On the entropy method and exponential convergence to equilibrium for a recombination–drift–diffusion system with self-consistent potential
We consider a Shockley–Read–Hall recombination–drift–diffusion model coupled to Poisson’s equation and subject to boundary conditions, which imply conservation of the total charge. As main result, we derive an explicit functional inequality between relative entropy and entropy production rate, which...
Saved in:
Published in | Applied mathematics letters Vol. 79; pp. 196 - 204 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0893-9659 1873-5452 |
DOI | 10.1016/j.aml.2017.12.017 |
Cover
Abstract | We consider a Shockley–Read–Hall recombination–drift–diffusion model coupled to Poisson’s equation and subject to boundary conditions, which imply conservation of the total charge. As main result, we derive an explicit functional inequality between relative entropy and entropy production rate, which implies exponential convergence to equilibrium with explicit constant and rate. We report that the key entropy–entropy production inequality ought rather not to be formulated on the states space of the parabolic–elliptic system, but on the reduced states space of the associated nonlocal drift–diffusion problem, where the Poisson equation is replaced by the corresponding Green function. |
---|---|
AbstractList | We consider a Shockley–Read–Hall recombination–drift–diffusion model coupled to Poisson’s equation and subject to boundary conditions, which imply conservation of the total charge. As main result, we derive an explicit functional inequality between relative entropy and entropy production rate, which implies exponential convergence to equilibrium with explicit constant and rate. We report that the key entropy–entropy production inequality ought rather not to be formulated on the states space of the parabolic–elliptic system, but on the reduced states space of the associated nonlocal drift–diffusion problem, where the Poisson equation is replaced by the corresponding Green function. |
Author | Kniely, Michael Fellner, Klemens |
Author_xml | – sequence: 1 givenname: Klemens orcidid: 0000-0001-9906-8977 surname: Fellner fullname: Fellner, Klemens email: klemens.fellner@uni-graz.at – sequence: 2 givenname: Michael surname: Kniely fullname: Kniely, Michael email: michael.kniely@uni-graz.at |
BookMark | eNp9kE1OHDEQha0IpAwkB8jOF-iO7f5xW1khBAEJiU2yttx2daZG3fbE9gCzywmy4YY5CR6GVRasnvSkr0rvOyMnPngg5AtnNWe8_7qpzTLXgnFZc1GX-EBWfJBN1bWdOCErNqimUn2nPpKzlDaMsUY1w4r8vfc0r4GCzzFs93SBvA6OGu8oPG3LD5_RzNQG_wDxF3gLNAcKv3c44xhxt9ApRGpoBBuWEb3JGPy_P88u4pQPidO0S6WjaZ8yLPQR85ommKeq3ExYOp_pNuTjo0_kdDJzgs9veU5-Xl_9uLyp7u6_315e3FW2aVmulOic6OUglOukGIcOYBxGUEoOEowdeG97KaEfu6YVoJzsW8VMK1jfTMJZaM4JP961MaQUYdLbiIuJe82ZPgjVG12E6oNQzYUuURj5H2Mxv-7N0eD8LvntSEKZ9IAQdbJ4cOmweMvaBXyHfgHLEpjZ |
CitedBy_id | crossref_primary_10_1007_s41808_020_00068_8 crossref_primary_10_1140_epjb_e2018_80590_2 crossref_primary_10_2140_memocs_2024_12_263 crossref_primary_10_3390_cryst9010041 crossref_primary_10_1002_mma_7604 crossref_primary_10_1002_mma_7660 |
Cites_doi | 10.1002/zamm.19960760502 10.1016/j.jmaa.2005.07.003 10.3934/krm.2010.3.427 10.1016/j.na.2017.02.007 10.1080/00036819608840428 10.1142/S0218202508002735 10.1002/zamm.19970771105 10.1137/16M1073935 10.1007/s10884-014-9394-x 10.1002/mana.19831120103 10.1142/S0218202595000292 10.4171/RMI/541 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.aml.2017.12.017 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-5452 |
EndPage | 204 |
ExternalDocumentID | 10_1016_j_aml_2017_12_017 S0893965917303865 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W JJJVA KOM M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c340t-925d267829d572b85eeb8be99787eac816c677e6b5342e9d76490a42063f2dce3 |
IEDL.DBID | AIKHN |
ISSN | 0893-9659 |
IngestDate | Thu Apr 24 22:52:09 EDT 2025 Tue Jul 01 00:38:20 EDT 2025 Fri Feb 23 02:27:11 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Self-consistent potential Shockley–Read–Hall recombination Convergence to equilibrium Semiconductor model Drift-diffusion systems Entropy method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-925d267829d572b85eeb8be99787eac816c677e6b5342e9d76490a42063f2dce3 |
ORCID | 0000-0001-9906-8977 |
OpenAccessLink | https://unipub.uni-graz.at/doi/10.1016/j.aml.2017.12.017 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_aml_2017_12_017 crossref_citationtrail_10_1016_j_aml_2017_12_017 elsevier_sciencedirect_doi_10_1016_j_aml_2017_12_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2018 2018-05-00 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
PublicationDecade | 2010 |
PublicationTitle | Applied mathematics letters |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Desvillettes, Fellner (b9) 2008; 24 Desvillettes, Fellner, Tang (b16) 2017; 49 Mielke, Haskovec, Markowich (b12) 2015; 27 J. Haskovec, S. Hittmeir, P.A. Markowich, A. Mielke, Decay to equilibrium for energy-reaction–diffusion systems . Desvillettes, Fellner (b8) 2006; 319 Perthame (b19) 2007 Desvillettes, Fellner (b11) 2014; 443 Gajewski, Gärtner (b4) 1996; 76 Fellner, Tang (b15) 2017; 159 Jüngel (b2) 1995; 5 Markowich, Ringhofer, Schmeiser (b1) 1990 Gentil, Zegarlinski (b10) 2010; 3 Glitzky, Hünlich (b5) 1997; 77 Gröger (b6) 1983; 112 Di Francesco, Fellner, Markowich (b14) 2008; 464 Wu, Markowich, Zheng (b17) 2008; 18 K. Gröger, Free energy estimates and asymptotic behaviour of reaction–diffusion processes, Preprint 20, Institut für Angewandte Analysis und Stochastik, Berlin, 1992. Glitzky, Gröger, Hünlich (b3) 1996; 60 Tröltzsch (b18) 2009 Desvillettes (10.1016/j.aml.2017.12.017_b16) 2017; 49 Gröger (10.1016/j.aml.2017.12.017_b6) 1983; 112 10.1016/j.aml.2017.12.017_b7 10.1016/j.aml.2017.12.017_b13 Perthame (10.1016/j.aml.2017.12.017_b19) 2007 Gajewski (10.1016/j.aml.2017.12.017_b4) 1996; 76 Mielke (10.1016/j.aml.2017.12.017_b12) 2015; 27 Glitzky (10.1016/j.aml.2017.12.017_b5) 1997; 77 Glitzky (10.1016/j.aml.2017.12.017_b3) 1996; 60 Wu (10.1016/j.aml.2017.12.017_b17) 2008; 18 Jüngel (10.1016/j.aml.2017.12.017_b2) 1995; 5 Desvillettes (10.1016/j.aml.2017.12.017_b11) 2014; 443 Markowich (10.1016/j.aml.2017.12.017_b1) 1990 Fellner (10.1016/j.aml.2017.12.017_b15) 2017; 159 Tröltzsch (10.1016/j.aml.2017.12.017_b18) 2009 Gentil (10.1016/j.aml.2017.12.017_b10) 2010; 3 Desvillettes (10.1016/j.aml.2017.12.017_b8) 2006; 319 Desvillettes (10.1016/j.aml.2017.12.017_b9) 2008; 24 Di Francesco (10.1016/j.aml.2017.12.017_b14) 2008; 464 |
References_xml | – volume: 319 start-page: 157 year: 2006 end-page: 176 ident: b8 article-title: Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations publication-title: J. Math. Anal. Appl. – volume: 464 start-page: 3272 year: 2008 end-page: 3300 ident: b14 article-title: The entropy dissipation method for inhomogeneous reaction–diffusion systems publication-title: Proc. R. Soc. A – volume: 49 start-page: 2666 year: 2017 end-page: 2709 ident: b16 article-title: Trend to equilibrium for reaction–diffusion systems arising from complex balanced chemical reaction networks publication-title: SIAM J. Math. Anal. – volume: 27 start-page: 897 year: 2015 end-page: 928 ident: b12 article-title: On uniform decay of the entropy for reaction–diffusion systems publication-title: J. Dynam. Differential Equations – volume: 18 start-page: 443 year: 2008 end-page: 487 ident: b17 article-title: Global existence and asymptotic behavior for a semiconductor drift-diffusion-Poisson model publication-title: Math. Models Methods Appl. Sci. – volume: 77 start-page: 823 year: 1997 end-page: 832 ident: b5 article-title: Energetic estimates and asymptotics for electro-reaction–diffusion systems publication-title: ZAMM Z. Angew. Math. Mech. – volume: 3 start-page: 427 year: 2010 end-page: 444 ident: b10 article-title: Asymptotic behaviour of a general reversible chemical reaction–diffusion equation publication-title: Kinet. Relat. Models – reference: . – year: 2007 ident: b19 publication-title: Transport Equations in Biology – volume: 5 start-page: 497 year: 1995 end-page: 518 ident: b2 article-title: Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors publication-title: Math. Models Methods Appl. Sci. – volume: 443 start-page: 96 year: 2014 end-page: 104 ident: b11 article-title: Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemistry, system modelling and optimization publication-title: IFIP AICT – year: 1990 ident: b1 publication-title: Semiconductor Equations – volume: 76 start-page: 247 year: 1996 end-page: 264 ident: b4 article-title: On the discretization of van Roosbroeck’s equations with magnetic field publication-title: ZAMM Z. Angew. Math. Mech. – volume: 24 start-page: 407 year: 2008 end-page: 431 ident: b9 article-title: Entropy methods for reaction–diffusion equations: slowly growing a-priori bounds publication-title: Rev. Mat. Iberoam. – reference: J. Haskovec, S. Hittmeir, P.A. Markowich, A. Mielke, Decay to equilibrium for energy-reaction–diffusion systems, – volume: 60 start-page: 201 year: 1996 end-page: 217 ident: b3 article-title: Free energy and dissipation rate for reaction–diffusion processes of electrically charged species publication-title: Appl. Anal. – volume: 112 start-page: 19 year: 1983 end-page: 33 ident: b6 article-title: Asymptotic behavior of solutions to a class of diffusion-reaction equations publication-title: Math. Nachr. – volume: 159 start-page: 145 year: 2017 end-page: 180 ident: b15 article-title: Explicit exponential convergence to equilibrium for mass action reaction–diffusion systems with detailed balance condition publication-title: Nonlinear Anal. – reference: K. Gröger, Free energy estimates and asymptotic behaviour of reaction–diffusion processes, Preprint 20, Institut für Angewandte Analysis und Stochastik, Berlin, 1992. – year: 2009 ident: b18 publication-title: Optimale Steuerung Partieller Differentialgleichungen – volume: 76 start-page: 247 year: 1996 ident: 10.1016/j.aml.2017.12.017_b4 article-title: On the discretization of van Roosbroeck’s equations with magnetic field publication-title: ZAMM Z. Angew. Math. Mech. doi: 10.1002/zamm.19960760502 – ident: 10.1016/j.aml.2017.12.017_b13 – year: 2007 ident: 10.1016/j.aml.2017.12.017_b19 – volume: 319 start-page: 157 year: 2006 ident: 10.1016/j.aml.2017.12.017_b8 article-title: Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.07.003 – volume: 3 start-page: 427 year: 2010 ident: 10.1016/j.aml.2017.12.017_b10 article-title: Asymptotic behaviour of a general reversible chemical reaction–diffusion equation publication-title: Kinet. Relat. Models doi: 10.3934/krm.2010.3.427 – year: 1990 ident: 10.1016/j.aml.2017.12.017_b1 – volume: 159 start-page: 145 year: 2017 ident: 10.1016/j.aml.2017.12.017_b15 article-title: Explicit exponential convergence to equilibrium for mass action reaction–diffusion systems with detailed balance condition publication-title: Nonlinear Anal. doi: 10.1016/j.na.2017.02.007 – ident: 10.1016/j.aml.2017.12.017_b7 – volume: 60 start-page: 201 year: 1996 ident: 10.1016/j.aml.2017.12.017_b3 article-title: Free energy and dissipation rate for reaction–diffusion processes of electrically charged species publication-title: Appl. Anal. doi: 10.1080/00036819608840428 – volume: 18 start-page: 443 year: 2008 ident: 10.1016/j.aml.2017.12.017_b17 article-title: Global existence and asymptotic behavior for a semiconductor drift-diffusion-Poisson model publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202508002735 – volume: 77 start-page: 823 year: 1997 ident: 10.1016/j.aml.2017.12.017_b5 article-title: Energetic estimates and asymptotics for electro-reaction–diffusion systems publication-title: ZAMM Z. Angew. Math. Mech. doi: 10.1002/zamm.19970771105 – volume: 464 start-page: 3272 year: 2008 ident: 10.1016/j.aml.2017.12.017_b14 article-title: The entropy dissipation method for inhomogeneous reaction–diffusion systems publication-title: Proc. R. Soc. A – volume: 443 start-page: 96 year: 2014 ident: 10.1016/j.aml.2017.12.017_b11 article-title: Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemistry, system modelling and optimization publication-title: IFIP AICT – volume: 49 start-page: 2666 issue: 4 year: 2017 ident: 10.1016/j.aml.2017.12.017_b16 article-title: Trend to equilibrium for reaction–diffusion systems arising from complex balanced chemical reaction networks publication-title: SIAM J. Math. Anal. doi: 10.1137/16M1073935 – volume: 27 start-page: 897 year: 2015 ident: 10.1016/j.aml.2017.12.017_b12 article-title: On uniform decay of the entropy for reaction–diffusion systems publication-title: J. Dynam. Differential Equations doi: 10.1007/s10884-014-9394-x – volume: 112 start-page: 19 year: 1983 ident: 10.1016/j.aml.2017.12.017_b6 article-title: Asymptotic behavior of solutions to a class of diffusion-reaction equations publication-title: Math. Nachr. doi: 10.1002/mana.19831120103 – volume: 5 start-page: 497 year: 1995 ident: 10.1016/j.aml.2017.12.017_b2 article-title: Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202595000292 – volume: 24 start-page: 407 year: 2008 ident: 10.1016/j.aml.2017.12.017_b9 article-title: Entropy methods for reaction–diffusion equations: slowly growing a-priori bounds publication-title: Rev. Mat. Iberoam. doi: 10.4171/RMI/541 – year: 2009 ident: 10.1016/j.aml.2017.12.017_b18 |
SSID | ssj0003938 |
Score | 2.2566872 |
Snippet | We consider a Shockley–Read–Hall recombination–drift–diffusion model coupled to Poisson’s equation and subject to boundary conditions, which imply conservation... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 196 |
SubjectTerms | Convergence to equilibrium Drift-diffusion systems Entropy method Self-consistent potential Semiconductor model Shockley–Read–Hall recombination |
Title | On the entropy method and exponential convergence to equilibrium for a recombination–drift–diffusion system with self-consistent potential |
URI | https://dx.doi.org/10.1016/j.aml.2017.12.017 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wscEOUhCrTygVMls7HjxPGxVFTborYHqLS3yPFDCupmQ5uV6KXiF3DhH_JLGDvJikq0B06WLU8eHmte_jwD8I5piW6HlxQZ4KnQVlDtlaGpk8o6NPp9FRzF07N8diFO5tl8Aw7HuzABVjnI_l6mR2k9jEyH1Zy2dT39nKCqDenwGG7SULlyE7Z4GJjA1sHxp9nZWiCnKha0DvNpIBgPNyPMSy_CAQSTMSgYy5b9Qz39pXKOnsKTwVYkB_3nbMOGa57B49N1otXr5_DzvCHYJSFGu2xvSF8QmujGEve9XTYBC4SPiNjyeM3SkW5J3LdVHbH-qwVBo5VoEvziBTrJkU-_f_yyV7XvQlt7vwoBNdKnfCYhbkuu3aWnJkBrcazpSLvs-he9gIujj18OZ3QosUBNKpKOKp5ZjvqKK5tJXhWZc1VROYW-pUSRXLDc5FK6vMpSwZ2yMhcq0YKjYeO5NS59CZMGf-YVEMZ0JkySK22MkBUvmKy0EcqnLrMF1zuQjCtbmiH_eCiDcVmOQLOvJTKjDMwoGS-x2YH9NUnbJ994aLIY2VXe2UElKof7yV7_H9kbeIS9ooc-voVJd7Vyu2iedNUebL6_ZXvDJsTe8fzDH8Na6tY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4AeEOUhWl4-9IRkbeI4cXwsFdUWuu2BVtqb5fghpepmQ5uV2hu_gEv_Ib-EGSdZgQQcOFlxxnl4rHn58wwh-6mR4HYEyYABgQnjBDNBWZZ5qZwHoz9U6CjOTovphfg0z-cb5HA8C4OwykH29zI9SuuhZzLM5qSt68mXBFQtpsNLYZFi5coHZAusgQIT6B_PP6zFcaZiOWukZkg-bm1GkJdZ4PZDKmNIMBYt-4Ny-kXhHD0hjwdLkR70H7NDNnzzlGzP1mlWb56R72cNhUuKEdple0f7ctDUNI7623bZIBIIHhGR5fGQpafdkvqvqzoi_VcLCiYrNRS94gW4yJFLP77du-s6dNjWIawwnEb7hM8Uo7b0xl8FZhFYC31NR9tl17_oObk4-nh-OGVDgQVmM5F0TPHccdBWXLlc8qrMva_KyivwLCUI5DItbCGlL6o8E9wrJwuhEiM4mDWBO-uzF2SzgZ95SWiamlzYpFDGWiErXqayMlaokPncldzskmScWW2H7ONYBONKjzCzSw3M0MgMnXINzS55vx7S9qk3_kUsRnbp39aPBtXw92F7_zfsHXk4PZ-d6JPj08-vyCO4U_YgyNdks7te-TdgqHTV27gQfwJZJeqq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+entropy+method+and+exponential+convergence+to+equilibrium+for+a+recombination%E2%80%93drift%E2%80%93diffusion+system+with+self-consistent+potential&rft.jtitle=Applied+mathematics+letters&rft.au=Fellner%2C+Klemens&rft.au=Kniely%2C+Michael&rft.date=2018-05-01&rft.issn=0893-9659&rft.volume=79&rft.spage=196&rft.epage=204&rft_id=info:doi/10.1016%2Fj.aml.2017.12.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aml_2017_12_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-9659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-9659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-9659&client=summon |