Reinforcing ion diffusion and controlling microcrack of nickel-rich cobalt-free single-crystalline cathodes via interfacial protection and bulk optimization
[Display omitted] •The synchronous modification strategy from interface to interior for ultrahigh-Ni Co-free cathode.•The Sb-based modification can enhance structure stability both interface and bulk of materials.•Unbroken layer structure and enlarged ion channel improve the reaction kinetics of des...
Saved in:
Published in | Journal of colloid and interface science Vol. 684; no. Pt 2; pp. 138 - 147 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The synchronous modification strategy from interface to interior for ultrahigh-Ni Co-free cathode.•The Sb-based modification can enhance structure stability both interface and bulk of materials.•Unbroken layer structure and enlarged ion channel improve the reaction kinetics of designed materials.
Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi0.9Mn0.1O2 materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials. |
---|---|
AbstractList | [Display omitted]
•The synchronous modification strategy from interface to interior for ultrahigh-Ni Co-free cathode.•The Sb-based modification can enhance structure stability both interface and bulk of materials.•Unbroken layer structure and enlarged ion channel improve the reaction kinetics of designed materials.
Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi0.9Mn0.1O2 materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials. Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi₀.₉Mn₀.₁O₂ materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials. Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi0.9Mn0.1O2 materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials.Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi0.9Mn0.1O2 materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials. Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNi Mn O materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability. Meanwhile, the existence of Sb-ions can restrain the harmful H2-H3 phase transformation and expand interlayer spacing, thereof enabling to weaken the mechanical stress and enhance ion diffusion rate. On the other hand, the surficial modification resulted by the Sb-based materials can effectively suppress the noxious interfacial reaction, which is conducive to improving the cycling stability. As expected, the capacity retention rate of NM-Sb materials prepared by this optimized design in this work reached 89.5 % after 200 cycles at 1 C. Thus, the constructed double-modification is essential for obtaining robust framework and enhancing interfacial stability for high-performance nickel-rich cobalt-free lithium-ion battery cathode materials. |
Author | Zheng, Chao Du, Kejie Ou, Xing Lu, Na Ye, Long Xian, Keyi Wang, Chunhui Wen, Heng He, Xinyou Zhang, Bao Xiao, Zhiming |
Author_xml | – sequence: 1 givenname: Chao surname: Zheng fullname: Zheng, Chao organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 2 givenname: Zhiming surname: Xiao fullname: Xiao, Zhiming email: xiaozhiming09@163.com organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 3 givenname: Keyi surname: Xian fullname: Xian, Keyi organization: School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001 China – sequence: 4 givenname: Heng surname: Wen fullname: Wen, Heng organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 5 givenname: Na surname: Lu fullname: Lu, Na organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 6 givenname: Xinyou surname: He fullname: He, Xinyou organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 7 givenname: Long surname: Ye fullname: Ye, Long organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 8 givenname: Kejie surname: Du fullname: Du, Kejie organization: School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001 China – sequence: 9 givenname: Bao surname: Zhang fullname: Zhang, Bao email: csuzhangbao@163.com organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 10 givenname: Xing orcidid: 0000-0001-6302-7372 surname: Ou fullname: Ou, Xing email: ouxing@csu.edu.cn organization: Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, Changsha 410083 China – sequence: 11 givenname: Chunhui surname: Wang fullname: Wang, Chunhui email: chunhuiwang@usc.edu.cn organization: School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001 China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39823729$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1TAQhS1URG8LL8ACZckmwXbiOJbYoIo_qRISgrU1ccbUt772xXYqlWfhYXF0W5aIle3xd2ZG51yQsxADEvKS0Y5RNr7Zd3vjcscpFx1lHZXqCdkxqkQrGe3PyI5SzlollTwnFznvKWVMCPWMnPdq4r3kakd-f0UXbEzGhR-Ni6FZnLVr3m4QlsbEUFL0fvs9OJOiSWBum2ib4Mwt-jY5c1OpGXxpbUJsckU9tibd5wKbEBsD5SYumJs7B40LBZMF48A3xxQLmvI4bF59bX0s7uB-wVZ9Tp5a8BlfPJyX5PuH99-uPrXXXz5-vnp33Zp-oKVVjIth4YvhswU5oxgHPrJeVieEBBgUUITJzKCmoQrowKzkYhH1wQEM9Jfk9alvXejnirnog8sGvYeAcc26Z6OY5Diq8T9QUbHphL56QNf5gIs-JneAdK8fza8APwHV15wT2r8Io3pLWO_1lrDeEtaU6ZpwFb09ibAacucw6WwcBoOLS9VLvUT3L_kfUYSx1A |
Cites_doi | 10.1038/s41467-020-15355-0 10.1038/s41467-021-25611-6 10.1039/C4TA00987H 10.1002/adfm.202312284 10.1016/j.cej.2023.147202 10.1016/j.est.2024.112585 10.1016/j.nanoen.2023.109214 10.1016/j.ensm.2021.02.003 10.1016/j.jechem.2024.03.030 10.1021/acssuschemeng.1c06704 10.1021/acsami.9b02889 10.1038/s41560-021-00776-y 10.1016/j.jpcs.2010.07.002 10.1126/sciadv.ado4472 10.1021/acsami.3c15370 10.1038/s41467-022-30020-4 10.1016/j.chempr.2022.03.007 10.1016/j.jcis.2021.05.167 10.1016/j.ensm.2022.08.026 10.1016/j.jechem.2024.03.056 10.1016/j.jpcs.2011.04.013 10.1016/j.cej.2023.147181 10.1021/acsnano.3c03770 10.1016/j.est.2024.113037 10.1016/j.cej.2021.133731 10.1016/j.jechem.2024.09.067 10.1016/j.cej.2022.140802 10.1016/j.ensm.2020.09.020 10.1007/s12598-022-02055-5 10.1126/science.abc3167 10.3390/pr11061756 10.1002/adfm.202406068 10.1002/aenm.201800297 10.1016/j.jiec.2022.03.036 10.1021/acssuschemeng.0c07703 10.1007/s11581-023-05191-9 10.1016/j.apsusc.2017.09.130 10.1016/j.jcis.2024.04.045 10.1016/j.electacta.2018.08.091 10.1021/acsenergylett.0c00742 10.1002/smll.201002009 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Inc. Copyright © 2025 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Inc. – notice: Copyright © 2025 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2025.01.079 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 147 |
ExternalDocumentID | 39823729 10_1016_j_jcis_2025_01_079 S0021979725000931 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 53G 6TJ AAQXK AATTM AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEUPX AFFNX AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 LG5 LX6 M24 M41 NDZJH NEJ R2- RIG SCB SCE SSH VH1 WUQ ZGI ZXP NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c340t-91254d2dc2bfa7be5642613709557aa49a0ea8cba984340041f725d54342aaca3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Wed Jul 02 04:38:51 EDT 2025 Fri Jul 11 00:50:24 EDT 2025 Thu Apr 03 07:02:47 EDT 2025 Tue Jul 01 05:37:21 EDT 2025 Sat Feb 08 15:51:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 2 |
Keywords | Ion diffusion Doping engineering Surface modification Structure stability Nickel-rich cobalt-free materials |
Language | English |
License | Copyright © 2025 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-91254d2dc2bfa7be5642613709557aa49a0ea8cba984340041f725d54342aaca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6302-7372 |
PMID | 39823729 |
PQID | 3156968696 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3165876696 proquest_miscellaneous_3156968696 pubmed_primary_39823729 crossref_primary_10_1016_j_jcis_2025_01_079 elsevier_sciencedirect_doi_10_1016_j_jcis_2025_01_079 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-15 |
PublicationDateYYYYMMDD | 2025-04-15 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wang, Wang, Fan, Yang, Zhan, Liu (b0035) 2022; 110 Huang, Yin, Wu, Qi, He, Zhang, Yan, Boey, Zhang (b0015) 2011; 7 Bi, Tao, Wu, Li, Xu, Hu, Wu, Hu, Wang, Zhang, Qi, Xiao (b0135) 2020; 370 Tsi, Wen, Wolfman, Choe, Pan, Su, Thornton, Cabana, Chiang (b0070) 2018; 11 Ou, Liu, Zhong, Fan, Guo, Huang, Cao, Hu, Zhang, Chu, Hu, Lin, Dahbi, Alami, Amine, Yang, Lu (b0080) 2022; 13 Fan, Zheng, Zeng, Xu, Wen, Wang, Tian, Wang, Zeng, Xiang, Shu (b0200) 2023; 477 Zhang, Wu, Dai, Mai, Gu (b0225) 2021; 9 Zeng, Fan, Zheng, Wang, Tian, Liu, Liu, Wang, Wang, Shu (b0205) 2024; 16 Manthiram (b0005) 2020; 11 Su, Song, Xu, Shi, Wen, Dou, Zhou, Zhang, Liu (b0170) 2024; 95 Su, Li, He, Wan, Chen, Zhou, Zhang, Dou, Xu, Lu, Wang, Chu, Liu (b0220) 2023; 455 Balogun, Yu, Li, Zhai, Liu, Lu, Tong (b0085) 2014; 2 Schipper, Bouzaglo, Dixit, Erickson, Weigel, Talianker, Grinblat, Burstein, Schmidt, Lampert, Erk, Markovsky, Major, Aurbach (b0230) 2017; 8 Li, Huang, Li, Lei, He, Cheng, Wu, Li (b0180) 2023; 29 Shen, Yin, Wang, Huang, Cheng (b0025) 2024; 95 Voronina, Sun, Myung (b0045) 2020; 5 Ran, Zhao, Hu, Shen, Liu, Liu, Shu, Zhang, Liu, Tan, Li, Liu (b0140) 2018; 289 Deng, Yang, Yang, Shen, Zhao, Wang, Wang, Li, Qian (b0030) 2018; 428 Lv, Huang, Zhang, Kang, Liu, Li, Liang, Zhong, Jia, Ouyang, Qin, Kang, Zhang, Cao (b0155) 2024; 34 Zou, Tang, Zheng, Zhang, Yan, Xue, Zhou, Xu, Yin, Liao, Qiao, Bao, Sun (b0175) 2024; 34 Liang, Su, Sun, Wang, Hou, Liu, Zhang, Yuan (b0095) 2024; 10 Zeng, Wu, Luo, Zhou, Tong (b0150) 2010; 71 Liu, Zeng, Li, Wan, Li, Zhang, Li, Su, Dou, Zeng, Zhou, Guo, Chu (b0110) 2022; 52 Becker, Börner, Nölle, Diehl, Klein, Rodehorst, Schmuch, Winter, Placke (b0235) 2019; 11 Hu, Tang, Zheng, Yu, Xiong, Li, Qiu, Wan, Song, Zhong, Wu, Guo (b0010) 2024; 6 Ni, Guo, Deng, Wang, Chen, Mei, Gao, Gao, Yin, Liu, Zhang, Zou, Hou, Ji (b0210) 2022; 431 Wen, Song, Shi, Naveed, Hou, Wang, Su, Dou, Zhou, Li, Liu (b0165) 2024; 98 Kim, Seong, Manthiram (b0020) 2021; 34 Zhao, Zheng, Zou, Jia, Liu, Wang, Engelhard, Wang, Xu, Yang, Zhang (b0240) 2018; 8 Langdon, Manthiram (b0075) 2021; 37 Fan, Ou, Zhao, Liu, Zhang, Zhang, Zou, Seidl, Li, Hu, Battaglia, Yang (b0065) 2021; 12 Xu, Bao, Zhou, Li (b0185) 2023; 11 Li, Wang, Song, Wu, Zhang, Du, He (b0055) 2023; 19 Wang, Xu, Liu, Tan, Gu, Du, Li (b0130) 2024; 95 Wang, Li, Heo, Ren, Wei, Lee, Tian, Xu, Sun, Kim, Yang, Park (b0120) 2024; 666 Babar, Hanif, Li, Wang, Tian, Li (b0215) 2025; 101 Liu, Liu, Zhang, You, Huang, Yu (b0145) 2019; 7 Ni, Chen, Gao, Mei, Wang, Deng, Zou, Hou, Ji (b0160) 2023; 17 Liu, Yu, Liu, Lu, Bi, Dai, Li, Li, Hu, Ma, Luo, Zheng, Wu, Ren, Wen, Pan, Amine (b0040) 2021; 6 Ma, Hou, Vanaphuti, Yao, Fu, Azhari, Liu, Wang (b0190) 2022; 8 Cui, Jia, Li, He (b0090) 2011; 72 Zuo, Wang, Duan, Bai, Xu, Zhang, Wang, Zhang, Yang, Yang, Li, Cao, Jiang, Liu, Wang, Li, Li (b0105) 2024; 121 Zeng, Zhang, Qu, Li, Zhang, Su, Dou, Naveed, Zhou, Liu (b0050) 2022; 41 Dai, Kong, Yang, Li, Zeng, Zhao (b0060) 2022; 10 Wang, Zhang, Xiao, Ming, Li, Cheng, Ou (b0100) 2023; 34 Zeng, Zheng, Fan, Wang, Tian, Liu, Liu, Wang, Wang, Shu (b0115) 2024; 72 Wang, Nie, Miao, Tan, Wen, Xiao (b0195) 2021; 601 Su, Chen, Song, Dou, Wang, Yan, Zhou, Wang, Liu (b0125) 2023; 477 Huang (10.1016/j.jcis.2025.01.079_b0015) 2011; 7 Balogun (10.1016/j.jcis.2025.01.079_b0085) 2014; 2 Lv (10.1016/j.jcis.2025.01.079_b0155) 2024; 34 Liu (10.1016/j.jcis.2025.01.079_b0145) 2019; 7 Zhang (10.1016/j.jcis.2025.01.079_b0225) 2021; 9 Manthiram (10.1016/j.jcis.2025.01.079_b0005) 2020; 11 Wang (10.1016/j.jcis.2025.01.079_b0100) 2023; 34 Zeng (10.1016/j.jcis.2025.01.079_b0115) 2024; 72 Wang (10.1016/j.jcis.2025.01.079_b0195) 2021; 601 Su (10.1016/j.jcis.2025.01.079_b0220) 2023; 455 Voronina (10.1016/j.jcis.2025.01.079_b0045) 2020; 5 Zou (10.1016/j.jcis.2025.01.079_b0175) 2024; 34 Li (10.1016/j.jcis.2025.01.079_b0180) 2023; 29 Su (10.1016/j.jcis.2025.01.079_b0170) 2024; 95 Li (10.1016/j.jcis.2025.01.079_b0055) 2023; 19 Liu (10.1016/j.jcis.2025.01.079_b0110) 2022; 52 Shen (10.1016/j.jcis.2025.01.079_b0025) 2024; 95 Bi (10.1016/j.jcis.2025.01.079_b0135) 2020; 370 Wang (10.1016/j.jcis.2025.01.079_b0035) 2022; 110 Wang (10.1016/j.jcis.2025.01.079_b0130) 2024; 95 Hu (10.1016/j.jcis.2025.01.079_b0010) 2024; 6 Ou (10.1016/j.jcis.2025.01.079_b0080) 2022; 13 Liang (10.1016/j.jcis.2025.01.079_b0095) 2024; 10 Zhao (10.1016/j.jcis.2025.01.079_b0240) 2018; 8 Zeng (10.1016/j.jcis.2025.01.079_b0205) 2024; 16 Su (10.1016/j.jcis.2025.01.079_b0125) 2023; 477 Wang (10.1016/j.jcis.2025.01.079_b0120) 2024; 666 Zeng (10.1016/j.jcis.2025.01.079_b0150) 2010; 71 Tsi (10.1016/j.jcis.2025.01.079_b0070) 2018; 11 Ran (10.1016/j.jcis.2025.01.079_b0140) 2018; 289 Ni (10.1016/j.jcis.2025.01.079_b0210) 2022; 431 Ni (10.1016/j.jcis.2025.01.079_b0160) 2023; 17 Liu (10.1016/j.jcis.2025.01.079_b0040) 2021; 6 Cui (10.1016/j.jcis.2025.01.079_b0090) 2011; 72 Zeng (10.1016/j.jcis.2025.01.079_b0050) 2022; 41 Deng (10.1016/j.jcis.2025.01.079_b0030) 2018; 428 Ma (10.1016/j.jcis.2025.01.079_b0190) 2022; 8 Babar (10.1016/j.jcis.2025.01.079_b0215) 2025; 101 Fan (10.1016/j.jcis.2025.01.079_b0065) 2021; 12 Xu (10.1016/j.jcis.2025.01.079_b0185) 2023; 11 Becker (10.1016/j.jcis.2025.01.079_b0235) 2019; 11 Kim (10.1016/j.jcis.2025.01.079_b0020) 2021; 34 Langdon (10.1016/j.jcis.2025.01.079_b0075) 2021; 37 Fan (10.1016/j.jcis.2025.01.079_b0200) 2023; 477 Zuo (10.1016/j.jcis.2025.01.079_b0105) 2024; 121 Wen (10.1016/j.jcis.2025.01.079_b0165) 2024; 98 Dai (10.1016/j.jcis.2025.01.079_b0060) 2022; 10 Schipper (10.1016/j.jcis.2025.01.079_b0230) 2017; 8 |
References_xml | – volume: 8 year: 2018 ident: b0240 article-title: High voltage operation of Ni‐rich NMC cathodes enabled by stable electrode/electrolyte interphases publication-title: Adv. Energy Mater. – volume: 289 start-page: 82 year: 2018 end-page: 93 ident: b0140 article-title: Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi publication-title: Electrochim. Acta – volume: 8 start-page: 1944 year: 2022 end-page: 1955 ident: b0190 article-title: Direct upcycling of mixed Ni-lean polycrystals to single-crystal Ni-rich cathode materials publication-title: Chem – volume: 9 start-page: 1741 year: 2021 end-page: 1753 ident: b0225 article-title: Enhancing the high-voltage cycling performance and rate capability of LiNi publication-title: ACS Sustain. Chem. Eng. – volume: 72 year: 2024 ident: b0115 article-title: Phase compatible surface engineering to boost the cycling stability of single-crystalline Ni-rich cathode for high energy density lithium-ion batteries publication-title: Energy Storage Mater. – volume: 11 start-page: 1756 year: 2023 ident: b0185 article-title: The modification of WO publication-title: Processes – volume: 11 year: 2018 ident: b0070 article-title: Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries publication-title: Energy Environ. Sci. – volume: 455 year: 2023 ident: b0220 article-title: Structure and defect strategy towards high-performance copper niobate as anode for Li-ion batteries publication-title: Chem. Eng. J. – volume: 101 start-page: 692 year: 2025 end-page: 701 ident: b0215 article-title: Tailoring BaCe publication-title: J. Energy Chem. – volume: 72 start-page: 899 year: 2011 end-page: 903 ident: b0090 article-title: Preparation and characteristics of Sb-doped LiNiO publication-title: J. Phys. Chem. Solids – volume: 95 year: 2024 ident: b0170 article-title: Garnet conductor network with Zr doping to implement surface bifunctional modification for Ni-rich cathodes publication-title: J. Energy Storage – volume: 10 start-page: 4381 year: 2022 end-page: 4390 ident: b0060 article-title: Single-crystal Ni-rich layered LiNi publication-title: ACS Sustainable Chem. Eng. – volume: 11 start-page: 1 year: 2020 ident: b0005 article-title: A reflection on lithium-ion battery cathode chemistry publication-title: Nat. Commun. – volume: 7 start-page: 10661 year: 2019 end-page: 10669 ident: b0145 article-title: Revealing the effect of Ti doping on significantly enhancing cyclic performance at a high cutoff voltage for Ni-rich LiNi publication-title: Chem. Eng. – volume: 12 year: 2021 ident: b0065 article-title: In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes publication-title: Nat. Commun. – volume: 5 start-page: 1814 year: 2020 end-page: 1824 ident: b0045 article-title: Co-free layered cathode materials for high energy density lithium-ion batteries publication-title: ACS Energy Lett. – volume: 29 start-page: 4559 year: 2023 end-page: 4567 ident: b0180 article-title: B-doped nickel-rich ternary cathode material for lithium-ion batteries with excellent rate performance publication-title: Ionics – volume: 477 year: 2023 ident: b0200 article-title: Cation-ordered Ni-rich positive electrode material with superior chemical and structural stability enabled by atomic substitution for lithium-ion batteries publication-title: Chem. Eng. J. – volume: 19 year: 2023 ident: b0055 article-title: Understanding the insight mechanism of chemical‐mechanical degradation of layered Co‐free Ni‐rich cathode materials: A review publication-title: Small – volume: 121 year: 2024 ident: b0105 article-title: Grain binding derived reinforced interfacial mechanical behavior of Ni-rich layered cathode materials publication-title: Nano Energy – volume: 34 year: 2023 ident: b0100 article-title: Enhanced rate capability and mitigated capacity decay of ultrahigh-nickel cobalt-free LiNi publication-title: Chin. Chem. Lett. – volume: 11 start-page: 18404 year: 2019 end-page: 18414 ident: b0235 article-title: Surface modification of Ni-rich LiNi publication-title: ACS Appl. Mater. Interfaces – volume: 34 year: 2024 ident: b0155 article-title: Antimony doping enabled radially aligned microstructure in LiNi publication-title: Adv. Funct. Mater. – volume: 6 year: 2024 ident: b0010 article-title: Constructing targeted strong Nb publication-title: Angew. Chem. Int. Ed. – volume: 666 start-page: 424 year: 2024 end-page: 433 ident: b0120 article-title: Synthesis and characterization of core–shell high-nickel cobalt-free layered LiNi publication-title: J. Colloid Interface Sci. – volume: 431 year: 2022 ident: b0210 article-title: Single-crystalline Ni-rich layered cathodes with super-stable cycling publication-title: Chem. Eng. J. – volume: 10 year: 2024 ident: b0095 article-title: High-entropy doping promising ultrahigh-Ni Co-free single-crystalline cathode toward commercializable high-energy lithium-ion batteries publication-title: Sci. Adv. – volume: 8 year: 2017 ident: b0230 article-title: From surface ZrO publication-title: Adv. Energy Mater. – volume: 71 start-page: 1404 year: 2010 end-page: 1409 ident: b0150 article-title: Porous LiNi publication-title: J. Phys. Chem. Solids – volume: 34 year: 2024 ident: b0175 article-title: Enabling the strengthened structural and interfacial stability of high‐nickel LiNi publication-title: Adv. Funct. Mater. – volume: 16 start-page: 11377 year: 2024 end-page: 11388 ident: b0205 article-title: Structure and charge regulation strategy enabling superior cycling stability of Ni-rich cathode materials publication-title: ACS Appl. Mater. Interfaces – volume: 477 year: 2023 ident: b0125 article-title: La publication-title: Chem. Eng. J. – volume: 7 start-page: 1876 year: 2011 end-page: 1902 ident: b0015 article-title: Graphene-based materials: Synthesis, characterization, properties, and applications publication-title: Small – volume: 428 start-page: 148 year: 2018 end-page: 153 ident: b0030 article-title: Spinel FeCo publication-title: Appl. Surf. Sci. – volume: 41 start-page: 3783 year: 2022 end-page: 3794 ident: b0050 article-title: Mechanism exploration of enhanced electrochemical performance of single-crystal versus polycrystalline LiNi publication-title: Rare Met. – volume: 52 start-page: 534 year: 2022 end-page: 546 ident: b0110 article-title: The surface double-coupling on single-crystal LiNi publication-title: Energy Storage Mater. – volume: 370 start-page: 1313 year: 2020 end-page: 1317 ident: b0135 article-title: Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode publication-title: Science – volume: 110 start-page: 120 year: 2022 end-page: 130 ident: b0035 article-title: Controversy on necessity of cobalt in nickel-rich cathode materials for lithium-ion batteries publication-title: J. Ind. Eng. Chem. – volume: 34 start-page: 250 year: 2021 end-page: 259 ident: b0020 article-title: Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives publication-title: Energy Storage Mater. – volume: 6 start-page: 277 year: 2021 end-page: 286 ident: b0040 article-title: Understanding Co roles towards developing co-free Ni-rich cathodes for rechargeable batteries publication-title: Nat. Energy – volume: 37 start-page: 143 year: 2021 end-page: 160 ident: b0075 article-title: A perspective on single-crystal layered oxide cathodes for lithium-ion batteries publication-title: Energy Storage Mater. – volume: 2 start-page: 10825 year: 2014 end-page: 10829 ident: b0085 article-title: Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries publication-title: J. Mater. Chem. A – volume: 95 start-page: 296 year: 2024 end-page: 305 ident: b0025 article-title: A universal multifunctional dual cation doping strategy towards stabilized ultra-high nickel cobalt-free lithium layered oxide cathode publication-title: J. Energy Chem. – volume: 98 year: 2024 ident: b0165 article-title: Improved electrochemical performance of single-crystal nickel-rich cathode by coating with different valence states metal oxides publication-title: J. Energy Storage – volume: 601 start-page: 853 year: 2021 end-page: 862 ident: b0195 article-title: Enhanced electrochemical properties of Ni-rich layered cathode materials via Mg publication-title: J. Colloid Interface Sci. – volume: 95 start-page: 336 year: 2024 end-page: 347 ident: b0130 article-title: Delving into the dissimilarities in electrochemical performance and underlying mechanisms for sodium and potassium ion storage in N-doped carbon-encapsulated metallic Cu publication-title: J. Energy Chem. – volume: 13 year: 2022 ident: b0080 article-title: Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy publication-title: Nat. Commun. – volume: 17 start-page: 12759 year: 2023 end-page: 12773 ident: b0160 article-title: Multiscale crystal field effect for high-performance ultrahigh-Ni layered cathode publication-title: ACS Nano – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.jcis.2025.01.079_b0005 article-title: A reflection on lithium-ion battery cathode chemistry publication-title: Nat. Commun. doi: 10.1038/s41467-020-15355-0 – volume: 12 year: 2021 ident: 10.1016/j.jcis.2025.01.079_b0065 article-title: In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes publication-title: Nat. Commun. doi: 10.1038/s41467-021-25611-6 – volume: 2 start-page: 10825 year: 2014 ident: 10.1016/j.jcis.2025.01.079_b0085 article-title: Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00987H – volume: 34 year: 2024 ident: 10.1016/j.jcis.2025.01.079_b0155 article-title: Antimony doping enabled radially aligned microstructure in LiNi0.91Co0.06Al0.03O2 cathode for high‐voltage and low-temperature lithium battery publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202312284 – volume: 477 year: 2023 ident: 10.1016/j.jcis.2025.01.079_b0125 article-title: La4NiLiO8-assistant surface reconstruction to realize in-situ regeneration of the degraded nickel-rich cathodes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.147202 – volume: 95 year: 2024 ident: 10.1016/j.jcis.2025.01.079_b0170 article-title: Garnet conductor network with Zr doping to implement surface bifunctional modification for Ni-rich cathodes publication-title: J. Energy Storage doi: 10.1016/j.est.2024.112585 – volume: 121 year: 2024 ident: 10.1016/j.jcis.2025.01.079_b0105 article-title: Grain binding derived reinforced interfacial mechanical behavior of Ni-rich layered cathode materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.109214 – volume: 37 start-page: 143 year: 2021 ident: 10.1016/j.jcis.2025.01.079_b0075 article-title: A perspective on single-crystal layered oxide cathodes for lithium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.02.003 – volume: 72 year: 2024 ident: 10.1016/j.jcis.2025.01.079_b0115 article-title: Phase compatible surface engineering to boost the cycling stability of single-crystalline Ni-rich cathode for high energy density lithium-ion batteries publication-title: Energy Storage Mater. – volume: 95 start-page: 296 year: 2024 ident: 10.1016/j.jcis.2025.01.079_b0025 article-title: A universal multifunctional dual cation doping strategy towards stabilized ultra-high nickel cobalt-free lithium layered oxide cathode publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2024.03.030 – volume: 10 start-page: 4381 year: 2022 ident: 10.1016/j.jcis.2025.01.079_b0060 article-title: Single-crystal Ni-rich layered LiNi0.9Mn0.1O2 enables superior performance of Co-free cathodes for lithium-ion batteries publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.1c06704 – volume: 11 start-page: 18404 year: 2019 ident: 10.1016/j.jcis.2025.01.079_b0235 article-title: Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b02889 – volume: 6 start-page: 277 year: 2021 ident: 10.1016/j.jcis.2025.01.079_b0040 article-title: Understanding Co roles towards developing co-free Ni-rich cathodes for rechargeable batteries publication-title: Nat. Energy doi: 10.1038/s41560-021-00776-y – volume: 71 start-page: 1404 year: 2010 ident: 10.1016/j.jcis.2025.01.079_b0150 article-title: Porous LiNi0.75Co0.25O2 microspheres prepared via a hydrothermal process as cathode material for lithium ion batteries publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2010.07.002 – volume: 6 year: 2024 ident: 10.1016/j.jcis.2025.01.079_b0010 article-title: Constructing targeted strong Nb4d−O2p−Li2s configurations to obtain excellent energy density and long life for Li‐rich cathodes publication-title: Angew. Chem. Int. Ed. – volume: 10 year: 2024 ident: 10.1016/j.jcis.2025.01.079_b0095 article-title: High-entropy doping promising ultrahigh-Ni Co-free single-crystalline cathode toward commercializable high-energy lithium-ion batteries publication-title: Sci. Adv. doi: 10.1126/sciadv.ado4472 – volume: 16 start-page: 11377 year: 2024 ident: 10.1016/j.jcis.2025.01.079_b0205 article-title: Structure and charge regulation strategy enabling superior cycling stability of Ni-rich cathode materials publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c15370 – volume: 13 year: 2022 ident: 10.1016/j.jcis.2025.01.079_b0080 article-title: Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy publication-title: Nat. Commun. doi: 10.1038/s41467-022-30020-4 – volume: 8 start-page: 1944 year: 2022 ident: 10.1016/j.jcis.2025.01.079_b0190 article-title: Direct upcycling of mixed Ni-lean polycrystals to single-crystal Ni-rich cathode materials publication-title: Chem doi: 10.1016/j.chempr.2022.03.007 – volume: 601 start-page: 853 year: 2021 ident: 10.1016/j.jcis.2025.01.079_b0195 article-title: Enhanced electrochemical properties of Ni-rich layered cathode materials via Mg2+ and Ti4+ co-doping for lithium-ion batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.05.167 – volume: 52 start-page: 534 year: 2022 ident: 10.1016/j.jcis.2025.01.079_b0110 article-title: The surface double-coupling on single-crystal LiNi0.8Co0.1Mn0.1O2 for inhibiting the formation of intragranular cracks and oxygen vacancies publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.08.026 – volume: 95 start-page: 336 year: 2024 ident: 10.1016/j.jcis.2025.01.079_b0130 article-title: Delving into the dissimilarities in electrochemical performance and underlying mechanisms for sodium and potassium ion storage in N-doped carbon-encapsulated metallic Cu2Se nanocubes publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2024.03.056 – volume: 72 start-page: 899 year: 2011 ident: 10.1016/j.jcis.2025.01.079_b0090 article-title: Preparation and characteristics of Sb-doped LiNiO2 cathode materials for Li-ion batteries publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2011.04.013 – volume: 477 year: 2023 ident: 10.1016/j.jcis.2025.01.079_b0200 article-title: Cation-ordered Ni-rich positive electrode material with superior chemical and structural stability enabled by atomic substitution for lithium-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.147181 – volume: 17 start-page: 12759 year: 2023 ident: 10.1016/j.jcis.2025.01.079_b0160 article-title: Multiscale crystal field effect for high-performance ultrahigh-Ni layered cathode publication-title: ACS Nano doi: 10.1021/acsnano.3c03770 – volume: 98 year: 2024 ident: 10.1016/j.jcis.2025.01.079_b0165 article-title: Improved electrochemical performance of single-crystal nickel-rich cathode by coating with different valence states metal oxides publication-title: J. Energy Storage doi: 10.1016/j.est.2024.113037 – volume: 431 year: 2022 ident: 10.1016/j.jcis.2025.01.079_b0210 article-title: Single-crystalline Ni-rich layered cathodes with super-stable cycling publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133731 – volume: 101 start-page: 692 year: 2025 ident: 10.1016/j.jcis.2025.01.079_b0215 article-title: Tailoring BaCe0.7Zr0.1(Dy0.1|Yb0.1)0.2O3-δ electrolyte through strategic Cu doping for low temperature proton conducting fuel cells: Envisioned theoretically and experimentally publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2024.09.067 – volume: 455 year: 2023 ident: 10.1016/j.jcis.2025.01.079_b0220 article-title: Structure and defect strategy towards high-performance copper niobate as anode for Li-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140802 – volume: 8 year: 2017 ident: 10.1016/j.jcis.2025.01.079_b0230 article-title: From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel‐rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries publication-title: Adv. Energy Mater. – volume: 34 start-page: 250 year: 2021 ident: 10.1016/j.jcis.2025.01.079_b0020 article-title: Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.09.020 – volume: 41 start-page: 3783 year: 2022 ident: 10.1016/j.jcis.2025.01.079_b0050 article-title: Mechanism exploration of enhanced electrochemical performance of single-crystal versus polycrystalline LiNi0.8Mn0.1Co0.1O2 publication-title: Rare Met. doi: 10.1007/s12598-022-02055-5 – volume: 11 year: 2018 ident: 10.1016/j.jcis.2025.01.079_b0070 article-title: Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries publication-title: Energy Environ. Sci. – volume: 34 year: 2023 ident: 10.1016/j.jcis.2025.01.079_b0100 article-title: Enhanced rate capability and mitigated capacity decay of ultrahigh-nickel cobalt-free LiNi0.9Mn0.1O2 cathode at high-voltage by selective tungsten substitution publication-title: Chin. Chem. Lett. – volume: 370 start-page: 1313 year: 2020 ident: 10.1016/j.jcis.2025.01.079_b0135 article-title: Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode publication-title: Science doi: 10.1126/science.abc3167 – volume: 11 start-page: 1756 year: 2023 ident: 10.1016/j.jcis.2025.01.079_b0185 article-title: The modification of WO3 for lithium batteries with nickel-rich ternary cathode materials publication-title: Processes doi: 10.3390/pr11061756 – volume: 34 year: 2024 ident: 10.1016/j.jcis.2025.01.079_b0175 article-title: Enabling the strengthened structural and interfacial stability of high‐nickel LiNi0.9Co0.05Mn0.05O2 cathode by a coating‐doping‐microstructure regulation three‐in‐one strategy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202406068 – volume: 8 year: 2018 ident: 10.1016/j.jcis.2025.01.079_b0240 article-title: High voltage operation of Ni‐rich NMC cathodes enabled by stable electrode/electrolyte interphases publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800297 – volume: 110 start-page: 120 year: 2022 ident: 10.1016/j.jcis.2025.01.079_b0035 article-title: Controversy on necessity of cobalt in nickel-rich cathode materials for lithium-ion batteries publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2022.03.036 – volume: 9 start-page: 1741 year: 2021 ident: 10.1016/j.jcis.2025.01.079_b0225 article-title: Enhancing the high-voltage cycling performance and rate capability of LiNi0.8Co0.1Mn0.1O2 cathode material by codoping with Na and Br publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c07703 – volume: 29 start-page: 4559 year: 2023 ident: 10.1016/j.jcis.2025.01.079_b0180 article-title: B-doped nickel-rich ternary cathode material for lithium-ion batteries with excellent rate performance publication-title: Ionics doi: 10.1007/s11581-023-05191-9 – volume: 428 start-page: 148 year: 2018 ident: 10.1016/j.jcis.2025.01.079_b0030 article-title: Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.09.130 – volume: 666 start-page: 424 year: 2024 ident: 10.1016/j.jcis.2025.01.079_b0120 article-title: Synthesis and characterization of core–shell high-nickel cobalt-free layered LiNi0.95Mg0.02Al0.03O2@Li2ZrO3 cathode for high-performance lithium ion batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2024.04.045 – volume: 289 start-page: 82 year: 2018 ident: 10.1016/j.jcis.2025.01.079_b0140 article-title: Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode for Li-ion batteries at high cut-off voltage publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.091 – volume: 5 start-page: 1814 year: 2020 ident: 10.1016/j.jcis.2025.01.079_b0045 article-title: Co-free layered cathode materials for high energy density lithium-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00742 – volume: 7 start-page: 1876 year: 2011 ident: 10.1016/j.jcis.2025.01.079_b0015 article-title: Graphene-based materials: Synthesis, characterization, properties, and applications publication-title: Small doi: 10.1002/smll.201002009 – volume: 7 start-page: 10661 year: 2019 ident: 10.1016/j.jcis.2025.01.079_b0145 article-title: Revealing the effect of Ti doping on significantly enhancing cyclic performance at a high cutoff voltage for Ni-rich LiNi0.8Co0.15Al0.05O2 cathode, ACS Sustain publication-title: Chem. Eng. – volume: 19 year: 2023 ident: 10.1016/j.jcis.2025.01.079_b0055 article-title: Understanding the insight mechanism of chemical‐mechanical degradation of layered Co‐free Ni‐rich cathode materials: A review publication-title: Small |
SSID | ssj0011559 |
Score | 2.4810908 |
Snippet | [Display omitted]
•The synchronous modification strategy from interface to interior for ultrahigh-Ni Co-free cathode.•The Sb-based modification can enhance... Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to... Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 138 |
SubjectTerms | cathodes dissociation Doping engineering energy Ion diffusion lithium batteries mechanical stress Nickel-rich cobalt-free materials phase transition Structure stability Surface modification |
Title | Reinforcing ion diffusion and controlling microcrack of nickel-rich cobalt-free single-crystalline cathodes via interfacial protection and bulk optimization |
URI | https://dx.doi.org/10.1016/j.jcis.2025.01.079 https://www.ncbi.nlm.nih.gov/pubmed/39823729 https://www.proquest.com/docview/3156968696 https://www.proquest.com/docview/3165876696 |
Volume | 684 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_Ugur5fRPAm0T7SpntcFmVV9CAK3kJexeralborePGX-GOdaVNRUA8eemhJ2rRfOplk5vtCyL6wNsZ4Esu4dYyLhDMda8sSwbWB4cOGIXKHLy7TwQ0_u01up0i_5cJgWqW3_Y1Nr621v3Lkv-bRU1Egxxf-NtEVUa3pX3OpORfYyw_fPtM8Qgy7NWkeIcPSnjjT5HjdmwIlu6NGuhPTuX4enH5zPutB6GSRLHjvkfaaBi6RKVd2yGy_3bStQ-a_6Asuk_crVwujGjijAADF7VAmuD5GVWmpT1NHQjp9xMQ8UynzQEc5LQv4uYcMbOQdlNJqOGZ55RzFhYWhY6Z6BacSKzqKuq8j657pS6Eoik9UucJleOoVINqH6ckQbg0G6tEzP1fIzcnxdX_A_HYMzMQ8GINZhMmkjayJdK6EdkmK069YoIidUIp3VeBUZrTqZjxG0xDmgI1F7mqklFHxKpkuR6VbJ9SY0GVacx0ozdO0Zu_CtNhGeRBDbbFBDloc5FOjuiHbdLR7iahJRE0GoQTUNkjSQiW_9R0Jw8Kf9fZaXCXAhJESVbrR5FnGMKvtphkcf5UB502kdZm1plN8thVeIsJ46OY_W7ZF5vAMo1Zhsk2mx9XE7YDzM9a7de_eJTO90_PB5QfRvwZH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5UA5VEBbyqs1Um-VRR5OnD2iFWgpsIcKJG6WX1EDSxaFXST-Cz-WmcRBILUcesghWTvr5HPGY898nwF-SOdSiifxQjjPhcwEN6lxPJPCWBw-XBwTd_h8ko8vxa-r7GoJRj0XhtIqg-3vbHprrcOVg_A2D-6qiji--LXJoUxaTX_iUi-TOlU2gOXDk9Px5CWYQJG3LtMj5lQhcGe6NK9rW5Fqd9Kpd1JG19_Hp3_5n-04dLwGH4MDyQ67Nq7Dkq83YGXU79u2AauvJAY_wdNv32qjWjxjiAGjHVEWtETGdO1YyFQnTjq7pdw822h7w2Ylqyv8vqcczeQfLGX0dM7LxntGawtTz23ziH4lVfSMpF9nzt-zh0oz0p9oSk0r8SyIQPR_ZhZTvDXaqNtA_vwMl8dHF6MxDzsycJuKaI6WEeeTLnE2MaWWxmc5zcBSSTp2Umsx1JHXhTV6WIiUrENcIjyO6KuJ1lanX2BQz2r_FZi1sS-MESbSRuR5S-DFmbFLyijF2nILfvY4qLtOeEP1GWnXilBThJqKYoWobUHWQ6XedB-FI8O79fZ7XBXCRMESXfvZ4l6lOLEd5gUe75VB_03mbZnNrlO8tBUfIqGQ6PZ_tuw7rIwvzs_U2cnkdAc-0C8UxIqzXRjMm4XfQ19obr6Fvv4Mv7MI-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcing+ion+diffusion+and+controlling+microcrack+of+nickel-rich+cobalt-free+single-crystalline+cathodes+via+interfacial+protection+and+bulk+optimization&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zheng%2C+Chao&rft.au=Xiao%2C+Zhiming&rft.au=Xian%2C+Keyi&rft.au=Wen%2C+Heng&rft.date=2025-04-15&rft.eissn=1095-7103&rft.volume=684&rft.issue=Pt+2&rft.spage=138&rft_id=info:doi/10.1016%2Fj.jcis.2025.01.079&rft_id=info%3Apmid%2F39823729&rft.externalDocID=39823729 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |