & L. A. Kurgan (Eds.)
Schmitt (b0365) 2023; 18
Nasteski (b0335) 2017; 4
R.K. Larsen D.S. Becker Automated Machine Learning for Business (1st ed.). 2021 Oxford University Press 10.1093/oso/9780190941659.001.0001.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021).
Clarksons. (n.d.).
https://fearnleysecurities.com/wp-content/uploads/2023/02/Fearnley-Securites-Market-Report-2023.pdf.
Usama, Qadir, Raza, Arif, Yau, Elkhatib, Hussain, Al-Fuqaha (b0390) 2019; 7
Time Series Forecasting. In M.-R. Amini, S. Canu, A. Fischer, T. Guns, P. Kralj Novak, & G. Tsoumakas (Eds.)
Zou, Hastie (b0440) 2005; 67
Duru, Bulut, Yoshid (b0145) 2010; 26
Datarobot Model Documentation. Retrieved 25 April 2023, from
Datarobot Docs. Retrieved 13 May 2023, from
DataRobot Inc. (2023).
Dickey, Fuller (b0140) 1979; 74
269–280. Scopus. https://doi.org/10.1007/978-3-030-99587-4_23.
Datarobot Docs. Retrieved 18 April 2023, from
642–647. Scopus. https://doi.org/10.1016/j.procs.2016.09.455.
Hoerl, Kennard (b0225) 1981; 1
Kwiatkowski, Phillips, Schmidt, Shin (b0275) 1992; 54
Datarobot. (n.d.-c).
Box (b0020) 2015
Alsharef, Aggarwal, Sonia, Mishra (b0010) 2022; 29
Datarobot. (n.d.-g).
Schulze, Prinz (b0375) 2009; 41
Datarobot (b0120) 2023
Milutinovic, M., Schoenfeld, B., Martinez-Garcia, D., Ray, S., Shah, S., & Yan, D. (2020). On evaluation of automl systems.
F. Hutter L. Kotthoff J. Vanschoren (Eds.) Automated Machine Learning: Methods 2019 Springer Nature Systems, Challenges 10.1007/978-3-030-05318-5.
Gentleman, Carey (b0195) 2008
Eslami, Jung, Lee, Tjolleng (b0165) 2017; 19
Predicting Container Shipping Rates.
Katris, Kavussanos (b0260) 2021; 40
Moiseev (b0320) 2021; 37
Goodwin, Lawton (b0205) 1999; 15
He, Zhao, Chu (b0215) 2021; 212
Willmott, Matsuura (b0400) 2005; 30
Fearnley Securities. (2023).
Zoph, B., & Le, Q. V. (2017).
Chatfield (b0030) 1978; 27
Clarkson Research Offshore Review and Outlook Market Outlook—September 2022 2022
(arXiv:1611.01578). arXiv. https://doi.org/10.48550/arXiv.1611.01578.
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_59.pdf.
Datarobot. (n.d.-b).
821–828. Procedia Computer Science. https://doi.org/10.1016/j.procs.2022.01.102.
Datarobot. (n.d.-f).
Chen, Guestrin (b0040) 2016
(Third Edition). CreateSpace Independent Publishing Platform.
Munim, Schramm (b0330) 2021; 23
Hoerl (10.1016/j.cie.2024.110153_b0225) 1981; 1
Mead (10.1016/j.cie.2024.110153_b0305) 2015
Usama (10.1016/j.cie.2024.110153_b0390) 2019; 7
Fleming (10.1016/j.cie.2024.110153_b0180) 1986; 29
10.1016/j.cie.2024.110153_b0405
He (10.1016/j.cie.2024.110153_b0215) 2021; 212
10.1016/j.cie.2024.110153_b0245
Schulze (10.1016/j.cie.2024.110153_b0375) 2009; 41
10.1016/j.cie.2024.110153_b0125
Hirata (10.1016/j.cie.2024.110153_b0220) 2022; 10
Lyridis (10.1016/j.cie.2024.110153_b0290) 2013; 9
10.1016/j.cie.2024.110153_b0285
Chatfield (10.1016/j.cie.2024.110153_b0030) 1978; 27
10.1016/j.cie.2024.110153_b0050
10.1016/j.cie.2024.110153_b0095
Katris (10.1016/j.cie.2024.110153_b0260) 2021; 40
10.1016/j.cie.2024.110153_b0170
Feurer (10.1016/j.cie.2024.110153_b0175) 2019
Willmott (10.1016/j.cie.2024.110153_b0400) 2005; 30
Box (10.1016/j.cie.2024.110153_b0020) 2015
Leonov (10.1016/j.cie.2024.110153_b0280) 2012; 14
Kanamoto (10.1016/j.cie.2024.110153_b0250) 2019; 10
10.1016/j.cie.2024.110153_b0135
Breiman (10.1016/j.cie.2024.110153_b0025) 2001; 16
Masini (10.1016/j.cie.2024.110153_b0300) 2023; 37
10.1016/j.cie.2024.110153_b0055
Moiseev (10.1016/j.cie.2024.110153_b0320) 2021; 37
Escalante (10.1016/j.cie.2024.110153_b0160) 2020
Meisenbacher (10.1016/j.cie.2024.110153_b0310) 2022; 12
Friedman (10.1016/j.cie.2024.110153_b0185) 2001; 29
Şahin (10.1016/j.cie.2024.110153_b0355) 2018; 26
Karmaker (10.1016/j.cie.2024.110153_b0255) 2021; 54
Eslami (10.1016/j.cie.2024.110153_b0165) 2017; 19
10.1016/j.cie.2024.110153_b0060
Zou (10.1016/j.cie.2024.110153_b0440) 2005; 67
Munim (10.1016/j.cie.2024.110153_b0330) 2021; 23
Datarobot (10.1016/j.cie.2024.110153_b0115) 2022
Datarobot (10.1016/j.cie.2024.110153_b0120) 2023
Elliott (10.1016/j.cie.2024.110153_b0150) 2011
Stopford (10.1016/j.cie.2024.110153_b0380) 2009
Yang (10.1016/j.cie.2024.110153_b0415) 2019; 21
Aas (10.1016/j.cie.2024.110153_b0005) 2009; 11
Chen (10.1016/j.cie.2024.110153_b0040) 2016
10.1016/j.cie.2024.110153_b0425
10.1016/j.cie.2024.110153_b0345
10.1016/j.cie.2024.110153_b0105
10.1016/j.cie.2024.110153_b0065
10.1016/j.cie.2024.110153_b0100
10.1016/j.cie.2024.110153_b0270
10.1016/j.cie.2024.110153_b0075
10.1016/j.cie.2024.110153_b0350
10.1016/j.cie.2024.110153_b0070
Munim (10.1016/j.cie.2024.110153_b0325) 2022; 3
Sarker (10.1016/j.cie.2024.110153_b0360) 2021; 2
Zhou (10.1016/j.cie.2024.110153_b0430) 2021
Dickey (10.1016/j.cie.2024.110153_b0140) 1979; 74
Chou (10.1016/j.cie.2024.110153_b0045) 2019; 18
Schmitt (10.1016/j.cie.2024.110153_b0365) 2023; 18
10.1016/j.cie.2024.110153_b0315
Mallidis (10.1016/j.cie.2024.110153_b0295) 2018; 111
Alsharef (10.1016/j.cie.2024.110153_b0010) 2022; 29
Chauhan (10.1016/j.cie.2024.110153_b0035) 2020
Thornton (10.1016/j.cie.2024.110153_b0385) 2013
Ke (10.1016/j.cie.2024.110153_b0265) 2022
Kwiatkowski (10.1016/j.cie.2024.110153_b0275) 1992; 54
Duru (10.1016/j.cie.2024.110153_b0145) 2010; 26
Gavriilidis (10.1016/j.cie.2024.110153_b0190) 2018; 118
Hyndman (10.1016/j.cie.2024.110153_b0240) 2006; 22
10.1016/j.cie.2024.110153_b0435
10.1016/j.cie.2024.110153_b0230
10.1016/j.cie.2024.110153_b0395
Gorton (10.1016/j.cie.2024.110153_b0210) 2009
10.1016/j.cie.2024.110153_b0155
Zhang (10.1016/j.cie.2024.110153_b0420) 2019; 361
Bae (10.1016/j.cie.2024.110153_b0015) 2021; 25
10.1016/j.cie.2024.110153_b0085
10.1016/j.cie.2024.110153_b0080
Schramm (10.1016/j.cie.2024.110153_b0370) 2021; 41
XGBoost (10.1016/j.cie.2024.110153_b0410) 2022
Goodwin (10.1016/j.cie.2024.110153_b0205) 1999; 15
Gentleman (10.1016/j.cie.2024.110153_b0195) 2008
Nasteski (10.1016/j.cie.2024.110153_b0335) 2017; 4
Datarobot (10.1016/j.cie.2024.110153_b0110) 2022
References_xml – start-page: 113
  year: 2019
  end-page: 134
  ident: b0175
  article-title: Auto-sklearn: Efficient and Robust Automated Machine Learning
  publication-title: Automated Machine Learning
– reference: Clarksons. (n.d.).
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: b0185
  article-title: Greedy Function Approximation: A Gradient Boosting Machine
  publication-title: The Annals of Statistics
– volume: 12
  start-page: e1475
  year: 2022
  ident: b0310
  article-title: Review of automated time series forecasting pipelines
  publication-title: WIREs Data Mining and Knowledge Discovery
– year: 2009
  ident: b0210
  article-title: Shipbroking and chartering practice
– reference: . Datarobot Docs. Retrieved 23 April 2023, from
– reference: (pp. 289–306). Springer US. https://doi.org/10.1007/978-0-387-36795-8_10.
– volume: 361
  start-page: 499
  year: 2019
  end-page: 516
  ident: b0420
  article-title: A novel hybrid approach to Baltic Dry Index forecasting based on a combined dynamic fluctuation network and artificial intelligence method
  publication-title: Applied Mathematics and Computation
– reference: Datarobot. (n.d.-g).
– start-page: 209
  year: 2020
  end-page: 229
  ident: b0160
  article-title: AutoML @ NeurIPS 2018 Challenge: Design and Results
  publication-title: The NeurIPS ’18 Competition
– reference: . Datarobot Docs. Retrieved 18 April 2023, from
– volume: 19
  start-page: 538
  year: 2017
  end-page: 550
  ident: b0165
  article-title: Predicting tanker freight rates using parsimonious variables and a hybrid artificial neural network with an adaptive genetic algorithm
  publication-title: Maritime Economics & Logistics
– reference: (arXiv:1611.01578). arXiv. https://doi.org/10.48550/arXiv.1611.01578.
– year: 2015
  ident: b0305
  article-title: The 2014 plunge in import petroleum prices
– reference: Datarobot. (n.d.-a).
– reference: Datarobot. (n.d.-h).
– volume: 14
  start-page: 319
  year: 2012
  end-page: 333
  ident: b0280
  article-title: A wavelet and neural network model for the prediction of dry bulk shipping indices
  publication-title: Maritime Economics & Logistics
– reference: Datarobot. (n.d.-b).
– reference: Equinor. (2022).
– reference: Zoph, B., & Le, Q. V. (2017).
– volume: 29
  start-page: 218
  year: 1986
  end-page: 221
  ident: b0180
  article-title: How not to lie with statistics: The correct way to summarize benchmark results
  publication-title: Communications of the ACM
– reference: (pp. 664–680). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-26409-2_40.
– volume: 37
  start-page: 239
  year: 2021
  end-page: 244
  ident: b0320
  article-title: Forecasting oil tanker shipping market in crisis periods: Exponential smoothing model application
  publication-title: The Asian Journal of Shipping and Logistics
– volume: 7
  start-page: 65579
  year: 2019
  end-page: 65615
  ident: b0390
  article-title: Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges
  publication-title: IEEE Access
– year: 2022
  ident: b0115
  article-title: September 20)
– volume: 37
  start-page: 76
  year: 2023
  end-page: 111
  ident: b0300
  article-title: Machine learning advances for time series forecasting
  publication-title: Journal of Economic Surveys
– volume: 23
  start-page: 310
  year: 2021
  end-page: 327
  ident: b0330
  article-title: Forecasting container freight rates for major trade routes: A comparison of artificial neural networks and conventional models
  publication-title: Maritime Economics & Logistics
– reference: Khan, I. A., & Hussain, F. K. (2022). Regression Analysis Using Machine Learning Approaches for
– reference: ,
– reference: . Datarobot Docs. Retrieved 20 April 2023, from
– volume: 118
  start-page: 376
  year: 2018
  end-page: 391
  ident: b0190
  article-title: Volatility forecasting across tanker freight rates: The role of oil price shocks
  publication-title: Transportation Research Part E: Logistics and Transportation Review
– volume: 10
  start-page: Article 5
  year: 2022
  ident: b0220
  article-title: Forecasting Shanghai Container Freight Index: A Deep-Learning-Based Model Experiment
  publication-title: Journal of Marine Science and Engineering
– reference: Uyar, K., Ilhan, Ü., & Ilhan, A. (2016).
– volume: 54
  start-page: 175:1
  year: 2021
  end-page: 175:36
  ident: b0255
  article-title: AutoML to date and beyond: challenges and opportunities
  publication-title: ACM Computing Surveys
– reference: Datarobot. (n.d.-f).
– reference: (Second edition). Springer. https://doi.org/10.1007/978-1-0716-1418-1.
– volume: 40
  start-page: 1540
  year: 2021
  end-page: 1565
  ident: b0260
  article-title: Time series forecasting methods for the Baltic dry index
  publication-title: Journal of Forecasting
– volume: 18
  year: 2023
  ident: b0365
  article-title: Automated machine learning: AI-driven decision making in business analytics
  publication-title: Intelligent Systems with Applications
– reference: Panayides, P. M. (2018).
– start-page: 785
  year: 2016
  end-page: 794
  ident: b0040
  article-title: XGBoost: A Scalable Tree Boosting System
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– reference: (9.0) [Computer software]. Datarobot Inc. https://app.eu.datarobot.com/new.
– year: 2009
  ident: b0380
  article-title: Maritime economics (3rd ed)
– volume: 74
  start-page: 427
  year: 1979
  end-page: 431
  ident: b0140
  article-title: Distribution of the Estimators for Autoregressive Time Series with a Unit Root
  publication-title: Journal of the American Statistical Association
– volume: 25
  start-page: 17
  year: 2021
  end-page: 36
  ident: b0015
  article-title: A Baltic Dry Index Prediction using Deep Learning Models
  publication-title: Journal of Korea Trade (JKT)
– year: 2021
  ident: b0430
  article-title: Machine Learning
  publication-title: Springer Singapore
– volume: 26
  start-page: 1673
  year: 2018
  end-page: 1684
  ident: b0355
  article-title: Forecasting the Baltic Dry Index by using an artificial neural network approach
  publication-title: Turkish Journal of Electrical Engineering and Computer Sciences
– reference: Time Series Forecasting. In M.-R. Amini, S. Canu, A. Fischer, T. Guns, P. Kralj Novak, & G. Tsoumakas (Eds.),
– volume: 27
  start-page: 264
  year: 1978
  end-page: 279
  ident: b0030
  article-title: The Holt-Winters Forecasting Procedure
  publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics)
– year: 2011
  ident: b0150
  article-title: August 7). Global financial crisis: Five key stages 2007–2011 [Newspaper]
  publication-title: The Guardian.
– reference: Fearnley Securities. (2023).
– volume: 4
  start-page: 51
  year: 2017
  end-page: 62
  ident: b0335
  article-title: An overview of the supervised machine learning methods
  publication-title: HORIZONS.B
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: b0440
  article-title: Regularization and Variable Selection Via the Elastic Net
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
– reference: Deng, D., Karl, F., Hutter, F., Bischl, B., & Lindauer, M. (2023). Efficient Automated Deep Learning for
– reference: , 821–828. Procedia Computer Science. https://doi.org/10.1016/j.procs.2022.01.102.
– year: 2022
  ident: b0110
  article-title: May 31)
– volume: 30
  start-page: 79
  year: 2005
  end-page: 82
  ident: b0400
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Climate Research
– reference: James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021).
– reference: Zhang, Y., Zame, W., & van der Schaar, M. (2020).
– start-page: 137
  year: 2008
  end-page: 157
  ident: b0195
  article-title: Unsupervised Machine Learning
  publication-title: Bioconductor Case Studies
– volume: 9
  start-page: 511
  year: 2013
  end-page: 516
  ident: b0290
  article-title: Freight-Forward Agreement Time series Modelling Based on Artificial Neural Network Models.
  publication-title: Mechanical Engineering
– reference: . Datarobot Model Documentation. Retrieved 25 April 2023, from
– reference: Predicting Container Shipping Rates.
– reference: [Database]. Shipping Intelligence Network. Retrieved 18 April 2023, from https://sin.clarksons.net/#!#Login.
– reference: Datarobot. (n.d.-d).
– volume: 2
  start-page: 160
  year: 2021
  ident: b0360
  article-title: Machine Learning: Algorithms, Real-World Applications and Research Directions
  publication-title: SN Computer Science
– start-page: 205
  year: 2020
  end-page: 212
  ident: b0035
  article-title: Automated Machine Learning: The New Wave of Machine Learning
  publication-title: 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA)
– reference: F. Hutter L. Kotthoff J. Vanschoren (Eds.) Automated Machine Learning: Methods 2019 Springer Nature Systems, Challenges 10.1007/978-3-030-05318-5.
– reference: (Third Edition). CreateSpace Independent Publishing Platform.
– reference: . https://fearnleysecurities.com/wp-content/uploads/2023/02/Fearnley-Securites-Market-Report-2023.pdf.
– volume: 15
  start-page: 405
  year: 1999
  end-page: 408
  ident: b0205
  article-title: On the asymmetry of the symmetric MAPE
  publication-title: International Journal of Forecasting
– reference: . https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_59.pdf.
– volume: 18
  start-page: 82
  year: 2019
  end-page: 91
  ident: b0045
  article-title: A fuzzy neural network combined with technical indicators and its application to Baltic Dry Index forecasting
  publication-title: Journal of Marine Engineering & Technology
– volume: 41
  start-page: 2809
  year: 2009
  end-page: 2815
  ident: b0375
  article-title: Forecasting container transshipment in Germany
  publication-title: Applied Economics
– volume: 16
  start-page: 199
  year: 2001
  end-page: 231
  ident: b0025
  article-title: Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author)
  publication-title: Statistical Science
– start-page: 847
  year: 2013
  end-page: 855
  ident: b0385
  article-title: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
  publication-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 54
  start-page: 159
  year: 1992
  end-page: 178
  ident: b0275
  article-title: Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?
  publication-title: Journal of Econometrics
– reference: Milutinovic, M., Schoenfeld, B., Martinez-Garcia, D., Ray, S., Shah, S., & Yan, D. (2020). On evaluation of automl systems.
– volume: 21
  start-page: 390
  year: 2019
  end-page: 414
  ident: b0415
  article-title: Artificial neural networks in freight rate forecasting
  publication-title: Maritime Economics & Logistics
– volume: 11
  start-page: 302
  year: 2009
  end-page: 325
  ident: b0005
  article-title: The role of supply vessels in offshore logistics
  publication-title: Maritime Economics & Logistics
– reference: Clarkson Research Offshore Review and Outlook Market Outlook—September 2022 2022
– reference: (pp. 1–56).
– volume: 212
  year: 2021
  ident: b0215
  article-title: AutoML: A survey of the state-of-the-art
  publication-title: Knowledge-Based Systems
– reference: , 642–647. Scopus. https://doi.org/10.1016/j.procs.2016.09.455.
– reference: .
– volume: 41
  year: 2021
  ident: b0370
  article-title: Container freight rate forecasting with improved accuracy by integrating soft facts from practitioners
  publication-title: Research in Transportation Business & Management
– year: 2022
  ident: b0410
  article-title: XGBoost Documentation—Xgboost 1.7.5 documentation
  publication-title: Dmlc XGBoost.
– reference: DataRobot Inc. (2023).
– volume: 1
  start-page: 5
  year: 1981
  end-page: 83
  ident: b0225
  article-title: Ridge Regression — 1980: Advances, Algorithms, and Applications
  publication-title: American Journal of Mathematical and Management Sciences
– start-page: 1
  year: 2022
  end-page: 19
  ident: b0265
  article-title: Quantitative modelling of shipping freight rates: Developments in the past 20 years
  publication-title: Maritime Policy & Management
– reference: Cios, K. J., Swiniarski, R. W., Pedrycz, W., & Kurgan, L. A. (2007). Unsupervised Learning: Association Rules. In K. J. Cios, R. W. Swiniarski, W. Pedrycz, & L. A. Kurgan (Eds.),
– reference: , 269–280. Scopus. https://doi.org/10.1007/978-3-030-99587-4_23.
– volume: 26
  start-page: 205
  year: 2010
  end-page: 223
  ident: b0145
  article-title: Bivariate Long Term Fuzzy Time Series Forecasting of Dry Cargo Freight Rates
  publication-title: The Asian Journal of Shipping and Logistics
– volume: 22
  start-page: 679
  year: 2006
  end-page: 688
  ident: b0240
  article-title: Another look at measures of forecast accuracy
  publication-title: International Journal of Forecasting
– reference: Datarobot. (n.d.-c).
– reference: Datarobot Docs. Retrieved 13 May 2023, from
– volume: 111
  start-page: 18
  year: 2018
  end-page: 39
  ident: b0295
  article-title: The impact of slow steaming on the carriers’ and shippers’ costs: The case of a global logistics network
  publication-title: Transportation Research Part E: Logistics and Transportation Review
– reference: R.K. Larsen D.S. Becker Automated Machine Learning for Business (1st ed.). 2021 Oxford University Press 10.1093/oso/9780190941659.001.0001.
– reference: (arXiv:2006.14099). arXiv. https://doi.org/10.48550/arXiv.2006.14099.
– reference: World Health Organization. (n.d.).
– reference: . World Health Organization. Retrieved 9 April 2023, from https://www.who.int/europe/emergencies/situations/covid-19.
– reference: .
– reference: Clarksons Research Offshore Review and Outlook OSV 2023 1 21.
– year: 2015
  ident: b0020
  article-title: Time Series Analysis: Forecasting and Control
– year: 2023
  ident: b0120
  article-title: June 27)
– reference: Liu, M., Zhao, Y., Wang, J., Liu, C., & Li, G. (2021).
– volume: 10
  start-page: 105
  year: 2019
  end-page: 114
  ident: b0250
  article-title: Predicting a dry bulk freight index by deep learning with global vessel movement data
  publication-title: Scopus
– volume: 3
  year: 2022
  ident: b0325
  article-title: State-space TBATS model for container freight rate forecasting with improved accuracy
  publication-title: Maritime Transport Research
– volume: 29
  start-page: 5297
  year: 2022
  end-page: 5311
  ident: b0010
  article-title: Review of ML and AutoML solutions to forecast time-series data
  publication-title: Archives of Computational Methods in Engineering
– ident: 10.1016/j.cie.2024.110153_b0285
  doi: 10.1016/j.procs.2022.01.102
– year: 2009
  ident: 10.1016/j.cie.2024.110153_b0380
– volume: 19
  start-page: 538
  issue: 3
  year: 2017
  ident: 10.1016/j.cie.2024.110153_b0165
  article-title: Predicting tanker freight rates using parsimonious variables and a hybrid artificial neural network with an adaptive genetic algorithm
  publication-title: Maritime Economics & Logistics
  doi: 10.1057/mel.2016.1
– volume: 15
  start-page: 405
  issue: 4
  year: 1999
  ident: 10.1016/j.cie.2024.110153_b0205
  article-title: On the asymmetry of the symmetric MAPE
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(99)00007-2
– volume: 26
  start-page: 1673
  issue: 3
  year: 2018
  ident: 10.1016/j.cie.2024.110153_b0355
  article-title: Forecasting the Baltic Dry Index by using an artificial neural network approach
  publication-title: Turkish Journal of Electrical Engineering and Computer Sciences
– volume: 41
  year: 2021
  ident: 10.1016/j.cie.2024.110153_b0370
  article-title: Container freight rate forecasting with improved accuracy by integrating soft facts from practitioners
  publication-title: Research in Transportation Business & Management
  doi: 10.1016/j.rtbm.2021.100662
– year: 2015
  ident: 10.1016/j.cie.2024.110153_b0020
– ident: 10.1016/j.cie.2024.110153_b0085
– ident: 10.1016/j.cie.2024.110153_b0100
– volume: 18
  start-page: 82
  issue: 2
  year: 2019
  ident: 10.1016/j.cie.2024.110153_b0045
  article-title: A fuzzy neural network combined with technical indicators and its application to Baltic Dry Index forecasting
  publication-title: Journal of Marine Engineering & Technology
  doi: 10.1080/20464177.2018.1495886
– year: 2011
  ident: 10.1016/j.cie.2024.110153_b0150
  article-title: August 7). Global financial crisis: Five key stages 2007–2011 [Newspaper]
  publication-title: The Guardian.
– ident: 10.1016/j.cie.2024.110153_b0425
– ident: 10.1016/j.cie.2024.110153_b0155
– ident: 10.1016/j.cie.2024.110153_b0270
  doi: 10.1007/978-3-030-99587-4_23
– volume: 37
  start-page: 76
  issue: 1
  year: 2023
  ident: 10.1016/j.cie.2024.110153_b0300
  article-title: Machine learning advances for time series forecasting
  publication-title: Journal of Economic Surveys
  doi: 10.1111/joes.12429
– volume: 37
  start-page: 239
  issue: 3
  year: 2021
  ident: 10.1016/j.cie.2024.110153_b0320
  article-title: Forecasting oil tanker shipping market in crisis periods: Exponential smoothing model application
  publication-title: The Asian Journal of Shipping and Logistics
  doi: 10.1016/j.ajsl.2021.06.002
– volume: 7
  start-page: 65579
  year: 2019
  ident: 10.1016/j.cie.2024.110153_b0390
  article-title: Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916648
– ident: 10.1016/j.cie.2024.110153_b0245
  doi: 10.1007/978-1-0716-1418-1_2
– ident: 10.1016/j.cie.2024.110153_b0075
– volume: 212
  year: 2021
  ident: 10.1016/j.cie.2024.110153_b0215
  article-title: AutoML: A survey of the state-of-the-art
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106622
– start-page: 785
  year: 2016
  ident: 10.1016/j.cie.2024.110153_b0040
  article-title: XGBoost: A Scalable Tree Boosting System
– ident: 10.1016/j.cie.2024.110153_b0230
  doi: 10.1007/978-3-030-05318-5
– volume: 27
  start-page: 264
  issue: 3
  year: 1978
  ident: 10.1016/j.cie.2024.110153_b0030
  article-title: The Holt-Winters Forecasting Procedure
  publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics)
– volume: 16
  start-page: 199
  issue: 3
  year: 2001
  ident: 10.1016/j.cie.2024.110153_b0025
  article-title: Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author)
  publication-title: Statistical Science
  doi: 10.1214/ss/1009213726
– ident: 10.1016/j.cie.2024.110153_b0055
– year: 2022
  ident: 10.1016/j.cie.2024.110153_b0410
  article-title: XGBoost Documentation—Xgboost 1.7.5 documentation
  publication-title: Dmlc XGBoost.
– volume: 25
  start-page: 17
  issue: 4
  year: 2021
  ident: 10.1016/j.cie.2024.110153_b0015
  article-title: A Baltic Dry Index Prediction using Deep Learning Models
  publication-title: Journal of Korea Trade (JKT)
  doi: 10.35611/jkt.2021.25.4.17
– ident: 10.1016/j.cie.2024.110153_b0170
– volume: 23
  start-page: 310
  issue: 2
  year: 2021
  ident: 10.1016/j.cie.2024.110153_b0330
  article-title: Forecasting container freight rates for major trade routes: A comparison of artificial neural networks and conventional models
  publication-title: Maritime Economics & Logistics
  doi: 10.1057/s41278-020-00156-5
– volume: 1
  start-page: 5
  issue: 1
  year: 1981
  ident: 10.1016/j.cie.2024.110153_b0225
  article-title: Ridge Regression — 1980: Advances, Algorithms, and Applications
  publication-title: American Journal of Mathematical and Management Sciences
  doi: 10.1080/01966324.1981.10737061
– volume: 21
  start-page: 390
  issue: 3
  year: 2019
  ident: 10.1016/j.cie.2024.110153_b0415
  article-title: Artificial neural networks in freight rate forecasting
  publication-title: Maritime Economics & Logistics
  doi: 10.1057/s41278-019-00121-x
– volume: 11
  start-page: 302
  issue: 3
  year: 2009
  ident: 10.1016/j.cie.2024.110153_b0005
  article-title: The role of supply vessels in offshore logistics
  publication-title: Maritime Economics & Logistics
  doi: 10.1057/mel.2009.7
– ident: 10.1016/j.cie.2024.110153_b0065
– ident: 10.1016/j.cie.2024.110153_b0105
– volume: 118
  start-page: 376
  year: 2018
  ident: 10.1016/j.cie.2024.110153_b0190
  article-title: Volatility forecasting across tanker freight rates: The role of oil price shocks
  publication-title: Transportation Research Part E: Logistics and Transportation Review
  doi: 10.1016/j.tre.2018.08.012
– ident: 10.1016/j.cie.2024.110153_b0345
– volume: 30
  start-page: 79
  issue: 1
  year: 2005
  ident: 10.1016/j.cie.2024.110153_b0400
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Climate Research
  doi: 10.3354/cr030079
– ident: 10.1016/j.cie.2024.110153_b0405
– volume: 14
  start-page: 319
  issue: 3
  year: 2012
  ident: 10.1016/j.cie.2024.110153_b0280
  article-title: A wavelet and neural network model for the prediction of dry bulk shipping indices
  publication-title: Maritime Economics & Logistics
  doi: 10.1057/mel.2012.10
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.cie.2024.110153_b0185
  article-title: Greedy Function Approximation: A Gradient Boosting Machine
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1013203451
– volume: 2
  start-page: 160
  issue: 3
  year: 2021
  ident: 10.1016/j.cie.2024.110153_b0360
  article-title: Machine Learning: Algorithms, Real-World Applications and Research Directions
  publication-title: SN Computer Science
  doi: 10.1007/s42979-021-00592-x
– ident: 10.1016/j.cie.2024.110153_b0135
  doi: 10.1007/978-3-031-26409-2_40
– volume: 10
  start-page: 105
  year: 2019
  ident: 10.1016/j.cie.2024.110153_b0250
  article-title: Predicting a dry bulk freight index by deep learning with global vessel movement data
  publication-title: Scopus
– year: 2022
  ident: 10.1016/j.cie.2024.110153_b0110
– volume: 29
  start-page: 5297
  issue: 7
  year: 2022
  ident: 10.1016/j.cie.2024.110153_b0010
  article-title: Review of ML and AutoML solutions to forecast time-series data
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-022-09765-0
– volume: 3
  year: 2022
  ident: 10.1016/j.cie.2024.110153_b0325
  article-title: State-space TBATS model for container freight rate forecasting with improved accuracy
  publication-title: Maritime Transport Research
  doi: 10.1016/j.martra.2022.100057
– volume: 74
  start-page: 427
  issue: 366a
  year: 1979
  ident: 10.1016/j.cie.2024.110153_b0140
  article-title: Distribution of the Estimators for Autoregressive Time Series with a Unit Root
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1979.10482531
– year: 2022
  ident: 10.1016/j.cie.2024.110153_b0115
– ident: 10.1016/j.cie.2024.110153_b0060
– volume: 41
  start-page: 2809
  issue: 22
  year: 2009
  ident: 10.1016/j.cie.2024.110153_b0375
  article-title: Forecasting container transshipment in Germany
  publication-title: Applied Economics
  doi: 10.1080/00036840802260932
– start-page: 847
  year: 2013
  ident: 10.1016/j.cie.2024.110153_b0385
  article-title: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
– volume: 22
  start-page: 679
  issue: 4
  year: 2006
  ident: 10.1016/j.cie.2024.110153_b0240
  article-title: Another look at measures of forecast accuracy
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2006.03.001
– ident: 10.1016/j.cie.2024.110153_b0050
  doi: 10.1007/978-0-387-36795-8_10
– ident: 10.1016/j.cie.2024.110153_b0125
– volume: 29
  start-page: 218
  issue: 3
  year: 1986
  ident: 10.1016/j.cie.2024.110153_b0180
  article-title: How not to lie with statistics: The correct way to summarize benchmark results
  publication-title: Communications of the ACM
  doi: 10.1145/5666.5673
– start-page: 113
  year: 2019
  ident: 10.1016/j.cie.2024.110153_b0175
  article-title: Auto-sklearn: Efficient and Robust Automated Machine Learning
– year: 2015
  ident: 10.1016/j.cie.2024.110153_b0305
– year: 2021
  ident: 10.1016/j.cie.2024.110153_b0430
  article-title: Machine Learning
  publication-title: Springer Singapore
– ident: 10.1016/j.cie.2024.110153_b0395
  doi: 10.1016/j.procs.2016.09.455
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 10.1016/j.cie.2024.110153_b0440
  article-title: Regularization and Variable Selection Via the Elastic Net
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 40
  start-page: 1540
  issue: 8
  year: 2021
  ident: 10.1016/j.cie.2024.110153_b0260
  article-title: Time series forecasting methods for the Baltic dry index
  publication-title: Journal of Forecasting
  doi: 10.1002/for.2780
– start-page: 205
  year: 2020
  ident: 10.1016/j.cie.2024.110153_b0035
  article-title: Automated Machine Learning: The New Wave of Machine Learning
– volume: 12
  start-page: e1475
  issue: 6
  year: 2022
  ident: 10.1016/j.cie.2024.110153_b0310
  article-title: Review of automated time series forecasting pipelines
  publication-title: WIREs Data Mining and Knowledge Discovery
  doi: 10.1002/widm.1475
– volume: 54
  start-page: 159
  issue: 1
  year: 1992
  ident: 10.1016/j.cie.2024.110153_b0275
  article-title: Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?
  publication-title: Journal of Econometrics
  doi: 10.1016/0304-4076(92)90104-Y
– year: 2023
  ident: 10.1016/j.cie.2024.110153_b0120
– ident: 10.1016/j.cie.2024.110153_b0080
– start-page: 137
  year: 2008
  ident: 10.1016/j.cie.2024.110153_b0195
  article-title: Unsupervised Machine Learning
– volume: 54
  start-page: 175:1
  issue: 8
  year: 2021
  ident: 10.1016/j.cie.2024.110153_b0255
  article-title: AutoML to date and beyond: challenges and opportunities
  publication-title: ACM Computing Surveys
– volume: 26
  start-page: 205
  issue: 2
  year: 2010
  ident: 10.1016/j.cie.2024.110153_b0145
  article-title: Bivariate Long Term Fuzzy Time Series Forecasting of Dry Cargo Freight Rates
  publication-title: The Asian Journal of Shipping and Logistics
  doi: 10.1016/S2092-5212(10)80002-1
– ident: 10.1016/j.cie.2024.110153_b0435
– volume: 111
  start-page: 18
  year: 2018
  ident: 10.1016/j.cie.2024.110153_b0295
  article-title: The impact of slow steaming on the carriers’ and shippers’ costs: The case of a global logistics network
  publication-title: Transportation Research Part E: Logistics and Transportation Review
  doi: 10.1016/j.tre.2017.12.008
– ident: 10.1016/j.cie.2024.110153_b0350
  doi: 10.1093/oso/9780190941659.003.0001
– ident: 10.1016/j.cie.2024.110153_b0095
– start-page: 1
  year: 2022
  ident: 10.1016/j.cie.2024.110153_b0265
  article-title: Quantitative modelling of shipping freight rates: Developments in the past 20 years
  publication-title: Maritime Policy & Management
  doi: 10.1080/03088839.2022.2158382
– ident: 10.1016/j.cie.2024.110153_b0070
– volume: 9
  start-page: 511
  issue: 59
  year: 2013
  ident: 10.1016/j.cie.2024.110153_b0290
  article-title: Freight-Forward Agreement Time series Modelling Based on Artificial Neural Network Models. Strojniški Vestnik – Journal of
  publication-title: Mechanical Engineering
  doi: 10.5545/sv-jme.2013.947
– volume: 18
  year: 2023
  ident: 10.1016/j.cie.2024.110153_b0365
  article-title: Automated machine learning: AI-driven decision making in business analytics
  publication-title: Intelligent Systems with Applications
  doi: 10.1016/j.iswa.2023.200188
– year: 2009
  ident: 10.1016/j.cie.2024.110153_b0210
– ident: 10.1016/j.cie.2024.110153_b0315
– volume: 10
  start-page: Article 5
  issue: 5
  year: 2022
  ident: 10.1016/j.cie.2024.110153_b0220
  article-title: Forecasting Shanghai Container Freight Index: A Deep-Learning-Based Model Experiment
  publication-title: Journal of Marine Science and Engineering
  doi: 10.3390/jmse10050593
– volume: 361
  start-page: 499
  year: 2019
  ident: 10.1016/j.cie.2024.110153_b0420
  article-title: A novel hybrid approach to Baltic Dry Index forecasting based on a combined dynamic fluctuation network and artificial intelligence method
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2019.05.043
– start-page: 209
  year: 2020
  ident: 10.1016/j.cie.2024.110153_b0160
  article-title: AutoML @ NeurIPS 2018 Challenge: Design and Results
– volume: 4
  start-page: 51
  year: 2017
  ident: 10.1016/j.cie.2024.110153_b0335
  article-title: An overview of the supervised machine learning methods
  publication-title: HORIZONS.B
  doi: 10.20544/HORIZONS.B.04.1.17.P05
SSID ssj0004591
Score 2.4508846
Snippet •Cloud-AI based prediction model for PSV freight rates.•Over 40 explanatory variables are employed model building.•Historical PSV rates are key in forecasting...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110153
SubjectTerms Cloud-based AI
Feature engineering
Offshore oil and gas
Platform Supply Vessel
Shipping freight rates
Title Automated machine learning driven model for predicting platform supply vessel freight market
URI https://dx.doi.org/10.1016/j.cie.2024.110153
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL3rwx1ScP0YOnoS6Jk279jiGYyruooMdhJKkqUzmVrpO8OLf7nttKhPUg8eGl1Be0pcvfV_eR8iFLwHzu8Z1uI6MIwBxO1Jy4wQw2YlKU9eUOmT3o2A4FrcTf9Ig_fouDNIqbeyvYnoZrW1Lx3qzk02nnQeIvRV-EFXCEW-wiy6u8qsPtlYxvFLNA2MHrevMZsnxgmHhiMgFkuGZ7_28N63tN4M9smOBIu1V77JPGmbeJLsWNFL7SS6bZHutouABeeqtigWAUDB5LWmShlpdiGea5BjZaKl9QwGr0izHLA3ynmk2kwXCV7pElc93-oYlxcEqL_-cwlh4N_qQjAfXj_2hYwUUHO0Jt3AipVjCojDxXeUmTBseYUF3pgxjMuTSMylX3SANjYy40abLUhYoQHQC3JEkyjsiG_PF3BwTGklfCyOilCchZuRlCCNKDSc4zl3NZIu4tetibauLo8jFLK5pZC_QbmL0dlx5u0Uuv7pkVWmNv4xFPR_xt_URQ-j_vdvJ_7qdki18qoiNZ2SjyFfmHMBHodrl6mqTzd7N3XD0CWwp2L0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOPAaI8cyBE1K1Jku79jhNTBt7XNikHZCqpE3R0NiqrUPi3-O0KRoScOCa2lblpM6X-osNcOcIxPy2si0W-sriiLgtIZiyXJzsSMaxrbI-ZMOR253wx6kzLUG7uAujaZUm9ucxPYvWZqRuvFlPZrP6E8beHD_wPOG4AxVdncopQ6XV63dHW0XD88Z5KG9phSK5mdG80DKeEhnXfHjqNH7enra2nM4RHBisSFr56xxDSS2qcGhwIzFf5boK-1tFBU_gubVJl4hDUeQtY0oqYlpDvJBopYMbydrfEISrJFnpRI2mPpNkLlKNYMlaN_r8IO-6qjhKrbKfp2hLX48-hUnnYdzuWqaHghU2uJ1avpQ0or4XOba0Ixoq5uua7lQqSoXHREPFTDbd2FPCZypUTRpTVyKo4-iOKJKNMygvlgt1DsQXTsgV92MWeTopLzy0KEI8xDFmh1TUwC5cF4SmwLjuczEPCibZK46rQHs7yL1dg_svlSSvrvGXMC_mI_i2RAKM_r-rXfxP7RZ2u-PhIBj0Rv1L2NNPcp7jFZTT1UZdIxZJ5Y1Za5_nP9tu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+machine+learning+driven+model+for+predicting+platform+supply+vessel+freight+market&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Kjeldsberg%2C+Fabian&rft.au=Haque+Munim%2C+Ziaul&rft.date=2024-05-01&rft.issn=0360-8352&rft.volume=191&rft.spage=110153&rft_id=info:doi/10.1016%2Fj.cie.2024.110153&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2024_110153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon