Reinforcing ion diffusion and controlling microcrack of nickel-rich cobalt-free single-crystalline cathodes via interfacial protection and bulk optimization

[Display omitted] •The synchronous modification strategy from interface to interior for ultrahigh-Ni Co-free cathode.•The Sb-based modification can enhance structure stability both interface and bulk of materials.•Unbroken layer structure and enlarged ion channel improve the reaction kinetics of des...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 684; no. Pt 2; pp. 138 - 147
Main Authors Zheng, Chao, Xiao, Zhiming, Xian, Keyi, Wen, Heng, Lu, Na, He, Xinyou, Ye, Long, Du, Kejie, Zhang, Bao, Ou, Xing, Wang, Chunhui
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The synchronous modification strategy from interface to interior for ultrahigh-Ni Co-free cathode.•The Sb-based modification can enhance structure stability both interface and bulk of materials.•Unbroken layer structure and enlarged ion channel improve the reaction kinetics of designed materials. Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi0.9Mn0.1O2 materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials.
AbstractList [Display omitted] •The synchronous modification strategy from interface to interior for ultrahigh-Ni Co-free cathode.•The Sb-based modification can enhance structure stability both interface and bulk of materials.•Unbroken layer structure and enlarged ion channel improve the reaction kinetics of designed materials. Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi0.9Mn0.1O2 materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials.
Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi₀.₉Mn₀.₁O₂ materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials.
Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi0.9Mn0.1O2 materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials.Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi0.9Mn0.1O2 materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials.
Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi Mn O materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials.
Author Zheng, Chao
Du, Kejie
Ou, Xing
Lu, Na
Ye, Long
Xian, Keyi
Wang, Chunhui
Wen, Heng
He, Xinyou
Zhang, Bao
Xiao, Zhiming
Author_xml – sequence: 1
  givenname: Chao
  surname: Zheng
  fullname: Zheng, Chao
  organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 2
  givenname: Zhiming
  surname: Xiao
  fullname: Xiao, Zhiming
  email: xiaozhiming09@163.com
  organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 3
  givenname: Keyi
  surname: Xian
  fullname: Xian, Keyi
  organization: School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001 China
– sequence: 4
  givenname: Heng
  surname: Wen
  fullname: Wen, Heng
  organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 5
  givenname: Na
  surname: Lu
  fullname: Lu, Na
  organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 6
  givenname: Xinyou
  surname: He
  fullname: He, Xinyou
  organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 7
  givenname: Long
  surname: Ye
  fullname: Ye, Long
  organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 8
  givenname: Kejie
  surname: Du
  fullname: Du, Kejie
  organization: School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001 China
– sequence: 9
  givenname: Bao
  surname: Zhang
  fullname: Zhang, Bao
  email: csuzhangbao@163.com
  organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 10
  givenname: Xing
  orcidid: 0000-0001-6302-7372
  surname: Ou
  fullname: Ou, Xing
  email: ouxing@csu.edu.cn
  organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China
– sequence: 11
  givenname: Chunhui
  surname: Wang
  fullname: Wang, Chunhui
  email: chunhuiwang@usc.edu.cn
  organization: School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001 China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39823729$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1TAQhS1URG8LL8ACZckmwXbiOJbYoIo_qRISgrU1ccbUt772xXYqlWfhYXF0W5aIle3xd2ZG51yQsxADEvKS0Y5RNr7Zd3vjcscpFx1lHZXqCdkxqkQrGe3PyI5SzlollTwnFznvKWVMCPWMnPdq4r3kakd-f0UXbEzGhR-Ni6FZnLVr3m4QlsbEUFL0fvs9OJOiSWBum2ib4Mwt-jY5c1OpGXxpbUJsckU9tibd5wKbEBsD5SYumJs7B40LBZMF48A3xxQLmvI4bF59bX0s7uB-wVZ9Tp5a8BlfPJyX5PuH99-uPrXXXz5-vnp33Zp-oKVVjIth4YvhswU5oxgHPrJeVieEBBgUUITJzKCmoQrowKzkYhH1wQEM9Jfk9alvXejnirnog8sGvYeAcc26Z6OY5Diq8T9QUbHphL56QNf5gIs-JneAdK8fza8APwHV15wT2r8Io3pLWO_1lrDeEtaU6ZpwFb09ibAacucw6WwcBoOLS9VLvUT3L_kfUYSx1A
Cites_doi 10.1038/s41467-020-15355-0
10.1038/s41467-021-25611-6
10.1039/C4TA00987H
10.1002/adfm.202312284
10.1016/j.cej.2023.147202
10.1016/j.est.2024.112585
10.1016/j.nanoen.2023.109214
10.1016/j.ensm.2021.02.003
10.1016/j.jechem.2024.03.030
10.1021/acssuschemeng.1c06704
10.1021/acsami.9b02889
10.1038/s41560-021-00776-y
10.1016/j.jpcs.2010.07.002
10.1126/sciadv.ado4472
10.1021/acsami.3c15370
10.1038/s41467-022-30020-4
10.1016/j.chempr.2022.03.007
10.1016/j.jcis.2021.05.167
10.1016/j.ensm.2022.08.026
10.1016/j.jechem.2024.03.056
10.1016/j.jpcs.2011.04.013
10.1016/j.cej.2023.147181
10.1021/acsnano.3c03770
10.1016/j.est.2024.113037
10.1016/j.cej.2021.133731
10.1016/j.jechem.2024.09.067
10.1016/j.cej.2022.140802
10.1016/j.ensm.2020.09.020
10.1007/s12598-022-02055-5
10.1126/science.abc3167
10.3390/pr11061756
10.1002/adfm.202406068
10.1002/aenm.201800297
10.1016/j.jiec.2022.03.036
10.1021/acssuschemeng.0c07703
10.1007/s11581-023-05191-9
10.1016/j.apsusc.2017.09.130
10.1016/j.jcis.2024.04.045
10.1016/j.electacta.2018.08.091
10.1021/acsenergylett.0c00742
10.1002/smll.201002009
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright © 2025 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Inc.
– notice: Copyright © 2025 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jcis.2025.01.079
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 147
ExternalDocumentID 39823729
10_1016_j_jcis_2025_01_079
S0021979725000931
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
53G
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEUPX
AFFNX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
LG5
LX6
M24
M41
NDZJH
NEJ
R2-
RIG
SCB
SCE
SSH
VH1
WUQ
ZGI
ZXP
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c340t-91254d2dc2bfa7be5642613709557aa49a0ea8cba984340041f725d54342aaca3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Wed Jul 02 04:38:51 EDT 2025
Fri Jul 11 00:50:24 EDT 2025
Thu Apr 03 07:02:47 EDT 2025
Tue Jul 01 05:37:21 EDT 2025
Sat Feb 08 15:51:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords Ion diffusion
Doping engineering
Surface modification
Structure stability
Nickel-rich cobalt-free materials
Language English
License Copyright © 2025 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-91254d2dc2bfa7be5642613709557aa49a0ea8cba984340041f725d54342aaca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6302-7372
PMID 39823729
PQID 3156968696
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3165876696
proquest_miscellaneous_3156968696
pubmed_primary_39823729
crossref_primary_10_1016_j_jcis_2025_01_079
elsevier_sciencedirect_doi_10_1016_j_jcis_2025_01_079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-15
PublicationDateYYYYMMDD 2025-04-15
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wang, Wang, Fan, Yang, Zhan, Liu (b0035) 2022; 110
Huang, Yin, Wu, Qi, He, Zhang, Yan, Boey, Zhang (b0015) 2011; 7
Bi, Tao, Wu, Li, Xu, Hu, Wu, Hu, Wang, Zhang, Qi, Xiao (b0135) 2020; 370
Tsi, Wen, Wolfman, Choe, Pan, Su, Thornton, Cabana, Chiang (b0070) 2018; 11
Ou, Liu, Zhong, Fan, Guo, Huang, Cao, Hu, Zhang, Chu, Hu, Lin, Dahbi, Alami, Amine, Yang, Lu (b0080) 2022; 13
Fan, Zheng, Zeng, Xu, Wen, Wang, Tian, Wang, Zeng, Xiang, Shu (b0200) 2023; 477
Zhang, Wu, Dai, Mai, Gu (b0225) 2021; 9
Zeng, Fan, Zheng, Wang, Tian, Liu, Liu, Wang, Wang, Shu (b0205) 2024; 16
Manthiram (b0005) 2020; 11
Su, Song, Xu, Shi, Wen, Dou, Zhou, Zhang, Liu (b0170) 2024; 95
Su, Li, He, Wan, Chen, Zhou, Zhang, Dou, Xu, Lu, Wang, Chu, Liu (b0220) 2023; 455
Balogun, Yu, Li, Zhai, Liu, Lu, Tong (b0085) 2014; 2
Schipper, Bouzaglo, Dixit, Erickson, Weigel, Talianker, Grinblat, Burstein, Schmidt, Lampert, Erk, Markovsky, Major, Aurbach (b0230) 2017; 8
Li, Huang, Li, Lei, He, Cheng, Wu, Li (b0180) 2023; 29
Shen, Yin, Wang, Huang, Cheng (b0025) 2024; 95
Voronina, Sun, Myung (b0045) 2020; 5
Ran, Zhao, Hu, Shen, Liu, Liu, Shu, Zhang, Liu, Tan, Li, Liu (b0140) 2018; 289
Deng, Yang, Yang, Shen, Zhao, Wang, Wang, Li, Qian (b0030) 2018; 428
Lv, Huang, Zhang, Kang, Liu, Li, Liang, Zhong, Jia, Ouyang, Qin, Kang, Zhang, Cao (b0155) 2024; 34
Zou, Tang, Zheng, Zhang, Yan, Xue, Zhou, Xu, Yin, Liao, Qiao, Bao, Sun (b0175) 2024; 34
Liang, Su, Sun, Wang, Hou, Liu, Zhang, Yuan (b0095) 2024; 10
Zeng, Wu, Luo, Zhou, Tong (b0150) 2010; 71
Liu, Zeng, Li, Wan, Li, Zhang, Li, Su, Dou, Zeng, Zhou, Guo, Chu (b0110) 2022; 52
Becker, Börner, Nölle, Diehl, Klein, Rodehorst, Schmuch, Winter, Placke (b0235) 2019; 11
Hu, Tang, Zheng, Yu, Xiong, Li, Qiu, Wan, Song, Zhong, Wu, Guo (b0010) 2024; 6
Ni, Guo, Deng, Wang, Chen, Mei, Gao, Gao, Yin, Liu, Zhang, Zou, Hou, Ji (b0210) 2022; 431
Wen, Song, Shi, Naveed, Hou, Wang, Su, Dou, Zhou, Li, Liu (b0165) 2024; 98
Kim, Seong, Manthiram (b0020) 2021; 34
Zhao, Zheng, Zou, Jia, Liu, Wang, Engelhard, Wang, Xu, Yang, Zhang (b0240) 2018; 8
Langdon, Manthiram (b0075) 2021; 37
Fan, Ou, Zhao, Liu, Zhang, Zhang, Zou, Seidl, Li, Hu, Battaglia, Yang (b0065) 2021; 12
Xu, Bao, Zhou, Li (b0185) 2023; 11
Li, Wang, Song, Wu, Zhang, Du, He (b0055) 2023; 19
Wang, Xu, Liu, Tan, Gu, Du, Li (b0130) 2024; 95
Wang, Li, Heo, Ren, Wei, Lee, Tian, Xu, Sun, Kim, Yang, Park (b0120) 2024; 666
Babar, Hanif, Li, Wang, Tian, Li (b0215) 2025; 101
Liu, Liu, Zhang, You, Huang, Yu (b0145) 2019; 7
Ni, Chen, Gao, Mei, Wang, Deng, Zou, Hou, Ji (b0160) 2023; 17
Liu, Yu, Liu, Lu, Bi, Dai, Li, Li, Hu, Ma, Luo, Zheng, Wu, Ren, Wen, Pan, Amine (b0040) 2021; 6
Ma, Hou, Vanaphuti, Yao, Fu, Azhari, Liu, Wang (b0190) 2022; 8
Cui, Jia, Li, He (b0090) 2011; 72
Zuo, Wang, Duan, Bai, Xu, Zhang, Wang, Zhang, Yang, Yang, Li, Cao, Jiang, Liu, Wang, Li, Li (b0105) 2024; 121
Zeng, Zhang, Qu, Li, Zhang, Su, Dou, Naveed, Zhou, Liu (b0050) 2022; 41
Dai, Kong, Yang, Li, Zeng, Zhao (b0060) 2022; 10
Wang, Zhang, Xiao, Ming, Li, Cheng, Ou (b0100) 2023; 34
Zeng, Zheng, Fan, Wang, Tian, Liu, Liu, Wang, Wang, Shu (b0115) 2024; 72
Wang, Nie, Miao, Tan, Wen, Xiao (b0195) 2021; 601
Su, Chen, Song, Dou, Wang, Yan, Zhou, Wang, Liu (b0125) 2023; 477
Huang (10.1016/j.jcis.2025.01.079_b0015) 2011; 7
Balogun (10.1016/j.jcis.2025.01.079_b0085) 2014; 2
Lv (10.1016/j.jcis.2025.01.079_b0155) 2024; 34
Liu (10.1016/j.jcis.2025.01.079_b0145) 2019; 7
Zhang (10.1016/j.jcis.2025.01.079_b0225) 2021; 9
Manthiram (10.1016/j.jcis.2025.01.079_b0005) 2020; 11
Wang (10.1016/j.jcis.2025.01.079_b0100) 2023; 34
Zeng (10.1016/j.jcis.2025.01.079_b0115) 2024; 72
Wang (10.1016/j.jcis.2025.01.079_b0195) 2021; 601
Su (10.1016/j.jcis.2025.01.079_b0220) 2023; 455
Voronina (10.1016/j.jcis.2025.01.079_b0045) 2020; 5
Zou (10.1016/j.jcis.2025.01.079_b0175) 2024; 34
Li (10.1016/j.jcis.2025.01.079_b0180) 2023; 29
Su (10.1016/j.jcis.2025.01.079_b0170) 2024; 95
Li (10.1016/j.jcis.2025.01.079_b0055) 2023; 19
Liu (10.1016/j.jcis.2025.01.079_b0110) 2022; 52
Shen (10.1016/j.jcis.2025.01.079_b0025) 2024; 95
Bi (10.1016/j.jcis.2025.01.079_b0135) 2020; 370
Wang (10.1016/j.jcis.2025.01.079_b0035) 2022; 110
Wang (10.1016/j.jcis.2025.01.079_b0130) 2024; 95
Hu (10.1016/j.jcis.2025.01.079_b0010) 2024; 6
Ou (10.1016/j.jcis.2025.01.079_b0080) 2022; 13
Liang (10.1016/j.jcis.2025.01.079_b0095) 2024; 10
Zhao (10.1016/j.jcis.2025.01.079_b0240) 2018; 8
Zeng (10.1016/j.jcis.2025.01.079_b0205) 2024; 16
Su (10.1016/j.jcis.2025.01.079_b0125) 2023; 477
Wang (10.1016/j.jcis.2025.01.079_b0120) 2024; 666
Zeng (10.1016/j.jcis.2025.01.079_b0150) 2010; 71
Tsi (10.1016/j.jcis.2025.01.079_b0070) 2018; 11
Ran (10.1016/j.jcis.2025.01.079_b0140) 2018; 289
Ni (10.1016/j.jcis.2025.01.079_b0210) 2022; 431
Ni (10.1016/j.jcis.2025.01.079_b0160) 2023; 17
Liu (10.1016/j.jcis.2025.01.079_b0040) 2021; 6
Cui (10.1016/j.jcis.2025.01.079_b0090) 2011; 72
Zeng (10.1016/j.jcis.2025.01.079_b0050) 2022; 41
Deng (10.1016/j.jcis.2025.01.079_b0030) 2018; 428
Ma (10.1016/j.jcis.2025.01.079_b0190) 2022; 8
Babar (10.1016/j.jcis.2025.01.079_b0215) 2025; 101
Fan (10.1016/j.jcis.2025.01.079_b0065) 2021; 12
Xu (10.1016/j.jcis.2025.01.079_b0185) 2023; 11
Becker (10.1016/j.jcis.2025.01.079_b0235) 2019; 11
Kim (10.1016/j.jcis.2025.01.079_b0020) 2021; 34
Langdon (10.1016/j.jcis.2025.01.079_b0075) 2021; 37
Fan (10.1016/j.jcis.2025.01.079_b0200) 2023; 477
Zuo (10.1016/j.jcis.2025.01.079_b0105) 2024; 121
Wen (10.1016/j.jcis.2025.01.079_b0165) 2024; 98
Dai (10.1016/j.jcis.2025.01.079_b0060) 2022; 10
Schipper (10.1016/j.jcis.2025.01.079_b0230) 2017; 8
References_xml – volume: 8
  year: 2018
  ident: b0240
  article-title: High voltage operation of Ni‐rich NMC cathodes enabled by stable electrode/electrolyte interphases
  publication-title: Adv. Energy Mater.
– volume: 289
  start-page: 82
  year: 2018
  end-page: 93
  ident: b0140
  article-title: Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 1944
  year: 2022
  end-page: 1955
  ident: b0190
  article-title: Direct upcycling of mixed Ni-lean polycrystals to single-crystal Ni-rich cathode materials
  publication-title: Chem
– volume: 9
  start-page: 1741
  year: 2021
  end-page: 1753
  ident: b0225
  article-title: Enhancing the high-voltage cycling performance and rate capability of LiNi
  publication-title: ACS Sustain. Chem. Eng.
– volume: 72
  year: 2024
  ident: b0115
  article-title: Phase compatible surface engineering to boost the cycling stability of single-crystalline Ni-rich cathode for high energy density lithium-ion batteries
  publication-title: Energy Storage Mater.
– volume: 11
  start-page: 1756
  year: 2023
  ident: b0185
  article-title: The modification of WO
  publication-title: Processes
– volume: 11
  year: 2018
  ident: b0070
  article-title: Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 455
  year: 2023
  ident: b0220
  article-title: Structure and defect strategy towards high-performance copper niobate as anode for Li-ion batteries
  publication-title: Chem. Eng. J.
– volume: 101
  start-page: 692
  year: 2025
  end-page: 701
  ident: b0215
  article-title: Tailoring BaCe
  publication-title: J. Energy Chem.
– volume: 72
  start-page: 899
  year: 2011
  end-page: 903
  ident: b0090
  article-title: Preparation and characteristics of Sb-doped LiNiO
  publication-title: J. Phys. Chem. Solids
– volume: 95
  year: 2024
  ident: b0170
  article-title: Garnet conductor network with Zr doping to implement surface bifunctional modification for Ni-rich cathodes
  publication-title: J. Energy Storage
– volume: 10
  start-page: 4381
  year: 2022
  end-page: 4390
  ident: b0060
  article-title: Single-crystal Ni-rich layered LiNi
  publication-title: ACS Sustainable Chem. Eng.
– volume: 11
  start-page: 1
  year: 2020
  ident: b0005
  article-title: A reflection on lithium-ion battery cathode chemistry
  publication-title: Nat. Commun.
– volume: 7
  start-page: 10661
  year: 2019
  end-page: 10669
  ident: b0145
  article-title: Revealing the effect of Ti doping on significantly enhancing cyclic performance at a high cutoff voltage for Ni-rich LiNi
  publication-title: Chem. Eng.
– volume: 12
  year: 2021
  ident: b0065
  article-title: In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1814
  year: 2020
  end-page: 1824
  ident: b0045
  article-title: Co-free layered cathode materials for high energy density lithium-ion batteries
  publication-title: ACS Energy Lett.
– volume: 29
  start-page: 4559
  year: 2023
  end-page: 4567
  ident: b0180
  article-title: B-doped nickel-rich ternary cathode material for lithium-ion batteries with excellent rate performance
  publication-title: Ionics
– volume: 477
  year: 2023
  ident: b0200
  article-title: Cation-ordered Ni-rich positive electrode material with superior chemical and structural stability enabled by atomic substitution for lithium-ion batteries
  publication-title: Chem. Eng. J.
– volume: 19
  year: 2023
  ident: b0055
  article-title: Understanding the insight mechanism of chemical‐mechanical degradation of layered Co‐free Ni‐rich cathode materials: A review
  publication-title: Small
– volume: 121
  year: 2024
  ident: b0105
  article-title: Grain binding derived reinforced interfacial mechanical behavior of Ni-rich layered cathode materials
  publication-title: Nano Energy
– volume: 34
  year: 2023
  ident: b0100
  article-title: Enhanced rate capability and mitigated capacity decay of ultrahigh-nickel cobalt-free LiNi
  publication-title: Chin. Chem. Lett.
– volume: 11
  start-page: 18404
  year: 2019
  end-page: 18414
  ident: b0235
  article-title: Surface modification of Ni-rich LiNi
  publication-title: ACS Appl. Mater. Interfaces
– volume: 34
  year: 2024
  ident: b0155
  article-title: Antimony doping enabled radially aligned microstructure in LiNi
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2024
  ident: b0010
  article-title: Constructing targeted strong Nb
  publication-title: Angew. Chem. Int. Ed.
– volume: 666
  start-page: 424
  year: 2024
  end-page: 433
  ident: b0120
  article-title: Synthesis and characterization of core–shell high-nickel cobalt-free layered LiNi
  publication-title: J. Colloid Interface Sci.
– volume: 431
  year: 2022
  ident: b0210
  article-title: Single-crystalline Ni-rich layered cathodes with super-stable cycling
  publication-title: Chem. Eng. J.
– volume: 10
  year: 2024
  ident: b0095
  article-title: High-entropy doping promising ultrahigh-Ni Co-free single-crystalline cathode toward commercializable high-energy lithium-ion batteries
  publication-title: Sci. Adv.
– volume: 8
  year: 2017
  ident: b0230
  article-title: From surface ZrO
  publication-title: Adv. Energy Mater.
– volume: 71
  start-page: 1404
  year: 2010
  end-page: 1409
  ident: b0150
  article-title: Porous LiNi
  publication-title: J. Phys. Chem. Solids
– volume: 34
  year: 2024
  ident: b0175
  article-title: Enabling the strengthened structural and interfacial stability of high‐nickel LiNi
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 11377
  year: 2024
  end-page: 11388
  ident: b0205
  article-title: Structure and charge regulation strategy enabling superior cycling stability of Ni-rich cathode materials
  publication-title: ACS Appl. Mater. Interfaces
– volume: 477
  year: 2023
  ident: b0125
  article-title: La
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 1876
  year: 2011
  end-page: 1902
  ident: b0015
  article-title: Graphene-based materials: Synthesis, characterization, properties, and applications
  publication-title: Small
– volume: 428
  start-page: 148
  year: 2018
  end-page: 153
  ident: b0030
  article-title: Spinel FeCo
  publication-title: Appl. Surf. Sci.
– volume: 41
  start-page: 3783
  year: 2022
  end-page: 3794
  ident: b0050
  article-title: Mechanism exploration of enhanced electrochemical performance of single-crystal versus polycrystalline LiNi
  publication-title: Rare Met.
– volume: 52
  start-page: 534
  year: 2022
  end-page: 546
  ident: b0110
  article-title: The surface double-coupling on single-crystal LiNi
  publication-title: Energy Storage Mater.
– volume: 370
  start-page: 1313
  year: 2020
  end-page: 1317
  ident: b0135
  article-title: Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode
  publication-title: Science
– volume: 110
  start-page: 120
  year: 2022
  end-page: 130
  ident: b0035
  article-title: Controversy on necessity of cobalt in nickel-rich cathode materials for lithium-ion batteries
  publication-title: J. Ind. Eng. Chem.
– volume: 34
  start-page: 250
  year: 2021
  end-page: 259
  ident: b0020
  article-title: Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives
  publication-title: Energy Storage Mater.
– volume: 6
  start-page: 277
  year: 2021
  end-page: 286
  ident: b0040
  article-title: Understanding Co roles towards developing co-free Ni-rich cathodes for rechargeable batteries
  publication-title: Nat. Energy
– volume: 37
  start-page: 143
  year: 2021
  end-page: 160
  ident: b0075
  article-title: A perspective on single-crystal layered oxide cathodes for lithium-ion batteries
  publication-title: Energy Storage Mater.
– volume: 2
  start-page: 10825
  year: 2014
  end-page: 10829
  ident: b0085
  article-title: Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries
  publication-title: J. Mater. Chem. A
– volume: 95
  start-page: 296
  year: 2024
  end-page: 305
  ident: b0025
  article-title: A universal multifunctional dual cation doping strategy towards stabilized ultra-high nickel cobalt-free lithium layered oxide cathode
  publication-title: J. Energy Chem.
– volume: 98
  year: 2024
  ident: b0165
  article-title: Improved electrochemical performance of single-crystal nickel-rich cathode by coating with different valence states metal oxides
  publication-title: J. Energy Storage
– volume: 601
  start-page: 853
  year: 2021
  end-page: 862
  ident: b0195
  article-title: Enhanced electrochemical properties of Ni-rich layered cathode materials via Mg
  publication-title: J. Colloid Interface Sci.
– volume: 95
  start-page: 336
  year: 2024
  end-page: 347
  ident: b0130
  article-title: Delving into the dissimilarities in electrochemical performance and underlying mechanisms for sodium and potassium ion storage in N-doped carbon-encapsulated metallic Cu
  publication-title: J. Energy Chem.
– volume: 13
  year: 2022
  ident: b0080
  article-title: Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy
  publication-title: Nat. Commun.
– volume: 17
  start-page: 12759
  year: 2023
  end-page: 12773
  ident: b0160
  article-title: Multiscale crystal field effect for high-performance ultrahigh-Ni layered cathode
  publication-title: ACS Nano
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.jcis.2025.01.079_b0005
  article-title: A reflection on lithium-ion battery cathode chemistry
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15355-0
– volume: 12
  year: 2021
  ident: 10.1016/j.jcis.2025.01.079_b0065
  article-title: In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25611-6
– volume: 2
  start-page: 10825
  year: 2014
  ident: 10.1016/j.jcis.2025.01.079_b0085
  article-title: Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00987H
– volume: 34
  year: 2024
  ident: 10.1016/j.jcis.2025.01.079_b0155
  article-title: Antimony doping enabled radially aligned microstructure in LiNi0.91Co0.06Al0.03O2 cathode for high‐voltage and low-temperature lithium battery
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202312284
– volume: 477
  year: 2023
  ident: 10.1016/j.jcis.2025.01.079_b0125
  article-title: La4NiLiO8-assistant surface reconstruction to realize in-situ regeneration of the degraded nickel-rich cathodes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.147202
– volume: 95
  year: 2024
  ident: 10.1016/j.jcis.2025.01.079_b0170
  article-title: Garnet conductor network with Zr doping to implement surface bifunctional modification for Ni-rich cathodes
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.112585
– volume: 121
  year: 2024
  ident: 10.1016/j.jcis.2025.01.079_b0105
  article-title: Grain binding derived reinforced interfacial mechanical behavior of Ni-rich layered cathode materials
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.109214
– volume: 37
  start-page: 143
  year: 2021
  ident: 10.1016/j.jcis.2025.01.079_b0075
  article-title: A perspective on single-crystal layered oxide cathodes for lithium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.02.003
– volume: 72
  year: 2024
  ident: 10.1016/j.jcis.2025.01.079_b0115
  article-title: Phase compatible surface engineering to boost the cycling stability of single-crystalline Ni-rich cathode for high energy density lithium-ion batteries
  publication-title: Energy Storage Mater.
– volume: 95
  start-page: 296
  year: 2024
  ident: 10.1016/j.jcis.2025.01.079_b0025
  article-title: A universal multifunctional dual cation doping strategy towards stabilized ultra-high nickel cobalt-free lithium layered oxide cathode
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2024.03.030
– volume: 10
  start-page: 4381
  year: 2022
  ident: 10.1016/j.jcis.2025.01.079_b0060
  article-title: Single-crystal Ni-rich layered LiNi0.9Mn0.1O2 enables superior performance of Co-free cathodes for lithium-ion batteries
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.1c06704
– volume: 11
  start-page: 18404
  year: 2019
  ident: 10.1016/j.jcis.2025.01.079_b0235
  article-title: Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b02889
– volume: 6
  start-page: 277
  year: 2021
  ident: 10.1016/j.jcis.2025.01.079_b0040
  article-title: Understanding Co roles towards developing co-free Ni-rich cathodes for rechargeable batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00776-y
– volume: 71
  start-page: 1404
  year: 2010
  ident: 10.1016/j.jcis.2025.01.079_b0150
  article-title: Porous LiNi0.75Co0.25O2 microspheres prepared via a hydrothermal process as cathode material for lithium ion batteries
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2010.07.002
– volume: 6
  year: 2024
  ident: 10.1016/j.jcis.2025.01.079_b0010
  article-title: Constructing targeted strong Nb4d−O2p−Li2s configurations to obtain excellent energy density and long life for Li‐rich cathodes
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  year: 2024
  ident: 10.1016/j.jcis.2025.01.079_b0095
  article-title: High-entropy doping promising ultrahigh-Ni Co-free single-crystalline cathode toward commercializable high-energy lithium-ion batteries
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.ado4472
– volume: 16
  start-page: 11377
  year: 2024
  ident: 10.1016/j.jcis.2025.01.079_b0205
  article-title: Structure and charge regulation strategy enabling superior cycling stability of Ni-rich cathode materials
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c15370
– volume: 13
  year: 2022
  ident: 10.1016/j.jcis.2025.01.079_b0080
  article-title: Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30020-4
– volume: 8
  start-page: 1944
  year: 2022
  ident: 10.1016/j.jcis.2025.01.079_b0190
  article-title: Direct upcycling of mixed Ni-lean polycrystals to single-crystal Ni-rich cathode materials
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.03.007
– volume: 601
  start-page: 853
  year: 2021
  ident: 10.1016/j.jcis.2025.01.079_b0195
  article-title: Enhanced electrochemical properties of Ni-rich layered cathode materials via Mg2+ and Ti4+ co-doping for lithium-ion batteries
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.05.167
– volume: 52
  start-page: 534
  year: 2022
  ident: 10.1016/j.jcis.2025.01.079_b0110
  article-title: The surface double-coupling on single-crystal LiNi0.8Co0.1Mn0.1O2 for inhibiting the formation of intragranular cracks and oxygen vacancies
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.08.026
– volume: 95
  start-page: 336
  year: 2024
  ident: 10.1016/j.jcis.2025.01.079_b0130
  article-title: Delving into the dissimilarities in electrochemical performance and underlying mechanisms for sodium and potassium ion storage in N-doped carbon-encapsulated metallic Cu2Se nanocubes
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2024.03.056
– volume: 72
  start-page: 899
  year: 2011
  ident: 10.1016/j.jcis.2025.01.079_b0090
  article-title: Preparation and characteristics of Sb-doped LiNiO2 cathode materials for Li-ion batteries
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2011.04.013
– volume: 477
  year: 2023
  ident: 10.1016/j.jcis.2025.01.079_b0200
  article-title: Cation-ordered Ni-rich positive electrode material with superior chemical and structural stability enabled by atomic substitution for lithium-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.147181
– volume: 17
  start-page: 12759
  year: 2023
  ident: 10.1016/j.jcis.2025.01.079_b0160
  article-title: Multiscale crystal field effect for high-performance ultrahigh-Ni layered cathode
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c03770
– volume: 98
  year: 2024
  ident: 10.1016/j.jcis.2025.01.079_b0165
  article-title: Improved electrochemical performance of single-crystal nickel-rich cathode by coating with different valence states metal oxides
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.113037
– volume: 431
  year: 2022
  ident: 10.1016/j.jcis.2025.01.079_b0210
  article-title: Single-crystalline Ni-rich layered cathodes with super-stable cycling
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133731
– volume: 101
  start-page: 692
  year: 2025
  ident: 10.1016/j.jcis.2025.01.079_b0215
  article-title: Tailoring BaCe0.7Zr0.1(Dy0.1|Yb0.1)0.2O3-δ electrolyte through strategic Cu doping for low temperature proton conducting fuel cells: Envisioned theoretically and experimentally
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2024.09.067
– volume: 455
  year: 2023
  ident: 10.1016/j.jcis.2025.01.079_b0220
  article-title: Structure and defect strategy towards high-performance copper niobate as anode for Li-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140802
– volume: 8
  year: 2017
  ident: 10.1016/j.jcis.2025.01.079_b0230
  article-title: From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel‐rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries
  publication-title: Adv. Energy Mater.
– volume: 34
  start-page: 250
  year: 2021
  ident: 10.1016/j.jcis.2025.01.079_b0020
  article-title: Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.09.020
– volume: 41
  start-page: 3783
  year: 2022
  ident: 10.1016/j.jcis.2025.01.079_b0050
  article-title: Mechanism exploration of enhanced electrochemical performance of single-crystal versus polycrystalline LiNi0.8Mn0.1Co0.1O2
  publication-title: Rare Met.
  doi: 10.1007/s12598-022-02055-5
– volume: 11
  year: 2018
  ident: 10.1016/j.jcis.2025.01.079_b0070
  article-title: Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 34
  year: 2023
  ident: 10.1016/j.jcis.2025.01.079_b0100
  article-title: Enhanced rate capability and mitigated capacity decay of ultrahigh-nickel cobalt-free LiNi0.9Mn0.1O2 cathode at high-voltage by selective tungsten substitution
  publication-title: Chin. Chem. Lett.
– volume: 370
  start-page: 1313
  year: 2020
  ident: 10.1016/j.jcis.2025.01.079_b0135
  article-title: Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode
  publication-title: Science
  doi: 10.1126/science.abc3167
– volume: 11
  start-page: 1756
  year: 2023
  ident: 10.1016/j.jcis.2025.01.079_b0185
  article-title: The modification of WO3 for lithium batteries with nickel-rich ternary cathode materials
  publication-title: Processes
  doi: 10.3390/pr11061756
– volume: 34
  year: 2024
  ident: 10.1016/j.jcis.2025.01.079_b0175
  article-title: Enabling the strengthened structural and interfacial stability of high‐nickel LiNi0.9Co0.05Mn0.05O2 cathode by a coating‐doping‐microstructure regulation three‐in‐one strategy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202406068
– volume: 8
  year: 2018
  ident: 10.1016/j.jcis.2025.01.079_b0240
  article-title: High voltage operation of Ni‐rich NMC cathodes enabled by stable electrode/electrolyte interphases
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800297
– volume: 110
  start-page: 120
  year: 2022
  ident: 10.1016/j.jcis.2025.01.079_b0035
  article-title: Controversy on necessity of cobalt in nickel-rich cathode materials for lithium-ion batteries
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2022.03.036
– volume: 9
  start-page: 1741
  year: 2021
  ident: 10.1016/j.jcis.2025.01.079_b0225
  article-title: Enhancing the high-voltage cycling performance and rate capability of LiNi0.8Co0.1Mn0.1O2 cathode material by codoping with Na and Br
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c07703
– volume: 29
  start-page: 4559
  year: 2023
  ident: 10.1016/j.jcis.2025.01.079_b0180
  article-title: B-doped nickel-rich ternary cathode material for lithium-ion batteries with excellent rate performance
  publication-title: Ionics
  doi: 10.1007/s11581-023-05191-9
– volume: 428
  start-page: 148
  year: 2018
  ident: 10.1016/j.jcis.2025.01.079_b0030
  article-title: Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.09.130
– volume: 666
  start-page: 424
  year: 2024
  ident: 10.1016/j.jcis.2025.01.079_b0120
  article-title: Synthesis and characterization of core–shell high-nickel cobalt-free layered LiNi0.95Mg0.02Al0.03O2@Li2ZrO3 cathode for high-performance lithium ion batteries
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2024.04.045
– volume: 289
  start-page: 82
  year: 2018
  ident: 10.1016/j.jcis.2025.01.079_b0140
  article-title: Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode for Li-ion batteries at high cut-off voltage
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.091
– volume: 5
  start-page: 1814
  year: 2020
  ident: 10.1016/j.jcis.2025.01.079_b0045
  article-title: Co-free layered cathode materials for high energy density lithium-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00742
– volume: 7
  start-page: 1876
  year: 2011
  ident: 10.1016/j.jcis.2025.01.079_b0015
  article-title: Graphene-based materials: Synthesis, characterization, properties, and applications
  publication-title: Small
  doi: 10.1002/smll.201002009
– volume: 7
  start-page: 10661
  year: 2019
  ident: 10.1016/j.jcis.2025.01.079_b0145
  article-title: Revealing the effect of Ti doping on significantly enhancing cyclic performance at a high cutoff voltage for Ni-rich LiNi0.8Co0.15Al0.05O2 cathode, ACS Sustain
  publication-title: Chem. Eng.
– volume: 19
  year: 2023
  ident: 10.1016/j.jcis.2025.01.079_b0055
  article-title: Understanding the insight mechanism of chemical‐mechanical degradation of layered Co‐free Ni‐rich cathode materials: A review
  publication-title: Small
SSID ssj0011559
Score 2.4810908
Snippet [Display omitted] •The synchronous modification strategy from interface to interior for ultrahigh-Ni Co-free cathode.•The Sb-based modification can enhance...
Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to...
Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 138
SubjectTerms cathodes
dissociation
Doping engineering
energy
Ion diffusion
lithium batteries
mechanical stress
Nickel-rich cobalt-free materials
phase transition
Structure stability
Surface modification
Title Reinforcing ion diffusion and controlling microcrack of nickel-rich cobalt-free single-crystalline cathodes via interfacial protection and bulk optimization
URI https://dx.doi.org/10.1016/j.jcis.2025.01.079
https://www.ncbi.nlm.nih.gov/pubmed/39823729
https://www.proquest.com/docview/3156968696
https://www.proquest.com/docview/3165876696
Volume 684
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_Ugur5fRPAm0T7SpntcFmVV9CAK3kJexeralborePGX-GOdaVNRUA8eemhJ2rRfOplk5vtCyL6wNsZ4Esu4dYyLhDMda8sSwbWB4cOGIXKHLy7TwQ0_u01up0i_5cJgWqW3_Y1Nr621v3Lkv-bRU1Egxxf-NtEVUa3pX3OpORfYyw_fPtM8Qgy7NWkeIcPSnjjT5HjdmwIlu6NGuhPTuX4enH5zPutB6GSRLHjvkfaaBi6RKVd2yGy_3bStQ-a_6Asuk_crVwujGjijAADF7VAmuD5GVWmpT1NHQjp9xMQ8UynzQEc5LQv4uYcMbOQdlNJqOGZ55RzFhYWhY6Z6BacSKzqKuq8j657pS6Eoik9UucJleOoVINqH6ckQbg0G6tEzP1fIzcnxdX_A_HYMzMQ8GINZhMmkjayJdK6EdkmK069YoIidUIp3VeBUZrTqZjxG0xDmgI1F7mqklFHxKpkuR6VbJ9SY0GVacx0ozdO0Zu_CtNhGeRBDbbFBDloc5FOjuiHbdLR7iahJRE0GoQTUNkjSQiW_9R0Jw8Kf9fZaXCXAhJESVbrR5FnGMKvtphkcf5UB502kdZm1plN8thVeIsJ46OY_W7ZF5vAMo1Zhsk2mx9XE7YDzM9a7de_eJTO90_PB5QfRvwZH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5UA5VEBbyqs1Um-VRR5OnD2iFWgpsIcKJG6WX1EDSxaFXST-Cz-WmcRBILUcesghWTvr5HPGY898nwF-SOdSiifxQjjPhcwEN6lxPJPCWBw-XBwTd_h8ko8vxa-r7GoJRj0XhtIqg-3vbHprrcOVg_A2D-6qiji--LXJoUxaTX_iUi-TOlU2gOXDk9Px5CWYQJG3LtMj5lQhcGe6NK9rW5Fqd9Kpd1JG19_Hp3_5n-04dLwGH4MDyQ67Nq7Dkq83YGXU79u2AauvJAY_wdNv32qjWjxjiAGjHVEWtETGdO1YyFQnTjq7pdw822h7w2Ylqyv8vqcczeQfLGX0dM7LxntGawtTz23ziH4lVfSMpF9nzt-zh0oz0p9oSk0r8SyIQPR_ZhZTvDXaqNtA_vwMl8dHF6MxDzsycJuKaI6WEeeTLnE2MaWWxmc5zcBSSTp2Umsx1JHXhTV6WIiUrENcIjyO6KuJ1lanX2BQz2r_FZi1sS-MESbSRuR5S-DFmbFLyijF2nILfvY4qLtOeEP1GWnXilBThJqKYoWobUHWQ6XedB-FI8O79fZ7XBXCRMESXfvZ4l6lOLEd5gUe75VB_03mbZnNrlO8tBUfIqGQ6PZ_tuw7rIwvzs_U2cnkdAc-0C8UxIqzXRjMm4XfQ19obr6Fvv4Mv7MI-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcing+ion+diffusion+and+controlling+microcrack+of+nickel-rich+cobalt-free+single-crystalline+cathodes+via+interfacial+protection+and+bulk+optimization&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zheng%2C+Chao&rft.au=Xiao%2C+Zhiming&rft.au=Xian%2C+Keyi&rft.au=Wen%2C+Heng&rft.date=2025-04-15&rft.eissn=1095-7103&rft.volume=684&rft.issue=Pt+2&rft.spage=138&rft_id=info:doi/10.1016%2Fj.jcis.2025.01.079&rft_id=info%3Apmid%2F39823729&rft.externalDocID=39823729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon