On the Energy Budget of Starquake-induced Repeating Fast Radio Bursts
With a growing sample of fast radio bursts (FRBs), we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism. During a starquake, the energy can be released in any form through strain, magnetic, rotational, and gravitational energies....
Saved in:
Published in | Research in astronomy and astrophysics Vol. 24; no. 10; pp. 105012 - 188 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
National Astromonical Observatories, CAS and IOP Publishing
01.10.2024
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 1674-4527 2397-6209 |
DOI | 10.1088/1674-4527/ad74db |
Cover
Loading…
Abstract | With a growing sample of fast radio bursts (FRBs), we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism. During a starquake, the energy can be released in any form through strain, magnetic, rotational, and gravitational energies. The strain energy can be converted from three other kinds of energy during starquakes. The following findings are revealed: (1) The crust can store free magnetic energy of ∼10
46
erg by existing toroidal fields, sustaining 10
6
bursts with frequent starquakes occurring due to crustal instability. (2) The strain energy develops as a rigid object spins down, which can be released during a global starquake accompanied by a glitch. However, it takes a long time to accumulate enough strain energy via spindown. (3) The rotational energy of a magnetar with
P
≲ 0.1 s can match the energy and luminosity budget of FRBs. (4) The budget of the total gravitational energy is high, but the mechanism and efficiency of converting this energy to radiation deserve further exploration. |
---|---|
AbstractList | With a growing sample of fast radio bursts (FRBs), we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism. During a starquake, the energy can be released in any form through strain, magnetic, rotational, and gravitational energies. The strain energy can be converted from three other kinds of energy during starquakes. The following findings are revealed: (1) The crust can store free magnetic energy of ∼10
46
erg by existing toroidal fields, sustaining 10
6
bursts with frequent starquakes occurring due to crustal instability. (2) The strain energy develops as a rigid object spins down, which can be released during a global starquake accompanied by a glitch. However, it takes a long time to accumulate enough strain energy via spindown. (3) The rotational energy of a magnetar with
P
≲ 0.1 s can match the energy and luminosity budget of FRBs. (4) The budget of the total gravitational energy is high, but the mechanism and efficiency of converting this energy to radiation deserve further exploration. With a growing sample of fast radio bursts(FRBs),we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism.During a starquake,the energy can be released in any form through strain,magnetic,rotational,and gravitational energies.The strain energy can be converted from three other kinds of energy during starquakes.The following findings are revealed:(1)The crust can store free magnetic energy of ~1046 erg by existing toroidal fields,sustaining 106 bursts with frequent starquakes occurring due to crustal instability.(2)The strain energy develops as a rigid object spins down,which can be released during a global starquake accompanied by a glitch.However,it takes a long time to accumulate enough strain energy via spindown.(3)The rotational energy of a magnetar with P(≤)0.1 s can match the energy and luminosity budget of FRBs.(4)The budget of the total gravitational energy is high,but the mechanism and efficiency of converting this energy to radiation deserve further exploration. With a growing sample of fast radio bursts (FRBs), we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism. During a starquake, the energy can be released in any form through strain, magnetic, rotational, and gravitational energies. The strain energy can be converted from three other kinds of energy during starquakes. The following findings are revealed: (1) The crust can store free magnetic energy of ∼1046 erg by existing toroidal fields, sustaining 106 bursts with frequent starquakes occurring due to crustal instability. (2) The strain energy develops as a rigid object spins down, which can be released during a global starquake accompanied by a glitch. However, it takes a long time to accumulate enough strain energy via spindown. (3) The rotational energy of a magnetar with P ≲ 0.1 s can match the energy and luminosity budget of FRBs. (4) The budget of the total gravitational energy is high, but the mechanism and efficiency of converting this energy to radiation deserve further exploration. |
Author | Xu, Renxin Zhou, Enping Zhang, Bing Gao, He Liu, Jifeng Zhang, Chen Niu, Jiarui Zhou, Zixuan Wang, Wei-Yang Liu, Xiaohui |
Author_xml | – sequence: 1 givenname: Wei-Yang orcidid: 0000-0001-9036-8543 surname: Wang fullname: Wang, Wei-Yang organization: Peking University State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing 100871, China – sequence: 2 givenname: Chen surname: Zhang fullname: Zhang, Chen organization: The Hong Kong University of Science and Technology The HKUST Jockey Club Institute for Advanced Study, Hong Kong, China – sequence: 3 givenname: Enping surname: Zhou fullname: Zhou, Enping organization: Huazhong University of Science and Technology School of Physics, Wuhan 430074, China – sequence: 4 givenname: Xiaohui surname: Liu fullname: Liu, Xiaohui organization: Chinese Academy of Sciences National Astronomical Observatories, Beijing 100101, China – sequence: 5 givenname: Jiarui orcidid: 0000-0001-8065-4191 surname: Niu fullname: Niu, Jiarui organization: Chinese Academy of Sciences National Astronomical Observatories, Beijing 100101, China – sequence: 6 givenname: Zixuan surname: Zhou fullname: Zhou, Zixuan organization: University of Science and Technology School of Mathematics and Physics, Beijing 100083, China – sequence: 7 givenname: He surname: Gao fullname: Gao, He organization: Beijing Normal University Department of Astronomy, Beijing 100875, China – sequence: 8 givenname: Jifeng surname: Liu fullname: Liu, Jifeng organization: Beijing Normal University Institute for Frontiers in Astronomy and Astrophysics, Beijing 102206, China – sequence: 9 givenname: Renxin surname: Xu fullname: Xu, Renxin organization: Peking University State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing 100871, China – sequence: 10 givenname: Bing surname: Zhang fullname: Zhang, Bing organization: University of Nevada Department of Physics and Astronomy, Las Vegas, NV 89154, USA |
BookMark | eNp9kEFLwzAUgINMcJvePRY8eLEuSdukPerYVBgMpp7DW_NaO2e6JSlz_96OigNBTwnk-94L34D0TG2QkEtGbxlN0xETMg7jhMsRaBnr5Qnp8yiToeA065H-z_MZGTi3olQkieB9MpmbwL9hMDFoy31w3-gSfVAXwbMHu23gHcPK6CZHHSxwg-ArUwZTcD5YgK7qVrDOu3NyWsDa4cX3OSSv08nL-DGczR-exnezMI9i6sMsQsjTDFKWFUxogExLmTEKVKRFe6dFjilKrkHzNJGw5AhUaoySHIHxLBqS627uDkwBplSrurGm3ai8360_l5zymFHKZEtedeTG1tsGnT-iEWMJFTJhoqVoR-W2ds5ioTa2-gC7V4yqQ1Z16KYO3VSXtVXELyWvfJulNt5Ctf5PvOnEqt4cP_Mn_gXeHov4 |
CODEN | RAAEBW |
CitedBy_id | crossref_primary_10_1103_PhysRevD_111_063026 |
Cites_doi | 10.1088/1674-4527/ad1430 10.1093/mnras/stac683 10.1093/mnras/staa1237 10.1093/mnras/stu1370 10.1093/mnras/stac2596 10.1093/mnras/staa2450 10.1086/150119 10.3847/2041-8213/ab83fb 10.1111/j.1745-3933.2006.00248.x 10.1088/1674-4527/17/9/92 10.3847/1538-4357/aabadd 10.3847/1538-4357/acd3ec 10.1088/1674-4527/ac98f6 10.3847/1538-4357/aaa025 10.3847/1538-4357/ac6587 10.1016/j.astropartphys.2004.05.007 10.3847/0004-637X/829/1/27 10.3847/1538-4357/ac4bc7 10.1007/BF00645528 10.3847/1538-4357/aae685 10.3847/1538-4357/aadf31 10.1086/507518 10.1038/nature25149 10.3847/2041-8213/abac57 10.1103/PhysRevLett.132.035201 10.1038/s41586-020-2827-2 10.1086/312497 10.1086/312339 10.1103/PhysRevD.108.063002 10.3847/2041-8213/aba2cf 10.1093/mnras/stz700 10.3847/1538-4357/ac4bdf 10.1051/0004-6361/202141903 10.1088/1674-4527/ac98f8 10.1038/s41586-020-2872-x 10.1093/mnras/185.2.297 10.1093/mnras/stac1960 10.1038/s41586-021-03878-5 10.1086/172580 10.1088/1674-4527/20/4/56 10.1088/0004-637X/703/1/1044 10.1088/0004-637X/799/2/152 10.1093/mnras/stae965 10.1088/1674-4527/ac995d 10.1093/mnras/stad2192 10.1103/PhysRevD.108.123031 10.1007/BF00653898 10.1093/mnras/275.2.255 10.3847/1538-4357/ac3979 10.1038/s41586-020-2398-2 10.3847/1538-4357/ad5d5b 10.3847/1538-4357/ab2240 10.1038/s41586-022-04755-5 10.1051/0004-6361/202348670 10.3847/1538-4357/ac4097 10.1086/340586 10.1103/PhysRevD.89.103009 10.1038/s41586-020-2863-y 10.3847/1538-4357/aced0b 10.1093/mnras/stv432 10.3847/1538-4357/ab83eb 10.3847/2041-8213/abeaa6 10.1093/mnras/stad2532 10.1038/s41550-021-01302-6 10.1038/nature17168 10.3847/1538-4357/acf9a3 10.1038/s41586-022-05071-8 10.1016/0370-1573(88)90042-7 10.3847/1538-4357/ad4294 10.1111/j.1365-2966.2007.12575.x 10.1103/RevModPhys.95.035005 10.1086/167754 10.1016/j.xinn.2021.100152 10.1038/218731a0 10.3847/1538-4357/aabaee 10.1093/mnras/stx665 10.3847/1538-4357/ab3796 10.1111/j.1365-2966.2005.08933.x 10.3847/1538-4357/ac7529 10.1093/mnras/staa704 10.1126/sciadv.adf6198 10.3847/2041-8213/acd5d2 10.1093/mnras/staa774 10.3847/2041-8213/abdec0 10.1093/mnras/stad1072 10.1038/s41550-022-01865-y 10.3847/2041-8213/ac13a0 10.3847/2041-8213/abc6a3 10.3847/2041-8213/ab1aab 10.3847/2041-8213/ac1921 10.1086/589435 10.1093/mnras/stz2052 10.1093/mnras/sty2364 10.1093/mnrasl/slae031 10.3847/1538-4357/aa633d 10.1038/s41550-020-01265-0 10.1093/mnrasl/slab099 10.1016/0003-4916(71)90084-4 10.1086/324381 |
ContentType | Journal Article |
Copyright | National Astronomical Observatories, CAS and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: National Astronomical Observatories, CAS and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-4527/ad74db |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 2397-6209 |
EndPage | 188 |
ExternalDocumentID | ttwlxb202410017 10_1088_1674_4527_ad74db raaad74db |
GroupedDBID | -SA -S~ 188 4.4 5B3 5VR 5VS 7.M AAGCD AAJIO AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ATQHT CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CW9 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT KWQ N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K W28 ~02 5XA 5XB AAYXX ADEQX CITATION Q-- 7TG 8FD AEINN H8D KL. L7M 02O 1WK 2B. 4A8 8RM 92E 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD JCGBZ M45 NT- NT. PSX Q02 UZ4 |
ID | FETCH-LOGICAL-c340t-93eac89a819f16daa9d77910a068f9d70fce8e72dad2857ab2ea07de35cea1293 |
IEDL.DBID | IOP |
ISSN | 1674-4527 |
IngestDate | Thu May 29 04:11:07 EDT 2025 Wed Aug 13 09:45:45 EDT 2025 Tue Jul 01 04:00:18 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Tue Oct 15 22:51:27 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | neutron-radiation mechanisms stars magnetars-stars non-thermal |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-93eac89a819f16daa9d77910a068f9d70fce8e72dad2857ab2ea07de35cea1293 |
Notes | RAA-2024-0151.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9036-8543 0000-0001-8065-4191 |
PQID | 3115067516 |
PQPubID | 4562443 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3115067516 iop_journals_10_1088_1674_4527_ad74db wanfang_journals_ttwlxb202410017 crossref_citationtrail_10_1088_1674_4527_ad74db crossref_primary_10_1088_1674_4527_ad74db |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Research in astronomy and astrophysics |
PublicationTitleAbbrev | RAA |
PublicationTitleAlternate | Res. Astron. Astrophys |
PublicationTitle_FL | Research in Astronomy and Astrophysics |
PublicationYear | 2024 |
Publisher | National Astromonical Observatories, CAS and IOP Publishing IOP Publishing |
Publisher_xml | – name: National Astromonical Observatories, CAS and IOP Publishing – name: IOP Publishing |
References | Kumar (raaad74dbbib35) 2017; 468 Dai (raaad74dbbib16) 2016; 829 Chen (raaad74dbbib10) 2022 Chen (raaad74dbbib11) 2024; 24 CHIME/FRB Collaboration (raaad74dbbib12) 2020a; 582 Li (raaad74dbbib39) 2021; 5 Katz (raaad74dbbib31) 2014; 89 Piro (raaad74dbbib62) 2021; 656 Wang (raaad74dbbib84) 2022; 927 Suvorov (raaad74dbbib71) 2019; 488 Yuan (raaad74dbbib91) 2017; 17 Lu (raaad74dbbib46) 2020; 498 CHIME/FRB Collaboration (raaad74dbbib13) 2020b; 587 Iwamoto (raaad74dbbib28) 2024; 132 Beloborodov (raaad74dbbib4) 2020; 896 Li (raaad74dbbib42) 2022; 517 Li (raaad74dbbib40) 2021; 598 Du (raaad74dbbib17) 2024; 531 Wadiasingh (raaad74dbbib79) 2019; 879 Shen (raaad74dbbib68) 2023; 951 Zhang (raaad74dbbib99) 2023; 955 Luo (raaad74dbbib49) 2020a; 494 Younes (raaad74dbbib90) 2023; 7 Xu (raaad74dbbib88) 2006; 373 Thompson (raaad74dbbib75) 2002; 574 Jiang (raaad74dbbib30) 2022; 22 Lanman (raaad74dbbib38) 2022; 927 Spitler (raaad74dbbib70) 2016; 531 Qu (raaad74dbbib64) 2024; 972 Tsygan (raaad74dbbib78) 1975; 44 Wang (raaad74dbbib80) 2023; 949 Kremer (raaad74dbbib33) 2021; 917 Lu (raaad74dbbib47) 2019; 883 Kumar (raaad74dbbib36) 2022; 512 Margalit (raaad74dbbib53) 2020; 899 Zhang (raaad74dbbib96) 2023b; 108 Michilli (raaad74dbbib57) 2018; 553 Wang (raaad74dbbib81) 2018; 852 Yang (raaad74dbbib89) 2018; 868 Beloborodov (raaad74dbbib3) 2009; 703 Thompson (raaad74dbbib74) 1995; 275 Zhou (raaad74dbbib100) 2004; 22 Tsuzuki (raaad74dbbib77) 2024; 530 Spitkovsky (raaad74dbbib69) 2006; 648 Totani (raaad74dbbib76) 2023; 526 Zhang (raaad74dbbib93) 2022; 925 Geng (raaad74dbbib20) 2021; 2 Xu (raaad74dbbib87) 2001; 561 Wang (raaad74dbbib83) 2024; 685 Qu (raaad74dbbib63) 2023; 522 Bhardwaj (raaad74dbbib5) 2021; 910 Zhang (raaad74dbbib95) 2023a; 108 Hilmarsson (raaad74dbbib25) 2021; 908 Bombaci (raaad74dbbib8) 2000; 530 Wang (raaad74dbbib82) 2019; 876 Fabian (raaad74dbbib19) 1976; 42 Lander (raaad74dbbib37) 2015; 449 Dai (raaad74dbbib15) 2022 Niu (raaad74dbbib59) 2022; 606 Bejger (raaad74dbbib2) 2005; 359 Ioka (raaad74dbbib26) 2020; 904 Xu (raaad74dbbib86) 2022; 609 Zhang (raaad74dbbib98) 2018; 866 Luo (raaad74dbbib50) 2020b; 586 Metzger (raaad74dbbib55) 2017; 841 Zhou (raaad74dbbib102) 2014; 443 Yuan (raaad74dbbib92) 2022; 933 Zhou (raaad74dbbib101) 2022; 22 Lin (raaad74dbbib44) 2015; 799 Hewitt (raaad74dbbib24) 2022; 515 Bochenek (raaad74dbbib7) 2020; 587 Gold (raaad74dbbib21) 1968; 218 Mereghetti (raaad74dbbib54) 2020; 898 Wilson (raaad74dbbib85) 1978; 185 Thomas (raaad74dbbib72) 2022; 54 Ioka (raaad74dbbib27) 2020; 893 Lyubarsky (raaad74dbbib51) 2008; 682 Goldreich (raaad74dbbib22) 1969; 157 Ridnaia (raaad74dbbib66) 2021; 5 Liu (raaad74dbbib45) 2023; 958 Zhu (raaad74dbbib103) 2023; 9 Majid (raaad74dbbib52) 2021; 919 Cooper (raaad74dbbib14) 2021; 508 Sharma (raaad74dbbib67) 2023; 524 Thompson (raaad74dbbib73) 1993; 408 Zhang (raaad74dbbib97) 2018; 858 Zhang (raaad74dbbib94) 2023; 95 Baym (raaad74dbbib1) 1971; 66 Metzger (raaad74dbbib56) 2019; 485 Luo (raaad74dbbib48) 2018; 481 Li (raaad74dbbib41) 2024; 969 Muslimov (raaad74dbbib58) 1986; 120 Harding (raaad74dbbib23) 1999; 525 Li (raaad74dbbib43) 2022; 931 Khangulyan (raaad74dbbib32) 2022; 927 Peng (raaad74dbbib61) 2008; 384 Niu (raaad74dbbib60) 2022; 22 Cao (raaad74dbbib9) 2018; 858 Jiang (raaad74dbbib29) 2020; 20 Rajwade (raaad74dbbib65) 2020; 495 Kumar (raaad74dbbib34) 2020; 494 Blaes (raaad74dbbib6) 1989; 343 Epstein (raaad74dbbib18) 1988; 163 |
References_xml | – volume: 24 start-page: 025005 year: 2024 ident: raaad74dbbib11 publication-title: RAA doi: 10.1088/1674-4527/ad1430 – year: 2022 ident: raaad74dbbib15 – volume: 512 start-page: 3400 year: 2022 ident: raaad74dbbib36 publication-title: MNRAS doi: 10.1093/mnras/stac683 – volume: 495 start-page: 3551 year: 2020 ident: raaad74dbbib65 publication-title: MNRAS doi: 10.1093/mnras/staa1237 – volume: 443 start-page: 2705 year: 2014 ident: raaad74dbbib102 publication-title: MNRAS doi: 10.1093/mnras/stu1370 – volume: 517 start-page: 4612 year: 2022 ident: raaad74dbbib42 publication-title: MNRAS doi: 10.1093/mnras/stac2596 – volume: 498 start-page: 1397 year: 2020 ident: raaad74dbbib46 publication-title: MNRAS doi: 10.1093/mnras/staa2450 – volume: 157 start-page: 869 year: 1969 ident: raaad74dbbib22 publication-title: ApJ doi: 10.1086/150119 – volume: 893 start-page: L26 year: 2020 ident: raaad74dbbib27 publication-title: ApJL doi: 10.3847/2041-8213/ab83fb – volume: 373 start-page: L85 year: 2006 ident: raaad74dbbib88 publication-title: MNRAS doi: 10.1111/j.1745-3933.2006.00248.x – volume: 17 start-page: 092 year: 2017 ident: raaad74dbbib91 publication-title: RAA doi: 10.1088/1674-4527/17/9/92 – volume: 858 start-page: 89 year: 2018 ident: raaad74dbbib9 publication-title: ApJ doi: 10.3847/1538-4357/aabadd – volume: 951 start-page: 3 year: 2023 ident: raaad74dbbib68 publication-title: ApJ doi: 10.3847/1538-4357/acd3ec – volume: 22 start-page: 124003 year: 2022 ident: raaad74dbbib30 publication-title: RAA doi: 10.1088/1674-4527/ac98f6 – volume: 852 start-page: 140 year: 2018 ident: raaad74dbbib81 publication-title: ApJ doi: 10.3847/1538-4357/aaa025 – volume: 931 start-page: 56 year: 2022 ident: raaad74dbbib43 publication-title: ApJ doi: 10.3847/1538-4357/ac6587 – volume: 22 start-page: 73 year: 2004 ident: raaad74dbbib100 publication-title: APh doi: 10.1016/j.astropartphys.2004.05.007 – volume: 829 start-page: 27 year: 2016 ident: raaad74dbbib16 publication-title: ApJ doi: 10.3847/0004-637X/829/1/27 – volume: 927 start-page: 59 year: 2022 ident: raaad74dbbib38 publication-title: ApJ doi: 10.3847/1538-4357/ac4bc7 – volume: 54 start-page: 226.01 year: 2022 ident: raaad74dbbib72 publication-title: AAS Meeting Abstracts – volume: 42 start-page: 77 year: 1976 ident: raaad74dbbib19 publication-title: Ap&SS doi: 10.1007/BF00645528 – volume: 868 start-page: 31 year: 2018 ident: raaad74dbbib89 publication-title: ApJ doi: 10.3847/1538-4357/aae685 – volume: 866 start-page: 149 year: 2018 ident: raaad74dbbib98 publication-title: ApJ doi: 10.3847/1538-4357/aadf31 – volume: 648 start-page: L51 year: 2006 ident: raaad74dbbib69 publication-title: ApJL doi: 10.1086/507518 – volume: 553 start-page: 182 year: 2018 ident: raaad74dbbib57 publication-title: Natur doi: 10.1038/nature25149 – volume: 899 start-page: L27 year: 2020 ident: raaad74dbbib53 publication-title: ApJL doi: 10.3847/2041-8213/abac57 – volume: 132 start-page: 035201 year: 2024 ident: raaad74dbbib28 publication-title: PhRvL doi: 10.1103/PhysRevLett.132.035201 – volume: 586 start-page: 693 year: 2020b ident: raaad74dbbib50 publication-title: Natur doi: 10.1038/s41586-020-2827-2 – volume: 530 start-page: L69 year: 2000 ident: raaad74dbbib8 publication-title: ApJL doi: 10.1086/312497 – volume: 525 start-page: L125 year: 1999 ident: raaad74dbbib23 publication-title: ApJL doi: 10.1086/312339 – volume: 108 start-page: 063002 year: 2023b ident: raaad74dbbib96 publication-title: PhRvD doi: 10.1103/PhysRevD.108.063002 – volume: 898 start-page: L29 year: 2020 ident: raaad74dbbib54 publication-title: ApJL doi: 10.3847/2041-8213/aba2cf – volume: 485 start-page: 4091 year: 2019 ident: raaad74dbbib56 publication-title: MNRAS doi: 10.1093/mnras/stz700 – volume: 927 start-page: 2 year: 2022 ident: raaad74dbbib32 publication-title: ApJ doi: 10.3847/1538-4357/ac4bdf – volume: 656 start-page: L15 year: 2021 ident: raaad74dbbib62 publication-title: A&A doi: 10.1051/0004-6361/202141903 – volume: 22 start-page: 124001 year: 2022 ident: raaad74dbbib101 publication-title: RAA doi: 10.1088/1674-4527/ac98f8 – volume: 587 start-page: 59 year: 2020 ident: raaad74dbbib7 publication-title: Natur doi: 10.1038/s41586-020-2872-x – volume: 185 start-page: 297 year: 1978 ident: raaad74dbbib85 publication-title: MNRAS doi: 10.1093/mnras/185.2.297 – volume: 515 start-page: 3577 year: 2022 ident: raaad74dbbib24 publication-title: MNRAS doi: 10.1093/mnras/stac1960 – volume: 598 start-page: 267 year: 2021 ident: raaad74dbbib40 publication-title: Natur doi: 10.1038/s41586-021-03878-5 – volume: 408 start-page: 194 year: 1993 ident: raaad74dbbib73 publication-title: ApJ doi: 10.1086/172580 – volume: 20 start-page: 056 year: 2020 ident: raaad74dbbib29 publication-title: RAA doi: 10.1088/1674-4527/20/4/56 – volume: 703 start-page: 1044 year: 2009 ident: raaad74dbbib3 publication-title: ApJ doi: 10.1088/0004-637X/703/1/1044 – volume: 799 start-page: 152 year: 2015 ident: raaad74dbbib44 publication-title: ApJ doi: 10.1088/0004-637X/799/2/152 – volume: 530 start-page: 1885 year: 2024 ident: raaad74dbbib77 publication-title: MNRAS doi: 10.1093/mnras/stae965 – volume: 22 start-page: 124004 year: 2022 ident: raaad74dbbib60 publication-title: RAA doi: 10.1088/1674-4527/ac995d – volume: 524 start-page: 6024 year: 2023 ident: raaad74dbbib67 publication-title: MNRAS doi: 10.1093/mnras/stad2192 – volume: 108 start-page: 123031 year: 2023a ident: raaad74dbbib95 publication-title: PhRvD doi: 10.1103/PhysRevD.108.123031 – volume: 120 start-page: 27 year: 1986 ident: raaad74dbbib58 publication-title: Ap&SS doi: 10.1007/BF00653898 – volume: 275 start-page: 255 year: 1995 ident: raaad74dbbib74 publication-title: MNRAS doi: 10.1093/mnras/275.2.255 – volume: 925 start-page: 53 year: 2022 ident: raaad74dbbib93 publication-title: ApJ doi: 10.3847/1538-4357/ac3979 – volume: 582 start-page: 351 year: 2020a ident: raaad74dbbib12 publication-title: Natur doi: 10.1038/s41586-020-2398-2 – volume: 972 start-page: 17 year: 2024 ident: raaad74dbbib64 publication-title: ApJ doi: 10.3847/1538-4357/ad5d5b – volume: 879 start-page: 4 year: 2019 ident: raaad74dbbib79 publication-title: ApJ doi: 10.3847/1538-4357/ab2240 – volume: 606 start-page: 873 year: 2022 ident: raaad74dbbib59 publication-title: Natur doi: 10.1038/s41586-022-04755-5 – volume: 685 start-page: A87 year: 2024 ident: raaad74dbbib83 publication-title: A&A doi: 10.1051/0004-6361/202348670 – volume: 927 start-page: 105 year: 2022 ident: raaad74dbbib84 publication-title: ApJ doi: 10.3847/1538-4357/ac4097 – volume: 574 start-page: 332 year: 2002 ident: raaad74dbbib75 publication-title: ApJ doi: 10.1086/340586 – volume: 89 start-page: 103009 year: 2014 ident: raaad74dbbib31 publication-title: PhRvD doi: 10.1103/PhysRevD.89.103009 – volume: 44 start-page: 21 year: 1975 ident: raaad74dbbib78 publication-title: A&A – volume: 587 start-page: 54 year: 2020b ident: raaad74dbbib13 publication-title: Natur doi: 10.1038/s41586-020-2863-y – volume: 955 start-page: 142 year: 2023 ident: raaad74dbbib99 publication-title: ApJ doi: 10.3847/1538-4357/aced0b – volume: 449 start-page: 2047 year: 2015 ident: raaad74dbbib37 publication-title: MNRAS doi: 10.1093/mnras/stv432 – volume: 896 start-page: 142 year: 2020 ident: raaad74dbbib4 publication-title: ApJ doi: 10.3847/1538-4357/ab83eb – volume: 910 start-page: L18 year: 2021 ident: raaad74dbbib5 publication-title: ApJL doi: 10.3847/2041-8213/abeaa6 – volume: 526 start-page: 2795 year: 2023 ident: raaad74dbbib76 publication-title: MNRAS doi: 10.1093/mnras/stad2532 – volume: 5 start-page: 378 year: 2021 ident: raaad74dbbib39 publication-title: NatAs doi: 10.1038/s41550-021-01302-6 – volume: 531 start-page: 202 year: 2016 ident: raaad74dbbib70 publication-title: Natur doi: 10.1038/nature17168 – volume: 958 start-page: 35 year: 2023 ident: raaad74dbbib45 publication-title: ApJ doi: 10.3847/1538-4357/acf9a3 – volume: 609 start-page: 685 year: 2022 ident: raaad74dbbib86 publication-title: Natur doi: 10.1038/s41586-022-05071-8 – volume: 163 start-page: 155 year: 1988 ident: raaad74dbbib18 publication-title: PhR doi: 10.1016/0370-1573(88)90042-7 – volume: 969 start-page: 11 year: 2024 ident: raaad74dbbib41 publication-title: ApJ doi: 10.3847/1538-4357/ad4294 – volume: 384 start-page: 1034 year: 2008 ident: raaad74dbbib61 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12575.x – volume: 95 start-page: 035005 year: 2023 ident: raaad74dbbib94 publication-title: RvMP doi: 10.1103/RevModPhys.95.035005 – volume: 343 start-page: 839 year: 1989 ident: raaad74dbbib6 publication-title: ApJ doi: 10.1086/167754 – volume: 2 start-page: 100152 year: 2021 ident: raaad74dbbib20 publication-title: Innov doi: 10.1016/j.xinn.2021.100152 – volume: 218 start-page: 731 year: 1968 ident: raaad74dbbib21 publication-title: Natur doi: 10.1038/218731a0 – volume: 858 start-page: 88 year: 2018 ident: raaad74dbbib97 publication-title: ApJ doi: 10.3847/1538-4357/aabaee – volume: 468 start-page: 2726 year: 2017 ident: raaad74dbbib35 publication-title: MNRAS doi: 10.1093/mnras/stx665 – volume: 883 start-page: 40 year: 2019 ident: raaad74dbbib47 publication-title: ApJ doi: 10.3847/1538-4357/ab3796 – volume: 359 start-page: 699 year: 2005 ident: raaad74dbbib2 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.08933.x – volume: 933 start-page: 174 year: 2022 ident: raaad74dbbib92 publication-title: ApJ doi: 10.3847/1538-4357/ac7529 – year: 2022 ident: raaad74dbbib10 – volume: 494 start-page: 665 year: 2020a ident: raaad74dbbib49 publication-title: MNRAS doi: 10.1093/mnras/staa704 – volume: 9 start-page: eadf6198 year: 2023 ident: raaad74dbbib103 publication-title: SciA doi: 10.1126/sciadv.adf6198 – volume: 949 start-page: L33 year: 2023 ident: raaad74dbbib80 publication-title: ApJL doi: 10.3847/2041-8213/acd5d2 – volume: 494 start-page: 2385 year: 2020 ident: raaad74dbbib34 publication-title: MNRAS doi: 10.1093/mnras/staa774 – volume: 908 start-page: L10 year: 2021 ident: raaad74dbbib25 publication-title: ApJL doi: 10.3847/2041-8213/abdec0 – volume: 522 start-page: 2448 year: 2023 ident: raaad74dbbib63 publication-title: MNRAS doi: 10.1093/mnras/stad1072 – volume: 7 start-page: 339 year: 2023 ident: raaad74dbbib90 publication-title: NatAs doi: 10.1038/s41550-022-01865-y – volume: 917 start-page: L11 year: 2021 ident: raaad74dbbib33 publication-title: ApJL doi: 10.3847/2041-8213/ac13a0 – volume: 904 start-page: L15 year: 2020 ident: raaad74dbbib26 publication-title: ApJL doi: 10.3847/2041-8213/abc6a3 – volume: 876 start-page: L15 year: 2019 ident: raaad74dbbib82 publication-title: ApJL doi: 10.3847/2041-8213/ab1aab – volume: 919 start-page: L6 year: 2021 ident: raaad74dbbib52 publication-title: ApJL doi: 10.3847/2041-8213/ac1921 – volume: 682 start-page: 1443 year: 2008 ident: raaad74dbbib51 publication-title: ApJ doi: 10.1086/589435 – volume: 488 start-page: 5887 year: 2019 ident: raaad74dbbib71 publication-title: MNRAS doi: 10.1093/mnras/stz2052 – volume: 481 start-page: 2320 year: 2018 ident: raaad74dbbib48 publication-title: MNRAS doi: 10.1093/mnras/sty2364 – volume: 531 start-page: L57 year: 2024 ident: raaad74dbbib17 publication-title: MNRAS doi: 10.1093/mnrasl/slae031 – volume: 841 start-page: 14 year: 2017 ident: raaad74dbbib55 publication-title: ApJ doi: 10.3847/1538-4357/aa633d – volume: 5 start-page: 372 year: 2021 ident: raaad74dbbib66 publication-title: NatAs doi: 10.1038/s41550-020-01265-0 – volume: 508 start-page: L32 year: 2021 ident: raaad74dbbib14 publication-title: MNRAS doi: 10.1093/mnrasl/slab099 – volume: 66 start-page: 816 year: 1971 ident: raaad74dbbib1 publication-title: AnPhy doi: 10.1016/0003-4916(71)90084-4 – volume: 561 start-page: L85 year: 2001 ident: raaad74dbbib87 publication-title: ApJL doi: 10.1086/324381 |
SSID | ssj0065562 |
Score | 2.3339672 |
Snippet | With a growing sample of fast radio bursts (FRBs), we investigate the energy budget of different power sources within the framework of magnetar starquake... With a growing sample of fast radio bursts(FRBs),we investigate the energy budget of different power sources within the framework of magnetar starquake... |
SourceID | wanfang proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105012 |
SubjectTerms | Energy Energy budget Energy conversion efficiency Heat treating Luminosity Magnetars Power sources radiation mechanisms: non-thermal Radio bursts Starquakes stars: magnetars stars: neutron Strain energy |
Title | On the Energy Budget of Starquake-induced Repeating Fast Radio Bursts |
URI | https://iopscience.iop.org/article/10.1088/1674-4527/ad74db https://www.proquest.com/docview/3115067516 https://d.wanfangdata.com.cn/periodical/ttwlxb202410017 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_UIvSlX1o8tWUfqtCHnLncfoU-2XKHLVSLVPBBCJP9OIo2uV5yWP3rO5vkzlqKlL4tZDabzE4mv9md_Q3AG2k8d9L5CI1XEbfCRtoLcoZSpwNOcbNvqJQ-H8ujM_7pXJyvwLvlWZhy2rn-PjVbouBWhV1CnD4IefMRFxSzo1Xc5qvwaKilDHUbPp58WbhhKURTTXQp3e1R_u0O9_5JqzTuPbi5fo2Fx2Ly239n_BQuFk_cpptc9ud13je3f5A5_ucrPYMnHR5lh63oc1hxxQvYOqzCCnn5_Ybts6bdLoBUGzA6KRhhRjZqzgyy93M7cTUrPSPUOvsxx0sXUZRP9mIZYfsASIsJG2NVs1O030rqQHCz2oSz8ejrh6OoK8UQmSGP6ygdkoPWKRJ-8ANpEVOrFCENjKX21I69cdqpxKJNtFCYJw5jZd1QGIcBUryEtaIs3BawVAjhbJwrpQwXqFOtEiRQx3meGz0wPThYTEZmOp7yUC7jKmv2y7XOgrayoK2s1VYP3i57TFuOjgdk92gSsu5DrR6Q211YwJ1wYCYKEdZA9oB1VnF3ta6vr37mCYGewGultv9xpB14HPq0CYK7sFbP5u4VAZ06f90Y9C8zSvVS |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ8IRsOLiB_hFHAf1MSH3vXa_eojH3cBVCBGEt7qdj8uBmhP2gvKX89suwdiDDHxbZPOdLuz09nf7M7OALzl2lHLrYuUdiKihplIOobGkMtsSNFvdm0qpc8HfPeY7p-wk1DntL0LU02D6e9js0sU3IkwBMTJgY-bjyhDn10ZQU0xmBq3AA9ZylNfwmDv8GhuijljbUXRG45wTvm3t9xZlxaw7zuQ89GlKp0qJ7-tPeNl-Db_6i7k5LQ_a4q-vvojoeN_DOspPAm4lGx25CvwwJbPYHWz9jvl1fkv8p607W4jpH4Oo8OSIHYko_buINmamYltSOUIoteLHzN1aiP09lFvDEGM74FpOSFjVTfkizLfK2RA2Fm_gOPx6Ov2bhRKMkQ6pXETZSkaapkpxBFuyI1SmRECEYeKuXTYjp220orEKJNIJlSRWBULY1OmrfLQ4iUsllVpV4FkjDFr4kIIoSlTMpMiUQjuKC0KLYe6B4P5hOQ65Cv3ZTPO8vbcXMrcSyz3Ess7ifXgww3HtMvVcQ_tO5yIPPyw9T10a3MtuCX2GYq8pzXkPSBBM26fNs3l2c8iQfDj81uJV__Y0xt4fLQzzj_tHXx8DUuevYsZXIPF5mJm1xH7NMVGq9_X10v6tg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Energy+Budget+of+Starquake-induced+Repeating+Fast+Radio+Bursts&rft.jtitle=Research+in+astronomy+and+astrophysics&rft.au=Wang+%E7%8E%8B%2C+Wei-Yang+%E7%BB%B4%E6%89%AC&rft.au=Zhang+%E5%BC%A0%2C+Chen+%E6%99%A8&rft.au=Zhou+%E5%91%A8%2C+Enping+%E6%81%A9%E5%B9%B3&rft.au=Liu+%E5%88%98%2C+Xiaohui+%E5%B0%8F%E8%BE%89&rft.date=2024-10-01&rft.issn=1674-4527&rft.volume=24&rft.issue=10&rft.spage=105012&rft_id=info:doi/10.1088%2F1674-4527%2Fad74db&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_4527_ad74db |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fttwlxb%2Fttwlxb.jpg |