On the Energy Budget of Starquake-induced Repeating Fast Radio Bursts

With a growing sample of fast radio bursts (FRBs), we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism. During a starquake, the energy can be released in any form through strain, magnetic, rotational, and gravitational energies....

Full description

Saved in:
Bibliographic Details
Published inResearch in astronomy and astrophysics Vol. 24; no. 10; pp. 105012 - 188
Main Authors Wang, Wei-Yang, Zhang, Chen, Zhou, Enping, Liu, Xiaohui, Niu, Jiarui, Zhou, Zixuan, Gao, He, Liu, Jifeng, Xu, Renxin, Zhang, Bing
Format Journal Article
LanguageEnglish
Published Beijing National Astromonical Observatories, CAS and IOP Publishing 01.10.2024
IOP Publishing
Subjects
Online AccessGet full text
ISSN1674-4527
2397-6209
DOI10.1088/1674-4527/ad74db

Cover

Loading…
Abstract With a growing sample of fast radio bursts (FRBs), we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism. During a starquake, the energy can be released in any form through strain, magnetic, rotational, and gravitational energies. The strain energy can be converted from three other kinds of energy during starquakes. The following findings are revealed: (1) The crust can store free magnetic energy of ∼10 46 erg by existing toroidal fields, sustaining 10 6 bursts with frequent starquakes occurring due to crustal instability. (2) The strain energy develops as a rigid object spins down, which can be released during a global starquake accompanied by a glitch. However, it takes a long time to accumulate enough strain energy via spindown. (3) The rotational energy of a magnetar with P ≲ 0.1 s can match the energy and luminosity budget of FRBs. (4) The budget of the total gravitational energy is high, but the mechanism and efficiency of converting this energy to radiation deserve further exploration.
AbstractList With a growing sample of fast radio bursts (FRBs), we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism. During a starquake, the energy can be released in any form through strain, magnetic, rotational, and gravitational energies. The strain energy can be converted from three other kinds of energy during starquakes. The following findings are revealed: (1) The crust can store free magnetic energy of ∼10 46 erg by existing toroidal fields, sustaining 10 6 bursts with frequent starquakes occurring due to crustal instability. (2) The strain energy develops as a rigid object spins down, which can be released during a global starquake accompanied by a glitch. However, it takes a long time to accumulate enough strain energy via spindown. (3) The rotational energy of a magnetar with P ≲ 0.1 s can match the energy and luminosity budget of FRBs. (4) The budget of the total gravitational energy is high, but the mechanism and efficiency of converting this energy to radiation deserve further exploration.
With a growing sample of fast radio bursts(FRBs),we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism.During a starquake,the energy can be released in any form through strain,magnetic,rotational,and gravitational energies.The strain energy can be converted from three other kinds of energy during starquakes.The following findings are revealed:(1)The crust can store free magnetic energy of ~1046 erg by existing toroidal fields,sustaining 106 bursts with frequent starquakes occurring due to crustal instability.(2)The strain energy develops as a rigid object spins down,which can be released during a global starquake accompanied by a glitch.However,it takes a long time to accumulate enough strain energy via spindown.(3)The rotational energy of a magnetar with P(≤)0.1 s can match the energy and luminosity budget of FRBs.(4)The budget of the total gravitational energy is high,but the mechanism and efficiency of converting this energy to radiation deserve further exploration.
With a growing sample of fast radio bursts (FRBs), we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism. During a starquake, the energy can be released in any form through strain, magnetic, rotational, and gravitational energies. The strain energy can be converted from three other kinds of energy during starquakes. The following findings are revealed: (1) The crust can store free magnetic energy of ∼1046 erg by existing toroidal fields, sustaining 106 bursts with frequent starquakes occurring due to crustal instability. (2) The strain energy develops as a rigid object spins down, which can be released during a global starquake accompanied by a glitch. However, it takes a long time to accumulate enough strain energy via spindown. (3) The rotational energy of a magnetar with P ≲ 0.1 s can match the energy and luminosity budget of FRBs. (4) The budget of the total gravitational energy is high, but the mechanism and efficiency of converting this energy to radiation deserve further exploration.
Author Xu, Renxin
Zhou, Enping
Zhang, Bing
Gao, He
Liu, Jifeng
Zhang, Chen
Niu, Jiarui
Zhou, Zixuan
Wang, Wei-Yang
Liu, Xiaohui
Author_xml – sequence: 1
  givenname: Wei-Yang
  orcidid: 0000-0001-9036-8543
  surname: Wang
  fullname: Wang, Wei-Yang
  organization: Peking University State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing 100871, China
– sequence: 2
  givenname: Chen
  surname: Zhang
  fullname: Zhang, Chen
  organization: The Hong Kong University of Science and Technology The HKUST Jockey Club Institute for Advanced Study, Hong Kong, China
– sequence: 3
  givenname: Enping
  surname: Zhou
  fullname: Zhou, Enping
  organization: Huazhong University of Science and Technology School of Physics, Wuhan 430074, China
– sequence: 4
  givenname: Xiaohui
  surname: Liu
  fullname: Liu, Xiaohui
  organization: Chinese Academy of Sciences National Astronomical Observatories, Beijing 100101, China
– sequence: 5
  givenname: Jiarui
  orcidid: 0000-0001-8065-4191
  surname: Niu
  fullname: Niu, Jiarui
  organization: Chinese Academy of Sciences National Astronomical Observatories, Beijing 100101, China
– sequence: 6
  givenname: Zixuan
  surname: Zhou
  fullname: Zhou, Zixuan
  organization: University of Science and Technology School of Mathematics and Physics, Beijing 100083, China
– sequence: 7
  givenname: He
  surname: Gao
  fullname: Gao, He
  organization: Beijing Normal University Department of Astronomy, Beijing 100875, China
– sequence: 8
  givenname: Jifeng
  surname: Liu
  fullname: Liu, Jifeng
  organization: Beijing Normal University Institute for Frontiers in Astronomy and Astrophysics, Beijing 102206, China
– sequence: 9
  givenname: Renxin
  surname: Xu
  fullname: Xu, Renxin
  organization: Peking University State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing 100871, China
– sequence: 10
  givenname: Bing
  surname: Zhang
  fullname: Zhang, Bing
  organization: University of Nevada Department of Physics and Astronomy, Las Vegas, NV 89154, USA
BookMark eNp9kEFLwzAUgINMcJvePRY8eLEuSdukPerYVBgMpp7DW_NaO2e6JSlz_96OigNBTwnk-94L34D0TG2QkEtGbxlN0xETMg7jhMsRaBnr5Qnp8yiToeA065H-z_MZGTi3olQkieB9MpmbwL9hMDFoy31w3-gSfVAXwbMHu23gHcPK6CZHHSxwg-ArUwZTcD5YgK7qVrDOu3NyWsDa4cX3OSSv08nL-DGczR-exnezMI9i6sMsQsjTDFKWFUxogExLmTEKVKRFe6dFjilKrkHzNJGw5AhUaoySHIHxLBqS627uDkwBplSrurGm3ai8360_l5zymFHKZEtedeTG1tsGnT-iEWMJFTJhoqVoR-W2ds5ioTa2-gC7V4yqQ1Z16KYO3VSXtVXELyWvfJulNt5Ctf5PvOnEqt4cP_Mn_gXeHov4
CODEN RAAEBW
CitedBy_id crossref_primary_10_1103_PhysRevD_111_063026
Cites_doi 10.1088/1674-4527/ad1430
10.1093/mnras/stac683
10.1093/mnras/staa1237
10.1093/mnras/stu1370
10.1093/mnras/stac2596
10.1093/mnras/staa2450
10.1086/150119
10.3847/2041-8213/ab83fb
10.1111/j.1745-3933.2006.00248.x
10.1088/1674-4527/17/9/92
10.3847/1538-4357/aabadd
10.3847/1538-4357/acd3ec
10.1088/1674-4527/ac98f6
10.3847/1538-4357/aaa025
10.3847/1538-4357/ac6587
10.1016/j.astropartphys.2004.05.007
10.3847/0004-637X/829/1/27
10.3847/1538-4357/ac4bc7
10.1007/BF00645528
10.3847/1538-4357/aae685
10.3847/1538-4357/aadf31
10.1086/507518
10.1038/nature25149
10.3847/2041-8213/abac57
10.1103/PhysRevLett.132.035201
10.1038/s41586-020-2827-2
10.1086/312497
10.1086/312339
10.1103/PhysRevD.108.063002
10.3847/2041-8213/aba2cf
10.1093/mnras/stz700
10.3847/1538-4357/ac4bdf
10.1051/0004-6361/202141903
10.1088/1674-4527/ac98f8
10.1038/s41586-020-2872-x
10.1093/mnras/185.2.297
10.1093/mnras/stac1960
10.1038/s41586-021-03878-5
10.1086/172580
10.1088/1674-4527/20/4/56
10.1088/0004-637X/703/1/1044
10.1088/0004-637X/799/2/152
10.1093/mnras/stae965
10.1088/1674-4527/ac995d
10.1093/mnras/stad2192
10.1103/PhysRevD.108.123031
10.1007/BF00653898
10.1093/mnras/275.2.255
10.3847/1538-4357/ac3979
10.1038/s41586-020-2398-2
10.3847/1538-4357/ad5d5b
10.3847/1538-4357/ab2240
10.1038/s41586-022-04755-5
10.1051/0004-6361/202348670
10.3847/1538-4357/ac4097
10.1086/340586
10.1103/PhysRevD.89.103009
10.1038/s41586-020-2863-y
10.3847/1538-4357/aced0b
10.1093/mnras/stv432
10.3847/1538-4357/ab83eb
10.3847/2041-8213/abeaa6
10.1093/mnras/stad2532
10.1038/s41550-021-01302-6
10.1038/nature17168
10.3847/1538-4357/acf9a3
10.1038/s41586-022-05071-8
10.1016/0370-1573(88)90042-7
10.3847/1538-4357/ad4294
10.1111/j.1365-2966.2007.12575.x
10.1103/RevModPhys.95.035005
10.1086/167754
10.1016/j.xinn.2021.100152
10.1038/218731a0
10.3847/1538-4357/aabaee
10.1093/mnras/stx665
10.3847/1538-4357/ab3796
10.1111/j.1365-2966.2005.08933.x
10.3847/1538-4357/ac7529
10.1093/mnras/staa704
10.1126/sciadv.adf6198
10.3847/2041-8213/acd5d2
10.1093/mnras/staa774
10.3847/2041-8213/abdec0
10.1093/mnras/stad1072
10.1038/s41550-022-01865-y
10.3847/2041-8213/ac13a0
10.3847/2041-8213/abc6a3
10.3847/2041-8213/ab1aab
10.3847/2041-8213/ac1921
10.1086/589435
10.1093/mnras/stz2052
10.1093/mnras/sty2364
10.1093/mnrasl/slae031
10.3847/1538-4357/aa633d
10.1038/s41550-020-01265-0
10.1093/mnrasl/slab099
10.1016/0003-4916(71)90084-4
10.1086/324381
ContentType Journal Article
Copyright National Astronomical Observatories, CAS and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: National Astronomical Observatories, CAS and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-4527/ad74db
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 2397-6209
EndPage 188
ExternalDocumentID ttwlxb202410017
10_1088_1674_4527_ad74db
raaad74db
GroupedDBID -SA
-S~
188
4.4
5B3
5VR
5VS
7.M
AAGCD
AAJIO
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ATQHT
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CW9
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
KWQ
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
W28
~02
5XA
5XB
AAYXX
ADEQX
CITATION
Q--
7TG
8FD
AEINN
H8D
KL.
L7M
02O
1WK
2B.
4A8
8RM
92E
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
JCGBZ
M45
NT-
NT.
PSX
Q02
UZ4
ID FETCH-LOGICAL-c340t-93eac89a819f16daa9d77910a068f9d70fce8e72dad2857ab2ea07de35cea1293
IEDL.DBID IOP
ISSN 1674-4527
IngestDate Thu May 29 04:11:07 EDT 2025
Wed Aug 13 09:45:45 EDT 2025
Tue Jul 01 04:00:18 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Tue Oct 15 22:51:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords neutron-radiation mechanisms
stars
magnetars-stars
non-thermal
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-93eac89a819f16daa9d77910a068f9d70fce8e72dad2857ab2ea07de35cea1293
Notes RAA-2024-0151.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9036-8543
0000-0001-8065-4191
PQID 3115067516
PQPubID 4562443
PageCount 9
ParticipantIDs proquest_journals_3115067516
iop_journals_10_1088_1674_4527_ad74db
wanfang_journals_ttwlxb202410017
crossref_citationtrail_10_1088_1674_4527_ad74db
crossref_primary_10_1088_1674_4527_ad74db
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Research in astronomy and astrophysics
PublicationTitleAbbrev RAA
PublicationTitleAlternate Res. Astron. Astrophys
PublicationTitle_FL Research in Astronomy and Astrophysics
PublicationYear 2024
Publisher National Astromonical Observatories, CAS and IOP Publishing
IOP Publishing
Publisher_xml – name: National Astromonical Observatories, CAS and IOP Publishing
– name: IOP Publishing
References Kumar (raaad74dbbib35) 2017; 468
Dai (raaad74dbbib16) 2016; 829
Chen (raaad74dbbib10) 2022
Chen (raaad74dbbib11) 2024; 24
CHIME/FRB Collaboration (raaad74dbbib12) 2020a; 582
Li (raaad74dbbib39) 2021; 5
Katz (raaad74dbbib31) 2014; 89
Piro (raaad74dbbib62) 2021; 656
Wang (raaad74dbbib84) 2022; 927
Suvorov (raaad74dbbib71) 2019; 488
Yuan (raaad74dbbib91) 2017; 17
Lu (raaad74dbbib46) 2020; 498
CHIME/FRB Collaboration (raaad74dbbib13) 2020b; 587
Iwamoto (raaad74dbbib28) 2024; 132
Beloborodov (raaad74dbbib4) 2020; 896
Li (raaad74dbbib42) 2022; 517
Li (raaad74dbbib40) 2021; 598
Du (raaad74dbbib17) 2024; 531
Wadiasingh (raaad74dbbib79) 2019; 879
Shen (raaad74dbbib68) 2023; 951
Zhang (raaad74dbbib99) 2023; 955
Luo (raaad74dbbib49) 2020a; 494
Younes (raaad74dbbib90) 2023; 7
Xu (raaad74dbbib88) 2006; 373
Thompson (raaad74dbbib75) 2002; 574
Jiang (raaad74dbbib30) 2022; 22
Lanman (raaad74dbbib38) 2022; 927
Spitler (raaad74dbbib70) 2016; 531
Qu (raaad74dbbib64) 2024; 972
Tsygan (raaad74dbbib78) 1975; 44
Wang (raaad74dbbib80) 2023; 949
Kremer (raaad74dbbib33) 2021; 917
Lu (raaad74dbbib47) 2019; 883
Kumar (raaad74dbbib36) 2022; 512
Margalit (raaad74dbbib53) 2020; 899
Zhang (raaad74dbbib96) 2023b; 108
Michilli (raaad74dbbib57) 2018; 553
Wang (raaad74dbbib81) 2018; 852
Yang (raaad74dbbib89) 2018; 868
Beloborodov (raaad74dbbib3) 2009; 703
Thompson (raaad74dbbib74) 1995; 275
Zhou (raaad74dbbib100) 2004; 22
Tsuzuki (raaad74dbbib77) 2024; 530
Spitkovsky (raaad74dbbib69) 2006; 648
Totani (raaad74dbbib76) 2023; 526
Zhang (raaad74dbbib93) 2022; 925
Geng (raaad74dbbib20) 2021; 2
Xu (raaad74dbbib87) 2001; 561
Wang (raaad74dbbib83) 2024; 685
Qu (raaad74dbbib63) 2023; 522
Bhardwaj (raaad74dbbib5) 2021; 910
Zhang (raaad74dbbib95) 2023a; 108
Hilmarsson (raaad74dbbib25) 2021; 908
Bombaci (raaad74dbbib8) 2000; 530
Wang (raaad74dbbib82) 2019; 876
Fabian (raaad74dbbib19) 1976; 42
Lander (raaad74dbbib37) 2015; 449
Dai (raaad74dbbib15) 2022
Niu (raaad74dbbib59) 2022; 606
Bejger (raaad74dbbib2) 2005; 359
Ioka (raaad74dbbib26) 2020; 904
Xu (raaad74dbbib86) 2022; 609
Zhang (raaad74dbbib98) 2018; 866
Luo (raaad74dbbib50) 2020b; 586
Metzger (raaad74dbbib55) 2017; 841
Zhou (raaad74dbbib102) 2014; 443
Yuan (raaad74dbbib92) 2022; 933
Zhou (raaad74dbbib101) 2022; 22
Lin (raaad74dbbib44) 2015; 799
Hewitt (raaad74dbbib24) 2022; 515
Bochenek (raaad74dbbib7) 2020; 587
Gold (raaad74dbbib21) 1968; 218
Mereghetti (raaad74dbbib54) 2020; 898
Wilson (raaad74dbbib85) 1978; 185
Thomas (raaad74dbbib72) 2022; 54
Ioka (raaad74dbbib27) 2020; 893
Lyubarsky (raaad74dbbib51) 2008; 682
Goldreich (raaad74dbbib22) 1969; 157
Ridnaia (raaad74dbbib66) 2021; 5
Liu (raaad74dbbib45) 2023; 958
Zhu (raaad74dbbib103) 2023; 9
Majid (raaad74dbbib52) 2021; 919
Cooper (raaad74dbbib14) 2021; 508
Sharma (raaad74dbbib67) 2023; 524
Thompson (raaad74dbbib73) 1993; 408
Zhang (raaad74dbbib97) 2018; 858
Zhang (raaad74dbbib94) 2023; 95
Baym (raaad74dbbib1) 1971; 66
Metzger (raaad74dbbib56) 2019; 485
Luo (raaad74dbbib48) 2018; 481
Li (raaad74dbbib41) 2024; 969
Muslimov (raaad74dbbib58) 1986; 120
Harding (raaad74dbbib23) 1999; 525
Li (raaad74dbbib43) 2022; 931
Khangulyan (raaad74dbbib32) 2022; 927
Peng (raaad74dbbib61) 2008; 384
Niu (raaad74dbbib60) 2022; 22
Cao (raaad74dbbib9) 2018; 858
Jiang (raaad74dbbib29) 2020; 20
Rajwade (raaad74dbbib65) 2020; 495
Kumar (raaad74dbbib34) 2020; 494
Blaes (raaad74dbbib6) 1989; 343
Epstein (raaad74dbbib18) 1988; 163
References_xml – volume: 24
  start-page: 025005
  year: 2024
  ident: raaad74dbbib11
  publication-title: RAA
  doi: 10.1088/1674-4527/ad1430
– year: 2022
  ident: raaad74dbbib15
– volume: 512
  start-page: 3400
  year: 2022
  ident: raaad74dbbib36
  publication-title: MNRAS
  doi: 10.1093/mnras/stac683
– volume: 495
  start-page: 3551
  year: 2020
  ident: raaad74dbbib65
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1237
– volume: 443
  start-page: 2705
  year: 2014
  ident: raaad74dbbib102
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1370
– volume: 517
  start-page: 4612
  year: 2022
  ident: raaad74dbbib42
  publication-title: MNRAS
  doi: 10.1093/mnras/stac2596
– volume: 498
  start-page: 1397
  year: 2020
  ident: raaad74dbbib46
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2450
– volume: 157
  start-page: 869
  year: 1969
  ident: raaad74dbbib22
  publication-title: ApJ
  doi: 10.1086/150119
– volume: 893
  start-page: L26
  year: 2020
  ident: raaad74dbbib27
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab83fb
– volume: 373
  start-page: L85
  year: 2006
  ident: raaad74dbbib88
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2006.00248.x
– volume: 17
  start-page: 092
  year: 2017
  ident: raaad74dbbib91
  publication-title: RAA
  doi: 10.1088/1674-4527/17/9/92
– volume: 858
  start-page: 89
  year: 2018
  ident: raaad74dbbib9
  publication-title: ApJ
  doi: 10.3847/1538-4357/aabadd
– volume: 951
  start-page: 3
  year: 2023
  ident: raaad74dbbib68
  publication-title: ApJ
  doi: 10.3847/1538-4357/acd3ec
– volume: 22
  start-page: 124003
  year: 2022
  ident: raaad74dbbib30
  publication-title: RAA
  doi: 10.1088/1674-4527/ac98f6
– volume: 852
  start-page: 140
  year: 2018
  ident: raaad74dbbib81
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaa025
– volume: 931
  start-page: 56
  year: 2022
  ident: raaad74dbbib43
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac6587
– volume: 22
  start-page: 73
  year: 2004
  ident: raaad74dbbib100
  publication-title: APh
  doi: 10.1016/j.astropartphys.2004.05.007
– volume: 829
  start-page: 27
  year: 2016
  ident: raaad74dbbib16
  publication-title: ApJ
  doi: 10.3847/0004-637X/829/1/27
– volume: 927
  start-page: 59
  year: 2022
  ident: raaad74dbbib38
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac4bc7
– volume: 54
  start-page: 226.01
  year: 2022
  ident: raaad74dbbib72
  publication-title: AAS Meeting Abstracts
– volume: 42
  start-page: 77
  year: 1976
  ident: raaad74dbbib19
  publication-title: Ap&SS
  doi: 10.1007/BF00645528
– volume: 868
  start-page: 31
  year: 2018
  ident: raaad74dbbib89
  publication-title: ApJ
  doi: 10.3847/1538-4357/aae685
– volume: 866
  start-page: 149
  year: 2018
  ident: raaad74dbbib98
  publication-title: ApJ
  doi: 10.3847/1538-4357/aadf31
– volume: 648
  start-page: L51
  year: 2006
  ident: raaad74dbbib69
  publication-title: ApJL
  doi: 10.1086/507518
– volume: 553
  start-page: 182
  year: 2018
  ident: raaad74dbbib57
  publication-title: Natur
  doi: 10.1038/nature25149
– volume: 899
  start-page: L27
  year: 2020
  ident: raaad74dbbib53
  publication-title: ApJL
  doi: 10.3847/2041-8213/abac57
– volume: 132
  start-page: 035201
  year: 2024
  ident: raaad74dbbib28
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.132.035201
– volume: 586
  start-page: 693
  year: 2020b
  ident: raaad74dbbib50
  publication-title: Natur
  doi: 10.1038/s41586-020-2827-2
– volume: 530
  start-page: L69
  year: 2000
  ident: raaad74dbbib8
  publication-title: ApJL
  doi: 10.1086/312497
– volume: 525
  start-page: L125
  year: 1999
  ident: raaad74dbbib23
  publication-title: ApJL
  doi: 10.1086/312339
– volume: 108
  start-page: 063002
  year: 2023b
  ident: raaad74dbbib96
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.108.063002
– volume: 898
  start-page: L29
  year: 2020
  ident: raaad74dbbib54
  publication-title: ApJL
  doi: 10.3847/2041-8213/aba2cf
– volume: 485
  start-page: 4091
  year: 2019
  ident: raaad74dbbib56
  publication-title: MNRAS
  doi: 10.1093/mnras/stz700
– volume: 927
  start-page: 2
  year: 2022
  ident: raaad74dbbib32
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac4bdf
– volume: 656
  start-page: L15
  year: 2021
  ident: raaad74dbbib62
  publication-title: A&A
  doi: 10.1051/0004-6361/202141903
– volume: 22
  start-page: 124001
  year: 2022
  ident: raaad74dbbib101
  publication-title: RAA
  doi: 10.1088/1674-4527/ac98f8
– volume: 587
  start-page: 59
  year: 2020
  ident: raaad74dbbib7
  publication-title: Natur
  doi: 10.1038/s41586-020-2872-x
– volume: 185
  start-page: 297
  year: 1978
  ident: raaad74dbbib85
  publication-title: MNRAS
  doi: 10.1093/mnras/185.2.297
– volume: 515
  start-page: 3577
  year: 2022
  ident: raaad74dbbib24
  publication-title: MNRAS
  doi: 10.1093/mnras/stac1960
– volume: 598
  start-page: 267
  year: 2021
  ident: raaad74dbbib40
  publication-title: Natur
  doi: 10.1038/s41586-021-03878-5
– volume: 408
  start-page: 194
  year: 1993
  ident: raaad74dbbib73
  publication-title: ApJ
  doi: 10.1086/172580
– volume: 20
  start-page: 056
  year: 2020
  ident: raaad74dbbib29
  publication-title: RAA
  doi: 10.1088/1674-4527/20/4/56
– volume: 703
  start-page: 1044
  year: 2009
  ident: raaad74dbbib3
  publication-title: ApJ
  doi: 10.1088/0004-637X/703/1/1044
– volume: 799
  start-page: 152
  year: 2015
  ident: raaad74dbbib44
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/2/152
– volume: 530
  start-page: 1885
  year: 2024
  ident: raaad74dbbib77
  publication-title: MNRAS
  doi: 10.1093/mnras/stae965
– volume: 22
  start-page: 124004
  year: 2022
  ident: raaad74dbbib60
  publication-title: RAA
  doi: 10.1088/1674-4527/ac995d
– volume: 524
  start-page: 6024
  year: 2023
  ident: raaad74dbbib67
  publication-title: MNRAS
  doi: 10.1093/mnras/stad2192
– volume: 108
  start-page: 123031
  year: 2023a
  ident: raaad74dbbib95
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.108.123031
– volume: 120
  start-page: 27
  year: 1986
  ident: raaad74dbbib58
  publication-title: Ap&SS
  doi: 10.1007/BF00653898
– volume: 275
  start-page: 255
  year: 1995
  ident: raaad74dbbib74
  publication-title: MNRAS
  doi: 10.1093/mnras/275.2.255
– volume: 925
  start-page: 53
  year: 2022
  ident: raaad74dbbib93
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac3979
– volume: 582
  start-page: 351
  year: 2020a
  ident: raaad74dbbib12
  publication-title: Natur
  doi: 10.1038/s41586-020-2398-2
– volume: 972
  start-page: 17
  year: 2024
  ident: raaad74dbbib64
  publication-title: ApJ
  doi: 10.3847/1538-4357/ad5d5b
– volume: 879
  start-page: 4
  year: 2019
  ident: raaad74dbbib79
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab2240
– volume: 606
  start-page: 873
  year: 2022
  ident: raaad74dbbib59
  publication-title: Natur
  doi: 10.1038/s41586-022-04755-5
– volume: 685
  start-page: A87
  year: 2024
  ident: raaad74dbbib83
  publication-title: A&A
  doi: 10.1051/0004-6361/202348670
– volume: 927
  start-page: 105
  year: 2022
  ident: raaad74dbbib84
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac4097
– volume: 574
  start-page: 332
  year: 2002
  ident: raaad74dbbib75
  publication-title: ApJ
  doi: 10.1086/340586
– volume: 89
  start-page: 103009
  year: 2014
  ident: raaad74dbbib31
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.89.103009
– volume: 44
  start-page: 21
  year: 1975
  ident: raaad74dbbib78
  publication-title: A&A
– volume: 587
  start-page: 54
  year: 2020b
  ident: raaad74dbbib13
  publication-title: Natur
  doi: 10.1038/s41586-020-2863-y
– volume: 955
  start-page: 142
  year: 2023
  ident: raaad74dbbib99
  publication-title: ApJ
  doi: 10.3847/1538-4357/aced0b
– volume: 449
  start-page: 2047
  year: 2015
  ident: raaad74dbbib37
  publication-title: MNRAS
  doi: 10.1093/mnras/stv432
– volume: 896
  start-page: 142
  year: 2020
  ident: raaad74dbbib4
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab83eb
– volume: 910
  start-page: L18
  year: 2021
  ident: raaad74dbbib5
  publication-title: ApJL
  doi: 10.3847/2041-8213/abeaa6
– volume: 526
  start-page: 2795
  year: 2023
  ident: raaad74dbbib76
  publication-title: MNRAS
  doi: 10.1093/mnras/stad2532
– volume: 5
  start-page: 378
  year: 2021
  ident: raaad74dbbib39
  publication-title: NatAs
  doi: 10.1038/s41550-021-01302-6
– volume: 531
  start-page: 202
  year: 2016
  ident: raaad74dbbib70
  publication-title: Natur
  doi: 10.1038/nature17168
– volume: 958
  start-page: 35
  year: 2023
  ident: raaad74dbbib45
  publication-title: ApJ
  doi: 10.3847/1538-4357/acf9a3
– volume: 609
  start-page: 685
  year: 2022
  ident: raaad74dbbib86
  publication-title: Natur
  doi: 10.1038/s41586-022-05071-8
– volume: 163
  start-page: 155
  year: 1988
  ident: raaad74dbbib18
  publication-title: PhR
  doi: 10.1016/0370-1573(88)90042-7
– volume: 969
  start-page: 11
  year: 2024
  ident: raaad74dbbib41
  publication-title: ApJ
  doi: 10.3847/1538-4357/ad4294
– volume: 384
  start-page: 1034
  year: 2008
  ident: raaad74dbbib61
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12575.x
– volume: 95
  start-page: 035005
  year: 2023
  ident: raaad74dbbib94
  publication-title: RvMP
  doi: 10.1103/RevModPhys.95.035005
– volume: 343
  start-page: 839
  year: 1989
  ident: raaad74dbbib6
  publication-title: ApJ
  doi: 10.1086/167754
– volume: 2
  start-page: 100152
  year: 2021
  ident: raaad74dbbib20
  publication-title: Innov
  doi: 10.1016/j.xinn.2021.100152
– volume: 218
  start-page: 731
  year: 1968
  ident: raaad74dbbib21
  publication-title: Natur
  doi: 10.1038/218731a0
– volume: 858
  start-page: 88
  year: 2018
  ident: raaad74dbbib97
  publication-title: ApJ
  doi: 10.3847/1538-4357/aabaee
– volume: 468
  start-page: 2726
  year: 2017
  ident: raaad74dbbib35
  publication-title: MNRAS
  doi: 10.1093/mnras/stx665
– volume: 883
  start-page: 40
  year: 2019
  ident: raaad74dbbib47
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab3796
– volume: 359
  start-page: 699
  year: 2005
  ident: raaad74dbbib2
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.08933.x
– volume: 933
  start-page: 174
  year: 2022
  ident: raaad74dbbib92
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac7529
– year: 2022
  ident: raaad74dbbib10
– volume: 494
  start-page: 665
  year: 2020a
  ident: raaad74dbbib49
  publication-title: MNRAS
  doi: 10.1093/mnras/staa704
– volume: 9
  start-page: eadf6198
  year: 2023
  ident: raaad74dbbib103
  publication-title: SciA
  doi: 10.1126/sciadv.adf6198
– volume: 949
  start-page: L33
  year: 2023
  ident: raaad74dbbib80
  publication-title: ApJL
  doi: 10.3847/2041-8213/acd5d2
– volume: 494
  start-page: 2385
  year: 2020
  ident: raaad74dbbib34
  publication-title: MNRAS
  doi: 10.1093/mnras/staa774
– volume: 908
  start-page: L10
  year: 2021
  ident: raaad74dbbib25
  publication-title: ApJL
  doi: 10.3847/2041-8213/abdec0
– volume: 522
  start-page: 2448
  year: 2023
  ident: raaad74dbbib63
  publication-title: MNRAS
  doi: 10.1093/mnras/stad1072
– volume: 7
  start-page: 339
  year: 2023
  ident: raaad74dbbib90
  publication-title: NatAs
  doi: 10.1038/s41550-022-01865-y
– volume: 917
  start-page: L11
  year: 2021
  ident: raaad74dbbib33
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac13a0
– volume: 904
  start-page: L15
  year: 2020
  ident: raaad74dbbib26
  publication-title: ApJL
  doi: 10.3847/2041-8213/abc6a3
– volume: 876
  start-page: L15
  year: 2019
  ident: raaad74dbbib82
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab1aab
– volume: 919
  start-page: L6
  year: 2021
  ident: raaad74dbbib52
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac1921
– volume: 682
  start-page: 1443
  year: 2008
  ident: raaad74dbbib51
  publication-title: ApJ
  doi: 10.1086/589435
– volume: 488
  start-page: 5887
  year: 2019
  ident: raaad74dbbib71
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2052
– volume: 481
  start-page: 2320
  year: 2018
  ident: raaad74dbbib48
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2364
– volume: 531
  start-page: L57
  year: 2024
  ident: raaad74dbbib17
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slae031
– volume: 841
  start-page: 14
  year: 2017
  ident: raaad74dbbib55
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa633d
– volume: 5
  start-page: 372
  year: 2021
  ident: raaad74dbbib66
  publication-title: NatAs
  doi: 10.1038/s41550-020-01265-0
– volume: 508
  start-page: L32
  year: 2021
  ident: raaad74dbbib14
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slab099
– volume: 66
  start-page: 816
  year: 1971
  ident: raaad74dbbib1
  publication-title: AnPhy
  doi: 10.1016/0003-4916(71)90084-4
– volume: 561
  start-page: L85
  year: 2001
  ident: raaad74dbbib87
  publication-title: ApJL
  doi: 10.1086/324381
SSID ssj0065562
Score 2.3339672
Snippet With a growing sample of fast radio bursts (FRBs), we investigate the energy budget of different power sources within the framework of magnetar starquake...
With a growing sample of fast radio bursts(FRBs),we investigate the energy budget of different power sources within the framework of magnetar starquake...
SourceID wanfang
proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105012
SubjectTerms Energy
Energy budget
Energy conversion efficiency
Heat treating
Luminosity
Magnetars
Power sources
radiation mechanisms: non-thermal
Radio bursts
Starquakes
stars: magnetars
stars: neutron
Strain energy
Title On the Energy Budget of Starquake-induced Repeating Fast Radio Bursts
URI https://iopscience.iop.org/article/10.1088/1674-4527/ad74db
https://www.proquest.com/docview/3115067516
https://d.wanfangdata.com.cn/periodical/ttwlxb202410017
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_UIvSlX1o8tWUfqtCHnLncfoU-2XKHLVSLVPBBCJP9OIo2uV5yWP3rO5vkzlqKlL4tZDabzE4mv9md_Q3AG2k8d9L5CI1XEbfCRtoLcoZSpwNOcbNvqJQ-H8ujM_7pXJyvwLvlWZhy2rn-PjVbouBWhV1CnD4IefMRFxSzo1Xc5qvwaKilDHUbPp58WbhhKURTTXQp3e1R_u0O9_5JqzTuPbi5fo2Fx2Ly239n_BQuFk_cpptc9ud13je3f5A5_ucrPYMnHR5lh63oc1hxxQvYOqzCCnn5_Ybts6bdLoBUGzA6KRhhRjZqzgyy93M7cTUrPSPUOvsxx0sXUZRP9mIZYfsASIsJG2NVs1O030rqQHCz2oSz8ejrh6OoK8UQmSGP6ygdkoPWKRJ-8ANpEVOrFCENjKX21I69cdqpxKJNtFCYJw5jZd1QGIcBUryEtaIs3BawVAjhbJwrpQwXqFOtEiRQx3meGz0wPThYTEZmOp7yUC7jKmv2y7XOgrayoK2s1VYP3i57TFuOjgdk92gSsu5DrR6Q211YwJ1wYCYKEdZA9oB1VnF3ta6vr37mCYGewGultv9xpB14HPq0CYK7sFbP5u4VAZ06f90Y9C8zSvVS
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ8IRsOLiB_hFHAf1MSH3vXa_eojH3cBVCBGEt7qdj8uBmhP2gvKX89suwdiDDHxbZPOdLuz09nf7M7OALzl2lHLrYuUdiKihplIOobGkMtsSNFvdm0qpc8HfPeY7p-wk1DntL0LU02D6e9js0sU3IkwBMTJgY-bjyhDn10ZQU0xmBq3AA9ZylNfwmDv8GhuijljbUXRG45wTvm3t9xZlxaw7zuQ89GlKp0qJ7-tPeNl-Db_6i7k5LQ_a4q-vvojoeN_DOspPAm4lGx25CvwwJbPYHWz9jvl1fkv8p607W4jpH4Oo8OSIHYko_buINmamYltSOUIoteLHzN1aiP09lFvDEGM74FpOSFjVTfkizLfK2RA2Fm_gOPx6Ov2bhRKMkQ6pXETZSkaapkpxBFuyI1SmRECEYeKuXTYjp220orEKJNIJlSRWBULY1OmrfLQ4iUsllVpV4FkjDFr4kIIoSlTMpMiUQjuKC0KLYe6B4P5hOQ65Cv3ZTPO8vbcXMrcSyz3Ess7ifXgww3HtMvVcQ_tO5yIPPyw9T10a3MtuCX2GYq8pzXkPSBBM26fNs3l2c8iQfDj81uJV__Y0xt4fLQzzj_tHXx8DUuevYsZXIPF5mJm1xH7NMVGq9_X10v6tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Energy+Budget+of+Starquake-induced+Repeating+Fast+Radio+Bursts&rft.jtitle=Research+in+astronomy+and+astrophysics&rft.au=Wang+%E7%8E%8B%2C+Wei-Yang+%E7%BB%B4%E6%89%AC&rft.au=Zhang+%E5%BC%A0%2C+Chen+%E6%99%A8&rft.au=Zhou+%E5%91%A8%2C+Enping+%E6%81%A9%E5%B9%B3&rft.au=Liu+%E5%88%98%2C+Xiaohui+%E5%B0%8F%E8%BE%89&rft.date=2024-10-01&rft.issn=1674-4527&rft.volume=24&rft.issue=10&rft.spage=105012&rft_id=info:doi/10.1088%2F1674-4527%2Fad74db&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_4527_ad74db
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fttwlxb%2Fttwlxb.jpg