Graph Neural Networks: A bibliometrics overview

Recently, graph neural networks (GNN) have become a hot topic in machine learning community. This paper presents a Scopus-based bibliometric overview of the GNNs’ research since 2004 when GNN papers were first published. The study aims to evaluate GNN research trends, both quantitatively and qualita...

Full description

Saved in:
Bibliographic Details
Published inMachine learning with applications Vol. 10; p. 100401
Main Authors Keramatfar, Abdalsamad, Rafiee, Mohadeseh, Amirkhani, Hossein
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2666-8270
2666-8270
DOI10.1016/j.mlwa.2022.100401

Cover

Loading…
Abstract Recently, graph neural networks (GNN) have become a hot topic in machine learning community. This paper presents a Scopus-based bibliometric overview of the GNNs’ research since 2004 when GNN papers were first published. The study aims to evaluate GNN research trends, both quantitatively and qualitatively. We provide the trend of research, distribution of subjects, active and influential authors and institutions, sources of publications, most cited documents, and hot topics. Our investigations reveal that the most frequent subject categories in this field are computer science, engineering, and telecommunications. In addition, the most active source of GNN publications is Lecture Notes in Computer Science. The most prolific or impactful institutions are found in the United States, China, and Canada. We also provide must-read papers based on citation count and future directions. Our analysis reveals that node classification is the most popular task, followed by link prediction, and graph classification in the GNN literature. Moreover, the results suggest that the application of graph convolutional networks and attention mechanisms are now among hot topics of GNN research. Finally, scalability, generalization, over-smoothing, and explainability of graph neural networks are some research directions to pursue. •Graph Convolutional Networks and attention mechanism are now hot topics in GNN research.•Node classification is the most popular task, followed by link prediction, and graph classification in the GNN literature.•Scalability, generalization, over-smoothing, and explainability of graph neural networks are some research directions to pursue.
AbstractList Recently, graph neural networks (GNNs) have become a hot topic in machine learning community. This paper presents a Scopus-based bibliometric overview of the GNNs’ research since 2004 when GNN papers were first published. The study aims to evaluate GNN research trends, both quantitatively and qualitatively. We provide the trend of research, distribution of subjects, active and influential authors and institutions, sources of publications, most cited documents, and hot topics. Our investigations reveal that the most frequent subject categories in this field are computer science, engineering, and telecommunications. In addition, the most active source of GNN publications is Lecture Notes in Computer Science. The most prolific or impactful institutions are found in the United States, China, and Canada. We also provide must-read papers based on citation count and future directions. Our analysis reveals that node classification is the most popular task, followed by link prediction, and graph classification in the GNN literature. Moreover, the results suggest that the application of graph convolutional networks and attention mechanisms are now among hot topics of GNN research. Finally, scalability, generalization, over-smoothing, and explainability of graph neural networks are some research directions to pursue.
Recently, graph neural networks (GNN) have become a hot topic in machine learning community. This paper presents a Scopus-based bibliometric overview of the GNNs’ research since 2004 when GNN papers were first published. The study aims to evaluate GNN research trends, both quantitatively and qualitatively. We provide the trend of research, distribution of subjects, active and influential authors and institutions, sources of publications, most cited documents, and hot topics. Our investigations reveal that the most frequent subject categories in this field are computer science, engineering, and telecommunications. In addition, the most active source of GNN publications is Lecture Notes in Computer Science. The most prolific or impactful institutions are found in the United States, China, and Canada. We also provide must-read papers based on citation count and future directions. Our analysis reveals that node classification is the most popular task, followed by link prediction, and graph classification in the GNN literature. Moreover, the results suggest that the application of graph convolutional networks and attention mechanisms are now among hot topics of GNN research. Finally, scalability, generalization, over-smoothing, and explainability of graph neural networks are some research directions to pursue. •Graph Convolutional Networks and attention mechanism are now hot topics in GNN research.•Node classification is the most popular task, followed by link prediction, and graph classification in the GNN literature.•Scalability, generalization, over-smoothing, and explainability of graph neural networks are some research directions to pursue.
ArticleNumber 100401
Author Rafiee, Mohadeseh
Amirkhani, Hossein
Keramatfar, Abdalsamad
Author_xml – sequence: 1
  givenname: Abdalsamad
  orcidid: 0000-0001-6826-4692
  surname: Keramatfar
  fullname: Keramatfar, Abdalsamad
  email: samad@sid.com
  organization: Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
– sequence: 2
  givenname: Mohadeseh
  surname: Rafiee
  fullname: Rafiee, Mohadeseh
  email: mohadeseh.rafie2012@gmail.com
  organization: Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
– sequence: 3
  givenname: Hossein
  surname: Amirkhani
  fullname: Amirkhani, Hossein
  email: amirkhani@qom.ac.ir
  organization: Department of Computer Engineering and IT, Faculty of Engineering, University of Qom, Qom, Iran
BookMark eNp9kMFKw0AQhhepYK19AU99gbQzm80mK15K0VooetHzMtlsdGuaLZvY4tubGgXx0NM_DHw_M98lG9S-toxdI0wRUM420211oCkHzrsFCMAzNuRSyijjKQz-zBds3DQbAOAZYhyLIZstA-3eJo_2I1DVRXvw4b25mcwnucsr57e2Dc40E7-3Ye_s4Yqdl1Q1dvyTI_Zyf_e8eIjWT8vVYr6OTCygjTLKRcIV5oaENFSQLMtUiEQIhTGmKUJirc0QeBKTTCUvVAmS56QyBSrO4xFb9b2Fp43eBbel8Kk9Of298OFVU2idqaxOC5lxUQpMCxKQgkoUSsQcQcYGhOq6sr7LBN80wZbauJZa5-s2kKs0gj561Bt99KiPHnXvsUP5P_T3lJPQbQ_ZTlAnLejGOFsbW7hgTdt94E7hX5M7io4
CitedBy_id crossref_primary_10_3389_frai_2024_1427534
crossref_primary_10_1007_s12273_023_1041_1
crossref_primary_10_1109_ACCESS_2025_3528373
crossref_primary_10_1007_s11227_024_06336_x
crossref_primary_10_1007_s12273_024_1125_6
Cites_doi 10.1126/science.122.3159.108
10.1109/TGRS.2019.2945591
10.1155/2018/1827074
10.1109/CVPR.2019.00532
10.1016/j.jvcir.2021.103055
10.5958/2249-7315.2018.00002.3
10.1016/j.knosys.2020.106292
10.1007/978-3-030-45439-5_25
10.1109/IJCNN.2005.1555942
10.1016/j.patcog.2020.107410
10.1186/s12911-018-0594-x
10.1073/pnas.0707962104
10.1109/CVPR.2019.00371
10.1109/ACCESS.2019.2902865
10.1007/s00521-020-05087-z
10.1109/TMI.2019.2911203
10.1007/s11192-009-0146-3
10.1016/j.media.2019.101539
10.1109/ICDM.2019.00070
10.1007/s13042-020-01152-0
10.1177/0165551518761013
10.1016/j.cels.2019.03.006
10.1016/j.knosys.2019.105443
10.1109/HICSS.2014.231
10.1109/MSP.2017.2693418
10.1109/TNN.2008.2005605
10.1016/j.aiopen.2021.01.001
10.1109/ICASSP.2018.8462105
10.1007/978-3-319-93803-5_55
10.1016/j.knosys.2021.106994
10.1109/ACCESS.2020.2989443
10.1016/j.eswa.2020.114104
10.1145/3366423.3380214
10.1371/journal.pone.0191163
10.1016/j.neucom.2008.07.021
10.1609/aaai.v32i1.11782
10.1109/INFOCOM.2019.8737631
10.1038/nature14539
10.1177/0165551519877049
10.1145/3340531.3411975
10.1016/j.knosys.2021.107299
10.1145/3292500.3330790
10.18653/v1/D19-1480
10.1109/ACCESS.2020.2966409
10.1109/GrC.2007.11
10.1016/j.knosys.2021.107403
10.18653/v1/D18-1244
10.1016/j.neucom.2018.05.095
10.1177/0165551521990617
10.1007/978-3-030-33491-8_48
10.1177/0165551507087238
10.1007/978-3-030-01246-5_41
10.1145/3132847.3132961
10.24963/ijcai.2018/505
10.1109/3ICT51146.2020.9311975
10.1016/j.knosys.2019.105020
10.1109/MWSCAS48704.2020.9184643
10.1007/978-3-030-01264-9_42
10.1007/s11192-015-1612-8
10.18653/v1/P19-1260
10.1109/LGRS.2013.2273792
10.1109/CVPR.2019.01230
10.1016/j.physrep.2009.11.002
10.1177/0038038588022001007
10.1007/978-3-319-93417-4_38
10.1007/978-981-15-1699-3_6
10.1109/ACCESS.2020.2973923
10.1007/978-3-030-15127-0_19
10.1016/j.neucom.2020.03.031
10.1007/978-3-030-47436-2_41
10.1186/1742-5581-3-1
10.1002/aris.2007.1440410120
10.1016/j.joi.2010.03.002
10.1007/978-3-031-02145-9
10.1016/j.knosys.2020.105548
10.1002/asi.20591
10.1016/j.neunet.2020.06.005
10.1016/j.neucom.2020.04.110
10.1145/3448250
10.1016/j.dss.2015.03.008
10.1016/j.neucom.2020.03.086
10.1016/j.jbankfin.2017.05.010
10.1186/s40649-019-0069-y
10.1038/s41597-019-0152-0
10.1109/CVPR.2018.00717
10.1109/CVPR.2017.576
10.1109/ACCESS.2020.2993538
10.1061/(ASCE)0733-9429(2008)134:6(822)
10.1007/s10479-019-03282-3
10.18653/v1/D17-1159
10.1109/CVPR.2019.00010
10.1016/j.knosys.2017.11.018
10.1002/asi.21181
10.24963/ijcai.2020/181
10.1109/ACCESS.2020.2973039
10.1109/CVPR.2019.00981
10.1145/3363574
10.1109/LGRS.2018.2869563
10.1007/978-3-030-32236-6_52
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.mlwa.2022.100401
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2666-8270
ExternalDocumentID oai_doaj_org_article_7d6824f417da40709591611b1063c049
10_1016_j_mlwa_2022_100401
S2666827022000780
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c340t-8ab45291bca46cada6ff744544913177105eee810253a6762d9f062ba989093b3
IEDL.DBID DOA
ISSN 2666-8270
IngestDate Wed Aug 27 01:24:33 EDT 2025
Thu Apr 24 23:09:00 EDT 2025
Tue Jul 01 02:33:45 EDT 2025
Fri Feb 23 02:38:22 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Graph representation learning
Graph Convolutional Network
Bibliometrics
Graph Neural Network
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-8ab45291bca46cada6ff744544913177105eee810253a6762d9f062ba989093b3
ORCID 0000-0001-6826-4692
OpenAccessLink https://doaj.org/article/7d6824f417da40709591611b1063c049
ParticipantIDs doaj_primary_oai_doaj_org_article_7d6824f417da40709591611b1063c049
crossref_citationtrail_10_1016_j_mlwa_2022_100401
crossref_primary_10_1016_j_mlwa_2022_100401
elsevier_sciencedirect_doi_10_1016_j_mlwa_2022_100401
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Machine learning with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Li, Cui, Wu, Zhang, Wang (b66) 2019
Martínez, Nin, Tomás, Rubio (b85) 2019
Zhang, Wu, Tian, Zhang, Lu (b155) 2021; 222
Singh, Uddin, Pinto (b107) 2015; 104
Yang, Yang, Jin, Zhang (b140) 2014; 11
Hu, Tang, Tang, Liu (b40) 2013
LeCun, Bengio, Hinton (b59) 2015; 521
Burnham (b8) 2006; 3
(pp. 5425–5434).
Mojgani, Jalali, Keramatfar (b86) 2020
Scarselli, Tsoi, Gori, Hagenbuchner (b101) 2004
You, Tian, Yu, Lv (b146) 2020; 58
Wang, He, Wang, Feng, Chua (b126) 2019
Dhere, Sivaswamy (b21) 2021
Yu, Xu, Wang (b147) 2018; 141
Zhang, Xu (b156) 2021; 229
Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., & Welling, M. (2018). Modeling Relational Data with Graph Convolutional Networks. In
Chen, Z.-M., Wei, X.-S., Wang, P., & Guo, Y. (2019). Multi-Label Image Recognition With Graph Convolutional Networks. In
Bronstein, Bruna, LeCun, Szlam, Vandergheynst (b7) 2017; 34
Zhang, Y., Qi, P., & Manning, C. D. (2018). Graph convolution over pruned dependency trees improves relation extraction. In
Garfield (b26) 1955; 122
(pp. 11–20).
Jing, Wang, Shao, Huo, Zhang (b45) 2020; 8
Chen, Lin, Li, Li, Zhou, Sun (b12) 2020
Chen, Xie, Wang, Liu, Xu, Hao (b15) 2018; 18
Bianchini, Dimitri, Maggini, Scarselli (b3) 2018
Zhao, Hou, Wu (b159) 2020; 193
Zhang, Zhang, Xu, Zhou, Liu, Gu (b157) 2019; 7
Deuerlein (b19) 2008; 134
Rebecq, Ranftl, Koltun, Scaramuzza (b97) 2019
Devlin, Chang, Lee, Toutanova (b20) 2018
Tang, Liu, Shah, Shi, Mitra, Wang (b116) 2020
Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In
Trentin, Di Iorio (b120) 2018; 313
(pp. 729–734). 722.
.
AlQuraishi (b1) 2019; 8
Zhao, Gao, Liu, Zhao, Xu (b158) 2020; 8
Lu, Lv, Cao, Xie, Peng, Du (b79) 2020; 400
Heimerl, F., Lohmann, S., Lange, S., & Ertl, T. (2014). Word Cloud Explorer: Text Analytics Based on Word Clouds. In
Xie, Chen, Peng (b133) 2020; 402
Giudici, Sarlin, Spelta (b31) 2020; 112
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b100) 2009; 20
Wang, Xu, Kwak, Zeng (b129) 2020
Giudici, Polinesi (b29) 2021; 299
Chen, Bentley, Mori, Misawa, Fujiwara, Rueckert (b10) 2019; 58
Zou, Yang, Zhang (b164) 2018; 13
van Eck, Waltman (b123) 2010; 84
Cham.
Sun, C., Huang, L., & Qiu, X. (2019). Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. In
Fortunato (b25) 2010; 486
Lei, K., Qin, M., Bai, B., Zhang, G., & Yang, M. (2019). GCN-GAN: A Non-linear Temporal Link Prediction Model for Weighted Dynamic Networks. In
González-Pereira, Guerrero-Bote, Moya-Anegón (b33) 2010; 4
Trentin, Di Iorio (b119) 2009; 73
Huang, C., Wu, X., Zhang, X., Zhang, C., Zhao, J., Yin, D., et al. (2019). Online Purchase Prediction via Multi-Scale Modeling of Behavior Dynamics. In
Ding, Yang, Chen (b22) 2020
Mahdavi, Khoshraftar, An (b81) 2019
Yao, T., Pan, Y., Li, Y., & Mei, T. (2018). Exploring Visual Relationship for Image Captioning. In
Yu, T., Yin, H., & Zhu, Z. (2018). Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. In
Kumar, Raghavan, Rajagopalan, Sivakumar, Tompkins, Upfal (b56) 2000
Marcheggiani, D., & Titov, I. (2017). Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling. In
Leordeanu (b63) 2020
Nguyen, H., Nguyen, D. T., & Nguyen, T. (2019). Estimating County Health Indices Using Graph Neural Networks. In
Ouyang, W., Zhang, Y., Zhu, M., Zhang, X., Chen, H., Ren, Y., et al. (2019). Interpretable Spatial-Temporal Attention Graph Convolution Network for Service Part Hierarchical Demand Forecast. In
Sun, X., Man, Y., Zhao, Y., He, J., & Liu, N. (2019).
Yan, Xiong, Lin (b136) 2018
(pp. 12018–12027).
Gogoglou, Nguyen, Salimov, Rider, Bruss (b32) 2020
Grover, Leskovec (b35) 2016
Ebrahim, Poshtan, Jamali, Ebrahim (b24) 2020; 8
Wang, D., Lin, J., Cui, P., Jia, Q., Wang, Z., Fang, Y., et al. (2019). A Semi-Supervised Graph Attentive Network for Financial Fraud Detection. In
Zhang, Chen, Zhang (b149) 2021; 231
Gori, M., Monfardini, G., & Scarselli, F. (2005). A new model for learning in graph domains. In
Ding, Zhu, Feng, Zhang, Cheng (b23) 2020; 403
Liu, Chen, Yang, Zhou, Li, Song (b76) 2018
Hong, Kim, Chen, Lin, Yap, Shen (b38) 2019; 38
Lee, Rossi, Kim, Ahmed, Koh (b60) 2019; 13
Keramatfar, chakoli, Esparaein (b48) 2015; 2
Marin, Wellman (b84) 2011
Tan, Z., Zhao, X., & Wang, W. (2017). Representation Learning of Large-Scale Knowledge Graphs via Entity Feature Combinations. In
Zhang, Song, Huang, Swami, Chawla (b153) 2019
Qiu, Li, Huang, YIn (b96) 2019
Giudici, Raffinetti (b30) 2021; 167
Hirsch (b37) 2007; 104
Shi, L., Zhang, Y., Cheng, J., & Lu, H. (2019). Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition. In
Zhang, Li, Xia, Wang, Jin (b151) 2020
Bondy, Murty (b6) 1976
Hong Kong, China.
Leordeanu (b62) 2020
Khanfor, A., Nammouchi, A., Ghazzai, H., Yang, Y., Haider, M. R., & Massoud, Y. (2020). Graph Neural Networks-based Clustering for Social Internet of Things. In
Lu, Wu, Mao, Wang, Zhang (b80) 2015; 74
Casas-Valadez, M. A., Faz-Mendoza, A., Medina-Rodriguez, C. E., Cobo, M., Gamboa-Rosales, N. K., & López-Robles, J. R. (2020). Research trends in Sentiment Analysis and Opinion Mining from Knowledge Management approach: A science mapping from 2007 to 2020. In
Keramatfar, Amirkhani, Bidgoly (b47) 2022
Tang, Yao, Sun, Wang, Tang, Aggarwal (b117) 2020
Chen, Ding, Xu, Wang, Hao, Zhou (b11) 2018; 2018
Huang, B., & Carley, K. (2019).
Laranjeira (b57) 2020
Yin, Li, Zhang, Lu (b143) 2019; 185
Spinelli, Scardapane, Uncini (b111) 2020; 129
Yang, Wei, Chen, Wu (b139) 2019
Bin, Chen, Wei, Chen, Gao, Sang (b4) 2020; 106
Nicolaisen (b89) 2007; 41
Nicolaisen (b90) 2010; 61
Le, Mikolov (b58) 2014
Ying, He, Chen, Eksombatchai, Hamilton, Leskovec (b144) 2018
West (b131) 2001
Li, Sun, Zhu, Tang, Zhang, Ma (b69) 2021; 33
Persson, Danell, Schneider (b94) 2009
Lu, Z., Du, P., & Nie, J.-Y. (2020). VGCN-BERT: Augmenting BERT with graph embedding for text classification. In
Li, Qin, Liu, Yang, Li (b68) 2019
Chen, Xie (b14) 2020
Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for Quantum chemistry. In
Khiste, Paithankar (b52) 2017; 3
Speriosu, M., Sudan, N., Upadhyay, S., & Baldridge, J. (2011). Twitter polarity classification with label propagation over lexical links and the follower graph. In
Kipf, Welling (b54) 2016
Bo, D., Wang, X., Shi, C., Zhu, M., Lu, E., & Cui, P. (2020). Structural Deep Clustering Network. In
Jiang, Wang, Yao (b44) 2022
Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., & Tian, Q. (2019). Actional-Structural Graph Convolutional Networks for Skeleton-Based Action Recognition. In
Zhu, Ghahramani (b163) 2002
Mao, M., Li, Z., Zhao, Z., & Zeng, L. (2018). Bibliometric analysis of the deep learning research status with the data from Web of Science. In
Zhao, M., Jia, W., & Huang, Y. (2020).
Velickovic, Cucurull, Casanova, Romero, Liò, Bengio (b125) 2018
Tu, M., Wang, G., Huang, J., Tang, Y., He, X., & Zhou, B. (2019). Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs. In
Cook, Holder (b17) 2006
Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., & Bronstein, M. (2017). Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs. In
Song, Yu, Yuan, Liu (b108) 2021; 76
Liu, Sabbata (b77) 2019
Li, Lei (b67) 2021; 47
Qin, Shang, Tian, Wang, Zhang, Tang (b95) 2019; 16
Xie, Xu, Li, Yang, Gao (b135) 2020; 194
Wu, He, Xu (b132) 2019
Liben-Nowell, Kleinberg (b74) 2007; 58
Yao, J. (2007). A Ten-year Review of Granular Computing. In
Liu (b75) 2012; 5
Li, Tarlow, Brockschmidt, Zemel (b70) 2016
Deng, S., Wang, S., Rangwala, H., Wang, L., & Ning, Y. (2020). Cola-GNN: Cross-location Attention based Graph Neural Networks for Long-term ILI Prediction. In
Zhang, M., Cui, Z., Neumann, M., & Chen, Y. (2018). An End-to-End Deep Learning Architecture for Graph Classification. In
Li, Wu, Wu, Wang (b72) 2020
Thelwall (b118) 2008; 34
Leordeanu (b64) 2020
(pp. 3590–3598).
Bengio, Lecun, Hinton (b2) 2021; 64
Li, Xu, Wang, Wang (b73) 2020; 11
Zhou, Cui, Hu, Zhang, Yang, Liu (b161) 2020; 1
Wang, X., Ye, Y., & Gupta, A. (2018). Zero-shot recognition via semantic embeddings and knowledge graphs. In
Sboev, A., Selivanov, A., Rybka, R., Moloshnikov, I., & Bogachev, D. (2020).
Gievska, Madjarov (b27) 2019
Sügis, Dauvillier, Leontjeva, Adler, Hindie, Moncion (b112) 2019; 6
(pp. 734–734).
Seo, Oh, Lee (b104) 2020; 8
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention is all you need. In
Kim, J., Kim, T., Kim, S., & Yoo, C. (2019). Edge-Labeling Graph Neural Network for Few-Shot Learning. In
Keramatfar, Amirkhani (b46) 2019; 45
van Eck, Waltman (b122) 2007
Khiste, Maske, Deshmukh (b51) 2018; 8
Roberto, Gerardo (b98) 2020; 9
Jeong, Jang, Shin, Park, Choi (b43) 2020
Shen, Shen, Xiong, Wang, Wang, Han (b105) 2020
Li, Q., Wu, X.-M., Liu, H., Zhang, X., & Guan, Z. (2019). Label efficient semi-supervised learning via graph filtering. In
Scott (b103) 1988; 22
Yang, Ding, Chen (b137) 2019
Chiu, C. C., Sainath, T. N., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen, Z., et al. (2018). State-of-the-Art Speech Recognition with Sequence-to-Sequence Models. In
Zhang, Tong, Xu, Maciejewski (b154) 2019; 6
Perozzi, Al-Rfou, Skiena (b93) 2014
You, J., Liu, B., Ying, R., Pande, V., & Leskovec, J. (2018). Graph convolutional policy network for goal-directed molecular graph generation. In
Pennec, Sommer, Fletcher (b92) 2019
Yang, J., Lu, J., Lee, S., Batra, D., & Parikh, D. (2018).
Spinelli, I., Scardapane, S., Scarpiniti, M., & Uncini, A. (2017). Efficient data augmentation using graph imputation neural networks. In
Xie, Y., Li, S., Yang, C., Wong, R. C.-W., & Han, J. (2020). When Do GNNs Work: Understanding and Improving Neighborhood Aggregation. In
Hou, Chen, Li, Cheng, Yang (b39) 2019
Zhou, Huang, Hu, He (b162) 2020; 205
Wang, Huang, Wang (b127) 2020; 8
CVPR, (pp. 5172–5181).
Khiste (b50) 2017; 3
Leordeanu (10.1016/j.mlwa.2022.100401_b63) 2020
Li (10.1016/j.mlwa.2022.100401_b73) 2020; 11
Zhang (10.1016/j.mlwa.2022.100401_b153) 2019
West (10.1016/j.mlwa.2022.100401_b131) 2001
10.1016/j.mlwa.2022.100401_b82
10.1016/j.mlwa.2022.100401_b83
Devlin (10.1016/j.mlwa.2022.100401_b20) 2018
Zhu (10.1016/j.mlwa.2022.100401_b163) 2002
Bianchini (10.1016/j.mlwa.2022.100401_b3) 2018
10.1016/j.mlwa.2022.100401_b113
10.1016/j.mlwa.2022.100401_b115
10.1016/j.mlwa.2022.100401_b114
Zhao (10.1016/j.mlwa.2022.100401_b159) 2020; 193
Shen (10.1016/j.mlwa.2022.100401_b105) 2020
10.1016/j.mlwa.2022.100401_b121
Gogoglou (10.1016/j.mlwa.2022.100401_b32) 2020
Scarselli (10.1016/j.mlwa.2022.100401_b100) 2009; 20
LeCun (10.1016/j.mlwa.2022.100401_b59) 2015; 521
Xie (10.1016/j.mlwa.2022.100401_b133) 2020; 402
10.1016/j.mlwa.2022.100401_b88
Chen (10.1016/j.mlwa.2022.100401_b11) 2018; 2018
Bin (10.1016/j.mlwa.2022.100401_b4) 2020; 106
10.1016/j.mlwa.2022.100401_b87
Wu (10.1016/j.mlwa.2022.100401_b132) 2019
Tang (10.1016/j.mlwa.2022.100401_b116) 2020
10.1016/j.mlwa.2022.100401_b91
Yu (10.1016/j.mlwa.2022.100401_b147) 2018; 141
Kumar (10.1016/j.mlwa.2022.100401_b56) 2000
Wang (10.1016/j.mlwa.2022.100401_b127) 2020; 8
10.1016/j.mlwa.2022.100401_b128
AlQuraishi (10.1016/j.mlwa.2022.100401_b1) 2019; 8
Chen (10.1016/j.mlwa.2022.100401_b14) 2020
Khiste (10.1016/j.mlwa.2022.100401_b51) 2018; 8
10.1016/j.mlwa.2022.100401_b124
Zhang (10.1016/j.mlwa.2022.100401_b157) 2019; 7
Liu (10.1016/j.mlwa.2022.100401_b75) 2012; 5
Song (10.1016/j.mlwa.2022.100401_b108) 2021; 76
Nicolaisen (10.1016/j.mlwa.2022.100401_b90) 2010; 61
10.1016/j.mlwa.2022.100401_b130
Scarselli (10.1016/j.mlwa.2022.100401_b101) 2004
10.1016/j.mlwa.2022.100401_b18
10.1016/j.mlwa.2022.100401_b99
Qiu (10.1016/j.mlwa.2022.100401_b96) 2019
Spinelli (10.1016/j.mlwa.2022.100401_b111) 2020; 129
Li (10.1016/j.mlwa.2022.100401_b69) 2021; 33
10.1016/j.mlwa.2022.100401_b16
10.1016/j.mlwa.2022.100401_b13
Dhere (10.1016/j.mlwa.2022.100401_b21) 2021
Xie (10.1016/j.mlwa.2022.100401_b135) 2020; 194
Singh (10.1016/j.mlwa.2022.100401_b107) 2015; 104
Seo (10.1016/j.mlwa.2022.100401_b104) 2020; 8
Ding (10.1016/j.mlwa.2022.100401_b23) 2020; 403
Lu (10.1016/j.mlwa.2022.100401_b79) 2020; 400
Fortunato (10.1016/j.mlwa.2022.100401_b25) 2010; 486
Hou (10.1016/j.mlwa.2022.100401_b40) 2019
10.1016/j.mlwa.2022.100401_b28
Trentin (10.1016/j.mlwa.2022.100401_b120) 2018; 313
Giudici (10.1016/j.mlwa.2022.100401_b31) 2020; 112
Khiste (10.1016/j.mlwa.2022.100401_b50) 2017; 3
Qin (10.1016/j.mlwa.2022.100401_b95) 2019; 16
Hu (10.1016/j.mlwa.2022.100401_b41) 2013
Lu (10.1016/j.mlwa.2022.100401_b80) 2015; 74
Zou (10.1016/j.mlwa.2022.100401_b164) 2018; 13
10.1016/j.mlwa.2022.100401_b109
10.1016/j.mlwa.2022.100401_b106
Li (10.1016/j.mlwa.2022.100401_b67) 2021; 47
10.1016/j.mlwa.2022.100401_b102
Marin (10.1016/j.mlwa.2022.100401_b84) 2011
Zhang (10.1016/j.mlwa.2022.100401_b155) 2021; 222
10.1016/j.mlwa.2022.100401_b9
10.1016/j.mlwa.2022.100401_b110
Chen (10.1016/j.mlwa.2022.100401_b12) 2020
Perozzi (10.1016/j.mlwa.2022.100401_b93) 2014
10.1016/j.mlwa.2022.100401_b5
Laranjeira (10.1016/j.mlwa.2022.100401_b57) 2020
10.1016/j.mlwa.2022.100401_b34
Ding (10.1016/j.mlwa.2022.100401_b22) 2020
Giudici (10.1016/j.mlwa.2022.100401_b30) 2021; 167
10.1016/j.mlwa.2022.100401_b36
Wang (10.1016/j.mlwa.2022.100401_b129) 2020
Kipf (10.1016/j.mlwa.2022.100401_b54) 2016
González-Pereira (10.1016/j.mlwa.2022.100401_b33) 2010; 4
Mahdavi (10.1016/j.mlwa.2022.100401_b81) 2019
Persson (10.1016/j.mlwa.2022.100401_b94) 2009
Zhang (10.1016/j.mlwa.2022.100401_b156) 2021; 229
Hirsch (10.1016/j.mlwa.2022.100401_b37) 2005; 15
Li (10.1016/j.mlwa.2022.100401_b70) 2016
Cook (10.1016/j.mlwa.2022.100401_b17) 2006
Roberto (10.1016/j.mlwa.2022.100401_b98) 2020; 9
Ying (10.1016/j.mlwa.2022.100401_b144) 2018
10.1016/j.mlwa.2022.100401_b160
Yan (10.1016/j.mlwa.2022.100401_b136) 2018
10.1016/j.mlwa.2022.100401_b42
10.1016/j.mlwa.2022.100401_b43
Zhou (10.1016/j.mlwa.2022.100401_b162) 2020; 205
10.1016/j.mlwa.2022.100401_b49
Zhou (10.1016/j.mlwa.2022.100401_b161) 2020; 1
Deuerlein (10.1016/j.mlwa.2022.100401_b19) 2008; 134
Le (10.1016/j.mlwa.2022.100401_b58) 2014
Hong (10.1016/j.mlwa.2022.100401_b39) 2019; 38
Jeong (10.1016/j.mlwa.2022.100401_b44) 2020
Liu (10.1016/j.mlwa.2022.100401_b77) 2019
Lee (10.1016/j.mlwa.2022.100401_b60) 2019; 13
Khiste (10.1016/j.mlwa.2022.100401_b52) 2017; 3
Wang (10.1016/j.mlwa.2022.100401_b126) 2019
Ebrahim (10.1016/j.mlwa.2022.100401_b24) 2020; 8
Jing (10.1016/j.mlwa.2022.100401_b45) 2020; 8
van Eck (10.1016/j.mlwa.2022.100401_b122) 2007
Trentin (10.1016/j.mlwa.2022.100401_b119) 2009; 73
Yang (10.1016/j.mlwa.2022.100401_b137) 2019
Hirsch (10.1016/j.mlwa.2022.100401_b38) 2007; 104
Li (10.1016/j.mlwa.2022.100401_b66) 2019
Chen (10.1016/j.mlwa.2022.100401_b15) 2018; 18
Tang (10.1016/j.mlwa.2022.100401_b117) 2020
10.1016/j.mlwa.2022.100401_b55
10.1016/j.mlwa.2022.100401_b53
Rebecq (10.1016/j.mlwa.2022.100401_b97) 2019
Leordeanu (10.1016/j.mlwa.2022.100401_b62) 2020
Nicolaisen (10.1016/j.mlwa.2022.100401_b89) 2007; 41
Burnham (10.1016/j.mlwa.2022.100401_b8) 2006; 3
van Eck (10.1016/j.mlwa.2022.100401_b123) 2010; 84
10.1016/j.mlwa.2022.100401_b61
Grover (10.1016/j.mlwa.2022.100401_b35) 2016
Liu (10.1016/j.mlwa.2022.100401_b76) 2018
Mojgani (10.1016/j.mlwa.2022.100401_b86) 2020
10.1016/j.mlwa.2022.100401_b138
Keramatfar (10.1016/j.mlwa.2022.100401_b46) 2019; 45
Giudici (10.1016/j.mlwa.2022.100401_b29) 2021; 299
10.1016/j.mlwa.2022.100401_b134
Garfield (10.1016/j.mlwa.2022.100401_b26) 1955; 122
10.1016/j.mlwa.2022.100401_b142
Martínez (10.1016/j.mlwa.2022.100401_b85) 2019
10.1016/j.mlwa.2022.100401_b141
Yin (10.1016/j.mlwa.2022.100401_b143) 2019; 185
Scott (10.1016/j.mlwa.2022.100401_b103) 1988; 22
Keramatfar (10.1016/j.mlwa.2022.100401_b48) 2015; 2
Liben-Nowell (10.1016/j.mlwa.2022.100401_b74) 2007; 58
Pennec (10.1016/j.mlwa.2022.100401_b92) 2019
Bengio (10.1016/j.mlwa.2022.100401_b2) 2021; 64
10.1016/j.mlwa.2022.100401_b65
Bronstein (10.1016/j.mlwa.2022.100401_b7) 2017; 34
Leordeanu (10.1016/j.mlwa.2022.100401_b64) 2020
Zhang (10.1016/j.mlwa.2022.100401_b154) 2019; 6
Velickovic (10.1016/j.mlwa.2022.100401_b125) 2018
Li (10.1016/j.mlwa.2022.100401_b68) 2019
Zhang (10.1016/j.mlwa.2022.100401_b149) 2021; 231
10.1016/j.mlwa.2022.100401_b71
Sügis (10.1016/j.mlwa.2022.100401_b112) 2019; 6
Thelwall (10.1016/j.mlwa.2022.100401_b118) 2008; 34
Li (10.1016/j.mlwa.2022.100401_b72) 2020
Yang (10.1016/j.mlwa.2022.100401_b139) 2019
Gievska (10.1016/j.mlwa.2022.100401_b27) 2019
Zhang (10.1016/j.mlwa.2022.100401_b151) 2020
10.1016/j.mlwa.2022.100401_b145
Keramatfar (10.1016/j.mlwa.2022.100401_b47) 2021
10.1016/j.mlwa.2022.100401_b148
Zhao (10.1016/j.mlwa.2022.100401_b158) 2020; 8
10.1016/j.mlwa.2022.100401_b152
Bondy (10.1016/j.mlwa.2022.100401_b6) 1976
Yang (10.1016/j.mlwa.2022.100401_b140) 2014; 11
10.1016/j.mlwa.2022.100401_b150
10.1016/j.mlwa.2022.100401_b78
You (10.1016/j.mlwa.2022.100401_b146) 2020; 58
Chen (10.1016/j.mlwa.2022.100401_b10) 2019; 58
References_xml – reference: Zhao, M., Jia, W., & Huang, Y. (2020).
– volume: 8
  start-page: 76632
  year: 2020
  end-page: 76641
  ident: b158
  article-title: Spatiotemporal data fusion in graph convolutional networks for traffic prediction
  publication-title: IEEE Access
– year: 2016
  ident: b70
  article-title: Gated graph sequence neural networks
– volume: 1
  start-page: 57
  year: 2020
  end-page: 81
  ident: b161
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
– reference: Sun, C., Huang, L., & Qiu, X. (2019). Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. In
– reference: Tu, M., Wang, G., Huang, J., Tang, Y., He, X., & Zhou, B. (2019). Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs. In
– year: 2021
  ident: b21
  article-title: Self-supervised learning for segmentation
– start-page: 1
  year: 2020
  end-page: 16
  ident: b43
  article-title: A context-aware citation recommendation model with BERT and graph convolutional networks
  publication-title: Scientometrics
– start-page: 9
  year: 2009
  end-page: 24
  ident: b94
  article-title: How to use bibexcel for various types of bibliometric analysis
  publication-title: Celebrating scholarly communication studies: a festschrift for Olle persson at his 60th birthday, vol. 5
– volume: 8
  start-page: 32816
  year: 2020
  end-page: 32825
  ident: b104
  article-title: Reliable knowledge graph path representation learning
  publication-title: IEEE Access
– reference: Sboev, A., Selivanov, A., Rybka, R., Moloshnikov, I., & Bogachev, D. (2020).
– reference: Nguyen, H., Nguyen, D. T., & Nguyen, T. (2019). Estimating County Health Indices Using Graph Neural Networks. In
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b59
  article-title: Deep learning
  publication-title: Nature
– volume: 13
  year: 2019
  ident: b60
  article-title: Attention models in graphs: A survey
  publication-title: ACM Transactions on Knowledge Discovery from Data
– year: 2020
  ident: b64
  article-title: Unsupervised visual learning: From pixels to seeing
– year: 2019
  ident: b39
  article-title: A representation learning framework for property graphs
  publication-title: Paper presented at the proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining
– reference: Zhang, Y., Qi, P., & Manning, C. D. (2018). Graph convolution over pruned dependency trees improves relation extraction. In
– start-page: 25
  year: 2011
  ident: b84
  article-title: Social network analysis: An introduction
  publication-title: The SAGE handbook of social network analysis, vol. 11
– year: 2019
  ident: b81
  article-title: Dynamic joint variational graph autoencoders
– year: 2018
  ident: b136
  article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition
  publication-title: Proceedings of the AAAI conference on artificial intelligence, vol. 32, no.1
– year: 2018
  ident: b76
  article-title: Heterogeneous graph neural networks for malicious account detection
  publication-title: Paper presented at the proceedings of the 27th ACM international conference on information and knowledge management
– volume: 104
  start-page: 19193
  year: 2007
  ident: b37
  article-title: Does the h index have predictive power?
  publication-title: Proceedings of the National Academy of Sciences
– year: 2019
  ident: b85
  article-title: Graph convolutional networks on customer/supplier graph data to improve default prediction
– volume: 122
  start-page: 108
  year: 1955
  end-page: 111
  ident: b26
  article-title: Citation indexes for science: A new dimension in documentation through association of ideas
  publication-title: Science
– reference: Bo, D., Wang, X., Shi, C., Zhu, M., Lu, E., & Cui, P. (2020). Structural Deep Clustering Network. In
– reference: Casas-Valadez, M. A., Faz-Mendoza, A., Medina-Rodriguez, C. E., Cobo, M., Gamboa-Rosales, N. K., & López-Robles, J. R. (2020). Research trends in Sentiment Analysis and Opinion Mining from Knowledge Management approach: A science mapping from 2007 to 2020. In
– reference: Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., & Bronstein, M. (2017). Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs. In
– volume: 231
  year: 2021
  ident: b149
  article-title: Spatiotemporal fuzzy-graph convolutional network model with dynamic feature encoding for traffic forecasting
  publication-title: Knowledge-Based Systems
– reference: Shi, L., Zhang, Y., Cheng, J., & Lu, H. (2019). Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition. In
– year: 2020
  ident: b105
  article-title: Taxoexpan: Self-supervised taxonomy expansion with position-enhanced graph neural network
– reference: (pp. 11–20).
– volume: 2
  start-page: 33
  year: 2015
  end-page: 38
  ident: b48
  article-title: Quantity or quality? Comparative assessment of the science production of Iran, Turkey and Malaysia during 1996–2013
  publication-title: Caspian Journal of Scientometrics
– volume: 73
  start-page: 204
  year: 2009
  end-page: 212
  ident: b119
  article-title: Classification of graphical data made easy
  publication-title: Neurocomputing
– volume: 74
  start-page: 12
  year: 2015
  end-page: 32
  ident: b80
  article-title: Recommender system application developments: A survey
  publication-title: Decision Support Systems
– reference: (pp. 5425–5434).
– reference: Speriosu, M., Sudan, N., Upadhyay, S., & Baldridge, J. (2011). Twitter polarity classification with label propagation over lexical links and the follower graph. In
– year: 1976
  ident: b6
  article-title: Graph theory with applications vol. 290
– year: 2019
  ident: b139
  article-title: Using external knowledge for financial event prediction based on graph neural networks
  publication-title: Paper presented at the proceedings of the 28th ACM international conference on information and knowledge management
– reference: Heimerl, F., Lohmann, S., Lange, S., & Ertl, T. (2014). Word Cloud Explorer: Text Analytics Based on Word Clouds. In
– volume: 129
  start-page: 249
  year: 2020
  end-page: 260
  ident: b111
  article-title: Missing data imputation with adversarially-trained graph convolutional networks
  publication-title: Neural Networks
– reference: (pp. 734–734).
– volume: 193
  year: 2020
  ident: b159
  article-title: Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification
  publication-title: Knowledge-Based Systems
– year: 2019
  ident: b153
  article-title: Heterogeneous graph neural network
  publication-title: Paper presented at the proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining
– reference: . Hong Kong, China.
– year: 2020
  ident: b32
  article-title: Navigating the dynamics of financial embeddings over time
  publication-title: Paper presented at the proceedings of the first ACM international conference on AI in finance
– reference: Yang, J., Lu, J., Lee, S., Batra, D., & Parikh, D. (2018).
– volume: 9
  year: 2020
  ident: b98
  article-title: Research trends in the international literature on natural language processing, 2000–2019 — A bibliometric study
  publication-title: Journal of Scientometric Research
– volume: 112
  year: 2020
  ident: b31
  article-title: The interconnected nature of financial systems: Direct and common exposures
  publication-title: Journal of Banking & Finance
– volume: 7
  start-page: 32754
  year: 2019
  end-page: 32764
  ident: b157
  article-title: Modeling IoT equipment with graph neural networks
  publication-title: IEEE Access
– start-page: 3438
  year: 2020
  end-page: 3445
  ident: b12
  article-title: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view
  publication-title: Proceedings of the AAAI conference on artificial intelligence, vol. 34, no. 04
– year: 2019
  ident: b96
  article-title: Rethinking the item order in session-based recommendation with graph neural networks
  publication-title: Paper presented at the proceedings of the 28th ACM international conference on information and knowledge management
– year: 2020
  ident: b63
  article-title: Coupling appearance and motion: Unsupervised clustering for object segmentation through space and time
– start-page: 1
  year: 2020
  end-page: 18
  ident: b86
  article-title: Bibliometric study of traumatic brain injury rehabilitation
  publication-title: Neuropsychological Rehabilitation
– volume: 194
  year: 2020
  ident: b135
  article-title: Heterogeneous graph neural networks for noisy few-shot relation classification
  publication-title: Knowledge-Based Systems
– reference: Lu, Z., Du, P., & Nie, J.-Y. (2020). VGCN-BERT: Augmenting BERT with graph embedding for text classification. In
– volume: 185
  year: 2019
  ident: b143
  article-title: A deeper graph neural network for recommender systems
  publication-title: Knowledge-Based Systems
– reference: Spinelli, I., Scardapane, S., Scarpiniti, M., & Uncini, A. (2017). Efficient data augmentation using graph imputation neural networks. In
– year: 2001
  ident: b131
  article-title: Introduction to graph theory (vol. 2)
– volume: 8
  start-page: 38472
  year: 2020
  end-page: 38480
  ident: b127
  article-title: Global relation reasoning graph convolutional networks for human pose estimation
  publication-title: IEEE Access
– volume: 299
  start-page: 443
  year: 2021
  end-page: 457
  ident: b29
  article-title: Crypto price discovery through correlation networks
  publication-title: Annals of Operations Research
– reference: Lei, K., Qin, M., Bai, B., Zhang, G., & Yang, M. (2019). GCN-GAN: A Non-linear Temporal Link Prediction Model for Weighted Dynamic Networks. In
– reference: Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for Quantum chemistry. In
– volume: 58
  start-page: 1019
  year: 2007
  end-page: 1031
  ident: b74
  article-title: The link-prediction problem for social networks
  publication-title: Journal of the American Society for Information Science and Technology
– volume: 41
  start-page: 609
  year: 2007
  end-page: 641
  ident: b89
  article-title: Citation analysis
  publication-title: Annual Review of Information Science and Technology
– volume: 222
  year: 2021
  ident: b155
  article-title: Ethics and privacy of artificial intelligence: Understandings from bibliometrics
  publication-title: Knowledge-Based Systems
– volume: 8
  year: 2019
  ident: b1
  article-title: End-to-end differentiable learning of protein structure
  publication-title: Cell Systems
– volume: 229
  year: 2021
  ident: b156
  article-title: Graph neural networks with multiple kernel ensemble attention
  publication-title: Knowledge-Based Systems
– year: 2022
  ident: b47
  article-title: Multi-thread hierarchical deep model for context-aware sentiment analysis
  publication-title: Journal of Information Science
– volume: 402
  start-page: 245
  year: 2020
  end-page: 255
  ident: b133
  article-title: Point clouds learning with attention-based graph convolution networks
  publication-title: Neurocomputing
– start-page: 253
  year: 2020
  end-page: 295
  ident: b62
  article-title: Unsupervised learning towards the future
  publication-title: Unsupervised learning in space and time: a modern approach for computer vision using graph-based techniques and deep neural networks
– year: 2019
  ident: b77
  article-title: Estimating locations of social media content through a graph-based link prediction
  publication-title: Paper presented at the proceedings of the 13th workshop on geographic information retrieval
– year: 2004
  ident: b101
  article-title: Graphical-based learning environments for pattern recognition
– volume: 134
  start-page: 822
  year: 2008
  end-page: 832
  ident: b19
  article-title: Decomposition model of a general water supply network graph
  publication-title: Journal of Hydraulic Engineering
– volume: 2018
  year: 2018
  ident: b11
  article-title: A bibliometric review of natural language processing empowered mobile computing
  publication-title: Wireless Communications and Mobile Computing
– volume: 6
  start-page: 151
  year: 2019
  ident: b112
  article-title: HENA, heterogeneous network-based data set for Alzheimer’s disease
  publication-title: Scientific Data
– year: 2019
  ident: b137
  article-title: Attention-based generative graph convolutional network for skeleton-based human action recognition
  publication-title: Paper presented at the proceedings of the 3rd international conference on video and image processing
– volume: 106
  year: 2020
  ident: b4
  article-title: Structure-aware human pose estimation with graph convolutional networks
  publication-title: Pattern Recognition
– year: 2018
  ident: b20
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
– year: 2007
  ident: b122
  article-title: VOS: A new method for visualizing similarities between objects
– volume: 18
  start-page: 14
  year: 2018
  ident: b15
  article-title: A bibliometric analysis of natural language processing in medical research
  publication-title: BMC Medical Informatics and Decision Making
– year: 2000
  ident: b56
  article-title: The web as a graph
  publication-title: Paper presented at the proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems
– year: 2006
  ident: b17
  article-title: Mining graph data
– year: 2013
  ident: b40
  article-title: Exploiting social relations for sentiment analysis in microblogging
  publication-title: Paper presented at the proceedings of the sixth acm international conference on web search and data mining
– year: 2016
  ident: b54
  article-title: Variational graph auto-encoders
– volume: 84
  start-page: 523
  year: 2010
  end-page: 538
  ident: b123
  article-title: Software survey: Vosviewer, a computer program for bibliometric mapping
  publication-title: Scientometrics
– reference: Deng, S., Wang, S., Rangwala, H., Wang, L., & Ning, Y. (2020). Cola-GNN: Cross-location Attention based Graph Neural Networks for Long-term ILI Prediction. In
– volume: 205
  year: 2020
  ident: b162
  article-title: SK-GCN: Modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification
  publication-title: Knowledge-Based Systems
– reference: Chiu, C. C., Sainath, T. N., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen, Z., et al. (2018). State-of-the-Art Speech Recognition with Sequence-to-Sequence Models. In
– year: 2020
  ident: b72
  article-title: Few-shot learning for new user recommendation in location-based social networks
  publication-title: Paper presented at the proceedings of the web conference 2020
– volume: 403
  start-page: 348
  year: 2020
  end-page: 359
  ident: b23
  article-title: Interpretable spatio-temporal attention LSTM model for flood forecasting
  publication-title: Neurocomputing
– volume: 3
  start-page: 1
  year: 2006
  ident: b8
  article-title: Scopus database: A review
  publication-title: Biomedical Digital Libraries
– volume: 5
  start-page: 1
  year: 2012
  end-page: 167
  ident: b75
  article-title: Sentiment analysis and opinion mining
  publication-title: Synthesis Lectures on Human Language Technologies
– volume: 76
  year: 2021
  ident: b108
  article-title: Human pose estimation and its application to action recognition: A survey
  publication-title: Journal of Visual Communication and Image Representation
– reference: (pp. 729–734). 722.
– volume: 34
  start-page: 18
  year: 2017
  end-page: 42
  ident: b7
  article-title: Geometric deep learning: Going beyond euclidean data
  publication-title: IEEE Signal Processing Magazine
– reference: Tan, Z., Zhao, X., & Wang, W. (2017). Representation Learning of Large-Scale Knowledge Graphs via Entity Feature Combinations. In
– volume: 104
  start-page: 529
  year: 2015
  end-page: 553
  ident: b107
  article-title: Computer science research: the top 100 institutions in India and in the world
  publication-title: Scientometrics
– year: 2019
  ident: b132
  article-title: DEMO-Net: Degree-specific graph neural networks for node and graph classification
  publication-title: Paper presented at the proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining
– reference: Chen, Z.-M., Wei, X.-S., Wang, P., & Guo, Y. (2019). Multi-Label Image Recognition With Graph Convolutional Networks. In
– year: 2020
  ident: b22
  article-title: A semantics-guided graph convolutional network for skeleton-based action recognition
  publication-title: Paper presented at the proceedings of the 2020 the 4th international conference on innovation in artificial intelligence
– year: 2014
  ident: b58
  article-title: Distributed representations of sentences and documents
  publication-title: Paper presented at the proceedings of the 31st international conference on international conference on machine learning - vol. 32
– year: 2019
  ident: b68
  article-title: Spam review detection with graph convolutional networks
  publication-title: Paper presented at the proceedings of the 28th ACM international conference on information and knowledge management
– reference: Yao, J. (2007). A Ten-year Review of Granular Computing. In
– volume: 38
  start-page: 2717
  year: 2019
  end-page: 2725
  ident: b38
  article-title: Longitudinal prediction of infant diffusion MRI data via graph convolutional adversarial networks
  publication-title: IEEE Transactions on Medical Imaging
– volume: 58
  year: 2019
  ident: b10
  article-title: Self-supervised learning for medical image analysis using image context restoration
  publication-title: Medical Image Analysis
– volume: 47
  start-page: 161
  year: 2021
  end-page: 175
  ident: b67
  article-title: A bibliometric analysis of topic modelling studies (2000–2017)
  publication-title: Journal of Information Science
– reference: Marcheggiani, D., & Titov, I. (2017). Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling. In
– reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention is all you need. In
– reference: Zhang, M., Cui, Z., Neumann, M., & Chen, Y. (2018). An End-to-End Deep Learning Architecture for Graph Classification. In
– year: 2022
  ident: b44
  article-title: Structuration analysis of e-government studies: A bibliometric analysis based on knowledge maps
  publication-title: Journal of Information Science
– reference: Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., & Welling, M. (2018). Modeling Relational Data with Graph Convolutional Networks. In
– volume: 141
  start-page: 188
  year: 2018
  end-page: 199
  ident: b147
  article-title: Bibliometric analysis of fuzzy theory research in China: A 30-year perspective
  publication-title: Knowledge-Based Systems
– year: 2019
  ident: b66
  article-title: Fi-GNN: Modeling feature interactions via graph neural networks for CTR prediction
  publication-title: Paper presented at the proceedings of the 28th ACM international conference on information and knowledge management
– reference: Wang, D., Lin, J., Cui, P., Jia, Q., Wang, Z., Fang, Y., et al. (2019). A Semi-Supervised Graph Attentive Network for Financial Fraud Detection. In
– volume: 61
  start-page: 205
  year: 2010
  end-page: 207
  ident: b90
  article-title: Bibliometrics and citation analysis: From the science citation index to cybermetrics
  publication-title: Journal of the American Society for Information Science and Technology
– volume: 64
  start-page: 58
  year: 2021
  end-page: 65
  ident: b2
  article-title: Deep learning for AI
  publication-title: Communications of the ACM
– start-page: 3852
  year: 2019
  end-page: 3861
  ident: b97
  article-title: Events-to-video: Bringing modern computer vision to event cameras
  publication-title: 2019 IEEE/CVF conference on computer vision and pattern recognition
– start-page: 1
  year: 2020
  end-page: 33
  ident: b14
  article-title: A structural topic modeling-based bibliometric study of sentiment analysis literature
  publication-title: Cognitive Computation
– reference: Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., & Tian, Q. (2019). Actional-Structural Graph Convolutional Networks for Skeleton-Based Action Recognition. In
– reference: Gori, M., Monfardini, G., & Scarselli, F. (2005). A new model for learning in graph domains. In
– volume: 45
  start-page: 3
  year: 2019
  end-page: 15
  ident: b46
  article-title: Bibliometrics of sentiment analysis literature
  publication-title: Journal of Information Science
– reference: Yu, T., Yin, H., & Zhu, Z. (2018). Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. In
– volume: 8
  start-page: 15800
  year: 2020
  end-page: 15811
  ident: b45
  article-title: Unsupervised graph representation learning with variable heat kernel
  publication-title: IEEE Access
– year: 2019
  ident: b27
  article-title: ICT innovations 2019
  publication-title: Big data processing and mining: 11th international conference ICT innovations 2019, Ohrid, North Macedonia, October (2019) 17–19, proceedings vol. 1110
– reference: (pp. 3590–3598).
– year: 2016
  ident: b35
  article-title: node2vec: Scalable feature learning for networks
  publication-title: Paper presented at the proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining
– volume: 11
  start-page: 651
  year: 2014
  end-page: 655
  ident: b140
  article-title: Semi-supervised hyperspectral image classification using spatio-spectral Laplacian support vector machine
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 3
  start-page: 81
  year: 2017
  end-page: 88
  ident: b52
  article-title: Analysis of bibliometric term in scopus
  publication-title: International Journal of Library Science and Information Management (IJLSIM)
– reference: Huang, B., & Carley, K. (2019).
– volume: 16
  start-page: 241
  year: 2019
  end-page: 245
  ident: b95
  article-title: Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 8
  start-page: 90202
  year: 2020
  end-page: 90215
  ident: b24
  article-title: Quantitative and qualitative analysis of time-series classification using deep learning
  publication-title: IEEE Access
– reference: Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In
– reference: (pp. 12018–12027).
– year: 2019
  ident: b126
  article-title: Neural graph collaborative filtering
  publication-title: Paper presented at the proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval
– reference: Li, Q., Wu, X.-M., Liu, H., Zhang, X., & Guan, Z. (2019). Label efficient semi-supervised learning via graph filtering. In
– year: 2018
  ident: b144
  article-title: Graph convolutional neural networks for web-scale recommender systems
  publication-title: Paper presented at the proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining
– volume: 58
  start-page: 1281
  year: 2020
  end-page: 1293
  ident: b146
  article-title: Pixel-level remote sensing image recognition based on bidirectional word vectors
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– reference: .
– reference: CVPR, (pp. 5172–5181).
– volume: 3
  start-page: 879
  year: 2017
  end-page: 882
  ident: b50
  article-title: Publication productivity of ‘consortia’by scopus during 1989–2016
  publication-title: International Journal of Current Innovation Research
– volume: 4
  start-page: 379
  year: 2010
  end-page: 391
  ident: b33
  article-title: A new approach to the metric of journals’ scientific prestige: The SJR indicator
  publication-title: Journal of Informetrics
– volume: 8
  start-page: 10
  year: 2018
  end-page: 19
  ident: b51
  article-title: Knowledge management output in scopus during 2007 to 2016
  publication-title: Asian Journal of Research in Social Sciences and Humanities
– reference: Huang, C., Wu, X., Zhang, X., Zhang, C., Zhao, J., Yin, D., et al. (2019). Online Purchase Prediction via Multi-Scale Modeling of Behavior Dynamics. In
– volume: 167
  year: 2021
  ident: b30
  article-title: Shapley-Lorenz explainable artificial intelligence
  publication-title: Expert Systems with Applications
– volume: 22
  start-page: 109
  year: 1988
  end-page: 127
  ident: b103
  article-title: Social network analysis
  publication-title: Sociology
– volume: 34
  start-page: 605
  year: 2008
  end-page: 621
  ident: b118
  article-title: Bibliometrics to webometrics
  publication-title: Journal of Information Science
– year: 2020
  ident: b151
  article-title: Revisiting graph neural networks for link prediction
– reference: You, J., Liu, B., Ying, R., Pande, V., & Leskovec, J. (2018). Graph convolutional policy network for goal-directed molecular graph generation. In
– volume: 486
  start-page: 75
  year: 2010
  end-page: 174
  ident: b25
  article-title: Community detection in graphs
  publication-title: Physics Reports
– year: 2019
  ident: b92
  article-title: Riemannian geometric statistics in medical image analysis
– reference: Sun, X., Man, Y., Zhao, Y., He, J., & Liu, N. (2019).
– year: 2002
  ident: b163
  article-title: Learning from labeled and unlabeled data with label propagation
– volume: 13
  year: 2018
  ident: b164
  article-title: Microblog sentiment analysis using social and topic context
  publication-title: PLoS One
– volume: 313
  start-page: 14
  year: 2018
  end-page: 24
  ident: b120
  article-title: Nonparametric small random networks for graph-structured pattern recognition
  publication-title: Neurocomputing
– volume: 33
  start-page: 1773
  year: 2021
  end-page: 1784
  ident: b69
  article-title: Improve relation extraction with dual attention-guided graph convolutional networks
  publication-title: Neural Computing and Applications
– reference: Ouyang, W., Zhang, Y., Zhu, M., Zhang, X., Chen, H., Ren, Y., et al. (2019). Interpretable Spatial-Temporal Attention Graph Convolution Network for Service Part Hierarchical Demand Forecast. In
– start-page: 29
  year: 2018
  end-page: 51
  ident: b3
  article-title: Deep neural networks for structured data
  publication-title: Computational intelligence for pattern recognition
– year: 2018
  ident: b125
  article-title: Graph attention networks
– volume: 20
  start-page: 61
  year: 2009
  end-page: 80
  ident: b100
  article-title: The graph neural network model
  publication-title: IEEE Transactions on Neural Networks
– reference: . Cham.
– year: 2020
  ident: b129
  article-title: A simple training strategy for graph autoencoder
  publication-title: Paper presented at the proceedings of the 2020 12th international conference on machine learning and computing
– reference: .
– year: 2020
  ident: b57
  article-title: What is traffic prediction and how does it work?
– year: 2020
  ident: b116
  article-title: Knowing your FATE: Friendship, action and temporal explanations for user engagement prediction on social apps
  publication-title: Paper presented at the proceedings of the 26th acm sigkdd international conference on knowledge discovery & data mining, virtual event
– reference: Mao, M., Li, Z., Zhao, Z., & Zeng, L. (2018). Bibliometric analysis of the deep learning research status with the data from Web of Science. In
– year: 2020
  ident: b117
  article-title: Investigating and mitigating degree-related biases in graph convoltuional networks
  publication-title: Paper presented at the proceedings of the 29th ACM international conference on information & knowledge management, virtual event
– reference: Xie, Y., Li, S., Yang, C., Wong, R. C.-W., & Han, J. (2020). When Do GNNs Work: Understanding and Improving Neighborhood Aggregation. In
– reference: Kim, J., Kim, T., Kim, S., & Yoo, C. (2019). Edge-Labeling Graph Neural Network for Few-Shot Learning. In
– volume: 400
  start-page: 34
  year: 2020
  end-page: 45
  ident: b79
  article-title: LSTM variants meet graph neural networks for road speed prediction
  publication-title: Neurocomputing
– reference: Wang, X., Ye, Y., & Gupta, A. (2018). Zero-shot recognition via semantic embeddings and knowledge graphs. In
– reference: Yao, T., Pan, Y., Li, Y., & Mei, T. (2018). Exploring Visual Relationship for Image Captioning. In
– volume: 6
  start-page: 11
  year: 2019
  ident: b154
  article-title: Graph convolutional networks: A comprehensive review
  publication-title: Computational Social Networks
– volume: 11
  start-page: 2807
  year: 2020
  end-page: 2826
  ident: b73
  article-title: A bibliometric analysis on deep learning during 2007–2019
  publication-title: International Journal of Machine Learning and Cybernetics
– year: 2014
  ident: b93
  article-title: DeepWalk: Online learning of social representations
  publication-title: Paper presented at the proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining
– reference: Khanfor, A., Nammouchi, A., Ghazzai, H., Yang, Y., Haider, M. R., & Massoud, Y. (2020). Graph Neural Networks-based Clustering for Social Internet of Things. In
– start-page: 253
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b62
  article-title: Unsupervised learning towards the future
– year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b22
  article-title: A semantics-guided graph convolutional network for skeleton-based action recognition
– volume: 122
  start-page: 108
  issue: 3159
  year: 1955
  ident: 10.1016/j.mlwa.2022.100401_b26
  article-title: Citation indexes for science: A new dimension in documentation through association of ideas
  publication-title: Science
  doi: 10.1126/science.122.3159.108
– volume: 58
  start-page: 1281
  issue: 2
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b146
  article-title: Pixel-level remote sensing image recognition based on bidirectional word vectors
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2019.2945591
– volume: 2018
  year: 2018
  ident: 10.1016/j.mlwa.2022.100401_b11
  article-title: A bibliometric review of natural language processing empowered mobile computing
  publication-title: Wireless Communications and Mobile Computing
  doi: 10.1155/2018/1827074
– year: 2002
  ident: 10.1016/j.mlwa.2022.100401_b163
– ident: 10.1016/j.mlwa.2022.100401_b124
– ident: 10.1016/j.mlwa.2022.100401_b13
  doi: 10.1109/CVPR.2019.00532
– volume: 76
  year: 2021
  ident: 10.1016/j.mlwa.2022.100401_b108
  article-title: Human pose estimation and its application to action recognition: A survey
  publication-title: Journal of Visual Communication and Image Representation
  doi: 10.1016/j.jvcir.2021.103055
– volume: 8
  start-page: 10
  issue: 1
  year: 2018
  ident: 10.1016/j.mlwa.2022.100401_b51
  article-title: Knowledge management output in scopus during 2007 to 2016
  publication-title: Asian Journal of Research in Social Sciences and Humanities
  doi: 10.5958/2249-7315.2018.00002.3
– volume: 205
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b162
  article-title: SK-GCN: Modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106292
– ident: 10.1016/j.mlwa.2022.100401_b78
  doi: 10.1007/978-3-030-45439-5_25
– ident: 10.1016/j.mlwa.2022.100401_b34
  doi: 10.1109/IJCNN.2005.1555942
– ident: 10.1016/j.mlwa.2022.100401_b110
– volume: 106
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b4
  article-title: Structure-aware human pose estimation with graph convolutional networks
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107410
– volume: 18
  start-page: 14
  issue: 1
  year: 2018
  ident: 10.1016/j.mlwa.2022.100401_b15
  article-title: A bibliometric analysis of natural language processing in medical research
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/s12911-018-0594-x
– volume: 104
  start-page: 19193
  issue: 49
  year: 2007
  ident: 10.1016/j.mlwa.2022.100401_b38
  article-title: Does the h index have predictive power?
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0707962104
– year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b129
  article-title: A simple training strategy for graph autoencoder
– ident: 10.1016/j.mlwa.2022.100401_b65
  doi: 10.1109/CVPR.2019.00371
– volume: 7
  start-page: 32754
  year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b157
  article-title: Modeling IoT equipment with graph neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902865
– ident: 10.1016/j.mlwa.2022.100401_b55
– year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b116
  article-title: Knowing your FATE: Friendship, action and temporal explanations for user engagement prediction on social apps
– volume: 33
  start-page: 1773
  issue: 6
  year: 2021
  ident: 10.1016/j.mlwa.2022.100401_b69
  article-title: Improve relation extraction with dual attention-guided graph convolutional networks
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-05087-z
– volume: 38
  start-page: 2717
  issue: 12
  year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b39
  article-title: Longitudinal prediction of infant diffusion MRI data via graph convolutional adversarial networks
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2019.2911203
– volume: 84
  start-page: 523
  issue: 2
  year: 2010
  ident: 10.1016/j.mlwa.2022.100401_b123
  article-title: Software survey: Vosviewer, a computer program for bibliometric mapping
  publication-title: Scientometrics
  doi: 10.1007/s11192-009-0146-3
– volume: 58
  year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b10
  article-title: Self-supervised learning for medical image analysis using image context restoration
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2019.101539
– year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b32
  article-title: Navigating the dynamics of financial embeddings over time
– year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b40
  article-title: A representation learning framework for property graphs
– ident: 10.1016/j.mlwa.2022.100401_b128
  doi: 10.1109/ICDM.2019.00070
– year: 2018
  ident: 10.1016/j.mlwa.2022.100401_b76
  article-title: Heterogeneous graph neural networks for malicious account detection
– year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b117
  article-title: Investigating and mitigating degree-related biases in graph convoltuional networks
– ident: 10.1016/j.mlwa.2022.100401_b109
– volume: 11
  start-page: 2807
  issue: 12
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b73
  article-title: A bibliometric analysis on deep learning during 2007–2019
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-020-01152-0
– ident: 10.1016/j.mlwa.2022.100401_b28
– year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b27
  article-title: ICT innovations 2019
– volume: 45
  start-page: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b46
  article-title: Bibliometrics of sentiment analysis literature
  publication-title: Journal of Information Science
  doi: 10.1177/0165551518761013
– year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b137
  article-title: Attention-based generative graph convolutional network for skeleton-based human action recognition
– volume: 8
  issue: 4
  year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b1
  article-title: End-to-end differentiable learning of protein structure
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2019.03.006
– volume: 193
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b159
  article-title: Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105443
– ident: 10.1016/j.mlwa.2022.100401_b36
  doi: 10.1109/HICSS.2014.231
– volume: 34
  start-page: 18
  issue: 4
  year: 2017
  ident: 10.1016/j.mlwa.2022.100401_b7
  article-title: Geometric deep learning: Going beyond euclidean data
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2017.2693418
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  ident: 10.1016/j.mlwa.2022.100401_b100
  article-title: The graph neural network model
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2008.2005605
– volume: 1
  start-page: 57
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b161
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– ident: 10.1016/j.mlwa.2022.100401_b16
  doi: 10.1109/ICASSP.2018.8462105
– year: 2016
  ident: 10.1016/j.mlwa.2022.100401_b35
  article-title: node2vec: Scalable feature learning for networks
– year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b77
  article-title: Estimating locations of social media content through a graph-based link prediction
– ident: 10.1016/j.mlwa.2022.100401_b82
  doi: 10.1007/978-3-319-93803-5_55
– start-page: 29
  year: 2018
  ident: 10.1016/j.mlwa.2022.100401_b3
  article-title: Deep neural networks for structured data
– volume: 222
  year: 2021
  ident: 10.1016/j.mlwa.2022.100401_b155
  article-title: Ethics and privacy of artificial intelligence: Understandings from bibliometrics
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106994
– start-page: 1
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b44
  article-title: A context-aware citation recommendation model with BERT and graph convolutional networks
  publication-title: Scientometrics
– volume: 8
  start-page: 76632
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b158
  article-title: Spatiotemporal data fusion in graph convolutional networks for traffic prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2989443
– volume: 167
  year: 2021
  ident: 10.1016/j.mlwa.2022.100401_b30
  article-title: Shapley-Lorenz explainable artificial intelligence
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114104
– ident: 10.1016/j.mlwa.2022.100401_b5
  doi: 10.1145/3366423.3380214
– ident: 10.1016/j.mlwa.2022.100401_b145
– start-page: 9
  year: 2009
  ident: 10.1016/j.mlwa.2022.100401_b94
  article-title: How to use bibexcel for various types of bibliometric analysis
– volume: 13
  issue: 2
  year: 2018
  ident: 10.1016/j.mlwa.2022.100401_b164
  article-title: Microblog sentiment analysis using social and topic context
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0191163
– volume: 3
  start-page: 81
  issue: 3
  year: 2017
  ident: 10.1016/j.mlwa.2022.100401_b52
  article-title: Analysis of bibliometric term in scopus
  publication-title: International Journal of Library Science and Information Management (IJLSIM)
– year: 2018
  ident: 10.1016/j.mlwa.2022.100401_b144
  article-title: Graph convolutional neural networks for web-scale recommender systems
– year: 2004
  ident: 10.1016/j.mlwa.2022.100401_b101
– volume: 73
  start-page: 204
  issue: 1
  year: 2009
  ident: 10.1016/j.mlwa.2022.100401_b119
  article-title: Classification of graphical data made easy
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.07.021
– volume: 3
  start-page: 879
  issue: 11
  year: 2017
  ident: 10.1016/j.mlwa.2022.100401_b50
  article-title: Publication productivity of ‘consortia’by scopus during 1989–2016
  publication-title: International Journal of Current Innovation Research
– year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b63
– year: 2013
  ident: 10.1016/j.mlwa.2022.100401_b41
  article-title: Exploiting social relations for sentiment analysis in microblogging
– ident: 10.1016/j.mlwa.2022.100401_b150
  doi: 10.1609/aaai.v32i1.11782
– volume: 15
  issue: 102
  year: 2005
  ident: 10.1016/j.mlwa.2022.100401_b37
  article-title: An index to quantify an individual’s scientific research output
  publication-title: Proc Natl Acad Sci U S A
– year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b96
  article-title: Rethinking the item order in session-based recommendation with graph neural networks
– ident: 10.1016/j.mlwa.2022.100401_b61
  doi: 10.1109/INFOCOM.2019.8737631
– year: 2014
  ident: 10.1016/j.mlwa.2022.100401_b93
  article-title: DeepWalk: Online learning of social representations
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.mlwa.2022.100401_b59
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2018
  ident: 10.1016/j.mlwa.2022.100401_b136
  article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition
– volume: 47
  start-page: 161
  issue: 2
  year: 2021
  ident: 10.1016/j.mlwa.2022.100401_b67
  article-title: A bibliometric analysis of topic modelling studies (2000–2017)
  publication-title: Journal of Information Science
  doi: 10.1177/0165551519877049
– ident: 10.1016/j.mlwa.2022.100401_b18
  doi: 10.1145/3340531.3411975
– start-page: 3852
  year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b97
  article-title: Events-to-video: Bringing modern computer vision to event cameras
– volume: 229
  year: 2021
  ident: 10.1016/j.mlwa.2022.100401_b156
  article-title: Graph neural networks with multiple kernel ensemble attention
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107299
– ident: 10.1016/j.mlwa.2022.100401_b43
  doi: 10.1145/3292500.3330790
– ident: 10.1016/j.mlwa.2022.100401_b42
  doi: 10.18653/v1/D19-1480
– volume: 8
  start-page: 15800
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b45
  article-title: Unsupervised graph representation learning with variable heat kernel
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966409
– year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b92
– ident: 10.1016/j.mlwa.2022.100401_b141
  doi: 10.1109/GrC.2007.11
– volume: 231
  year: 2021
  ident: 10.1016/j.mlwa.2022.100401_b149
  article-title: Spatiotemporal fuzzy-graph convolutional network model with dynamic feature encoding for traffic forecasting
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107403
– ident: 10.1016/j.mlwa.2022.100401_b152
  doi: 10.18653/v1/D18-1244
– volume: 313
  start-page: 14
  year: 2018
  ident: 10.1016/j.mlwa.2022.100401_b120
  article-title: Nonparametric small random networks for graph-structured pattern recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.095
– year: 2021
  ident: 10.1016/j.mlwa.2022.100401_b47
  article-title: Multi-thread hierarchical deep model for context-aware sentiment analysis
  publication-title: Journal of Information Science
  doi: 10.1177/0165551521990617
– ident: 10.1016/j.mlwa.2022.100401_b99
  doi: 10.1007/978-3-030-33491-8_48
– volume: 34
  start-page: 605
  issue: 4
  year: 2008
  ident: 10.1016/j.mlwa.2022.100401_b118
  article-title: Bibliometrics to webometrics
  publication-title: Journal of Information Science
  doi: 10.1177/0165551507087238
– ident: 10.1016/j.mlwa.2022.100401_b138
  doi: 10.1007/978-3-030-01246-5_41
– year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b126
  article-title: Neural graph collaborative filtering
– year: 2014
  ident: 10.1016/j.mlwa.2022.100401_b58
  article-title: Distributed representations of sentences and documents
– ident: 10.1016/j.mlwa.2022.100401_b115
  doi: 10.1145/3132847.3132961
– ident: 10.1016/j.mlwa.2022.100401_b148
  doi: 10.24963/ijcai.2018/505
– ident: 10.1016/j.mlwa.2022.100401_b9
  doi: 10.1109/3ICT51146.2020.9311975
– volume: 185
  year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b143
  article-title: A deeper graph neural network for recommender systems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105020
– year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b85
– ident: 10.1016/j.mlwa.2022.100401_b49
  doi: 10.1109/MWSCAS48704.2020.9184643
– ident: 10.1016/j.mlwa.2022.100401_b142
  doi: 10.1007/978-3-030-01264-9_42
– year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b153
  article-title: Heterogeneous graph neural network
– volume: 104
  start-page: 529
  issue: 2
  year: 2015
  ident: 10.1016/j.mlwa.2022.100401_b107
  article-title: Computer science research: the top 100 institutions in India and in the world
  publication-title: Scientometrics
  doi: 10.1007/s11192-015-1612-8
– ident: 10.1016/j.mlwa.2022.100401_b121
  doi: 10.18653/v1/P19-1260
– year: 2021
  ident: 10.1016/j.mlwa.2022.100401_b21
– volume: 11
  start-page: 651
  issue: 3
  year: 2014
  ident: 10.1016/j.mlwa.2022.100401_b140
  article-title: Semi-supervised hyperspectral image classification using spatio-spectral Laplacian support vector machine
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2013.2273792
– ident: 10.1016/j.mlwa.2022.100401_b106
  doi: 10.1109/CVPR.2019.01230
– volume: 486
  start-page: 75
  issue: 3
  year: 2010
  ident: 10.1016/j.mlwa.2022.100401_b25
  article-title: Community detection in graphs
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2009.11.002
– volume: 22
  start-page: 109
  issue: 1
  year: 1988
  ident: 10.1016/j.mlwa.2022.100401_b103
  article-title: Social network analysis
  publication-title: Sociology
  doi: 10.1177/0038038588022001007
– ident: 10.1016/j.mlwa.2022.100401_b102
  doi: 10.1007/978-3-319-93417-4_38
– ident: 10.1016/j.mlwa.2022.100401_b88
  doi: 10.1007/978-981-15-1699-3_6
– volume: 8
  start-page: 32816
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b104
  article-title: Reliable knowledge graph path representation learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2973923
– ident: 10.1016/j.mlwa.2022.100401_b114
  doi: 10.1007/978-3-030-15127-0_19
– volume: 400
  start-page: 34
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b79
  article-title: LSTM variants meet graph neural networks for road speed prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.031
– year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b72
  article-title: Few-shot learning for new user recommendation in location-based social networks
– year: 2001
  ident: 10.1016/j.mlwa.2022.100401_b131
– year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b66
  article-title: Fi-GNN: Modeling feature interactions via graph neural networks for CTR prediction
– ident: 10.1016/j.mlwa.2022.100401_b160
  doi: 10.1007/978-3-030-47436-2_41
– volume: 3
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.mlwa.2022.100401_b8
  article-title: Scopus database: A review
  publication-title: Biomedical Digital Libraries
  doi: 10.1186/1742-5581-3-1
– volume: 41
  start-page: 609
  issue: 1
  year: 2007
  ident: 10.1016/j.mlwa.2022.100401_b89
  article-title: Citation analysis
  publication-title: Annual Review of Information Science and Technology
  doi: 10.1002/aris.2007.1440410120
– start-page: 1
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b14
  article-title: A structural topic modeling-based bibliometric study of sentiment analysis literature
  publication-title: Cognitive Computation
– volume: 4
  start-page: 379
  issue: 3
  year: 2010
  ident: 10.1016/j.mlwa.2022.100401_b33
  article-title: A new approach to the metric of journals’ scientific prestige: The SJR indicator
  publication-title: Journal of Informetrics
  doi: 10.1016/j.joi.2010.03.002
– volume: 5
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.mlwa.2022.100401_b75
  article-title: Sentiment analysis and opinion mining
  publication-title: Synthesis Lectures on Human Language Technologies
  doi: 10.1007/978-3-031-02145-9
– year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b132
  article-title: DEMO-Net: Degree-specific graph neural networks for node and graph classification
– volume: 194
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b135
  article-title: Heterogeneous graph neural networks for noisy few-shot relation classification
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105548
– volume: 58
  start-page: 1019
  issue: 7
  year: 2007
  ident: 10.1016/j.mlwa.2022.100401_b74
  article-title: The link-prediction problem for social networks
  publication-title: Journal of the American Society for Information Science and Technology
  doi: 10.1002/asi.20591
– year: 2018
  ident: 10.1016/j.mlwa.2022.100401_b125
– volume: 2
  start-page: 33
  issue: 1
  year: 2015
  ident: 10.1016/j.mlwa.2022.100401_b48
  article-title: Quantity or quality? Comparative assessment of the science production of Iran, Turkey and Malaysia during 1996–2013
  publication-title: Caspian Journal of Scientometrics
– volume: 129
  start-page: 249
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b111
  article-title: Missing data imputation with adversarially-trained graph convolutional networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.06.005
– start-page: 1
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b86
  article-title: Bibliometric study of traumatic brain injury rehabilitation
  publication-title: Neuropsychological Rehabilitation
– volume: 403
  start-page: 348
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b23
  article-title: Interpretable spatio-temporal attention LSTM model for flood forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.110
– year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b139
  article-title: Using external knowledge for financial event prediction based on graph neural networks
– volume: 64
  start-page: 58
  issue: 7
  year: 2021
  ident: 10.1016/j.mlwa.2022.100401_b2
  article-title: Deep learning for AI
  publication-title: Communications of the ACM
  doi: 10.1145/3448250
– volume: 74
  start-page: 12
  year: 2015
  ident: 10.1016/j.mlwa.2022.100401_b80
  article-title: Recommender system application developments: A survey
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2015.03.008
– volume: 402
  start-page: 245
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b133
  article-title: Point clouds learning with attention-based graph convolution networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.086
– volume: 112
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b31
  article-title: The interconnected nature of financial systems: Direct and common exposures
  publication-title: Journal of Banking & Finance
  doi: 10.1016/j.jbankfin.2017.05.010
– year: 2007
  ident: 10.1016/j.mlwa.2022.100401_b122
– volume: 6
  start-page: 11
  issue: 1
  year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b154
  article-title: Graph convolutional networks: A comprehensive review
  publication-title: Computational Social Networks
  doi: 10.1186/s40649-019-0069-y
– volume: 6
  start-page: 151
  issue: 1
  year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b112
  article-title: HENA, heterogeneous network-based data set for Alzheimer’s disease
  publication-title: Scientific Data
  doi: 10.1038/s41597-019-0152-0
– ident: 10.1016/j.mlwa.2022.100401_b130
  doi: 10.1109/CVPR.2018.00717
– year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b81
– start-page: 25
  year: 2011
  ident: 10.1016/j.mlwa.2022.100401_b84
  article-title: Social network analysis: An introduction
– ident: 10.1016/j.mlwa.2022.100401_b87
  doi: 10.1109/CVPR.2017.576
– start-page: 3438
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b12
  article-title: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view
– volume: 8
  start-page: 90202
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b24
  article-title: Quantitative and qualitative analysis of time-series classification using deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2993538
– year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b64
– year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b57
– year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b68
  article-title: Spam review detection with graph convolutional networks
– year: 2016
  ident: 10.1016/j.mlwa.2022.100401_b70
– volume: 134
  start-page: 822
  issue: 6
  year: 2008
  ident: 10.1016/j.mlwa.2022.100401_b19
  article-title: Decomposition model of a general water supply network graph
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)0733-9429(2008)134:6(822)
– volume: 299
  start-page: 443
  issue: 1
  year: 2021
  ident: 10.1016/j.mlwa.2022.100401_b29
  article-title: Crypto price discovery through correlation networks
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-019-03282-3
– year: 2006
  ident: 10.1016/j.mlwa.2022.100401_b17
– year: 2018
  ident: 10.1016/j.mlwa.2022.100401_b20
– year: 2016
  ident: 10.1016/j.mlwa.2022.100401_b54
– ident: 10.1016/j.mlwa.2022.100401_b83
  doi: 10.18653/v1/D17-1159
– ident: 10.1016/j.mlwa.2022.100401_b53
  doi: 10.1109/CVPR.2019.00010
– ident: 10.1016/j.mlwa.2022.100401_b113
– volume: 141
  start-page: 188
  year: 2018
  ident: 10.1016/j.mlwa.2022.100401_b147
  article-title: Bibliometric analysis of fuzzy theory research in China: A 30-year perspective
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.11.018
– volume: 61
  start-page: 205
  issue: 1
  year: 2010
  ident: 10.1016/j.mlwa.2022.100401_b90
  article-title: Bibliometrics and citation analysis: From the science citation index to cybermetrics
  publication-title: Journal of the American Society for Information Science and Technology
  doi: 10.1002/asi.21181
– ident: 10.1016/j.mlwa.2022.100401_b134
  doi: 10.24963/ijcai.2020/181
– volume: 8
  start-page: 38472
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b127
  article-title: Global relation reasoning graph convolutional networks for human pose estimation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2973039
– volume: 9
  issue: 3
  year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b98
  article-title: Research trends in the international literature on natural language processing, 2000–2019 — A bibliometric study
  publication-title: Journal of Scientometric Research
– year: 2000
  ident: 10.1016/j.mlwa.2022.100401_b56
  article-title: The web as a graph
– ident: 10.1016/j.mlwa.2022.100401_b71
  doi: 10.1109/CVPR.2019.00981
– year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b105
– volume: 13
  issue: 6
  year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b60
  article-title: Attention models in graphs: A survey
  publication-title: ACM Transactions on Knowledge Discovery from Data
  doi: 10.1145/3363574
– volume: 16
  start-page: 241
  issue: 2
  year: 2019
  ident: 10.1016/j.mlwa.2022.100401_b95
  article-title: Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2018.2869563
– year: 1976
  ident: 10.1016/j.mlwa.2022.100401_b6
– ident: 10.1016/j.mlwa.2022.100401_b91
  doi: 10.1007/978-3-030-32236-6_52
– year: 2020
  ident: 10.1016/j.mlwa.2022.100401_b151
SSID ssj0002811334
Score 2.3309574
Snippet Recently, graph neural networks (GNN) have become a hot topic in machine learning community. This paper presents a Scopus-based bibliometric overview of the...
Recently, graph neural networks (GNNs) have become a hot topic in machine learning community. This paper presents a Scopus-based bibliometric overview of the...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100401
SubjectTerms Bibliometrics
Graph Convolutional Network
Graph Neural Network
Graph representation learning
Title Graph Neural Networks: A bibliometrics overview
URI https://dx.doi.org/10.1016/j.mlwa.2022.100401
https://doaj.org/article/7d6824f417da40709591611b1063c049
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5KQMbiho_4sRsBbVUSO1EpW6WX5FalYJoERu_nbs4qTqVhSVD4jjJXeTv8_n8HSF3FbUhMJWlDuAuBcRzqfFOplwBW7fSAEJjQH88kaOpeJnls51SX5gTFuWBo-F6hZclE5WghTcw-cCwFZAUamEqwx3QWxx9AfN2JlOLOmREYfKFS8oAQDItWZE1O2Zictfb8htFhxjDLAHRVIRpUakW798Bpx3AGR6To4YpJv34hifkIKxOSe8ZBaYTlNSAa5OYw71-SPqJndslbqVHxf11gomZGPQ_I9Ph4PVplDY1D1LHRbZJS2NxKZRaZ4R0xhtZVYUQuRCKAtQDH8hDCCXQgpwbCSOZV1UmmTWqVJnilp-Tzup9FS5I4igXghljCm6Fl75UtJTcW2aBNXCruoS236xdIwiOdSmWus38Wmi0k0Y76WinLrnf3vMR5TD2tn5EU25bopR1fQIcrBsH678c3CV56wjdsIKI9tDVfM_DL__j4VfkELuM-SvXpLP5_Ao3wEI29rb-4eA4_hn8Aps10sg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Neural+Networks%3A+A+bibliometrics+overview&rft.jtitle=Machine+learning+with+applications&rft.au=Abdalsamad+Keramatfar&rft.au=Mohadeseh+Rafiee&rft.au=Hossein+Amirkhani&rft.date=2022-12-01&rft.pub=Elsevier&rft.issn=2666-8270&rft.eissn=2666-8270&rft.volume=10&rft.spage=100401&rft_id=info:doi/10.1016%2Fj.mlwa.2022.100401&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7d6824f417da40709591611b1063c049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-8270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-8270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-8270&client=summon