DNS of rotating and non-rotating turbulent flows with synthetic inlet conditions

In this paper, direct numerical simulations (DNS) are presented to understand the effects of the inlet conditions on the turbulent energy decay rate of isotropic turbulence. A perfect control of the inlet conditions cannot be achieved in realistic simulations reproducing the effects of a solid grid,...

Full description

Saved in:
Bibliographic Details
Published inJournal of turbulence Vol. 14; no. 5; pp. 10 - 34
Main Author Orlandi, P.
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.05.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, direct numerical simulations (DNS) are presented to understand the effects of the inlet conditions on the turbulent energy decay rate of isotropic turbulence. A perfect control of the inlet conditions cannot be achieved in realistic simulations reproducing the effects of a solid grid, which, on the other hand, is possible by adding to a uniform inlet velocity U 0 analytical anisotropic single- or multiple-scale velocity disturbances. The single-scale simulations with different disturbances with a wave number κ show a scaling of the turbulent energy q versus x 1 /M with M=2π/κ. The energy decay rate m for multiple-scale disturbances is decreased compared to the case with single-scale disturbances. The transition from anisotropic to isotropic turbulence is analysed through the evolution of the statistics, in particular, those linked to the flow structures. Flow visualisations of the vorticity field and joint of the velocity components at different distances from the inlet illuminate the reasons for the differences between single- and multiple-scale disturbances. The reduction of m, for the latter, indicates the way to generate isotropic turbulence at high microscale R λ . Simulations at different rates of solid-body rotation aligned with the streamwise direction were also performed for the flows with multiple- and single-scale disturbances. Variations of the rotation rate Ω allow to investigate the modifications of the vortical structures for single-scale disturbances. At N Ω =2ΩL/U 0 =10, the comparison between single- and multiple-scale disturbances shows a further increase of R λ in the latter flow. One-dimensional energy spectra at different distances from the inlet indicate when the effects of the inlet disturbances disappear. Good agreement, in the inertial and in the exponential decay ranges, between the present spectra and those from the DNS of forced isotropic turbulence demonstrates the quality of the numerical method used.
AbstractList In this paper, direct numerical simulations (DNS) are presented to understand the effects of the inlet conditions on the turbulent energy decay rate of isotropic turbulence. A perfect control of the inlet conditions cannot be achieved in realistic simulations reproducing the effects of a solid grid, which, on the other hand, is possible by adding to a uniform inlet velocity U 0 analytical anisotropic single- or multiple-scale velocity disturbances. The single-scale simulations with different disturbances with a wave number Io show a scaling of the turbulent energy q versus x 1/M with M=2I/Io. The energy decay rate m for multiple-scale disturbances is decreased compared to the case with single-scale disturbances. The transition from anisotropic to isotropic turbulence is analysed through the evolution of the statistics, in particular, those linked to the flow structures. Flow visualisations of the vorticity field and joint of the velocity components at different distances from the inlet illuminate the reasons for the differences between single- and multiple-scale disturbances. The reduction of m, for the latter, indicates the way to generate isotropic turbulence at high microscale R I>. Simulations at different rates of solid-body rotation aligned with the streamwise direction were also performed for the flows with multiple- and single-scale disturbances. Variations of the rotation rate ICO allow to investigate the modifications of the vortical structures for single-scale disturbances. At N ICO=2ICOL/U 0=10, the comparison between single- and multiple-scale disturbances shows a further increase of R I> in the latter flow. One-dimensional energy spectra at different distances from the inlet indicate when the effects of the inlet disturbances disappear. Good agreement, in the inertial and in the exponential decay ranges, between the present spectra and those from the DNS of forced isotropic turbulence demonstrates the quality of the numerical method used.
In this paper, direct numerical simulations (DNS) are presented to understand the effects of the inlet conditions on the turbulent energy decay rate of isotropic turbulence. A perfect control of the inlet conditions cannot be achieved in realistic simulations reproducing the effects of a solid grid, which, on the other hand, is possible by adding to a uniform inlet velocity U 0 analytical anisotropic single- or multiple-scale velocity disturbances. The single-scale simulations with different disturbances with a wave number κ show a scaling of the turbulent energy q versus x 1 /M with M=2π/κ. The energy decay rate m for multiple-scale disturbances is decreased compared to the case with single-scale disturbances. The transition from anisotropic to isotropic turbulence is analysed through the evolution of the statistics, in particular, those linked to the flow structures. Flow visualisations of the vorticity field and joint of the velocity components at different distances from the inlet illuminate the reasons for the differences between single- and multiple-scale disturbances. The reduction of m, for the latter, indicates the way to generate isotropic turbulence at high microscale R λ . Simulations at different rates of solid-body rotation aligned with the streamwise direction were also performed for the flows with multiple- and single-scale disturbances. Variations of the rotation rate Ω allow to investigate the modifications of the vortical structures for single-scale disturbances. At N Ω =2ΩL/U 0 =10, the comparison between single- and multiple-scale disturbances shows a further increase of R λ in the latter flow. One-dimensional energy spectra at different distances from the inlet indicate when the effects of the inlet disturbances disappear. Good agreement, in the inertial and in the exponential decay ranges, between the present spectra and those from the DNS of forced isotropic turbulence demonstrates the quality of the numerical method used.
Author Orlandi, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Orlandi
  fullname: Orlandi, P.
  organization: Dipartimento di Ingegneria Meccanica e Aerospaziale , Sapienza Università di Roma
BookMark eNp9kE1LAzEURYMo2Fb_gYss3Ux9SSYz6UqkfkJRQV2HNJPYyDSpSYbSf2-HUXHl6j0u957FGaNDH7xB6IzAlICAC1JWgtNSTCkQNhWEM14foFEfF31--Oc_RuOUPgBIRXk1Qs_Xjy84WBxDVtn5d6x8g_f44jfIXVx2rfEZ2zZsE966vMJp5_PKZKex863JWAffuOyCTyfoyKo2mdPvO0Fvtzev8_ti8XT3ML9aFJqVkAthoQZtKi2a2axqBDQglkw0DGpqtOJLDlBxRlRpWUNLXZEaLFE1Xc40FRTYBJ0P3E0Mn51JWa5d0qZtlTehS5JwqJjgAsS-Wg5VHUNK0Vi5iW6t4k4SkL1A-SNQ9gLlIHA_uxxmztsQ12obYtvIrHZtiDYqr12S7F_CF1lCeOs
CitedBy_id crossref_primary_10_1146_annurev_fluid_122414_034550
crossref_primary_10_1002_we_2154
crossref_primary_10_1063_1_4865232
Cites_doi 10.1063/1.2676448
10.1017/S0022112090003317
10.1017/S0022112082003462
10.1017/S0022112096007562
10.1017/S0022112093002393
10.1017/S0022112009991807
10.1098/rspa.1948.0061
10.1017/S0022112010003496
10.1017/S0022112010000479
10.1063/1.869324
10.1098/rspa.1948.0095
10.1063/1.2795211
10.1017/S0022112090003172
10.1017/jfm.2011.169
10.1007/978-90-481-3174-7
10.1080/14685248.2010.519708
10.1017/S0022112089001199
10.1017/S0022112010005793
10.1017/S002211200600869X
10.1017/S0022112089002557
10.2514/8.350
10.1063/1.866513
10.1016/j.compfluid.2009.09.018
10.1017/S0022112007006763
10.1088/1468-5248/5/1/009
10.1016/j.jcp.2008.06.020
10.1017/S0022112085001550
10.1098/rspa.1935.0158
10.1007/s00348-002-0423-x
10.1017/S0022112099005637
10.1088/0031-8949/2008/T132/014054
10.1063/1.3614479
10.1146/annurev-fluid-121108-145445
10.1088/0169-5983/41/2/021403
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2013
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2013
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1080/14685248.2013.815357
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1468-5248
EndPage 34
ExternalDocumentID 10_1080_14685248_2013_815357
815357
Genre Original Articles
GroupedDBID .7F
.QJ
0BK
0R~
29L
2DF
30N
3YN
4.4
5GY
5VS
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFO
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
FUNRP
FVPDL
GTTXZ
H13
HZ~
H~P
IPNFZ
J9A
KYCEM
M4Z
NA5
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEN
TFL
TFT
TFW
TNC
TTHFI
TWF
UCJ
UT5
UU3
V1K
ZGOLN
~S~
5ZH
AAYXX
ABJNI
ABPAQ
ABXYU
ACTTO
ADUMR
AEFHF
AFION
AGVKY
AGWUF
AHDZW
ALRRR
BWMZZ
CAG
CITATION
COF
CYRSC
DAOYK
IHE
LAP
LJTGL
OPCYK
RIV
ROL
TBQAZ
TDBHL
TUROJ
XPP
ZMT
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c340t-8f070ce6c8d996d80d08b38d3072eca5b5006531a4f3d24c6170f1a72b9c28203
ISSN 1468-5248
IngestDate Fri Aug 16 07:39:13 EDT 2024
Fri Aug 23 00:43:39 EDT 2024
Tue Jun 13 19:51:40 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-8f070ce6c8d996d80d08b38d3072eca5b5006531a4f3d24c6170f1a72b9c28203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1506385808
PQPubID 23500
PageCount 25
ParticipantIDs crossref_primary_10_1080_14685248_2013_815357
proquest_miscellaneous_1506385808
informaworld_taylorfrancis_310_1080_14685248_2013_815357
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of turbulence
PublicationYear 2013
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References CIT0030
CIT0010
CIT0031
Batchelor G. K. (CIT0005) 1948; 193
CIT0012
Orlandi P. (CIT0027) 2000
CIT0034
CIT0011
CIT0033
von Karman T. (CIT0035) 1937; 4
Batchelor G. K. (CIT0004) 1948; 194
CIT0014
Orlandi P. (CIT0029) 2006; 7
CIT0036
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
Taylor G. I. (CIT0032) 1935; 151
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
CIT0024
CIT0026
CIT0007
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0014
  doi: 10.1063/1.2676448
– ident: CIT0030
  doi: 10.1017/S0022112090003317
– year: 2000
  ident: CIT0027
  publication-title: Kluwer Dordrecht
  contributor:
    fullname: Orlandi P.
– ident: CIT0013
  doi: 10.1017/S0022112082003462
– ident: CIT0024
  doi: 10.1017/S0022112096007562
– ident: CIT0016
  doi: 10.1017/S0022112093002393
– ident: CIT0018
  doi: 10.1017/S0022112009991807
– volume: 193
  start-page: 539
  year: 1948
  ident: CIT0005
  publication-title: Proc. R. Soc. Lond.
  doi: 10.1098/rspa.1948.0061
  contributor:
    fullname: Batchelor G. K.
– ident: CIT0007
  doi: 10.1017/S0022112010003496
– ident: CIT0011
  doi: 10.1017/S0022112010000479
– ident: CIT0026
  doi: 10.1063/1.869324
– volume: 194
  start-page: 527
  year: 1948
  ident: CIT0004
  publication-title: Proc. R. Soc. Lond.
  doi: 10.1098/rspa.1948.0095
  contributor:
    fullname: Batchelor G. K.
– ident: CIT0031
  doi: 10.1063/1.2795211
– volume: 7
  start-page: 1
  issue: 53
  year: 2006
  ident: CIT0029
  publication-title: J. Turbul.
  contributor:
    fullname: Orlandi P.
– ident: CIT0015
  doi: 10.1017/S0022112090003172
– ident: CIT0019
  doi: 10.1017/jfm.2011.169
– ident: CIT0033
  doi: 10.1007/978-90-481-3174-7
– ident: CIT0022
  doi: 10.1080/14685248.2010.519708
– ident: CIT0006
  doi: 10.1017/S0022112089001199
– ident: CIT0023
  doi: 10.1017/S0022112010005793
– ident: CIT0009
  doi: 10.1017/S002211200600869X
– ident: CIT0034
  doi: 10.1017/S0022112089002557
– volume: 4
  start-page: 131
  year: 1937
  ident: CIT0035
  publication-title: J. Aero. Sci.
  doi: 10.2514/8.350
  contributor:
    fullname: von Karman T.
– ident: CIT0002
  doi: 10.1063/1.866513
– ident: CIT0020
  doi: 10.1016/j.compfluid.2009.09.018
– ident: CIT0021
  doi: 10.1017/S0022112007006763
– ident: CIT0028
  doi: 10.1088/1468-5248/5/1/009
– ident: CIT0010
  doi: 10.1016/j.jcp.2008.06.020
– ident: CIT0003
  doi: 10.1017/S0022112085001550
– volume: 151
  start-page: 421
  year: 1935
  ident: CIT0032
  publication-title: Proc. R. Soc. Lond.
  doi: 10.1098/rspa.1935.0158
  contributor:
    fullname: Taylor G. I.
– ident: CIT0001
  doi: 10.1007/s00348-002-0423-x
– ident: CIT0012
  doi: 10.1017/S0022112099005637
– ident: CIT0025
  doi: 10.1088/0031-8949/2008/T132/014054
– ident: CIT0008
  doi: 10.1063/1.3614479
– ident: CIT0036
  doi: 10.1146/annurev-fluid-121108-145445
– ident: CIT0017
  doi: 10.1088/0169-5983/41/2/021403
SSID ssj0016256
Score 2.0005658
Snippet In this paper, direct numerical simulations (DNS) are presented to understand the effects of the inlet conditions on the turbulent energy decay rate of...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 10
SubjectTerms Anisotropy
Computational fluid dynamics
direct numerical simulation
Disturbances
Fluid flow
Inlets
Isotropic turbulence
rotating turbulence
Turbulence
Turbulent flow
Title DNS of rotating and non-rotating turbulent flows with synthetic inlet conditions
URI https://www.tandfonline.com/doi/abs/10.1080/14685248.2013.815357
https://search.proquest.com/docview/1506385808
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS-RAEG48EHzR9UL3kBb2tWc76U7S8yi6y7DgAasovoSkDxCGGXEyiP56q48c4wyy-hKGJilCvm-qq7qrvkboZyKEhKg_ISwuGeEZp6QsuCZ9prK-jFIVaducfHaeDq7539vktj3o0nWXVGVPvizsK_kMqjAGuNou2Q8g2xiFAfgN-MIVEIbrf2F8ev7PBnuPY7ufHpoNIZ0nzQDMJ-V06PSXhuOn0Mk2eR5B1GeFWu9HgJotPFf37brdfKRaW2lJcOFahF0hwGWvu3AQdcr0gq9zTVexF7rs6QVjtYPkHSIkHW8XClL9vOnXJOc8si9htHatWVtLx3oC3KyXpZ4VwH4zMTXlglHQMa2t5NZK7q0so9U46yeQd68eD07vbpotJEjs2tYyeKjumxT016K3mYlLZlRr52ZpF3pcfUEbAQl87AmwhZb0aBtthvwBB-882UZrrpxXTnbQJTADjw2uiYABLdxlBm6YgR0zsGUGbpiBHTNwy4xddP3n99XJgISzM4hknFZEGPDlUqdSKMholaCKipIJBS491rJIysSpEkcFN0zFXFpdfhMVWVz2JWThlO2hFXgtvY8wE-BtMp0UqYEbDUT8JoqNpNTwWIm0OECk_nL5g5dIyd9D7ACJ7ufNK7c0Zfw5Mjl7_9GjGooc3KDd2ypGejyd5FYo0-5xU_H1g6_zDa23_47vaKV6nOofEGhW5WGg1CtEEXX8
link.rule.ids 315,786,790,27957,27958,60241,61030
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CToi90FGYVgbDSLy6OHEu7uMEVB20FRKtxJsV3xDalExNomn79TvOpaIgeIDXKI4d-1x9Pn8GeBsLoTHqjykPFadRGjGqssjSKTfpVAeJCaw_nLxcJfNN9Olb3KMJyw5W6XNo1xJFNLbaK7ffjO4hce_8caE4bJFZfCJQaeP0IRwk6G-8bnK22hUSMLxP-hNzf2i555H2-Ep_s8-N05kNQfXDbbEml5O6UhN99wuT43_9zxE86UJSct7K0FN4YPMRDLvwlHTKX47gUYMW1eUz-PJh9ZUUjmwLX8jPvxPsmuRFTncP0JGp2js04q6Km5L47V5S3uYYbmIv5EeO4kIwFTctYuw5bGYf1-_ntLuagWoesYoKh6ZC20QLgwmTEcwwobgwaDFCq7NYxQ3pbZBFjpsw0p723QVZGqqpxiSP8WMY4LDsCRAuUJhTG2eJwxcdBpQuCJ1mzEWhEUk2Btovj7xuGThk0BGb9hMn_cTJduLGIH5eQ1k1Ox-uvaZE8r83fdOvt0Qt86WTLLdFXUrPw-hLqEy8-PfPv4bH8_VyIRcXq8-ncBg2F2t46ORLGFTb2r7C8KZSZ40A3wOJVu78
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB48UHxxPfE2gq9Z06ZH9lFcF89FUMG30OYQUVqxXUR_vZMe4oE-6GtpmjSZMzPzDcBuKIRCqz-k3E85DeKA0TQJDO1xHfeUF2nPuOLk82F0dB2c3IQ3H6r4XVql86FtDRRRyWrH3I_athlxe65aKPTrxCzeFcizYTwOk5HrmOWKONjwPY6A1n3UFsz9MPKTQvoEV_pNPFc6Z9CBpF1tnWpy3x2VaVe9fgFy_M_vzMFsY5CS_ZqC5mHMZAvQaYxT0rB-sQBTVa6oKhbhoj-8JLklT7kL42e3BGcmWZ7R9weoxtKRU2fEPuTPBXGXvaR4ydDYxFnIXYbEQtAR13W-2BJcDw6vDo5o05iBKh6wkgqLgkKZSAmN7pIWTDORcqFRXvhGJWEaVpC3XhJYrv1AOdB36yWxn_YUuniML8MELsusAOECSTk2YRJZfNGiOWk93yrGbOBrESWrQNvTkY81_ob0GljTduOk2zhZb9wqiI9HKMvq3sPWTUok_33oTnvcEnnMBU6SzOSjQjoURhdAZWLt75_fhumL_kCeHQ9P12HGr7pquLzJDZgon0ZmE22bMt2qyPcNu9XtqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNS+of+rotating+and+non-rotating+turbulent+flows+with+synthetic+inlet+conditions&rft.jtitle=Journal+of+turbulence&rft.au=Orlandi%2C+P.&rft.date=2013-05-01&rft.issn=1468-5248&rft.eissn=1468-5248&rft.volume=14&rft.issue=5&rft.spage=10&rft.epage=34&rft_id=info:doi/10.1080%2F14685248.2013.815357&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_14685248_2013_815357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-5248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-5248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-5248&client=summon