On the entropy method and exponential convergence to equilibrium for a recombination–drift–diffusion system with self-consistent potential

We consider a Shockley–Read–Hall recombination–drift–diffusion model coupled to Poisson’s equation and subject to boundary conditions, which imply conservation of the total charge. As main result, we derive an explicit functional inequality between relative entropy and entropy production rate, which...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics letters Vol. 79; pp. 196 - 204
Main Authors Fellner, Klemens, Kniely, Michael
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2018
Subjects
Online AccessGet full text
ISSN0893-9659
1873-5452
DOI10.1016/j.aml.2017.12.017

Cover

Abstract We consider a Shockley–Read–Hall recombination–drift–diffusion model coupled to Poisson’s equation and subject to boundary conditions, which imply conservation of the total charge. As main result, we derive an explicit functional inequality between relative entropy and entropy production rate, which implies exponential convergence to equilibrium with explicit constant and rate. We report that the key entropy–entropy production inequality ought rather not to be formulated on the states space of the parabolic–elliptic system, but on the reduced states space of the associated nonlocal drift–diffusion problem, where the Poisson equation is replaced by the corresponding Green function.
AbstractList We consider a Shockley–Read–Hall recombination–drift–diffusion model coupled to Poisson’s equation and subject to boundary conditions, which imply conservation of the total charge. As main result, we derive an explicit functional inequality between relative entropy and entropy production rate, which implies exponential convergence to equilibrium with explicit constant and rate. We report that the key entropy–entropy production inequality ought rather not to be formulated on the states space of the parabolic–elliptic system, but on the reduced states space of the associated nonlocal drift–diffusion problem, where the Poisson equation is replaced by the corresponding Green function.
Author Kniely, Michael
Fellner, Klemens
Author_xml – sequence: 1
  givenname: Klemens
  orcidid: 0000-0001-9906-8977
  surname: Fellner
  fullname: Fellner, Klemens
  email: klemens.fellner@uni-graz.at
– sequence: 2
  givenname: Michael
  surname: Kniely
  fullname: Kniely, Michael
  email: michael.kniely@uni-graz.at
BookMark eNp9kE1OHDEQha0IpAwkB8jOF-iO7f5xW1khBAEJiU2yttx2daZG3fbE9gCzywmy4YY5CR6GVRasnvSkr0rvOyMnPngg5AtnNWe8_7qpzTLXgnFZc1GX-EBWfJBN1bWdOCErNqimUn2nPpKzlDaMsUY1w4r8vfc0r4GCzzFs93SBvA6OGu8oPG3LD5_RzNQG_wDxF3gLNAcKv3c44xhxt9ApRGpoBBuWEb3JGPy_P88u4pQPidO0S6WjaZ8yLPQR85ommKeq3ExYOp_pNuTjo0_kdDJzgs9veU5-Xl_9uLyp7u6_315e3FW2aVmulOic6OUglOukGIcOYBxGUEoOEowdeG97KaEfu6YVoJzsW8VMK1jfTMJZaM4JP961MaQUYdLbiIuJe82ZPgjVG12E6oNQzYUuURj5H2Mxv-7N0eD8LvntSEKZ9IAQdbJ4cOmweMvaBXyHfgHLEpjZ
CitedBy_id crossref_primary_10_1007_s41808_020_00068_8
crossref_primary_10_1140_epjb_e2018_80590_2
crossref_primary_10_2140_memocs_2024_12_263
crossref_primary_10_3390_cryst9010041
crossref_primary_10_1002_mma_7604
crossref_primary_10_1002_mma_7660
Cites_doi 10.1002/zamm.19960760502
10.1016/j.jmaa.2005.07.003
10.3934/krm.2010.3.427
10.1016/j.na.2017.02.007
10.1080/00036819608840428
10.1142/S0218202508002735
10.1002/zamm.19970771105
10.1137/16M1073935
10.1007/s10884-014-9394-x
10.1002/mana.19831120103
10.1142/S0218202595000292
10.4171/RMI/541
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.aml.2017.12.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5452
EndPage 204
ExternalDocumentID 10_1016_j_aml_2017_12_017
S0893965917303865
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c340t-925d267829d572b85eeb8be99787eac816c677e6b5342e9d76490a42063f2dce3
IEDL.DBID AIKHN
ISSN 0893-9659
IngestDate Thu Apr 24 22:52:09 EDT 2025
Tue Jul 01 00:38:20 EDT 2025
Fri Feb 23 02:27:11 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Self-consistent potential
Shockley–Read–Hall recombination
Convergence to equilibrium
Semiconductor model
Drift-diffusion systems
Entropy method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-925d267829d572b85eeb8be99787eac816c677e6b5342e9d76490a42063f2dce3
ORCID 0000-0001-9906-8977
OpenAccessLink https://unipub.uni-graz.at/doi/10.1016/j.aml.2017.12.017
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_aml_2017_12_017
crossref_citationtrail_10_1016_j_aml_2017_12_017
elsevier_sciencedirect_doi_10_1016_j_aml_2017_12_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2018
2018-05-00
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationTitle Applied mathematics letters
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Desvillettes, Fellner (b9) 2008; 24
Desvillettes, Fellner, Tang (b16) 2017; 49
Mielke, Haskovec, Markowich (b12) 2015; 27
J. Haskovec, S. Hittmeir, P.A. Markowich, A. Mielke, Decay to equilibrium for energy-reaction–diffusion systems
.
Desvillettes, Fellner (b8) 2006; 319
Perthame (b19) 2007
Desvillettes, Fellner (b11) 2014; 443
Gajewski, Gärtner (b4) 1996; 76
Fellner, Tang (b15) 2017; 159
Jüngel (b2) 1995; 5
Markowich, Ringhofer, Schmeiser (b1) 1990
Gentil, Zegarlinski (b10) 2010; 3
Glitzky, Hünlich (b5) 1997; 77
Gröger (b6) 1983; 112
Di Francesco, Fellner, Markowich (b14) 2008; 464
Wu, Markowich, Zheng (b17) 2008; 18
K. Gröger, Free energy estimates and asymptotic behaviour of reaction–diffusion processes, Preprint 20, Institut für Angewandte Analysis und Stochastik, Berlin, 1992.
Glitzky, Gröger, Hünlich (b3) 1996; 60
Tröltzsch (b18) 2009
Desvillettes (10.1016/j.aml.2017.12.017_b16) 2017; 49
Gröger (10.1016/j.aml.2017.12.017_b6) 1983; 112
10.1016/j.aml.2017.12.017_b7
10.1016/j.aml.2017.12.017_b13
Perthame (10.1016/j.aml.2017.12.017_b19) 2007
Gajewski (10.1016/j.aml.2017.12.017_b4) 1996; 76
Mielke (10.1016/j.aml.2017.12.017_b12) 2015; 27
Glitzky (10.1016/j.aml.2017.12.017_b5) 1997; 77
Glitzky (10.1016/j.aml.2017.12.017_b3) 1996; 60
Wu (10.1016/j.aml.2017.12.017_b17) 2008; 18
Jüngel (10.1016/j.aml.2017.12.017_b2) 1995; 5
Desvillettes (10.1016/j.aml.2017.12.017_b11) 2014; 443
Markowich (10.1016/j.aml.2017.12.017_b1) 1990
Fellner (10.1016/j.aml.2017.12.017_b15) 2017; 159
Tröltzsch (10.1016/j.aml.2017.12.017_b18) 2009
Gentil (10.1016/j.aml.2017.12.017_b10) 2010; 3
Desvillettes (10.1016/j.aml.2017.12.017_b8) 2006; 319
Desvillettes (10.1016/j.aml.2017.12.017_b9) 2008; 24
Di Francesco (10.1016/j.aml.2017.12.017_b14) 2008; 464
References_xml – volume: 319
  start-page: 157
  year: 2006
  end-page: 176
  ident: b8
  article-title: Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations
  publication-title: J. Math. Anal. Appl.
– volume: 464
  start-page: 3272
  year: 2008
  end-page: 3300
  ident: b14
  article-title: The entropy dissipation method for inhomogeneous reaction–diffusion systems
  publication-title: Proc. R. Soc. A
– volume: 49
  start-page: 2666
  year: 2017
  end-page: 2709
  ident: b16
  article-title: Trend to equilibrium for reaction–diffusion systems arising from complex balanced chemical reaction networks
  publication-title: SIAM J. Math. Anal.
– volume: 27
  start-page: 897
  year: 2015
  end-page: 928
  ident: b12
  article-title: On uniform decay of the entropy for reaction–diffusion systems
  publication-title: J. Dynam. Differential Equations
– volume: 18
  start-page: 443
  year: 2008
  end-page: 487
  ident: b17
  article-title: Global existence and asymptotic behavior for a semiconductor drift-diffusion-Poisson model
  publication-title: Math. Models Methods Appl. Sci.
– volume: 77
  start-page: 823
  year: 1997
  end-page: 832
  ident: b5
  article-title: Energetic estimates and asymptotics for electro-reaction–diffusion systems
  publication-title: ZAMM Z. Angew. Math. Mech.
– volume: 3
  start-page: 427
  year: 2010
  end-page: 444
  ident: b10
  article-title: Asymptotic behaviour of a general reversible chemical reaction–diffusion equation
  publication-title: Kinet. Relat. Models
– reference: .
– year: 2007
  ident: b19
  publication-title: Transport Equations in Biology
– volume: 5
  start-page: 497
  year: 1995
  end-page: 518
  ident: b2
  article-title: Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors
  publication-title: Math. Models Methods Appl. Sci.
– volume: 443
  start-page: 96
  year: 2014
  end-page: 104
  ident: b11
  article-title: Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemistry, system modelling and optimization
  publication-title: IFIP AICT
– year: 1990
  ident: b1
  publication-title: Semiconductor Equations
– volume: 76
  start-page: 247
  year: 1996
  end-page: 264
  ident: b4
  article-title: On the discretization of van Roosbroeck’s equations with magnetic field
  publication-title: ZAMM Z. Angew. Math. Mech.
– volume: 24
  start-page: 407
  year: 2008
  end-page: 431
  ident: b9
  article-title: Entropy methods for reaction–diffusion equations: slowly growing a-priori bounds
  publication-title: Rev. Mat. Iberoam.
– reference: J. Haskovec, S. Hittmeir, P.A. Markowich, A. Mielke, Decay to equilibrium for energy-reaction–diffusion systems,
– volume: 60
  start-page: 201
  year: 1996
  end-page: 217
  ident: b3
  article-title: Free energy and dissipation rate for reaction–diffusion processes of electrically charged species
  publication-title: Appl. Anal.
– volume: 112
  start-page: 19
  year: 1983
  end-page: 33
  ident: b6
  article-title: Asymptotic behavior of solutions to a class of diffusion-reaction equations
  publication-title: Math. Nachr.
– volume: 159
  start-page: 145
  year: 2017
  end-page: 180
  ident: b15
  article-title: Explicit exponential convergence to equilibrium for mass action reaction–diffusion systems with detailed balance condition
  publication-title: Nonlinear Anal.
– reference: K. Gröger, Free energy estimates and asymptotic behaviour of reaction–diffusion processes, Preprint 20, Institut für Angewandte Analysis und Stochastik, Berlin, 1992.
– year: 2009
  ident: b18
  publication-title: Optimale Steuerung Partieller Differentialgleichungen
– volume: 76
  start-page: 247
  year: 1996
  ident: 10.1016/j.aml.2017.12.017_b4
  article-title: On the discretization of van Roosbroeck’s equations with magnetic field
  publication-title: ZAMM Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19960760502
– ident: 10.1016/j.aml.2017.12.017_b13
– year: 2007
  ident: 10.1016/j.aml.2017.12.017_b19
– volume: 319
  start-page: 157
  year: 2006
  ident: 10.1016/j.aml.2017.12.017_b8
  article-title: Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.07.003
– volume: 3
  start-page: 427
  year: 2010
  ident: 10.1016/j.aml.2017.12.017_b10
  article-title: Asymptotic behaviour of a general reversible chemical reaction–diffusion equation
  publication-title: Kinet. Relat. Models
  doi: 10.3934/krm.2010.3.427
– year: 1990
  ident: 10.1016/j.aml.2017.12.017_b1
– volume: 159
  start-page: 145
  year: 2017
  ident: 10.1016/j.aml.2017.12.017_b15
  article-title: Explicit exponential convergence to equilibrium for mass action reaction–diffusion systems with detailed balance condition
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2017.02.007
– ident: 10.1016/j.aml.2017.12.017_b7
– volume: 60
  start-page: 201
  year: 1996
  ident: 10.1016/j.aml.2017.12.017_b3
  article-title: Free energy and dissipation rate for reaction–diffusion processes of electrically charged species
  publication-title: Appl. Anal.
  doi: 10.1080/00036819608840428
– volume: 18
  start-page: 443
  year: 2008
  ident: 10.1016/j.aml.2017.12.017_b17
  article-title: Global existence and asymptotic behavior for a semiconductor drift-diffusion-Poisson model
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202508002735
– volume: 77
  start-page: 823
  year: 1997
  ident: 10.1016/j.aml.2017.12.017_b5
  article-title: Energetic estimates and asymptotics for electro-reaction–diffusion systems
  publication-title: ZAMM Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19970771105
– volume: 464
  start-page: 3272
  year: 2008
  ident: 10.1016/j.aml.2017.12.017_b14
  article-title: The entropy dissipation method for inhomogeneous reaction–diffusion systems
  publication-title: Proc. R. Soc. A
– volume: 443
  start-page: 96
  year: 2014
  ident: 10.1016/j.aml.2017.12.017_b11
  article-title: Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemistry, system modelling and optimization
  publication-title: IFIP AICT
– volume: 49
  start-page: 2666
  issue: 4
  year: 2017
  ident: 10.1016/j.aml.2017.12.017_b16
  article-title: Trend to equilibrium for reaction–diffusion systems arising from complex balanced chemical reaction networks
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/16M1073935
– volume: 27
  start-page: 897
  year: 2015
  ident: 10.1016/j.aml.2017.12.017_b12
  article-title: On uniform decay of the entropy for reaction–diffusion systems
  publication-title: J. Dynam. Differential Equations
  doi: 10.1007/s10884-014-9394-x
– volume: 112
  start-page: 19
  year: 1983
  ident: 10.1016/j.aml.2017.12.017_b6
  article-title: Asymptotic behavior of solutions to a class of diffusion-reaction equations
  publication-title: Math. Nachr.
  doi: 10.1002/mana.19831120103
– volume: 5
  start-page: 497
  year: 1995
  ident: 10.1016/j.aml.2017.12.017_b2
  article-title: Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202595000292
– volume: 24
  start-page: 407
  year: 2008
  ident: 10.1016/j.aml.2017.12.017_b9
  article-title: Entropy methods for reaction–diffusion equations: slowly growing a-priori bounds
  publication-title: Rev. Mat. Iberoam.
  doi: 10.4171/RMI/541
– year: 2009
  ident: 10.1016/j.aml.2017.12.017_b18
SSID ssj0003938
Score 2.2566872
Snippet We consider a Shockley–Read–Hall recombination–drift–diffusion model coupled to Poisson’s equation and subject to boundary conditions, which imply conservation...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 196
SubjectTerms Convergence to equilibrium
Drift-diffusion systems
Entropy method
Self-consistent potential
Semiconductor model
Shockley–Read–Hall recombination
Title On the entropy method and exponential convergence to equilibrium for a recombination–drift–diffusion system with self-consistent potential
URI https://dx.doi.org/10.1016/j.aml.2017.12.017
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wscEOUhCrTygVMls7HjxPGxVFTborYHqLS3yPFDCupmQ5uV6KXiF3DhH_JLGDvJikq0B06WLU8eHmte_jwD8I5piW6HlxQZ4KnQVlDtlaGpk8o6NPp9FRzF07N8diFO5tl8Aw7HuzABVjnI_l6mR2k9jEyH1Zy2dT39nKCqDenwGG7SULlyE7Z4GJjA1sHxp9nZWiCnKha0DvNpIBgPNyPMSy_CAQSTMSgYy5b9Qz39pXKOnsKTwVYkB_3nbMOGa57B49N1otXr5_DzvCHYJSFGu2xvSF8QmujGEve9XTYBC4SPiNjyeM3SkW5J3LdVHbH-qwVBo5VoEvziBTrJkU-_f_yyV7XvQlt7vwoBNdKnfCYhbkuu3aWnJkBrcazpSLvs-he9gIujj18OZ3QosUBNKpKOKp5ZjvqKK5tJXhWZc1VROYW-pUSRXLDc5FK6vMpSwZ2yMhcq0YKjYeO5NS59CZMGf-YVEMZ0JkySK22MkBUvmKy0EcqnLrMF1zuQjCtbmiH_eCiDcVmOQLOvJTKjDMwoGS-x2YH9NUnbJ994aLIY2VXe2UElKof7yV7_H9kbeIS9ooc-voVJd7Vyu2iedNUebL6_ZXvDJsTe8fzDH8Na6tY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4AeEOUhWl4-9IRkbeI4cXwsFdUWuu2BVtqb5fghpepmQ5uV2hu_gEv_Ib-EGSdZgQQcOFlxxnl4rHn58wwh-6mR4HYEyYABgQnjBDNBWZZ5qZwHoz9U6CjOTovphfg0z-cb5HA8C4OwykH29zI9SuuhZzLM5qSt68mXBFQtpsNLYZFi5coHZAusgQIT6B_PP6zFcaZiOWukZkg-bm1GkJdZ4PZDKmNIMBYt-4Ny-kXhHD0hjwdLkR70H7NDNnzzlGzP1mlWb56R72cNhUuKEdple0f7ctDUNI7623bZIBIIHhGR5fGQpafdkvqvqzoi_VcLCiYrNRS94gW4yJFLP77du-s6dNjWIawwnEb7hM8Uo7b0xl8FZhFYC31NR9tl17_oObk4-nh-OGVDgQVmM5F0TPHccdBWXLlc8qrMva_KyivwLCUI5DItbCGlL6o8E9wrJwuhEiM4mDWBO-uzF2SzgZ95SWiamlzYpFDGWiErXqayMlaokPncldzskmScWW2H7ONYBONKjzCzSw3M0MgMnXINzS55vx7S9qk3_kUsRnbp39aPBtXw92F7_zfsHXk4PZ-d6JPj08-vyCO4U_YgyNdks7te-TdgqHTV27gQfwJZJeqq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+entropy+method+and+exponential+convergence+to+equilibrium+for+a+recombination%E2%80%93drift%E2%80%93diffusion+system+with+self-consistent+potential&rft.jtitle=Applied+mathematics+letters&rft.au=Fellner%2C+Klemens&rft.au=Kniely%2C+Michael&rft.date=2018-05-01&rft.issn=0893-9659&rft.volume=79&rft.spage=196&rft.epage=204&rft_id=info:doi/10.1016%2Fj.aml.2017.12.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aml_2017_12_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-9659&client=summon