Physics-informed deep learning for simultaneous surrogate modeling and PDE-constrained optimization of an airfoil geometry
We use a physics-informed neural network (PINN) to simultaneously model and optimize the flow around an airfoil to maximize its lift to drag ratio. The parameters of the airfoil shape are provided as inputs to the PINN and the multidimensional search space of shape parameters is populated with collo...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 411; p. 116042 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0045-7825 1879-2138 |
DOI | 10.1016/j.cma.2023.116042 |
Cover
Loading…
Abstract | We use a physics-informed neural network (PINN) to simultaneously model and optimize the flow around an airfoil to maximize its lift to drag ratio. The parameters of the airfoil shape are provided as inputs to the PINN and the multidimensional search space of shape parameters is populated with collocation points to ensure that the Navier–Stokes equations are approximately satisfied throughout. We use the fact that the PINN is automatically differentiable to calculate gradients of the lift-to-drag ratio with respect to the airfoil shape parameters. This allows us to optimize with the L-BFGS gradient-based algorithm, which is more efficient than non-gradient-based algorithms, without deriving an adjoint code. We train the PINN with adaptive sampling of collocation points, such that the accuracy of the solution improves as the solution approaches the optimal point. We demonstrate this on two examples: one that optimizes a single parameter, and another that optimizes eleven parameters. The method is successful and, by comparison with conventional CFD, we find that the velocity and pressure fields have small pointwise errors and that the method converges to optimal parameters. We find that different PINNs converge to slightly different parameters, reflecting the fact that there are many closely-spaced local minima when using stochastic gradient descent. This method can be applied relatively easily to other optimization problems and avoids the difficult process of writing adjoint codes. It is, however, more computationally expensive than adjoint-based optimization. As knowledge about training PINNs improves and hardware dedicated to neural networks becomes faster, this method of simultaneous training and optimization with PINNs could become easier and faster than using adjoint codes. |
---|---|
AbstractList | We use a physics-informed neural network (PINN) to simultaneously model and optimize the flow around an airfoil to maximize its lift to drag ratio. The parameters of the airfoil shape are provided as inputs to the PINN and the multidimensional search space of shape parameters is populated with collocation points to ensure that the Navier–Stokes equations are approximately satisfied throughout. We use the fact that the PINN is automatically differentiable to calculate gradients of the lift-to-drag ratio with respect to the airfoil shape parameters. This allows us to optimize with the L-BFGS gradient-based algorithm, which is more efficient than non-gradient-based algorithms, without deriving an adjoint code. We train the PINN with adaptive sampling of collocation points, such that the accuracy of the solution improves as the solution approaches the optimal point. We demonstrate this on two examples: one that optimizes a single parameter, and another that optimizes eleven parameters. The method is successful and, by comparison with conventional CFD, we find that the velocity and pressure fields have small pointwise errors and that the method converges to optimal parameters. We find that different PINNs converge to slightly different parameters, reflecting the fact that there are many closely-spaced local minima when using stochastic gradient descent. This method can be applied relatively easily to other optimization problems and avoids the difficult process of writing adjoint codes. It is, however, more computationally expensive than adjoint-based optimization. As knowledge about training PINNs improves and hardware dedicated to neural networks becomes faster, this method of simultaneous training and optimization with PINNs could become easier and faster than using adjoint codes. |
ArticleNumber | 116042 |
Author | Sengupta, Ushnish Juniper, Matthew Sun, Yubiao |
Author_xml | – sequence: 1 givenname: Yubiao surname: Sun fullname: Sun, Yubiao – sequence: 2 givenname: Ushnish surname: Sengupta fullname: Sengupta, Ushnish – sequence: 3 givenname: Matthew orcidid: 0000-0002-8742-9541 surname: Juniper fullname: Juniper, Matthew email: mpj1001@cam.ac.uk |
BookMark | eNp9kM1OwzAQhC1UJNrCA3DzC6TYTmI74oRK-ZEq0QOcLcfZFFeJXdkuUvv0JJQTB_ay0mq-0ezM0MR5BwjdUrKghPK73cL0esEIyxeUclKwCzSlUlQZo7mcoCkhRZkJycorNItxR4aRlE3RafN5jNbEzLrWhx4a3ADscQc6OOu2eDjiaPtDl7QDf4g4HkLwW50A976BbtRo1-DN4yoz3sUUtHWDi98n29uTTtY77NtBg7UNrbcd3oLvIYXjNbpsdRfh5nfP0cfT6n35kq3fnl-XD-vM5AVJmay5qaXOmaxFLeu84IJAwUQrBYCQZc0Fh5K0tK2gLhveCC4rnheVgUazHPI5EmdfE3yMAVplbPoJNobtFCVqrFDt1FChGitU5woHkv4h98H2Ohz_Ze7PDAwvfVkIKhoLbghjA5ikGm__ob8Bk3-Odg |
CitedBy_id | crossref_primary_10_1155_2024_8574868 crossref_primary_10_3390_fluids9120296 crossref_primary_10_1016_j_compositesa_2025_108820 crossref_primary_10_1016_j_jcp_2024_113494 crossref_primary_10_1007_s10409_024_24140_x crossref_primary_10_1016_j_advwatres_2023_104556 crossref_primary_10_1038_s41598_024_57137_4 crossref_primary_10_1063_5_0213522 crossref_primary_10_1002_adts_202400589 crossref_primary_10_1080_17499518_2024_2315301 crossref_primary_10_1016_j_jcp_2025_113846 crossref_primary_10_32604_cmc_2024_053075 crossref_primary_10_3390_sym16010021 crossref_primary_10_1115_1_4067536 crossref_primary_10_1063_5_0188665 crossref_primary_10_3390_aerospace10070638 crossref_primary_10_1016_j_jcp_2024_113285 crossref_primary_10_1137_23M1566935 crossref_primary_10_1021_acs_iecr_3c02383 crossref_primary_10_1109_ACCESS_2024_3457670 crossref_primary_10_1016_j_ast_2024_109709 crossref_primary_10_1088_1742_6596_2891_6_062023 crossref_primary_10_1021_acs_iecr_3c04146 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1016_j_wroa_2024_100266 crossref_primary_10_3390_jmse11071470 crossref_primary_10_3390_math12101417 crossref_primary_10_1016_j_enbuild_2024_114575 crossref_primary_10_1021_acs_energyfuels_4c05870 crossref_primary_10_1080_10255842_2025_2471504 crossref_primary_10_3390_electronics13224416 crossref_primary_10_3390_math13010017 crossref_primary_10_1007_s11431_024_2764_5 crossref_primary_10_1016_j_scs_2024_105750 crossref_primary_10_1016_j_buildenv_2024_111175 crossref_primary_10_1371_journal_pcbi_1011916 crossref_primary_10_1063_5_0245918 crossref_primary_10_1016_j_addma_2024_104266 crossref_primary_10_1016_j_cma_2024_116913 |
Cites_doi | 10.1016/j.jcp.2020.109951 10.1016/S0376-0421(00)00016-6 10.1007/s00158-017-1702-8 10.1016/0893-6080(89)90020-8 10.1016/j.cmpb.2020.105729 10.1016/j.jcp.2019.05.027 10.1007/s11590-019-01428-7 10.1063/5.0033376 10.1145/142920.134036 10.1016/j.cma.2003.12.046 10.1017/jfm.2022.503 10.1145/279232.279236 10.2514/1.J055102 10.1063/5.0055600 10.1016/j.istruc.2020.03.005 10.1017/S0022112074002023 10.1093/imaiai/iaw009 10.1137/15M1021131 10.1007/s10589-015-9764-2 10.2514/2.6830 10.1016/j.jcp.2019.108950 10.1016/j.ast.2013.11.006 10.1038/s41566-018-0246-9 10.1073/pnas.1718942115 10.1126/science.aaw4741 10.1017/jfm.2021.550 10.1016/S0377-0427(00)00422-2 10.1137/19M1274067 10.1017/jfm.2018.872 10.1038/nature14539 10.1111/mice.12685 10.1016/j.jcp.2018.10.045 10.1137/18M1165748 10.1137/0916069 10.1007/BF01061285 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.cma.2023.116042 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2138 |
ExternalDocumentID | 10_1016_j_cma_2023_116042 S0045782523001664 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SSH VH1 VOH WUQ ZY4 |
ID | FETCH-LOGICAL-c340t-8b6cb8a328b7b8b34670e427f87ee785b676e50f1f9eb5d6d76896349ceda23e3 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Tue Jul 01 04:06:19 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Fri Feb 23 02:37:16 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surrogate model Physics-informed neural network Shape optimization |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-8b6cb8a328b7b8b34670e427f87ee785b676e50f1f9eb5d6d76896349ceda23e3 |
ORCID | 0000-0002-8742-9541 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0045782523001664 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cma_2023_116042 crossref_primary_10_1016_j_cma_2023_116042 elsevier_sciencedirect_doi_10_1016_j_cma_2023_116042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 2023-06-00 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Eivazi, Tahani, Schlatter, Vinuesa (b21) 2021 Jameson (b10) 1988; 3 Markidis (b28) 2021; 4 Niaki, Haghighat, Campbell, Poursartip (b27) 2021; 384 Lecun, Bengio, Hinton (b23) 2015; 521 Yang, Perdikaris (b29) 2019; 394 Arzani, Wang, D’Souza (b34) 2021; 33 Yu, Juniper, Magri (b15) 2019; 399 Sun, Sengupta, Juniper (b37) 2023 Higham, Higham (b25) 2019; 61 Hornik, Stinchcombe, White (b24) 1989; 2 Nabian, Gladstone, Meidani (b39) 2021; 36 Harbrecht, Loos (b4) 2016; 63 Zhu, Byrd, Lu, Nocedal (b36) 1997; 23 Raissi, Wang, Triantafyllou, Karniadakis (b32) 2019; 861 Della Vecchia, Daniele, D’Amato (b45) 2014; 32 Logg, Mardal, Wells (b41) 2012 Fathi, Perez-Raya, Baghaie, Berg, Janiga, Arzani, D’Souza (b33) 2020 Jameson, Kim (b1) 2003; 41 Stein, Tezduyar, Benney (b17) 2004; 193 Bewley (b11) 2001; 37 Güne, Baydin, Pearlmutter, Siskind (b12) 2018; 18 Hsu, Hughes, Kaufman (b13) 1992; 26 Byrd, Lu, Nocedal, Zhu (b40) 1995; 16 Han, Jentzen, Weinan (b5) 2018; 115 Raissi, Yazdani, Karniadakis (b20) 2020; 367 Bartholomew-Biggs, Brown, Christianson, Dixon (b26) 2000; 124 Koo, Zingg (b14) 2017; 55 Kim, Boukouvala (b18) 2020; 14 Lu, Meng, Mao, Karniadakis (b31) 2021; 3 Daxini, Prajapati (b7) 2017; 56 Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jozefowicz, Jia, Kaiser, Kudlur, Levenberg, Mané, Schuster, Monga, Moore, Murray, Olah, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b38) 2015 Kashefi, Rempe, Guibas (b42) 2021; 33 Anselmi, Rosasco, Poggio (b22) 2016; 5 Sobieczky (b43) 1997 Schmidt, Wadbro, Berggren (b3) 2016; 38 Chen, Cakal, Hu, Thuerey (b19) 2021; 919 Jin, Cai, Li, Karniadakis (b35) 2021; 426 Sobieczky (b44) 1999 Molesky, Lin, Piggott, Jin, Vucković, Rodriguez (b2) 2018; 12 Pironneau (b9) 1974; 64 Kontogiannis, Elgersma, Sederman, Juniper (b16) 2022; 944 Raissi, Perdikaris, Karniadakis (b30) 2019; 378 Li, Guan, Wang, Wang, Zhang, Lin (b6) 2020; 25 Madenci, Barut, Dorduncu (b8) 2019 Kim (10.1016/j.cma.2023.116042_b18) 2020; 14 Yang (10.1016/j.cma.2023.116042_b29) 2019; 394 Sobieczky (10.1016/j.cma.2023.116042_b44) 1999 Niaki (10.1016/j.cma.2023.116042_b27) 2021; 384 Hornik (10.1016/j.cma.2023.116042_b24) 1989; 2 Madenci (10.1016/j.cma.2023.116042_b8) 2019 Li (10.1016/j.cma.2023.116042_b6) 2020; 25 Bartholomew-Biggs (10.1016/j.cma.2023.116042_b26) 2000; 124 Raissi (10.1016/j.cma.2023.116042_b30) 2019; 378 Arzani (10.1016/j.cma.2023.116042_b34) 2021; 33 Zhu (10.1016/j.cma.2023.116042_b36) 1997; 23 Raissi (10.1016/j.cma.2023.116042_b32) 2019; 861 Koo (10.1016/j.cma.2023.116042_b14) 2017; 55 Lecun (10.1016/j.cma.2023.116042_b23) 2015; 521 Daxini (10.1016/j.cma.2023.116042_b7) 2017; 56 Abadi (10.1016/j.cma.2023.116042_b38) 2015 Schmidt (10.1016/j.cma.2023.116042_b3) 2016; 38 Nabian (10.1016/j.cma.2023.116042_b39) 2021; 36 Kontogiannis (10.1016/j.cma.2023.116042_b16) 2022; 944 Kashefi (10.1016/j.cma.2023.116042_b42) 2021; 33 Jin (10.1016/j.cma.2023.116042_b35) 2021; 426 Harbrecht (10.1016/j.cma.2023.116042_b4) 2016; 63 Sobieczky (10.1016/j.cma.2023.116042_b43) 1997 Sun (10.1016/j.cma.2023.116042_b37) 2023 Molesky (10.1016/j.cma.2023.116042_b2) 2018; 12 Pironneau (10.1016/j.cma.2023.116042_b9) 1974; 64 Lu (10.1016/j.cma.2023.116042_b31) 2021; 3 Higham (10.1016/j.cma.2023.116042_b25) 2019; 61 Della Vecchia (10.1016/j.cma.2023.116042_b45) 2014; 32 Bewley (10.1016/j.cma.2023.116042_b11) 2001; 37 Fathi (10.1016/j.cma.2023.116042_b33) 2020 Jameson (10.1016/j.cma.2023.116042_b1) 2003; 41 Han (10.1016/j.cma.2023.116042_b5) 2018; 115 Byrd (10.1016/j.cma.2023.116042_b40) 1995; 16 Jameson (10.1016/j.cma.2023.116042_b10) 1988; 3 Stein (10.1016/j.cma.2023.116042_b17) 2004; 193 Chen (10.1016/j.cma.2023.116042_b19) 2021; 919 Logg (10.1016/j.cma.2023.116042_b41) 2012 Anselmi (10.1016/j.cma.2023.116042_b22) 2016; 5 Güne (10.1016/j.cma.2023.116042_b12) 2018; 18 Eivazi (10.1016/j.cma.2023.116042_b21) 2021 Hsu (10.1016/j.cma.2023.116042_b13) 1992; 26 Yu (10.1016/j.cma.2023.116042_b15) 2019; 399 Markidis (10.1016/j.cma.2023.116042_b28) 2021; 4 Raissi (10.1016/j.cma.2023.116042_b20) 2020; 367 |
References_xml | – volume: 3 start-page: 233 year: 1988 end-page: 260 ident: b10 article-title: Aerodynamic design via control theory publication-title: J. Sci. Comput. – volume: 38 start-page: B917 year: 2016 end-page: B940 ident: b3 article-title: Large-scale three-dimensional acoustic horn optimization publication-title: SIAM J. Sci. Comput. – volume: 25 start-page: 173 year: 2020 end-page: 179 ident: b6 article-title: A meshless method for topology optimization of structures under multiple load cases publication-title: Structures – volume: 23 start-page: 550 year: 1997 end-page: 560 ident: b36 article-title: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Software – volume: 41 start-page: 2114 year: 2003 end-page: 2129 ident: b1 article-title: Reduction of the adjoint gradient formula for aerodynamic shape optimization problems publication-title: AIAA J. – volume: 115 start-page: 8505 year: 2018 end-page: 8510 ident: b5 article-title: Solving high-dimensional partial differential equations using deep learning publication-title: Proc. Natl. Acad. Sci. USA – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: b24 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. – volume: 26 start-page: 177 year: 1992 end-page: 184 ident: b13 article-title: Direct manipulation of free-form deformations publication-title: Comput. Graph. (ACM) – volume: 4 start-page: 1 year: 2021 end-page: 15 ident: b28 article-title: The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers? publication-title: Front. Big Data – volume: 12 start-page: 659 year: 2018 end-page: 670 ident: b2 article-title: Inverse design in nanophotonics publication-title: Nat. Photonics – volume: 37 start-page: 21 year: 2001 end-page: 58 ident: b11 article-title: Flow control: New challenges for a new Renaissance publication-title: Prog. Aerosp. Sci. – volume: 919 start-page: 1 year: 2021 end-page: 28 ident: b19 article-title: Numerical investigation of minimum drag profiles in laminar flow using deep learning surrogates publication-title: J. Fluid Mech. – volume: 3 start-page: 208 year: 2021 end-page: 228 ident: b31 article-title: DeepXDE: A deep learning library for solving differential equations publication-title: SIAM Rev. – year: 2023 ident: b37 article-title: Code supporting current paper – year: 2020 ident: b33 article-title: Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets publication-title: Comput. Methods Programs Biomed. – year: 2012 ident: b41 article-title: Automated Solution of Differential Equations By the Finite Element Method – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b30 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 426 year: 2021 ident: b35 article-title: NSFnets (Navier–Stokes flow nets): Physics-informed neural networks for the incompressible Navier–Stokes equations publication-title: J. Comput. Phys. – volume: 18 start-page: 1 year: 2018 end-page: 43 ident: b12 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 33 year: 2021 ident: b42 article-title: A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries publication-title: Phys. Fluids – volume: 5 start-page: 134 year: 2016 end-page: 158 ident: b22 article-title: On invariance and selectivity in representation learning publication-title: Inf. Inference – volume: 16 start-page: 1190 year: 1995 end-page: 1208 ident: b40 article-title: A limited memory algorithm for bound constrained optimization publication-title: SIAM J. Sci. Comput. – year: 2015 ident: b38 article-title: TensorFlow: large-scale machine learning on heterogeneous systems – volume: 124 start-page: 171 year: 2000 end-page: 190 ident: b26 article-title: Automatic differentiation of algorithms publication-title: J. Comput. Appl. Math. – year: 2021 ident: b21 article-title: Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations – volume: 193 start-page: 2019 year: 2004 end-page: 2032 ident: b17 article-title: Automatic mesh update with the solid-extension mesh moving technique publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 56 start-page: 1197 year: 2017 end-page: 1214 ident: b7 article-title: Parametric shape optimization techniques based on Meshless methods : A review publication-title: Struct. Multidiscip. Optim. – volume: 367 start-page: 1026 year: 2020 end-page: 1030 ident: b20 article-title: Hidden fluid mechanics : A Navier–Stokes informed deep learning framework for assimilating flow visualization data publication-title: Science – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b23 article-title: Deep learning publication-title: Nature – volume: 36 start-page: 962 year: 2021 end-page: 977 ident: b39 article-title: Efficient training of physics-informed neural networks via importance sampling publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 32 start-page: 103 year: 2014 end-page: 110 ident: b45 article-title: An airfoil shape optimization technique coupling PARSEC parameterization and evolutionary algorithm publication-title: Aerosp. Sci. Technol. – volume: 64 start-page: 97 year: 1974 end-page: 110 ident: b9 article-title: On optimum design in fluid mechanics publication-title: J. Fluid Mech. – volume: 55 start-page: 228 year: 2017 end-page: 240 ident: b14 article-title: Comparison of B-spline surface and free-form deformatio geometry control for aerodynamic optimization publication-title: AIAA J. – volume: 384 year: 2021 ident: b27 article-title: Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 394 start-page: 136 year: 2019 end-page: 152 ident: b29 article-title: Adversarial uncertainty quantification in physics-informed neural networks publication-title: J. Comput. Phys. – start-page: 137 year: 1997 end-page: 157 ident: b43 article-title: Geometry Generator for CFD and Applied Aerodynamics – volume: 61 start-page: 860 year: 2019 end-page: 891 ident: b25 article-title: Deep learning: An introduction for applied mathematicians publication-title: SIAM Rev. – volume: 861 start-page: 119 year: 2019 end-page: 137 ident: b32 article-title: Deep learning of vortex-induced vibrations publication-title: J. Fluid Mech. – volume: 33 start-page: 1 year: 2021 end-page: 19 ident: b34 article-title: Uncovering near-wall blood flow from sparse data with physics-informed neural networks publication-title: Phys. Fluids – volume: 944 year: 2022 ident: b16 article-title: Joint reconstruction and segmentation of noisy velocity images as an inverse Navier–Stokes problem publication-title: J. Fluid Mech. – start-page: 71 year: 1999 end-page: 87 ident: b44 article-title: Parametric Airfoils and Wings – volume: 63 start-page: 237 year: 2016 end-page: 271 ident: b4 article-title: Optimization of current carrying multicables publication-title: Comput. Optim. Appl. – year: 2019 ident: b8 article-title: Peridynamic Differential Operator for Numerical Analysis – volume: 399 year: 2019 ident: b15 article-title: Combined state and parameter estimation in level-set methods publication-title: J. Comput. Phys. – volume: 14 start-page: 989 year: 2020 end-page: 1010 ident: b18 article-title: Machine learning-based surrogate modeling for data-driven optimization: A comparison of subset selection for regression techniques publication-title: Optim. Lett. – year: 2012 ident: 10.1016/j.cma.2023.116042_b41 – volume: 426 year: 2021 ident: 10.1016/j.cma.2023.116042_b35 article-title: NSFnets (Navier–Stokes flow nets): Physics-informed neural networks for the incompressible Navier–Stokes equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109951 – volume: 37 start-page: 21 issue: 1 year: 2001 ident: 10.1016/j.cma.2023.116042_b11 article-title: Flow control: New challenges for a new Renaissance publication-title: Prog. Aerosp. Sci. doi: 10.1016/S0376-0421(00)00016-6 – year: 2015 ident: 10.1016/j.cma.2023.116042_b38 – volume: 56 start-page: 1197 year: 2017 ident: 10.1016/j.cma.2023.116042_b7 article-title: Parametric shape optimization techniques based on Meshless methods : A review publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-017-1702-8 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.cma.2023.116042_b24 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – year: 2020 ident: 10.1016/j.cma.2023.116042_b33 article-title: Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105729 – volume: 4 start-page: 1 issue: November year: 2021 ident: 10.1016/j.cma.2023.116042_b28 article-title: The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers? publication-title: Front. Big Data – start-page: 71 year: 1999 ident: 10.1016/j.cma.2023.116042_b44 – volume: 394 start-page: 136 year: 2019 ident: 10.1016/j.cma.2023.116042_b29 article-title: Adversarial uncertainty quantification in physics-informed neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.027 – start-page: 137 year: 1997 ident: 10.1016/j.cma.2023.116042_b43 – volume: 14 start-page: 989 year: 2020 ident: 10.1016/j.cma.2023.116042_b18 article-title: Machine learning-based surrogate modeling for data-driven optimization: A comparison of subset selection for regression techniques publication-title: Optim. Lett. doi: 10.1007/s11590-019-01428-7 – volume: 33 issue: 2 year: 2021 ident: 10.1016/j.cma.2023.116042_b42 article-title: A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries publication-title: Phys. Fluids doi: 10.1063/5.0033376 – volume: 26 start-page: 177 issue: 2 year: 1992 ident: 10.1016/j.cma.2023.116042_b13 article-title: Direct manipulation of free-form deformations publication-title: Comput. Graph. (ACM) doi: 10.1145/142920.134036 – volume: 193 start-page: 2019 issue: 21–22 year: 2004 ident: 10.1016/j.cma.2023.116042_b17 article-title: Automatic mesh update with the solid-extension mesh moving technique publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2003.12.046 – volume: 944 year: 2022 ident: 10.1016/j.cma.2023.116042_b16 article-title: Joint reconstruction and segmentation of noisy velocity images as an inverse Navier–Stokes problem publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.503 – year: 2021 ident: 10.1016/j.cma.2023.116042_b21 – volume: 23 start-page: 550 issue: 4 year: 1997 ident: 10.1016/j.cma.2023.116042_b36 article-title: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Software doi: 10.1145/279232.279236 – volume: 55 start-page: 228 issue: 1 year: 2017 ident: 10.1016/j.cma.2023.116042_b14 article-title: Comparison of B-spline surface and free-form deformatio geometry control for aerodynamic optimization publication-title: AIAA J. doi: 10.2514/1.J055102 – volume: 33 start-page: 1 issue: 7 year: 2021 ident: 10.1016/j.cma.2023.116042_b34 article-title: Uncovering near-wall blood flow from sparse data with physics-informed neural networks publication-title: Phys. Fluids doi: 10.1063/5.0055600 – year: 2023 ident: 10.1016/j.cma.2023.116042_b37 – volume: 25 start-page: 173 year: 2020 ident: 10.1016/j.cma.2023.116042_b6 article-title: A meshless method for topology optimization of structures under multiple load cases publication-title: Structures doi: 10.1016/j.istruc.2020.03.005 – volume: 64 start-page: 97 issue: 1 year: 1974 ident: 10.1016/j.cma.2023.116042_b9 article-title: On optimum design in fluid mechanics publication-title: J. Fluid Mech. doi: 10.1017/S0022112074002023 – volume: 5 start-page: 134 issue: 2 year: 2016 ident: 10.1016/j.cma.2023.116042_b22 article-title: On invariance and selectivity in representation learning publication-title: Inf. Inference doi: 10.1093/imaiai/iaw009 – volume: 38 start-page: B917 issue: 6 year: 2016 ident: 10.1016/j.cma.2023.116042_b3 article-title: Large-scale three-dimensional acoustic horn optimization publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M1021131 – volume: 63 start-page: 237 issue: 1 year: 2016 ident: 10.1016/j.cma.2023.116042_b4 article-title: Optimization of current carrying multicables publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-015-9764-2 – volume: 41 start-page: 2114 issue: 11 year: 2003 ident: 10.1016/j.cma.2023.116042_b1 article-title: Reduction of the adjoint gradient formula for aerodynamic shape optimization problems publication-title: AIAA J. doi: 10.2514/2.6830 – volume: 399 year: 2019 ident: 10.1016/j.cma.2023.116042_b15 article-title: Combined state and parameter estimation in level-set methods publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.108950 – year: 2019 ident: 10.1016/j.cma.2023.116042_b8 – volume: 32 start-page: 103 issue: 1 year: 2014 ident: 10.1016/j.cma.2023.116042_b45 article-title: An airfoil shape optimization technique coupling PARSEC parameterization and evolutionary algorithm publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2013.11.006 – volume: 12 start-page: 659 issue: 11 year: 2018 ident: 10.1016/j.cma.2023.116042_b2 article-title: Inverse design in nanophotonics publication-title: Nat. Photonics doi: 10.1038/s41566-018-0246-9 – volume: 115 start-page: 8505 issue: 34 year: 2018 ident: 10.1016/j.cma.2023.116042_b5 article-title: Solving high-dimensional partial differential equations using deep learning publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1718942115 – volume: 367 start-page: 1026 issue: 6481 year: 2020 ident: 10.1016/j.cma.2023.116042_b20 article-title: Hidden fluid mechanics : A Navier–Stokes informed deep learning framework for assimilating flow visualization data publication-title: Science doi: 10.1126/science.aaw4741 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.cma.2023.116042_b12 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 919 start-page: 1 year: 2021 ident: 10.1016/j.cma.2023.116042_b19 article-title: Numerical investigation of minimum drag profiles in laminar flow using deep learning surrogates publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.550 – volume: 124 start-page: 171 issue: 1–2 year: 2000 ident: 10.1016/j.cma.2023.116042_b26 article-title: Automatic differentiation of algorithms publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(00)00422-2 – volume: 3 start-page: 208 year: 2021 ident: 10.1016/j.cma.2023.116042_b31 article-title: DeepXDE: A deep learning library for solving differential equations publication-title: SIAM Rev. doi: 10.1137/19M1274067 – volume: 861 start-page: 119 year: 2019 ident: 10.1016/j.cma.2023.116042_b32 article-title: Deep learning of vortex-induced vibrations publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.872 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.cma.2023.116042_b23 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 36 start-page: 962 issue: 8 year: 2021 ident: 10.1016/j.cma.2023.116042_b39 article-title: Efficient training of physics-informed neural networks via importance sampling publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12685 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.cma.2023.116042_b30 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 61 start-page: 860 issue: 4 year: 2019 ident: 10.1016/j.cma.2023.116042_b25 article-title: Deep learning: An introduction for applied mathematicians publication-title: SIAM Rev. doi: 10.1137/18M1165748 – volume: 16 start-page: 1190 issue: 5 year: 1995 ident: 10.1016/j.cma.2023.116042_b40 article-title: A limited memory algorithm for bound constrained optimization publication-title: SIAM J. Sci. Comput. doi: 10.1137/0916069 – volume: 384 year: 2021 ident: 10.1016/j.cma.2023.116042_b27 article-title: Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 3 start-page: 233 issue: 3 year: 1988 ident: 10.1016/j.cma.2023.116042_b10 article-title: Aerodynamic design via control theory publication-title: J. Sci. Comput. doi: 10.1007/BF01061285 |
SSID | ssj0000812 |
Score | 2.6291707 |
Snippet | We use a physics-informed neural network (PINN) to simultaneously model and optimize the flow around an airfoil to maximize its lift to drag ratio. The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 116042 |
SubjectTerms | Physics-informed neural network Shape optimization Surrogate model |
Title | Physics-informed deep learning for simultaneous surrogate modeling and PDE-constrained optimization of an airfoil geometry |
URI | https://dx.doi.org/10.1016/j.cma.2023.116042 |
Volume | 411 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvTgW1xf5OBJiNY2SdPjoi6rgnhQ8FaadCIVbZfu7kEP_nYnbeoD1IPHhpnQZpKZSfrlG0IO0O9iGBWWGW0s40bkbs0lLLEiDDJtMOVoUL7XcnTHL-_FfY-cdndhHKzS-_7Wpzfe2rcc-9E8HheFu-PLHRe7O9bEvEU6TlDOYzfLj94-YR4Y8lrGcC6Yk-7-bDYYL9NQD4UROg4Z8PDn2PQl3gxXyJJPFOmgfZdV0oNyjSz7pJH6JTlZI4tfGAXXyWuD6DQT1hKiomQOMKa-NsQDxUY6KRyKMCsBN_10Mqvryh2l0aYmjpPJypzenJ0z41JHV0ECe6nQszz7K5u0sihDs6K2VfFEH6B6hmn9skHuhue3pyPmyyswE_FgypSWRqssCpWOtdIRuswAeBhbFQPESmgZSxCBPbEJaJHLHHcmuFx5gqbJwgiiTTJXViVsEaqViBOrpTYi4JnC7kwkIeJCgDwBq_ok6AY2NZ573H3AU9qBzB5TtEXqbJG2tuiTww-VcUu88Zcw76yVfps9KQaG39W2_6e2QxbcUwsY2yVz03oGe5iaTPV-M_f2yfzg4mp0_Q4IlOSq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UB7aHkUQUvBB06VLLKJ7ThHREHLa8UBJG5R7IxRECSr7HJof33HicNDanvo1ZmxEo_9zdgZfwOwT7hLblQ6bo11XFhZ-jWX8czJOCqMpZCjy_KdqsmNOLuVt0twNNyF8WmVAft7TO_QOrQchNE8mFWVv-MrPBe7P9akuEWJd7Ds2ankCJYPT88n0xdA1uOeNFxI7hWGn5tdmpft2IfihLBDRSL-s3t65XJOVuFjiBXZYf86a7CE9Tp8CnEjC6tyvg4fXpEKbsCvLqnTznnPiUqSJeKMhfIQd4wa2bzyiYRFjbTvZ_Ontm38aRrryuJ4maIu2dWPY2599OiLSFAvDYHLY7i1yRpHMqyoWtdUD-wOm0dctD8_w83J8fXRhIcKC9wmIlpwbZQ1ukhibVKjTUKoGaGIU6dTxFRLo1KFMnJjl6GRpSppc0IrVmRknSJOMNmEUd3UuAXMaJlmzihjZSQKTd3ZRGEipEQ1Rqe3IRoGNreBftx_wEM-5Jnd52SL3Nsi722xDd-fVWY998a_hMVgrfzNBMrJN_xd7cv_qe3ByuT68iK_OJ2ef4X3_kmfP7YDo0X7hN8oUlmY3TATfwPjxedb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+deep+learning+for+simultaneous+surrogate+modeling+and+PDE-constrained+optimization+of+an+airfoil+geometry&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Sun%2C+Yubiao&rft.au=Sengupta%2C+Ushnish&rft.au=Juniper%2C+Matthew&rft.date=2023-06-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=411&rft_id=info:doi/10.1016%2Fj.cma.2023.116042&rft.externalDocID=S0045782523001664 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |