Physics-informed deep learning for simultaneous surrogate modeling and PDE-constrained optimization of an airfoil geometry

We use a physics-informed neural network (PINN) to simultaneously model and optimize the flow around an airfoil to maximize its lift to drag ratio. The parameters of the airfoil shape are provided as inputs to the PINN and the multidimensional search space of shape parameters is populated with collo...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 411; p. 116042
Main Authors Sun, Yubiao, Sengupta, Ushnish, Juniper, Matthew
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2023
Subjects
Online AccessGet full text
ISSN0045-7825
1879-2138
DOI10.1016/j.cma.2023.116042

Cover

Loading…
Abstract We use a physics-informed neural network (PINN) to simultaneously model and optimize the flow around an airfoil to maximize its lift to drag ratio. The parameters of the airfoil shape are provided as inputs to the PINN and the multidimensional search space of shape parameters is populated with collocation points to ensure that the Navier–Stokes equations are approximately satisfied throughout. We use the fact that the PINN is automatically differentiable to calculate gradients of the lift-to-drag ratio with respect to the airfoil shape parameters. This allows us to optimize with the L-BFGS gradient-based algorithm, which is more efficient than non-gradient-based algorithms, without deriving an adjoint code. We train the PINN with adaptive sampling of collocation points, such that the accuracy of the solution improves as the solution approaches the optimal point. We demonstrate this on two examples: one that optimizes a single parameter, and another that optimizes eleven parameters. The method is successful and, by comparison with conventional CFD, we find that the velocity and pressure fields have small pointwise errors and that the method converges to optimal parameters. We find that different PINNs converge to slightly different parameters, reflecting the fact that there are many closely-spaced local minima when using stochastic gradient descent. This method can be applied relatively easily to other optimization problems and avoids the difficult process of writing adjoint codes. It is, however, more computationally expensive than adjoint-based optimization. As knowledge about training PINNs improves and hardware dedicated to neural networks becomes faster, this method of simultaneous training and optimization with PINNs could become easier and faster than using adjoint codes.
AbstractList We use a physics-informed neural network (PINN) to simultaneously model and optimize the flow around an airfoil to maximize its lift to drag ratio. The parameters of the airfoil shape are provided as inputs to the PINN and the multidimensional search space of shape parameters is populated with collocation points to ensure that the Navier–Stokes equations are approximately satisfied throughout. We use the fact that the PINN is automatically differentiable to calculate gradients of the lift-to-drag ratio with respect to the airfoil shape parameters. This allows us to optimize with the L-BFGS gradient-based algorithm, which is more efficient than non-gradient-based algorithms, without deriving an adjoint code. We train the PINN with adaptive sampling of collocation points, such that the accuracy of the solution improves as the solution approaches the optimal point. We demonstrate this on two examples: one that optimizes a single parameter, and another that optimizes eleven parameters. The method is successful and, by comparison with conventional CFD, we find that the velocity and pressure fields have small pointwise errors and that the method converges to optimal parameters. We find that different PINNs converge to slightly different parameters, reflecting the fact that there are many closely-spaced local minima when using stochastic gradient descent. This method can be applied relatively easily to other optimization problems and avoids the difficult process of writing adjoint codes. It is, however, more computationally expensive than adjoint-based optimization. As knowledge about training PINNs improves and hardware dedicated to neural networks becomes faster, this method of simultaneous training and optimization with PINNs could become easier and faster than using adjoint codes.
ArticleNumber 116042
Author Sengupta, Ushnish
Juniper, Matthew
Sun, Yubiao
Author_xml – sequence: 1
  givenname: Yubiao
  surname: Sun
  fullname: Sun, Yubiao
– sequence: 2
  givenname: Ushnish
  surname: Sengupta
  fullname: Sengupta, Ushnish
– sequence: 3
  givenname: Matthew
  orcidid: 0000-0002-8742-9541
  surname: Juniper
  fullname: Juniper, Matthew
  email: mpj1001@cam.ac.uk
BookMark eNp9kM1OwzAQhC1UJNrCA3DzC6TYTmI74oRK-ZEq0QOcLcfZFFeJXdkuUvv0JJQTB_ay0mq-0ezM0MR5BwjdUrKghPK73cL0esEIyxeUclKwCzSlUlQZo7mcoCkhRZkJycorNItxR4aRlE3RafN5jNbEzLrWhx4a3ADscQc6OOu2eDjiaPtDl7QDf4g4HkLwW50A976BbtRo1-DN4yoz3sUUtHWDi98n29uTTtY77NtBg7UNrbcd3oLvIYXjNbpsdRfh5nfP0cfT6n35kq3fnl-XD-vM5AVJmay5qaXOmaxFLeu84IJAwUQrBYCQZc0Fh5K0tK2gLhveCC4rnheVgUazHPI5EmdfE3yMAVplbPoJNobtFCVqrFDt1FChGitU5woHkv4h98H2Ohz_Ze7PDAwvfVkIKhoLbghjA5ikGm__ob8Bk3-Odg
CitedBy_id crossref_primary_10_1155_2024_8574868
crossref_primary_10_3390_fluids9120296
crossref_primary_10_1016_j_compositesa_2025_108820
crossref_primary_10_1016_j_jcp_2024_113494
crossref_primary_10_1007_s10409_024_24140_x
crossref_primary_10_1016_j_advwatres_2023_104556
crossref_primary_10_1038_s41598_024_57137_4
crossref_primary_10_1063_5_0213522
crossref_primary_10_1002_adts_202400589
crossref_primary_10_1080_17499518_2024_2315301
crossref_primary_10_1016_j_jcp_2025_113846
crossref_primary_10_32604_cmc_2024_053075
crossref_primary_10_3390_sym16010021
crossref_primary_10_1115_1_4067536
crossref_primary_10_1063_5_0188665
crossref_primary_10_3390_aerospace10070638
crossref_primary_10_1016_j_jcp_2024_113285
crossref_primary_10_1137_23M1566935
crossref_primary_10_1021_acs_iecr_3c02383
crossref_primary_10_1109_ACCESS_2024_3457670
crossref_primary_10_1016_j_ast_2024_109709
crossref_primary_10_1088_1742_6596_2891_6_062023
crossref_primary_10_1021_acs_iecr_3c04146
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_wroa_2024_100266
crossref_primary_10_3390_jmse11071470
crossref_primary_10_3390_math12101417
crossref_primary_10_1016_j_enbuild_2024_114575
crossref_primary_10_1021_acs_energyfuels_4c05870
crossref_primary_10_1080_10255842_2025_2471504
crossref_primary_10_3390_electronics13224416
crossref_primary_10_3390_math13010017
crossref_primary_10_1007_s11431_024_2764_5
crossref_primary_10_1016_j_scs_2024_105750
crossref_primary_10_1016_j_buildenv_2024_111175
crossref_primary_10_1371_journal_pcbi_1011916
crossref_primary_10_1063_5_0245918
crossref_primary_10_1016_j_addma_2024_104266
crossref_primary_10_1016_j_cma_2024_116913
Cites_doi 10.1016/j.jcp.2020.109951
10.1016/S0376-0421(00)00016-6
10.1007/s00158-017-1702-8
10.1016/0893-6080(89)90020-8
10.1016/j.cmpb.2020.105729
10.1016/j.jcp.2019.05.027
10.1007/s11590-019-01428-7
10.1063/5.0033376
10.1145/142920.134036
10.1016/j.cma.2003.12.046
10.1017/jfm.2022.503
10.1145/279232.279236
10.2514/1.J055102
10.1063/5.0055600
10.1016/j.istruc.2020.03.005
10.1017/S0022112074002023
10.1093/imaiai/iaw009
10.1137/15M1021131
10.1007/s10589-015-9764-2
10.2514/2.6830
10.1016/j.jcp.2019.108950
10.1016/j.ast.2013.11.006
10.1038/s41566-018-0246-9
10.1073/pnas.1718942115
10.1126/science.aaw4741
10.1017/jfm.2021.550
10.1016/S0377-0427(00)00422-2
10.1137/19M1274067
10.1017/jfm.2018.872
10.1038/nature14539
10.1111/mice.12685
10.1016/j.jcp.2018.10.045
10.1137/18M1165748
10.1137/0916069
10.1007/BF01061285
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.cma.2023.116042
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2023_116042
S0045782523001664
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
VH1
VOH
WUQ
ZY4
ID FETCH-LOGICAL-c340t-8b6cb8a328b7b8b34670e427f87ee785b676e50f1f9eb5d6d76896349ceda23e3
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Tue Jul 01 04:06:19 EDT 2025
Thu Apr 24 23:11:18 EDT 2025
Fri Feb 23 02:37:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Surrogate model
Physics-informed neural network
Shape optimization
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-8b6cb8a328b7b8b34670e427f87ee785b676e50f1f9eb5d6d76896349ceda23e3
ORCID 0000-0002-8742-9541
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0045782523001664
ParticipantIDs crossref_citationtrail_10_1016_j_cma_2023_116042
crossref_primary_10_1016_j_cma_2023_116042
elsevier_sciencedirect_doi_10_1016_j_cma_2023_116042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Eivazi, Tahani, Schlatter, Vinuesa (b21) 2021
Jameson (b10) 1988; 3
Markidis (b28) 2021; 4
Niaki, Haghighat, Campbell, Poursartip (b27) 2021; 384
Lecun, Bengio, Hinton (b23) 2015; 521
Yang, Perdikaris (b29) 2019; 394
Arzani, Wang, D’Souza (b34) 2021; 33
Yu, Juniper, Magri (b15) 2019; 399
Sun, Sengupta, Juniper (b37) 2023
Higham, Higham (b25) 2019; 61
Hornik, Stinchcombe, White (b24) 1989; 2
Nabian, Gladstone, Meidani (b39) 2021; 36
Harbrecht, Loos (b4) 2016; 63
Zhu, Byrd, Lu, Nocedal (b36) 1997; 23
Raissi, Wang, Triantafyllou, Karniadakis (b32) 2019; 861
Della Vecchia, Daniele, D’Amato (b45) 2014; 32
Logg, Mardal, Wells (b41) 2012
Fathi, Perez-Raya, Baghaie, Berg, Janiga, Arzani, D’Souza (b33) 2020
Jameson, Kim (b1) 2003; 41
Stein, Tezduyar, Benney (b17) 2004; 193
Bewley (b11) 2001; 37
Güne, Baydin, Pearlmutter, Siskind (b12) 2018; 18
Hsu, Hughes, Kaufman (b13) 1992; 26
Byrd, Lu, Nocedal, Zhu (b40) 1995; 16
Han, Jentzen, Weinan (b5) 2018; 115
Raissi, Yazdani, Karniadakis (b20) 2020; 367
Bartholomew-Biggs, Brown, Christianson, Dixon (b26) 2000; 124
Koo, Zingg (b14) 2017; 55
Kim, Boukouvala (b18) 2020; 14
Lu, Meng, Mao, Karniadakis (b31) 2021; 3
Daxini, Prajapati (b7) 2017; 56
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jozefowicz, Jia, Kaiser, Kudlur, Levenberg, Mané, Schuster, Monga, Moore, Murray, Olah, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b38) 2015
Kashefi, Rempe, Guibas (b42) 2021; 33
Anselmi, Rosasco, Poggio (b22) 2016; 5
Sobieczky (b43) 1997
Schmidt, Wadbro, Berggren (b3) 2016; 38
Chen, Cakal, Hu, Thuerey (b19) 2021; 919
Jin, Cai, Li, Karniadakis (b35) 2021; 426
Sobieczky (b44) 1999
Molesky, Lin, Piggott, Jin, Vucković, Rodriguez (b2) 2018; 12
Pironneau (b9) 1974; 64
Kontogiannis, Elgersma, Sederman, Juniper (b16) 2022; 944
Raissi, Perdikaris, Karniadakis (b30) 2019; 378
Li, Guan, Wang, Wang, Zhang, Lin (b6) 2020; 25
Madenci, Barut, Dorduncu (b8) 2019
Kim (10.1016/j.cma.2023.116042_b18) 2020; 14
Yang (10.1016/j.cma.2023.116042_b29) 2019; 394
Sobieczky (10.1016/j.cma.2023.116042_b44) 1999
Niaki (10.1016/j.cma.2023.116042_b27) 2021; 384
Hornik (10.1016/j.cma.2023.116042_b24) 1989; 2
Madenci (10.1016/j.cma.2023.116042_b8) 2019
Li (10.1016/j.cma.2023.116042_b6) 2020; 25
Bartholomew-Biggs (10.1016/j.cma.2023.116042_b26) 2000; 124
Raissi (10.1016/j.cma.2023.116042_b30) 2019; 378
Arzani (10.1016/j.cma.2023.116042_b34) 2021; 33
Zhu (10.1016/j.cma.2023.116042_b36) 1997; 23
Raissi (10.1016/j.cma.2023.116042_b32) 2019; 861
Koo (10.1016/j.cma.2023.116042_b14) 2017; 55
Lecun (10.1016/j.cma.2023.116042_b23) 2015; 521
Daxini (10.1016/j.cma.2023.116042_b7) 2017; 56
Abadi (10.1016/j.cma.2023.116042_b38) 2015
Schmidt (10.1016/j.cma.2023.116042_b3) 2016; 38
Nabian (10.1016/j.cma.2023.116042_b39) 2021; 36
Kontogiannis (10.1016/j.cma.2023.116042_b16) 2022; 944
Kashefi (10.1016/j.cma.2023.116042_b42) 2021; 33
Jin (10.1016/j.cma.2023.116042_b35) 2021; 426
Harbrecht (10.1016/j.cma.2023.116042_b4) 2016; 63
Sobieczky (10.1016/j.cma.2023.116042_b43) 1997
Sun (10.1016/j.cma.2023.116042_b37) 2023
Molesky (10.1016/j.cma.2023.116042_b2) 2018; 12
Pironneau (10.1016/j.cma.2023.116042_b9) 1974; 64
Lu (10.1016/j.cma.2023.116042_b31) 2021; 3
Higham (10.1016/j.cma.2023.116042_b25) 2019; 61
Della Vecchia (10.1016/j.cma.2023.116042_b45) 2014; 32
Bewley (10.1016/j.cma.2023.116042_b11) 2001; 37
Fathi (10.1016/j.cma.2023.116042_b33) 2020
Jameson (10.1016/j.cma.2023.116042_b1) 2003; 41
Han (10.1016/j.cma.2023.116042_b5) 2018; 115
Byrd (10.1016/j.cma.2023.116042_b40) 1995; 16
Jameson (10.1016/j.cma.2023.116042_b10) 1988; 3
Stein (10.1016/j.cma.2023.116042_b17) 2004; 193
Chen (10.1016/j.cma.2023.116042_b19) 2021; 919
Logg (10.1016/j.cma.2023.116042_b41) 2012
Anselmi (10.1016/j.cma.2023.116042_b22) 2016; 5
Güne (10.1016/j.cma.2023.116042_b12) 2018; 18
Eivazi (10.1016/j.cma.2023.116042_b21) 2021
Hsu (10.1016/j.cma.2023.116042_b13) 1992; 26
Yu (10.1016/j.cma.2023.116042_b15) 2019; 399
Markidis (10.1016/j.cma.2023.116042_b28) 2021; 4
Raissi (10.1016/j.cma.2023.116042_b20) 2020; 367
References_xml – volume: 3
  start-page: 233
  year: 1988
  end-page: 260
  ident: b10
  article-title: Aerodynamic design via control theory
  publication-title: J. Sci. Comput.
– volume: 38
  start-page: B917
  year: 2016
  end-page: B940
  ident: b3
  article-title: Large-scale three-dimensional acoustic horn optimization
  publication-title: SIAM J. Sci. Comput.
– volume: 25
  start-page: 173
  year: 2020
  end-page: 179
  ident: b6
  article-title: A meshless method for topology optimization of structures under multiple load cases
  publication-title: Structures
– volume: 23
  start-page: 550
  year: 1997
  end-page: 560
  ident: b36
  article-title: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Software
– volume: 41
  start-page: 2114
  year: 2003
  end-page: 2129
  ident: b1
  article-title: Reduction of the adjoint gradient formula for aerodynamic shape optimization problems
  publication-title: AIAA J.
– volume: 115
  start-page: 8505
  year: 2018
  end-page: 8510
  ident: b5
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: b24
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– volume: 26
  start-page: 177
  year: 1992
  end-page: 184
  ident: b13
  article-title: Direct manipulation of free-form deformations
  publication-title: Comput. Graph. (ACM)
– volume: 4
  start-page: 1
  year: 2021
  end-page: 15
  ident: b28
  article-title: The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
  publication-title: Front. Big Data
– volume: 12
  start-page: 659
  year: 2018
  end-page: 670
  ident: b2
  article-title: Inverse design in nanophotonics
  publication-title: Nat. Photonics
– volume: 37
  start-page: 21
  year: 2001
  end-page: 58
  ident: b11
  article-title: Flow control: New challenges for a new Renaissance
  publication-title: Prog. Aerosp. Sci.
– volume: 919
  start-page: 1
  year: 2021
  end-page: 28
  ident: b19
  article-title: Numerical investigation of minimum drag profiles in laminar flow using deep learning surrogates
  publication-title: J. Fluid Mech.
– volume: 3
  start-page: 208
  year: 2021
  end-page: 228
  ident: b31
  article-title: DeepXDE: A deep learning library for solving differential equations
  publication-title: SIAM Rev.
– year: 2023
  ident: b37
  article-title: Code supporting current paper
– year: 2020
  ident: b33
  article-title: Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets
  publication-title: Comput. Methods Programs Biomed.
– year: 2012
  ident: b41
  article-title: Automated Solution of Differential Equations By the Finite Element Method
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b30
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 426
  year: 2021
  ident: b35
  article-title: NSFnets (Navier–Stokes flow nets): Physics-informed neural networks for the incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 43
  ident: b12
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 33
  year: 2021
  ident: b42
  article-title: A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries
  publication-title: Phys. Fluids
– volume: 5
  start-page: 134
  year: 2016
  end-page: 158
  ident: b22
  article-title: On invariance and selectivity in representation learning
  publication-title: Inf. Inference
– volume: 16
  start-page: 1190
  year: 1995
  end-page: 1208
  ident: b40
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
– year: 2015
  ident: b38
  article-title: TensorFlow: large-scale machine learning on heterogeneous systems
– volume: 124
  start-page: 171
  year: 2000
  end-page: 190
  ident: b26
  article-title: Automatic differentiation of algorithms
  publication-title: J. Comput. Appl. Math.
– year: 2021
  ident: b21
  article-title: Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations
– volume: 193
  start-page: 2019
  year: 2004
  end-page: 2032
  ident: b17
  article-title: Automatic mesh update with the solid-extension mesh moving technique
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 56
  start-page: 1197
  year: 2017
  end-page: 1214
  ident: b7
  article-title: Parametric shape optimization techniques based on Meshless methods : A review
  publication-title: Struct. Multidiscip. Optim.
– volume: 367
  start-page: 1026
  year: 2020
  end-page: 1030
  ident: b20
  article-title: Hidden fluid mechanics : A Navier–Stokes informed deep learning framework for assimilating flow visualization data
  publication-title: Science
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b23
  article-title: Deep learning
  publication-title: Nature
– volume: 36
  start-page: 962
  year: 2021
  end-page: 977
  ident: b39
  article-title: Efficient training of physics-informed neural networks via importance sampling
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– volume: 32
  start-page: 103
  year: 2014
  end-page: 110
  ident: b45
  article-title: An airfoil shape optimization technique coupling PARSEC parameterization and evolutionary algorithm
  publication-title: Aerosp. Sci. Technol.
– volume: 64
  start-page: 97
  year: 1974
  end-page: 110
  ident: b9
  article-title: On optimum design in fluid mechanics
  publication-title: J. Fluid Mech.
– volume: 55
  start-page: 228
  year: 2017
  end-page: 240
  ident: b14
  article-title: Comparison of B-spline surface and free-form deformatio geometry control for aerodynamic optimization
  publication-title: AIAA J.
– volume: 384
  year: 2021
  ident: b27
  article-title: Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 394
  start-page: 136
  year: 2019
  end-page: 152
  ident: b29
  article-title: Adversarial uncertainty quantification in physics-informed neural networks
  publication-title: J. Comput. Phys.
– start-page: 137
  year: 1997
  end-page: 157
  ident: b43
  article-title: Geometry Generator for CFD and Applied Aerodynamics
– volume: 61
  start-page: 860
  year: 2019
  end-page: 891
  ident: b25
  article-title: Deep learning: An introduction for applied mathematicians
  publication-title: SIAM Rev.
– volume: 861
  start-page: 119
  year: 2019
  end-page: 137
  ident: b32
  article-title: Deep learning of vortex-induced vibrations
  publication-title: J. Fluid Mech.
– volume: 33
  start-page: 1
  year: 2021
  end-page: 19
  ident: b34
  article-title: Uncovering near-wall blood flow from sparse data with physics-informed neural networks
  publication-title: Phys. Fluids
– volume: 944
  year: 2022
  ident: b16
  article-title: Joint reconstruction and segmentation of noisy velocity images as an inverse Navier–Stokes problem
  publication-title: J. Fluid Mech.
– start-page: 71
  year: 1999
  end-page: 87
  ident: b44
  article-title: Parametric Airfoils and Wings
– volume: 63
  start-page: 237
  year: 2016
  end-page: 271
  ident: b4
  article-title: Optimization of current carrying multicables
  publication-title: Comput. Optim. Appl.
– year: 2019
  ident: b8
  article-title: Peridynamic Differential Operator for Numerical Analysis
– volume: 399
  year: 2019
  ident: b15
  article-title: Combined state and parameter estimation in level-set methods
  publication-title: J. Comput. Phys.
– volume: 14
  start-page: 989
  year: 2020
  end-page: 1010
  ident: b18
  article-title: Machine learning-based surrogate modeling for data-driven optimization: A comparison of subset selection for regression techniques
  publication-title: Optim. Lett.
– year: 2012
  ident: 10.1016/j.cma.2023.116042_b41
– volume: 426
  year: 2021
  ident: 10.1016/j.cma.2023.116042_b35
  article-title: NSFnets (Navier–Stokes flow nets): Physics-informed neural networks for the incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109951
– volume: 37
  start-page: 21
  issue: 1
  year: 2001
  ident: 10.1016/j.cma.2023.116042_b11
  article-title: Flow control: New challenges for a new Renaissance
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/S0376-0421(00)00016-6
– year: 2015
  ident: 10.1016/j.cma.2023.116042_b38
– volume: 56
  start-page: 1197
  year: 2017
  ident: 10.1016/j.cma.2023.116042_b7
  article-title: Parametric shape optimization techniques based on Meshless methods : A review
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-017-1702-8
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.cma.2023.116042_b24
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– year: 2020
  ident: 10.1016/j.cma.2023.116042_b33
  article-title: Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105729
– volume: 4
  start-page: 1
  issue: November
  year: 2021
  ident: 10.1016/j.cma.2023.116042_b28
  article-title: The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
  publication-title: Front. Big Data
– start-page: 71
  year: 1999
  ident: 10.1016/j.cma.2023.116042_b44
– volume: 394
  start-page: 136
  year: 2019
  ident: 10.1016/j.cma.2023.116042_b29
  article-title: Adversarial uncertainty quantification in physics-informed neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.027
– start-page: 137
  year: 1997
  ident: 10.1016/j.cma.2023.116042_b43
– volume: 14
  start-page: 989
  year: 2020
  ident: 10.1016/j.cma.2023.116042_b18
  article-title: Machine learning-based surrogate modeling for data-driven optimization: A comparison of subset selection for regression techniques
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-019-01428-7
– volume: 33
  issue: 2
  year: 2021
  ident: 10.1016/j.cma.2023.116042_b42
  article-title: A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries
  publication-title: Phys. Fluids
  doi: 10.1063/5.0033376
– volume: 26
  start-page: 177
  issue: 2
  year: 1992
  ident: 10.1016/j.cma.2023.116042_b13
  article-title: Direct manipulation of free-form deformations
  publication-title: Comput. Graph. (ACM)
  doi: 10.1145/142920.134036
– volume: 193
  start-page: 2019
  issue: 21–22
  year: 2004
  ident: 10.1016/j.cma.2023.116042_b17
  article-title: Automatic mesh update with the solid-extension mesh moving technique
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2003.12.046
– volume: 944
  year: 2022
  ident: 10.1016/j.cma.2023.116042_b16
  article-title: Joint reconstruction and segmentation of noisy velocity images as an inverse Navier–Stokes problem
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.503
– year: 2021
  ident: 10.1016/j.cma.2023.116042_b21
– volume: 23
  start-page: 550
  issue: 4
  year: 1997
  ident: 10.1016/j.cma.2023.116042_b36
  article-title: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/279232.279236
– volume: 55
  start-page: 228
  issue: 1
  year: 2017
  ident: 10.1016/j.cma.2023.116042_b14
  article-title: Comparison of B-spline surface and free-form deformatio geometry control for aerodynamic optimization
  publication-title: AIAA J.
  doi: 10.2514/1.J055102
– volume: 33
  start-page: 1
  issue: 7
  year: 2021
  ident: 10.1016/j.cma.2023.116042_b34
  article-title: Uncovering near-wall blood flow from sparse data with physics-informed neural networks
  publication-title: Phys. Fluids
  doi: 10.1063/5.0055600
– year: 2023
  ident: 10.1016/j.cma.2023.116042_b37
– volume: 25
  start-page: 173
  year: 2020
  ident: 10.1016/j.cma.2023.116042_b6
  article-title: A meshless method for topology optimization of structures under multiple load cases
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.03.005
– volume: 64
  start-page: 97
  issue: 1
  year: 1974
  ident: 10.1016/j.cma.2023.116042_b9
  article-title: On optimum design in fluid mechanics
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112074002023
– volume: 5
  start-page: 134
  issue: 2
  year: 2016
  ident: 10.1016/j.cma.2023.116042_b22
  article-title: On invariance and selectivity in representation learning
  publication-title: Inf. Inference
  doi: 10.1093/imaiai/iaw009
– volume: 38
  start-page: B917
  issue: 6
  year: 2016
  ident: 10.1016/j.cma.2023.116042_b3
  article-title: Large-scale three-dimensional acoustic horn optimization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1021131
– volume: 63
  start-page: 237
  issue: 1
  year: 2016
  ident: 10.1016/j.cma.2023.116042_b4
  article-title: Optimization of current carrying multicables
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-015-9764-2
– volume: 41
  start-page: 2114
  issue: 11
  year: 2003
  ident: 10.1016/j.cma.2023.116042_b1
  article-title: Reduction of the adjoint gradient formula for aerodynamic shape optimization problems
  publication-title: AIAA J.
  doi: 10.2514/2.6830
– volume: 399
  year: 2019
  ident: 10.1016/j.cma.2023.116042_b15
  article-title: Combined state and parameter estimation in level-set methods
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108950
– year: 2019
  ident: 10.1016/j.cma.2023.116042_b8
– volume: 32
  start-page: 103
  issue: 1
  year: 2014
  ident: 10.1016/j.cma.2023.116042_b45
  article-title: An airfoil shape optimization technique coupling PARSEC parameterization and evolutionary algorithm
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2013.11.006
– volume: 12
  start-page: 659
  issue: 11
  year: 2018
  ident: 10.1016/j.cma.2023.116042_b2
  article-title: Inverse design in nanophotonics
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0246-9
– volume: 115
  start-page: 8505
  issue: 34
  year: 2018
  ident: 10.1016/j.cma.2023.116042_b5
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1718942115
– volume: 367
  start-page: 1026
  issue: 6481
  year: 2020
  ident: 10.1016/j.cma.2023.116042_b20
  article-title: Hidden fluid mechanics : A Navier–Stokes informed deep learning framework for assimilating flow visualization data
  publication-title: Science
  doi: 10.1126/science.aaw4741
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2023.116042_b12
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 919
  start-page: 1
  year: 2021
  ident: 10.1016/j.cma.2023.116042_b19
  article-title: Numerical investigation of minimum drag profiles in laminar flow using deep learning surrogates
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.550
– volume: 124
  start-page: 171
  issue: 1–2
  year: 2000
  ident: 10.1016/j.cma.2023.116042_b26
  article-title: Automatic differentiation of algorithms
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00422-2
– volume: 3
  start-page: 208
  year: 2021
  ident: 10.1016/j.cma.2023.116042_b31
  article-title: DeepXDE: A deep learning library for solving differential equations
  publication-title: SIAM Rev.
  doi: 10.1137/19M1274067
– volume: 861
  start-page: 119
  year: 2019
  ident: 10.1016/j.cma.2023.116042_b32
  article-title: Deep learning of vortex-induced vibrations
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.872
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.cma.2023.116042_b23
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 36
  start-page: 962
  issue: 8
  year: 2021
  ident: 10.1016/j.cma.2023.116042_b39
  article-title: Efficient training of physics-informed neural networks via importance sampling
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12685
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2023.116042_b30
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 61
  start-page: 860
  issue: 4
  year: 2019
  ident: 10.1016/j.cma.2023.116042_b25
  article-title: Deep learning: An introduction for applied mathematicians
  publication-title: SIAM Rev.
  doi: 10.1137/18M1165748
– volume: 16
  start-page: 1190
  issue: 5
  year: 1995
  ident: 10.1016/j.cma.2023.116042_b40
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0916069
– volume: 384
  year: 2021
  ident: 10.1016/j.cma.2023.116042_b27
  article-title: Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 3
  start-page: 233
  issue: 3
  year: 1988
  ident: 10.1016/j.cma.2023.116042_b10
  article-title: Aerodynamic design via control theory
  publication-title: J. Sci. Comput.
  doi: 10.1007/BF01061285
SSID ssj0000812
Score 2.6291707
Snippet We use a physics-informed neural network (PINN) to simultaneously model and optimize the flow around an airfoil to maximize its lift to drag ratio. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116042
SubjectTerms Physics-informed neural network
Shape optimization
Surrogate model
Title Physics-informed deep learning for simultaneous surrogate modeling and PDE-constrained optimization of an airfoil geometry
URI https://dx.doi.org/10.1016/j.cma.2023.116042
Volume 411
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvTgW1xf5OBJiNY2SdPjoi6rgnhQ8FaadCIVbZfu7kEP_nYnbeoD1IPHhpnQZpKZSfrlG0IO0O9iGBWWGW0s40bkbs0lLLEiDDJtMOVoUL7XcnTHL-_FfY-cdndhHKzS-_7Wpzfe2rcc-9E8HheFu-PLHRe7O9bEvEU6TlDOYzfLj94-YR4Y8lrGcC6Yk-7-bDYYL9NQD4UROg4Z8PDn2PQl3gxXyJJPFOmgfZdV0oNyjSz7pJH6JTlZI4tfGAXXyWuD6DQT1hKiomQOMKa-NsQDxUY6KRyKMCsBN_10Mqvryh2l0aYmjpPJypzenJ0z41JHV0ECe6nQszz7K5u0sihDs6K2VfFEH6B6hmn9skHuhue3pyPmyyswE_FgypSWRqssCpWOtdIRuswAeBhbFQPESmgZSxCBPbEJaJHLHHcmuFx5gqbJwgiiTTJXViVsEaqViBOrpTYi4JnC7kwkIeJCgDwBq_ok6AY2NZ573H3AU9qBzB5TtEXqbJG2tuiTww-VcUu88Zcw76yVfps9KQaG39W2_6e2QxbcUwsY2yVz03oGe5iaTPV-M_f2yfzg4mp0_Q4IlOSq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UB7aHkUQUvBB06VLLKJ7ThHREHLa8UBJG5R7IxRECSr7HJof33HicNDanvo1ZmxEo_9zdgZfwOwT7hLblQ6bo11XFhZ-jWX8czJOCqMpZCjy_KdqsmNOLuVt0twNNyF8WmVAft7TO_QOrQchNE8mFWVv-MrPBe7P9akuEWJd7Ds2ankCJYPT88n0xdA1uOeNFxI7hWGn5tdmpft2IfihLBDRSL-s3t65XJOVuFjiBXZYf86a7CE9Tp8CnEjC6tyvg4fXpEKbsCvLqnTznnPiUqSJeKMhfIQd4wa2bzyiYRFjbTvZ_Ontm38aRrryuJ4maIu2dWPY2599OiLSFAvDYHLY7i1yRpHMqyoWtdUD-wOm0dctD8_w83J8fXRhIcKC9wmIlpwbZQ1ukhibVKjTUKoGaGIU6dTxFRLo1KFMnJjl6GRpSppc0IrVmRknSJOMNmEUd3UuAXMaJlmzihjZSQKTd3ZRGEipEQ1Rqe3IRoGNreBftx_wEM-5Jnd52SL3Nsi722xDd-fVWY998a_hMVgrfzNBMrJN_xd7cv_qe3ByuT68iK_OJ2ef4X3_kmfP7YDo0X7hN8oUlmY3TATfwPjxedb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+deep+learning+for+simultaneous+surrogate+modeling+and+PDE-constrained+optimization+of+an+airfoil+geometry&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Sun%2C+Yubiao&rft.au=Sengupta%2C+Ushnish&rft.au=Juniper%2C+Matthew&rft.date=2023-06-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=411&rft_id=info:doi/10.1016%2Fj.cma.2023.116042&rft.externalDocID=S0045782523001664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon