Automated machine learning driven model for predicting platform supply vessel freight market
•Cloud-AI based prediction model for PSV freight rates.•Over 40 explanatory variables are employed model building.•Historical PSV rates are key in forecasting future PSV rates.•Active rig count reveals new insight into PSV rates in the North Sea. Platform Supply Vessels (PSVs) play an essential role...
Saved in:
Published in | Computers & industrial engineering Vol. 191; p. 110153 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-8352 1879-0550 |
DOI | 10.1016/j.cie.2024.110153 |
Cover
Loading…
Abstract | •Cloud-AI based prediction model for PSV freight rates.•Over 40 explanatory variables are employed model building.•Historical PSV rates are key in forecasting future PSV rates.•Active rig count reveals new insight into PSV rates in the North Sea.
Platform Supply Vessels (PSVs) play an essential role in supporting oil and gas platforms, and other offshore structures by transporting crew members, personnel, provisions, and further indispensable equipment from onshore to operational sites. PSV freight rate movements are subject to a complex array of non-linear interconnected influential factors. Reviewed literature reveals an absence of forecasting studies predicting PSV freight rates. Meanwhile, Automated Machine Learning (AutoML) frameworks have never before been employed to forecast maritime freight rates. Therefore, this study investigates factors influencing PSV time charter freight rates and explores AutoML modelling in capturing non-linearities while forecasting PSV freight rates over a 1, 3 and 6-month out-of-sample forecast horizon. A total of 43 relevant factors are included in prediction modelling, the most comprehensive number of explanatory variables in the shipping forecasting literature to date. The data consists of 188 monthly observations collected from two databases: Clarksons Shipping Intelligence Network and Offshore Intelligence Network. Time-lagged variables are utilized as data of explanatory variables are not immediately available at the time of forecasting. A total of 79 complex machine learning models are tested, and the best-performing models are Eureqa Generalized Additive Model, eXtreme Gradient Boosted Trees Regressor, and Ridge Regressor with Forecast Distance Modelling, benchmarked against the proven statistical forecasting model triple exponential smoothing. The most influential factors are historical PSV time charter freight rates, newbuilding prices, number of vessel deliveries, orderbook number, total vessel sales, and the unique variable number of active drilling rigs in the market. |
---|---|
AbstractList | •Cloud-AI based prediction model for PSV freight rates.•Over 40 explanatory variables are employed model building.•Historical PSV rates are key in forecasting future PSV rates.•Active rig count reveals new insight into PSV rates in the North Sea.
Platform Supply Vessels (PSVs) play an essential role in supporting oil and gas platforms, and other offshore structures by transporting crew members, personnel, provisions, and further indispensable equipment from onshore to operational sites. PSV freight rate movements are subject to a complex array of non-linear interconnected influential factors. Reviewed literature reveals an absence of forecasting studies predicting PSV freight rates. Meanwhile, Automated Machine Learning (AutoML) frameworks have never before been employed to forecast maritime freight rates. Therefore, this study investigates factors influencing PSV time charter freight rates and explores AutoML modelling in capturing non-linearities while forecasting PSV freight rates over a 1, 3 and 6-month out-of-sample forecast horizon. A total of 43 relevant factors are included in prediction modelling, the most comprehensive number of explanatory variables in the shipping forecasting literature to date. The data consists of 188 monthly observations collected from two databases: Clarksons Shipping Intelligence Network and Offshore Intelligence Network. Time-lagged variables are utilized as data of explanatory variables are not immediately available at the time of forecasting. A total of 79 complex machine learning models are tested, and the best-performing models are Eureqa Generalized Additive Model, eXtreme Gradient Boosted Trees Regressor, and Ridge Regressor with Forecast Distance Modelling, benchmarked against the proven statistical forecasting model triple exponential smoothing. The most influential factors are historical PSV time charter freight rates, newbuilding prices, number of vessel deliveries, orderbook number, total vessel sales, and the unique variable number of active drilling rigs in the market. |
ArticleNumber | 110153 |
Author | Haque Munim, Ziaul Kjeldsberg, Fabian |
Author_xml | – sequence: 1 givenname: Fabian orcidid: 0009-0006-5736-9556 surname: Kjeldsberg fullname: Kjeldsberg, Fabian email: fabian.kjeldsberg@usn.no – sequence: 2 givenname: Ziaul surname: Haque Munim fullname: Haque Munim, Ziaul email: ziaul.h.munim@usn.no |
BookMark | eNp9kM1qwzAQhEVJoUnaB-hNL2BXK__TUwj9g0Av7a0gZGmdKHVkIymBvH1l0lMPPS3MzrfszILM7GCRkHtgKTAoH_apMphyxvMUolBkV2QOddUkrCjYjMxZVrKkzgp-Qxbe7xljedHAnHytjmE4yICaHqTaGYu0R-mssVuqnTmhpYdBY0-7wdHRoTYqTLuxlyFKB-qP49if6Qm9n1wOzXYX4i33jeGWXHey93j3O5fk8_npY_2abN5f3tarTaKynIWkaVvQ0NS6YC3ToJA3HHgFLQLImssMO95WZVejbDgqrKCDsm0ynsekWrfZklSXu8oN3jvshDJBBjPY4KTpBTAxlST2UUcxlSQuJUUS_pCjM_H587_M44XBGOlk0AkfLVbFbhyqIPRg_qF_ANfigyw |
CitedBy_id | crossref_primary_10_1016_j_cie_2024_110574 |
Cites_doi | 10.1016/j.procs.2022.01.102 10.1057/mel.2016.1 10.1016/S0169-2070(99)00007-2 10.1016/j.rtbm.2021.100662 10.1080/20464177.2018.1495886 10.1007/978-3-030-99587-4_23 10.1111/joes.12429 10.1016/j.ajsl.2021.06.002 10.1109/ACCESS.2019.2916648 10.1007/978-1-0716-1418-1_2 10.1016/j.knosys.2020.106622 10.1007/978-3-030-05318-5 10.1214/ss/1009213726 10.35611/jkt.2021.25.4.17 10.1057/s41278-020-00156-5 10.1080/01966324.1981.10737061 10.1057/s41278-019-00121-x 10.1057/mel.2009.7 10.1016/j.tre.2018.08.012 10.3354/cr030079 10.1057/mel.2012.10 10.1214/aos/1013203451 10.1007/s42979-021-00592-x 10.1007/978-3-031-26409-2_40 10.1007/s11831-022-09765-0 10.1016/j.martra.2022.100057 10.1080/01621459.1979.10482531 10.1080/00036840802260932 10.1016/j.ijforecast.2006.03.001 10.1007/978-0-387-36795-8_10 10.1145/5666.5673 10.1016/j.procs.2016.09.455 10.1111/j.1467-9868.2005.00503.x 10.1002/for.2780 10.1002/widm.1475 10.1016/0304-4076(92)90104-Y 10.1016/S2092-5212(10)80002-1 10.1016/j.tre.2017.12.008 10.1093/oso/9780190941659.003.0001 10.1080/03088839.2022.2158382 10.5545/sv-jme.2013.947 10.1016/j.iswa.2023.200188 10.3390/jmse10050593 10.1016/j.amc.2019.05.043 10.20544/HORIZONS.B.04.1.17.P05 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.cie.2024.110153 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-0550 |
ExternalDocumentID | 10_1016_j_cie_2024_110153 S0360835224002742 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c340t-9bb1d198d50b0d1ce2921271be11a82a3ef2b76f8ea92ece71f16b9324101ddb3 |
IEDL.DBID | .~1 |
ISSN | 0360-8352 |
IngestDate | Tue Jul 01 03:00:01 EDT 2025 Thu Apr 24 23:07:41 EDT 2025 Sat May 25 15:41:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Offshore oil and gas Shipping freight rates Platform Supply Vessel Feature engineering Cloud-based AI |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-9bb1d198d50b0d1ce2921271be11a82a3ef2b76f8ea92ece71f16b9324101ddb3 |
ORCID | 0009-0006-5736-9556 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0360835224002742 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cie_2024_110153 crossref_primary_10_1016_j_cie_2024_110153 elsevier_sciencedirect_doi_10_1016_j_cie_2024_110153 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationTitle | Computers & industrial engineering |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Masini, Medeiros, Mendes (b0300) 2023; 37 Friedman (b0185) 2001; 29 Şahin, Gürgen, Ünver, Altin (b0355) 2018; 26 Uyar, K., Ilhan, Ü., & Ilhan, A. (2016). Hirata, Matsuda (b0220) 2022; 10 Sarker (b0360) 2021; 2 Gorton, Ihre, Sandevärn (b0210) 2009 Escalante, Tu, Guyon, Silver, Viegas, Chen, Dai, Yang (b0160) 2020 Munim (b0325) 2022; 3 World Health Organization. (n.d.). Datarobot (b0115) 2022 , Panayides, P. M. (2018). . Chou, Lin (b0045) 2019; 18 Ke, Liu, Ng, Shi (b0265) 2022 Datarobot Docs. Retrieved 23 April 2023, from Datarobot. (n.d.-a). World Health Organization. Retrieved 9 April 2023, from https://www.who.int/europe/emergencies/situations/covid-19. Deng, D., Karl, F., Hutter, F., Bischl, B., & Lindauer, M. (2023). Efficient Automated Deep Learning for (pp. 289–306). Springer US. https://doi.org/10.1007/978-0-387-36795-8_10. Fleming, Wallace (b0180) 1986; 29 XGBoost (b0410) 2022 [Database]. Shipping Intelligence Network. Retrieved 18 April 2023, from https://sin.clarksons.net/#!#Login. Gavriilidis, Kambouroudis, Tsakou, Tsouknidis (b0190) 2018; 118 Meisenbacher, Turowski, Phipps, Rätz, Müller, Hagenmeyer, Mikut (b0310) 2022; 12 Karmaker, Hassan, Smith, Xu, Zhai, Veeramachaneni (b0255) 2021; 54 (pp. 664–680). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-26409-2_40. (arXiv:2006.14099). arXiv. https://doi.org/10.48550/arXiv.2006.14099. Datarobot. (n.d.-h). Stopford (b0380) 2009 Liu, M., Zhao, Y., Wang, J., Liu, C., & Li, G. (2021). Mallidis, Iakovou, Dekker, Vlachos (b0295) 2018; 111 Breiman (b0025) 2001; 16 Chauhan, Jani, Thakkar, Dave, Bhatia, Tanwar, Obaidat (b0035) 2020 (9.0) [Computer software]. Datarobot Inc. https://app.eu.datarobot.com/new. Kanamoto, Wada, Shibasaki (b0250) 2019; 10 Thornton, Hutter, Hoos, Leyton-Brown (b0385) 2013 Datarobot Docs. Retrieved 20 April 2023, from (pp. 1–56). Leonov, Nikolov (b0280) 2012; 14 Yang, Mehmed (b0415) 2019; 21 Mead, Stiger (b0305) 2015 Khan, I. A., & Hussain, F. K. (2022). Regression Analysis Using Machine Learning Approaches for (Second edition). Springer. https://doi.org/10.1007/978-1-0716-1418-1. Schramm, Munim (b0370) 2021; 41 Elliott (b0150) 2011 Zhang, Chen, Wang, Ge, Stanley (b0420) 2019; 361 Datarobot (b0110) 2022 Feurer, Klein, Eggensperger, Springenberg, Blum, Hutter (b0175) 2019 Zhou (b0430) 2021 Datarobot. (n.d.-d). Zhang, Y., Zame, W., & van der Schaar, M. (2020). Equinor. (2022). Hyndman, Koehler (b0240) 2006; 22 Aas, Halskau, Wallace (b0005) 2009; 11 Clarksons Research Offshore Review and Outlook OSV 2023 1 21. Lyridis, Zacharioudakis, Iordanis, Daleziou (b0290) 2013; 9 Bae, Lee, Park (b0015) 2021; 25 Cios, K. J., Swiniarski, R. W., Pedrycz, W., & Kurgan, L. A. (2007). Unsupervised Learning: Association Rules. In K. J. Cios, R. W. Swiniarski, W. Pedrycz, & L. A. Kurgan (Eds.) Schmitt (b0365) 2023; 18 Nasteski (b0335) 2017; 4 R.K. Larsen D.S. Becker Automated Machine Learning for Business (1st ed.). 2021 Oxford University Press 10.1093/oso/9780190941659.001.0001. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). Clarksons. (n.d.). https://fearnleysecurities.com/wp-content/uploads/2023/02/Fearnley-Securites-Market-Report-2023.pdf. Usama, Qadir, Raza, Arif, Yau, Elkhatib, Hussain, Al-Fuqaha (b0390) 2019; 7 Time Series Forecasting. In M.-R. Amini, S. Canu, A. Fischer, T. Guns, P. Kralj Novak, & G. Tsoumakas (Eds.) Zou, Hastie (b0440) 2005; 67 Duru, Bulut, Yoshid (b0145) 2010; 26 Datarobot Model Documentation. Retrieved 25 April 2023, from Datarobot Docs. Retrieved 13 May 2023, from DataRobot Inc. (2023). Dickey, Fuller (b0140) 1979; 74 269–280. Scopus. https://doi.org/10.1007/978-3-030-99587-4_23. Datarobot Docs. Retrieved 18 April 2023, from 642–647. Scopus. https://doi.org/10.1016/j.procs.2016.09.455. Hoerl, Kennard (b0225) 1981; 1 Kwiatkowski, Phillips, Schmidt, Shin (b0275) 1992; 54 Datarobot. (n.d.-c). Box (b0020) 2015 Alsharef, Aggarwal, Sonia, Mishra (b0010) 2022; 29 Datarobot. (n.d.-g). Schulze, Prinz (b0375) 2009; 41 Datarobot (b0120) 2023 Milutinovic, M., Schoenfeld, B., Martinez-Garcia, D., Ray, S., Shah, S., & Yan, D. (2020). On evaluation of automl systems. F. Hutter L. Kotthoff J. Vanschoren (Eds.) Automated Machine Learning: Methods 2019 Springer Nature Systems, Challenges 10.1007/978-3-030-05318-5. Gentleman, Carey (b0195) 2008 Eslami, Jung, Lee, Tjolleng (b0165) 2017; 19 Predicting Container Shipping Rates. Katris, Kavussanos (b0260) 2021; 40 Moiseev (b0320) 2021; 37 Goodwin, Lawton (b0205) 1999; 15 He, Zhao, Chu (b0215) 2021; 212 Willmott, Matsuura (b0400) 2005; 30 Fearnley Securities. (2023). Zoph, B., & Le, Q. V. (2017). Chatfield (b0030) 1978; 27 Clarkson Research Offshore Review and Outlook Market Outlook—September 2022 2022 (arXiv:1611.01578). arXiv. https://doi.org/10.48550/arXiv.1611.01578. https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_59.pdf. Datarobot. (n.d.-b). 821–828. Procedia Computer Science. https://doi.org/10.1016/j.procs.2022.01.102. Datarobot. (n.d.-f). Chen, Guestrin (b0040) 2016 (Third Edition). CreateSpace Independent Publishing Platform. Munim, Schramm (b0330) 2021; 23 Hoerl (10.1016/j.cie.2024.110153_b0225) 1981; 1 Mead (10.1016/j.cie.2024.110153_b0305) 2015 Usama (10.1016/j.cie.2024.110153_b0390) 2019; 7 Fleming (10.1016/j.cie.2024.110153_b0180) 1986; 29 10.1016/j.cie.2024.110153_b0405 He (10.1016/j.cie.2024.110153_b0215) 2021; 212 10.1016/j.cie.2024.110153_b0245 Schulze (10.1016/j.cie.2024.110153_b0375) 2009; 41 10.1016/j.cie.2024.110153_b0125 Hirata (10.1016/j.cie.2024.110153_b0220) 2022; 10 Lyridis (10.1016/j.cie.2024.110153_b0290) 2013; 9 10.1016/j.cie.2024.110153_b0285 Chatfield (10.1016/j.cie.2024.110153_b0030) 1978; 27 10.1016/j.cie.2024.110153_b0050 10.1016/j.cie.2024.110153_b0095 Katris (10.1016/j.cie.2024.110153_b0260) 2021; 40 10.1016/j.cie.2024.110153_b0170 Feurer (10.1016/j.cie.2024.110153_b0175) 2019 Willmott (10.1016/j.cie.2024.110153_b0400) 2005; 30 Box (10.1016/j.cie.2024.110153_b0020) 2015 Leonov (10.1016/j.cie.2024.110153_b0280) 2012; 14 Kanamoto (10.1016/j.cie.2024.110153_b0250) 2019; 10 10.1016/j.cie.2024.110153_b0135 Breiman (10.1016/j.cie.2024.110153_b0025) 2001; 16 Masini (10.1016/j.cie.2024.110153_b0300) 2023; 37 10.1016/j.cie.2024.110153_b0055 Moiseev (10.1016/j.cie.2024.110153_b0320) 2021; 37 Escalante (10.1016/j.cie.2024.110153_b0160) 2020 Meisenbacher (10.1016/j.cie.2024.110153_b0310) 2022; 12 Friedman (10.1016/j.cie.2024.110153_b0185) 2001; 29 Şahin (10.1016/j.cie.2024.110153_b0355) 2018; 26 Karmaker (10.1016/j.cie.2024.110153_b0255) 2021; 54 Eslami (10.1016/j.cie.2024.110153_b0165) 2017; 19 10.1016/j.cie.2024.110153_b0060 Zou (10.1016/j.cie.2024.110153_b0440) 2005; 67 Munim (10.1016/j.cie.2024.110153_b0330) 2021; 23 Datarobot (10.1016/j.cie.2024.110153_b0115) 2022 Datarobot (10.1016/j.cie.2024.110153_b0120) 2023 Elliott (10.1016/j.cie.2024.110153_b0150) 2011 Stopford (10.1016/j.cie.2024.110153_b0380) 2009 Yang (10.1016/j.cie.2024.110153_b0415) 2019; 21 Aas (10.1016/j.cie.2024.110153_b0005) 2009; 11 Chen (10.1016/j.cie.2024.110153_b0040) 2016 10.1016/j.cie.2024.110153_b0425 10.1016/j.cie.2024.110153_b0345 10.1016/j.cie.2024.110153_b0105 10.1016/j.cie.2024.110153_b0065 10.1016/j.cie.2024.110153_b0100 10.1016/j.cie.2024.110153_b0270 10.1016/j.cie.2024.110153_b0075 10.1016/j.cie.2024.110153_b0350 10.1016/j.cie.2024.110153_b0070 Munim (10.1016/j.cie.2024.110153_b0325) 2022; 3 Sarker (10.1016/j.cie.2024.110153_b0360) 2021; 2 Zhou (10.1016/j.cie.2024.110153_b0430) 2021 Dickey (10.1016/j.cie.2024.110153_b0140) 1979; 74 Chou (10.1016/j.cie.2024.110153_b0045) 2019; 18 Schmitt (10.1016/j.cie.2024.110153_b0365) 2023; 18 10.1016/j.cie.2024.110153_b0315 Mallidis (10.1016/j.cie.2024.110153_b0295) 2018; 111 Alsharef (10.1016/j.cie.2024.110153_b0010) 2022; 29 Chauhan (10.1016/j.cie.2024.110153_b0035) 2020 Thornton (10.1016/j.cie.2024.110153_b0385) 2013 Ke (10.1016/j.cie.2024.110153_b0265) 2022 Kwiatkowski (10.1016/j.cie.2024.110153_b0275) 1992; 54 Duru (10.1016/j.cie.2024.110153_b0145) 2010; 26 Gavriilidis (10.1016/j.cie.2024.110153_b0190) 2018; 118 Hyndman (10.1016/j.cie.2024.110153_b0240) 2006; 22 10.1016/j.cie.2024.110153_b0435 10.1016/j.cie.2024.110153_b0230 10.1016/j.cie.2024.110153_b0395 Gorton (10.1016/j.cie.2024.110153_b0210) 2009 10.1016/j.cie.2024.110153_b0155 Zhang (10.1016/j.cie.2024.110153_b0420) 2019; 361 Bae (10.1016/j.cie.2024.110153_b0015) 2021; 25 10.1016/j.cie.2024.110153_b0085 10.1016/j.cie.2024.110153_b0080 Schramm (10.1016/j.cie.2024.110153_b0370) 2021; 41 XGBoost (10.1016/j.cie.2024.110153_b0410) 2022 Goodwin (10.1016/j.cie.2024.110153_b0205) 1999; 15 Gentleman (10.1016/j.cie.2024.110153_b0195) 2008 Nasteski (10.1016/j.cie.2024.110153_b0335) 2017; 4 Datarobot (10.1016/j.cie.2024.110153_b0110) 2022 |
References_xml | – start-page: 113 year: 2019 end-page: 134 ident: b0175 article-title: Auto-sklearn: Efficient and Robust Automated Machine Learning publication-title: Automated Machine Learning – reference: Clarksons. (n.d.). – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: b0185 article-title: Greedy Function Approximation: A Gradient Boosting Machine publication-title: The Annals of Statistics – volume: 12 start-page: e1475 year: 2022 ident: b0310 article-title: Review of automated time series forecasting pipelines publication-title: WIREs Data Mining and Knowledge Discovery – year: 2009 ident: b0210 article-title: Shipbroking and chartering practice – reference: . Datarobot Docs. Retrieved 23 April 2023, from – reference: (pp. 289–306). Springer US. https://doi.org/10.1007/978-0-387-36795-8_10. – volume: 361 start-page: 499 year: 2019 end-page: 516 ident: b0420 article-title: A novel hybrid approach to Baltic Dry Index forecasting based on a combined dynamic fluctuation network and artificial intelligence method publication-title: Applied Mathematics and Computation – reference: Datarobot. (n.d.-g). – start-page: 209 year: 2020 end-page: 229 ident: b0160 article-title: AutoML @ NeurIPS 2018 Challenge: Design and Results publication-title: The NeurIPS ’18 Competition – reference: . Datarobot Docs. Retrieved 18 April 2023, from – volume: 19 start-page: 538 year: 2017 end-page: 550 ident: b0165 article-title: Predicting tanker freight rates using parsimonious variables and a hybrid artificial neural network with an adaptive genetic algorithm publication-title: Maritime Economics & Logistics – reference: (arXiv:1611.01578). arXiv. https://doi.org/10.48550/arXiv.1611.01578. – year: 2015 ident: b0305 article-title: The 2014 plunge in import petroleum prices – reference: Datarobot. (n.d.-a). – reference: Datarobot. (n.d.-h). – volume: 14 start-page: 319 year: 2012 end-page: 333 ident: b0280 article-title: A wavelet and neural network model for the prediction of dry bulk shipping indices publication-title: Maritime Economics & Logistics – reference: Datarobot. (n.d.-b). – reference: Equinor. (2022). – reference: Zoph, B., & Le, Q. V. (2017). – volume: 29 start-page: 218 year: 1986 end-page: 221 ident: b0180 article-title: How not to lie with statistics: The correct way to summarize benchmark results publication-title: Communications of the ACM – reference: (pp. 664–680). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-26409-2_40. – volume: 37 start-page: 239 year: 2021 end-page: 244 ident: b0320 article-title: Forecasting oil tanker shipping market in crisis periods: Exponential smoothing model application publication-title: The Asian Journal of Shipping and Logistics – volume: 7 start-page: 65579 year: 2019 end-page: 65615 ident: b0390 article-title: Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges publication-title: IEEE Access – year: 2022 ident: b0115 article-title: September 20) – volume: 37 start-page: 76 year: 2023 end-page: 111 ident: b0300 article-title: Machine learning advances for time series forecasting publication-title: Journal of Economic Surveys – volume: 23 start-page: 310 year: 2021 end-page: 327 ident: b0330 article-title: Forecasting container freight rates for major trade routes: A comparison of artificial neural networks and conventional models publication-title: Maritime Economics & Logistics – reference: Khan, I. A., & Hussain, F. K. (2022). Regression Analysis Using Machine Learning Approaches for – reference: , – reference: . Datarobot Docs. Retrieved 20 April 2023, from – volume: 118 start-page: 376 year: 2018 end-page: 391 ident: b0190 article-title: Volatility forecasting across tanker freight rates: The role of oil price shocks publication-title: Transportation Research Part E: Logistics and Transportation Review – volume: 10 start-page: Article 5 year: 2022 ident: b0220 article-title: Forecasting Shanghai Container Freight Index: A Deep-Learning-Based Model Experiment publication-title: Journal of Marine Science and Engineering – reference: Uyar, K., Ilhan, Ü., & Ilhan, A. (2016). – volume: 54 start-page: 175:1 year: 2021 end-page: 175:36 ident: b0255 article-title: AutoML to date and beyond: challenges and opportunities publication-title: ACM Computing Surveys – reference: Datarobot. (n.d.-f). – reference: (Second edition). Springer. https://doi.org/10.1007/978-1-0716-1418-1. – volume: 40 start-page: 1540 year: 2021 end-page: 1565 ident: b0260 article-title: Time series forecasting methods for the Baltic dry index publication-title: Journal of Forecasting – volume: 18 year: 2023 ident: b0365 article-title: Automated machine learning: AI-driven decision making in business analytics publication-title: Intelligent Systems with Applications – reference: Panayides, P. M. (2018). – start-page: 785 year: 2016 end-page: 794 ident: b0040 article-title: XGBoost: A Scalable Tree Boosting System publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – reference: (9.0) [Computer software]. Datarobot Inc. https://app.eu.datarobot.com/new. – year: 2009 ident: b0380 article-title: Maritime economics (3rd ed) – volume: 74 start-page: 427 year: 1979 end-page: 431 ident: b0140 article-title: Distribution of the Estimators for Autoregressive Time Series with a Unit Root publication-title: Journal of the American Statistical Association – volume: 25 start-page: 17 year: 2021 end-page: 36 ident: b0015 article-title: A Baltic Dry Index Prediction using Deep Learning Models publication-title: Journal of Korea Trade (JKT) – year: 2021 ident: b0430 article-title: Machine Learning publication-title: Springer Singapore – volume: 26 start-page: 1673 year: 2018 end-page: 1684 ident: b0355 article-title: Forecasting the Baltic Dry Index by using an artificial neural network approach publication-title: Turkish Journal of Electrical Engineering and Computer Sciences – reference: Time Series Forecasting. In M.-R. Amini, S. Canu, A. Fischer, T. Guns, P. Kralj Novak, & G. Tsoumakas (Eds.), – volume: 27 start-page: 264 year: 1978 end-page: 279 ident: b0030 article-title: The Holt-Winters Forecasting Procedure publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics) – year: 2011 ident: b0150 article-title: August 7). Global financial crisis: Five key stages 2007–2011 [Newspaper] publication-title: The Guardian. – reference: Fearnley Securities. (2023). – volume: 4 start-page: 51 year: 2017 end-page: 62 ident: b0335 article-title: An overview of the supervised machine learning methods publication-title: HORIZONS.B – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: b0440 article-title: Regularization and Variable Selection Via the Elastic Net publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology – reference: Deng, D., Karl, F., Hutter, F., Bischl, B., & Lindauer, M. (2023). Efficient Automated Deep Learning for – reference: , 821–828. Procedia Computer Science. https://doi.org/10.1016/j.procs.2022.01.102. – year: 2022 ident: b0110 article-title: May 31) – volume: 30 start-page: 79 year: 2005 end-page: 82 ident: b0400 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Climate Research – reference: James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). – reference: Zhang, Y., Zame, W., & van der Schaar, M. (2020). – start-page: 137 year: 2008 end-page: 157 ident: b0195 article-title: Unsupervised Machine Learning publication-title: Bioconductor Case Studies – volume: 9 start-page: 511 year: 2013 end-page: 516 ident: b0290 article-title: Freight-Forward Agreement Time series Modelling Based on Artificial Neural Network Models. publication-title: Mechanical Engineering – reference: . Datarobot Model Documentation. Retrieved 25 April 2023, from – reference: Predicting Container Shipping Rates. – reference: [Database]. Shipping Intelligence Network. Retrieved 18 April 2023, from https://sin.clarksons.net/#!#Login. – reference: Datarobot. (n.d.-d). – volume: 2 start-page: 160 year: 2021 ident: b0360 article-title: Machine Learning: Algorithms, Real-World Applications and Research Directions publication-title: SN Computer Science – start-page: 205 year: 2020 end-page: 212 ident: b0035 article-title: Automated Machine Learning: The New Wave of Machine Learning publication-title: 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA) – reference: F. Hutter L. Kotthoff J. Vanschoren (Eds.) Automated Machine Learning: Methods 2019 Springer Nature Systems, Challenges 10.1007/978-3-030-05318-5. – reference: (Third Edition). CreateSpace Independent Publishing Platform. – reference: . https://fearnleysecurities.com/wp-content/uploads/2023/02/Fearnley-Securites-Market-Report-2023.pdf. – volume: 15 start-page: 405 year: 1999 end-page: 408 ident: b0205 article-title: On the asymmetry of the symmetric MAPE publication-title: International Journal of Forecasting – reference: . https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_59.pdf. – volume: 18 start-page: 82 year: 2019 end-page: 91 ident: b0045 article-title: A fuzzy neural network combined with technical indicators and its application to Baltic Dry Index forecasting publication-title: Journal of Marine Engineering & Technology – volume: 41 start-page: 2809 year: 2009 end-page: 2815 ident: b0375 article-title: Forecasting container transshipment in Germany publication-title: Applied Economics – volume: 16 start-page: 199 year: 2001 end-page: 231 ident: b0025 article-title: Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) publication-title: Statistical Science – start-page: 847 year: 2013 end-page: 855 ident: b0385 article-title: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms publication-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 54 start-page: 159 year: 1992 end-page: 178 ident: b0275 article-title: Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? publication-title: Journal of Econometrics – reference: Milutinovic, M., Schoenfeld, B., Martinez-Garcia, D., Ray, S., Shah, S., & Yan, D. (2020). On evaluation of automl systems. – volume: 21 start-page: 390 year: 2019 end-page: 414 ident: b0415 article-title: Artificial neural networks in freight rate forecasting publication-title: Maritime Economics & Logistics – volume: 11 start-page: 302 year: 2009 end-page: 325 ident: b0005 article-title: The role of supply vessels in offshore logistics publication-title: Maritime Economics & Logistics – reference: Clarkson Research Offshore Review and Outlook Market Outlook—September 2022 2022 – reference: (pp. 1–56). – volume: 212 year: 2021 ident: b0215 article-title: AutoML: A survey of the state-of-the-art publication-title: Knowledge-Based Systems – reference: , 642–647. Scopus. https://doi.org/10.1016/j.procs.2016.09.455. – reference: . – volume: 41 year: 2021 ident: b0370 article-title: Container freight rate forecasting with improved accuracy by integrating soft facts from practitioners publication-title: Research in Transportation Business & Management – year: 2022 ident: b0410 article-title: XGBoost Documentation—Xgboost 1.7.5 documentation publication-title: Dmlc XGBoost. – reference: DataRobot Inc. (2023). – volume: 1 start-page: 5 year: 1981 end-page: 83 ident: b0225 article-title: Ridge Regression — 1980: Advances, Algorithms, and Applications publication-title: American Journal of Mathematical and Management Sciences – start-page: 1 year: 2022 end-page: 19 ident: b0265 article-title: Quantitative modelling of shipping freight rates: Developments in the past 20 years publication-title: Maritime Policy & Management – reference: Cios, K. J., Swiniarski, R. W., Pedrycz, W., & Kurgan, L. A. (2007). Unsupervised Learning: Association Rules. In K. J. Cios, R. W. Swiniarski, W. Pedrycz, & L. A. Kurgan (Eds.), – reference: , 269–280. Scopus. https://doi.org/10.1007/978-3-030-99587-4_23. – volume: 26 start-page: 205 year: 2010 end-page: 223 ident: b0145 article-title: Bivariate Long Term Fuzzy Time Series Forecasting of Dry Cargo Freight Rates publication-title: The Asian Journal of Shipping and Logistics – volume: 22 start-page: 679 year: 2006 end-page: 688 ident: b0240 article-title: Another look at measures of forecast accuracy publication-title: International Journal of Forecasting – reference: Datarobot. (n.d.-c). – reference: Datarobot Docs. Retrieved 13 May 2023, from – volume: 111 start-page: 18 year: 2018 end-page: 39 ident: b0295 article-title: The impact of slow steaming on the carriers’ and shippers’ costs: The case of a global logistics network publication-title: Transportation Research Part E: Logistics and Transportation Review – reference: R.K. Larsen D.S. Becker Automated Machine Learning for Business (1st ed.). 2021 Oxford University Press 10.1093/oso/9780190941659.001.0001. – reference: (arXiv:2006.14099). arXiv. https://doi.org/10.48550/arXiv.2006.14099. – reference: World Health Organization. (n.d.). – reference: . World Health Organization. Retrieved 9 April 2023, from https://www.who.int/europe/emergencies/situations/covid-19. – reference: . – reference: Clarksons Research Offshore Review and Outlook OSV 2023 1 21. – year: 2015 ident: b0020 article-title: Time Series Analysis: Forecasting and Control – year: 2023 ident: b0120 article-title: June 27) – reference: Liu, M., Zhao, Y., Wang, J., Liu, C., & Li, G. (2021). – volume: 10 start-page: 105 year: 2019 end-page: 114 ident: b0250 article-title: Predicting a dry bulk freight index by deep learning with global vessel movement data publication-title: Scopus – volume: 3 year: 2022 ident: b0325 article-title: State-space TBATS model for container freight rate forecasting with improved accuracy publication-title: Maritime Transport Research – volume: 29 start-page: 5297 year: 2022 end-page: 5311 ident: b0010 article-title: Review of ML and AutoML solutions to forecast time-series data publication-title: Archives of Computational Methods in Engineering – ident: 10.1016/j.cie.2024.110153_b0285 doi: 10.1016/j.procs.2022.01.102 – year: 2009 ident: 10.1016/j.cie.2024.110153_b0380 – volume: 19 start-page: 538 issue: 3 year: 2017 ident: 10.1016/j.cie.2024.110153_b0165 article-title: Predicting tanker freight rates using parsimonious variables and a hybrid artificial neural network with an adaptive genetic algorithm publication-title: Maritime Economics & Logistics doi: 10.1057/mel.2016.1 – volume: 15 start-page: 405 issue: 4 year: 1999 ident: 10.1016/j.cie.2024.110153_b0205 article-title: On the asymmetry of the symmetric MAPE publication-title: International Journal of Forecasting doi: 10.1016/S0169-2070(99)00007-2 – volume: 26 start-page: 1673 issue: 3 year: 2018 ident: 10.1016/j.cie.2024.110153_b0355 article-title: Forecasting the Baltic Dry Index by using an artificial neural network approach publication-title: Turkish Journal of Electrical Engineering and Computer Sciences – volume: 41 year: 2021 ident: 10.1016/j.cie.2024.110153_b0370 article-title: Container freight rate forecasting with improved accuracy by integrating soft facts from practitioners publication-title: Research in Transportation Business & Management doi: 10.1016/j.rtbm.2021.100662 – year: 2015 ident: 10.1016/j.cie.2024.110153_b0020 – ident: 10.1016/j.cie.2024.110153_b0085 – ident: 10.1016/j.cie.2024.110153_b0100 – volume: 18 start-page: 82 issue: 2 year: 2019 ident: 10.1016/j.cie.2024.110153_b0045 article-title: A fuzzy neural network combined with technical indicators and its application to Baltic Dry Index forecasting publication-title: Journal of Marine Engineering & Technology doi: 10.1080/20464177.2018.1495886 – year: 2011 ident: 10.1016/j.cie.2024.110153_b0150 article-title: August 7). Global financial crisis: Five key stages 2007–2011 [Newspaper] publication-title: The Guardian. – ident: 10.1016/j.cie.2024.110153_b0425 – ident: 10.1016/j.cie.2024.110153_b0155 – ident: 10.1016/j.cie.2024.110153_b0270 doi: 10.1007/978-3-030-99587-4_23 – volume: 37 start-page: 76 issue: 1 year: 2023 ident: 10.1016/j.cie.2024.110153_b0300 article-title: Machine learning advances for time series forecasting publication-title: Journal of Economic Surveys doi: 10.1111/joes.12429 – volume: 37 start-page: 239 issue: 3 year: 2021 ident: 10.1016/j.cie.2024.110153_b0320 article-title: Forecasting oil tanker shipping market in crisis periods: Exponential smoothing model application publication-title: The Asian Journal of Shipping and Logistics doi: 10.1016/j.ajsl.2021.06.002 – volume: 7 start-page: 65579 year: 2019 ident: 10.1016/j.cie.2024.110153_b0390 article-title: Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916648 – ident: 10.1016/j.cie.2024.110153_b0245 doi: 10.1007/978-1-0716-1418-1_2 – ident: 10.1016/j.cie.2024.110153_b0075 – volume: 212 year: 2021 ident: 10.1016/j.cie.2024.110153_b0215 article-title: AutoML: A survey of the state-of-the-art publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106622 – start-page: 785 year: 2016 ident: 10.1016/j.cie.2024.110153_b0040 article-title: XGBoost: A Scalable Tree Boosting System – ident: 10.1016/j.cie.2024.110153_b0230 doi: 10.1007/978-3-030-05318-5 – volume: 27 start-page: 264 issue: 3 year: 1978 ident: 10.1016/j.cie.2024.110153_b0030 article-title: The Holt-Winters Forecasting Procedure publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics) – volume: 16 start-page: 199 issue: 3 year: 2001 ident: 10.1016/j.cie.2024.110153_b0025 article-title: Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) publication-title: Statistical Science doi: 10.1214/ss/1009213726 – ident: 10.1016/j.cie.2024.110153_b0055 – year: 2022 ident: 10.1016/j.cie.2024.110153_b0410 article-title: XGBoost Documentation—Xgboost 1.7.5 documentation publication-title: Dmlc XGBoost. – volume: 25 start-page: 17 issue: 4 year: 2021 ident: 10.1016/j.cie.2024.110153_b0015 article-title: A Baltic Dry Index Prediction using Deep Learning Models publication-title: Journal of Korea Trade (JKT) doi: 10.35611/jkt.2021.25.4.17 – ident: 10.1016/j.cie.2024.110153_b0170 – volume: 23 start-page: 310 issue: 2 year: 2021 ident: 10.1016/j.cie.2024.110153_b0330 article-title: Forecasting container freight rates for major trade routes: A comparison of artificial neural networks and conventional models publication-title: Maritime Economics & Logistics doi: 10.1057/s41278-020-00156-5 – volume: 1 start-page: 5 issue: 1 year: 1981 ident: 10.1016/j.cie.2024.110153_b0225 article-title: Ridge Regression — 1980: Advances, Algorithms, and Applications publication-title: American Journal of Mathematical and Management Sciences doi: 10.1080/01966324.1981.10737061 – volume: 21 start-page: 390 issue: 3 year: 2019 ident: 10.1016/j.cie.2024.110153_b0415 article-title: Artificial neural networks in freight rate forecasting publication-title: Maritime Economics & Logistics doi: 10.1057/s41278-019-00121-x – volume: 11 start-page: 302 issue: 3 year: 2009 ident: 10.1016/j.cie.2024.110153_b0005 article-title: The role of supply vessels in offshore logistics publication-title: Maritime Economics & Logistics doi: 10.1057/mel.2009.7 – ident: 10.1016/j.cie.2024.110153_b0065 – ident: 10.1016/j.cie.2024.110153_b0105 – volume: 118 start-page: 376 year: 2018 ident: 10.1016/j.cie.2024.110153_b0190 article-title: Volatility forecasting across tanker freight rates: The role of oil price shocks publication-title: Transportation Research Part E: Logistics and Transportation Review doi: 10.1016/j.tre.2018.08.012 – ident: 10.1016/j.cie.2024.110153_b0345 – volume: 30 start-page: 79 issue: 1 year: 2005 ident: 10.1016/j.cie.2024.110153_b0400 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Climate Research doi: 10.3354/cr030079 – ident: 10.1016/j.cie.2024.110153_b0405 – volume: 14 start-page: 319 issue: 3 year: 2012 ident: 10.1016/j.cie.2024.110153_b0280 article-title: A wavelet and neural network model for the prediction of dry bulk shipping indices publication-title: Maritime Economics & Logistics doi: 10.1057/mel.2012.10 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.cie.2024.110153_b0185 article-title: Greedy Function Approximation: A Gradient Boosting Machine publication-title: The Annals of Statistics doi: 10.1214/aos/1013203451 – volume: 2 start-page: 160 issue: 3 year: 2021 ident: 10.1016/j.cie.2024.110153_b0360 article-title: Machine Learning: Algorithms, Real-World Applications and Research Directions publication-title: SN Computer Science doi: 10.1007/s42979-021-00592-x – ident: 10.1016/j.cie.2024.110153_b0135 doi: 10.1007/978-3-031-26409-2_40 – volume: 10 start-page: 105 year: 2019 ident: 10.1016/j.cie.2024.110153_b0250 article-title: Predicting a dry bulk freight index by deep learning with global vessel movement data publication-title: Scopus – year: 2022 ident: 10.1016/j.cie.2024.110153_b0110 – volume: 29 start-page: 5297 issue: 7 year: 2022 ident: 10.1016/j.cie.2024.110153_b0010 article-title: Review of ML and AutoML solutions to forecast time-series data publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-022-09765-0 – volume: 3 year: 2022 ident: 10.1016/j.cie.2024.110153_b0325 article-title: State-space TBATS model for container freight rate forecasting with improved accuracy publication-title: Maritime Transport Research doi: 10.1016/j.martra.2022.100057 – volume: 74 start-page: 427 issue: 366a year: 1979 ident: 10.1016/j.cie.2024.110153_b0140 article-title: Distribution of the Estimators for Autoregressive Time Series with a Unit Root publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1979.10482531 – year: 2022 ident: 10.1016/j.cie.2024.110153_b0115 – ident: 10.1016/j.cie.2024.110153_b0060 – volume: 41 start-page: 2809 issue: 22 year: 2009 ident: 10.1016/j.cie.2024.110153_b0375 article-title: Forecasting container transshipment in Germany publication-title: Applied Economics doi: 10.1080/00036840802260932 – start-page: 847 year: 2013 ident: 10.1016/j.cie.2024.110153_b0385 article-title: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms – volume: 22 start-page: 679 issue: 4 year: 2006 ident: 10.1016/j.cie.2024.110153_b0240 article-title: Another look at measures of forecast accuracy publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2006.03.001 – ident: 10.1016/j.cie.2024.110153_b0050 doi: 10.1007/978-0-387-36795-8_10 – ident: 10.1016/j.cie.2024.110153_b0125 – volume: 29 start-page: 218 issue: 3 year: 1986 ident: 10.1016/j.cie.2024.110153_b0180 article-title: How not to lie with statistics: The correct way to summarize benchmark results publication-title: Communications of the ACM doi: 10.1145/5666.5673 – start-page: 113 year: 2019 ident: 10.1016/j.cie.2024.110153_b0175 article-title: Auto-sklearn: Efficient and Robust Automated Machine Learning – year: 2015 ident: 10.1016/j.cie.2024.110153_b0305 – year: 2021 ident: 10.1016/j.cie.2024.110153_b0430 article-title: Machine Learning publication-title: Springer Singapore – ident: 10.1016/j.cie.2024.110153_b0395 doi: 10.1016/j.procs.2016.09.455 – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 10.1016/j.cie.2024.110153_b0440 article-title: Regularization and Variable Selection Via the Elastic Net publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology doi: 10.1111/j.1467-9868.2005.00503.x – volume: 40 start-page: 1540 issue: 8 year: 2021 ident: 10.1016/j.cie.2024.110153_b0260 article-title: Time series forecasting methods for the Baltic dry index publication-title: Journal of Forecasting doi: 10.1002/for.2780 – start-page: 205 year: 2020 ident: 10.1016/j.cie.2024.110153_b0035 article-title: Automated Machine Learning: The New Wave of Machine Learning – volume: 12 start-page: e1475 issue: 6 year: 2022 ident: 10.1016/j.cie.2024.110153_b0310 article-title: Review of automated time series forecasting pipelines publication-title: WIREs Data Mining and Knowledge Discovery doi: 10.1002/widm.1475 – volume: 54 start-page: 159 issue: 1 year: 1992 ident: 10.1016/j.cie.2024.110153_b0275 article-title: Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? publication-title: Journal of Econometrics doi: 10.1016/0304-4076(92)90104-Y – year: 2023 ident: 10.1016/j.cie.2024.110153_b0120 – ident: 10.1016/j.cie.2024.110153_b0080 – start-page: 137 year: 2008 ident: 10.1016/j.cie.2024.110153_b0195 article-title: Unsupervised Machine Learning – volume: 54 start-page: 175:1 issue: 8 year: 2021 ident: 10.1016/j.cie.2024.110153_b0255 article-title: AutoML to date and beyond: challenges and opportunities publication-title: ACM Computing Surveys – volume: 26 start-page: 205 issue: 2 year: 2010 ident: 10.1016/j.cie.2024.110153_b0145 article-title: Bivariate Long Term Fuzzy Time Series Forecasting of Dry Cargo Freight Rates publication-title: The Asian Journal of Shipping and Logistics doi: 10.1016/S2092-5212(10)80002-1 – ident: 10.1016/j.cie.2024.110153_b0435 – volume: 111 start-page: 18 year: 2018 ident: 10.1016/j.cie.2024.110153_b0295 article-title: The impact of slow steaming on the carriers’ and shippers’ costs: The case of a global logistics network publication-title: Transportation Research Part E: Logistics and Transportation Review doi: 10.1016/j.tre.2017.12.008 – ident: 10.1016/j.cie.2024.110153_b0350 doi: 10.1093/oso/9780190941659.003.0001 – ident: 10.1016/j.cie.2024.110153_b0095 – start-page: 1 year: 2022 ident: 10.1016/j.cie.2024.110153_b0265 article-title: Quantitative modelling of shipping freight rates: Developments in the past 20 years publication-title: Maritime Policy & Management doi: 10.1080/03088839.2022.2158382 – ident: 10.1016/j.cie.2024.110153_b0070 – volume: 9 start-page: 511 issue: 59 year: 2013 ident: 10.1016/j.cie.2024.110153_b0290 article-title: Freight-Forward Agreement Time series Modelling Based on Artificial Neural Network Models. Strojniški Vestnik – Journal of publication-title: Mechanical Engineering doi: 10.5545/sv-jme.2013.947 – volume: 18 year: 2023 ident: 10.1016/j.cie.2024.110153_b0365 article-title: Automated machine learning: AI-driven decision making in business analytics publication-title: Intelligent Systems with Applications doi: 10.1016/j.iswa.2023.200188 – year: 2009 ident: 10.1016/j.cie.2024.110153_b0210 – ident: 10.1016/j.cie.2024.110153_b0315 – volume: 10 start-page: Article 5 issue: 5 year: 2022 ident: 10.1016/j.cie.2024.110153_b0220 article-title: Forecasting Shanghai Container Freight Index: A Deep-Learning-Based Model Experiment publication-title: Journal of Marine Science and Engineering doi: 10.3390/jmse10050593 – volume: 361 start-page: 499 year: 2019 ident: 10.1016/j.cie.2024.110153_b0420 article-title: A novel hybrid approach to Baltic Dry Index forecasting based on a combined dynamic fluctuation network and artificial intelligence method publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2019.05.043 – start-page: 209 year: 2020 ident: 10.1016/j.cie.2024.110153_b0160 article-title: AutoML @ NeurIPS 2018 Challenge: Design and Results – volume: 4 start-page: 51 year: 2017 ident: 10.1016/j.cie.2024.110153_b0335 article-title: An overview of the supervised machine learning methods publication-title: HORIZONS.B doi: 10.20544/HORIZONS.B.04.1.17.P05 |
SSID | ssj0004591 |
Score | 2.4508846 |
Snippet | •Cloud-AI based prediction model for PSV freight rates.•Over 40 explanatory variables are employed model building.•Historical PSV rates are key in forecasting... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110153 |
SubjectTerms | Cloud-based AI Feature engineering Offshore oil and gas Platform Supply Vessel Shipping freight rates |
Title | Automated machine learning driven model for predicting platform supply vessel freight market |
URI | https://dx.doi.org/10.1016/j.cie.2024.110153 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL3rwx1ScP0YOnoS6Jk279jiGYyruooMdhJKkqUzmVrpO8OLf7nttKhPUg8eGl1Be0pcvfV_eR8iFLwHzu8Z1uI6MIwBxO1Jy4wQw2YlKU9eUOmT3o2A4FrcTf9Ig_fouDNIqbeyvYnoZrW1Lx3qzk02nnQeIvRV-EFXCEW-wiy6u8qsPtlYxvFLNA2MHrevMZsnxgmHhiMgFkuGZ7_28N63tN4M9smOBIu1V77JPGmbeJLsWNFL7SS6bZHutouABeeqtigWAUDB5LWmShlpdiGea5BjZaKl9QwGr0izHLA3ynmk2kwXCV7pElc93-oYlxcEqL_-cwlh4N_qQjAfXj_2hYwUUHO0Jt3AipVjCojDxXeUmTBseYUF3pgxjMuTSMylX3SANjYy40abLUhYoQHQC3JEkyjsiG_PF3BwTGklfCyOilCchZuRlCCNKDSc4zl3NZIu4tetibauLo8jFLK5pZC_QbmL0dlx5u0Uuv7pkVWmNv4xFPR_xt_URQ-j_vdvJ_7qdki18qoiNZ2SjyFfmHMBHodrl6mqTzd7N3XD0CWwp2L0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOPAaI8cyBE1K1Jku79jhNTBt7XNikHZCqpE3R0NiqrUPi3-O0KRoScOCa2lblpM6X-osNcOcIxPy2si0W-sriiLgtIZiyXJzsSMaxrbI-ZMOR253wx6kzLUG7uAujaZUm9ucxPYvWZqRuvFlPZrP6E8beHD_wPOG4AxVdncopQ6XV63dHW0XD88Z5KG9phSK5mdG80DKeEhnXfHjqNH7enra2nM4RHBisSFr56xxDSS2qcGhwIzFf5boK-1tFBU_gubVJl4hDUeQtY0oqYlpDvJBopYMbydrfEISrJFnpRI2mPpNkLlKNYMlaN_r8IO-6qjhKrbKfp2hLX48-hUnnYdzuWqaHghU2uJ1avpQ0or4XOba0Ixoq5uua7lQqSoXHREPFTDbd2FPCZypUTRpTVyKo4-iOKJKNMygvlgt1DsQXTsgV92MWeTopLzy0KEI8xDFmh1TUwC5cF4SmwLjuczEPCibZK46rQHs7yL1dg_svlSSvrvGXMC_mI_i2RAKM_r-rXfxP7RZ2u-PhIBj0Rv1L2NNPcp7jFZTT1UZdIxZJ5Y1Za5_nP9tu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+machine+learning+driven+model+for+predicting+platform+supply+vessel+freight+market&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Kjeldsberg%2C+Fabian&rft.au=Haque+Munim%2C+Ziaul&rft.date=2024-05-01&rft.issn=0360-8352&rft.volume=191&rft.spage=110153&rft_id=info:doi/10.1016%2Fj.cie.2024.110153&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2024_110153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |