Graph Neural Networks: A bibliometrics overview
Recently, graph neural networks (GNN) have become a hot topic in machine learning community. This paper presents a Scopus-based bibliometric overview of the GNNs’ research since 2004 when GNN papers were first published. The study aims to evaluate GNN research trends, both quantitatively and qualita...
Saved in:
Published in | Machine learning with applications Vol. 10; p. 100401 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2666-8270 2666-8270 |
DOI | 10.1016/j.mlwa.2022.100401 |
Cover
Loading…
Abstract | Recently, graph neural networks (GNN) have become a hot topic in machine learning community. This paper presents a Scopus-based bibliometric overview of the GNNs’ research since 2004 when GNN papers were first published. The study aims to evaluate GNN research trends, both quantitatively and qualitatively. We provide the trend of research, distribution of subjects, active and influential authors and institutions, sources of publications, most cited documents, and hot topics. Our investigations reveal that the most frequent subject categories in this field are computer science, engineering, and telecommunications. In addition, the most active source of GNN publications is Lecture Notes in Computer Science. The most prolific or impactful institutions are found in the United States, China, and Canada. We also provide must-read papers based on citation count and future directions. Our analysis reveals that node classification is the most popular task, followed by link prediction, and graph classification in the GNN literature. Moreover, the results suggest that the application of graph convolutional networks and attention mechanisms are now among hot topics of GNN research. Finally, scalability, generalization, over-smoothing, and explainability of graph neural networks are some research directions to pursue.
•Graph Convolutional Networks and attention mechanism are now hot topics in GNN research.•Node classification is the most popular task, followed by link prediction, and graph classification in the GNN literature.•Scalability, generalization, over-smoothing, and explainability of graph neural networks are some research directions to pursue. |
---|---|
AbstractList | Recently, graph neural networks (GNNs) have become a hot topic in machine learning community. This paper presents a Scopus-based bibliometric overview of the GNNs’ research since 2004 when GNN papers were first published. The study aims to evaluate GNN research trends, both quantitatively and qualitatively. We provide the trend of research, distribution of subjects, active and influential authors and institutions, sources of publications, most cited documents, and hot topics. Our investigations reveal that the most frequent subject categories in this field are computer science, engineering, and telecommunications. In addition, the most active source of GNN publications is Lecture Notes in Computer Science. The most prolific or impactful institutions are found in the United States, China, and Canada. We also provide must-read papers based on citation count and future directions. Our analysis reveals that node classification is the most popular task, followed by link prediction, and graph classification in the GNN literature. Moreover, the results suggest that the application of graph convolutional networks and attention mechanisms are now among hot topics of GNN research. Finally, scalability, generalization, over-smoothing, and explainability of graph neural networks are some research directions to pursue. Recently, graph neural networks (GNN) have become a hot topic in machine learning community. This paper presents a Scopus-based bibliometric overview of the GNNs’ research since 2004 when GNN papers were first published. The study aims to evaluate GNN research trends, both quantitatively and qualitatively. We provide the trend of research, distribution of subjects, active and influential authors and institutions, sources of publications, most cited documents, and hot topics. Our investigations reveal that the most frequent subject categories in this field are computer science, engineering, and telecommunications. In addition, the most active source of GNN publications is Lecture Notes in Computer Science. The most prolific or impactful institutions are found in the United States, China, and Canada. We also provide must-read papers based on citation count and future directions. Our analysis reveals that node classification is the most popular task, followed by link prediction, and graph classification in the GNN literature. Moreover, the results suggest that the application of graph convolutional networks and attention mechanisms are now among hot topics of GNN research. Finally, scalability, generalization, over-smoothing, and explainability of graph neural networks are some research directions to pursue. •Graph Convolutional Networks and attention mechanism are now hot topics in GNN research.•Node classification is the most popular task, followed by link prediction, and graph classification in the GNN literature.•Scalability, generalization, over-smoothing, and explainability of graph neural networks are some research directions to pursue. |
ArticleNumber | 100401 |
Author | Rafiee, Mohadeseh Amirkhani, Hossein Keramatfar, Abdalsamad |
Author_xml | – sequence: 1 givenname: Abdalsamad orcidid: 0000-0001-6826-4692 surname: Keramatfar fullname: Keramatfar, Abdalsamad email: samad@sid.com organization: Academic Center for Education, Culture and Research (ACECR), Tehran, Iran – sequence: 2 givenname: Mohadeseh surname: Rafiee fullname: Rafiee, Mohadeseh email: mohadeseh.rafie2012@gmail.com organization: Academic Center for Education, Culture and Research (ACECR), Tehran, Iran – sequence: 3 givenname: Hossein surname: Amirkhani fullname: Amirkhani, Hossein email: amirkhani@qom.ac.ir organization: Department of Computer Engineering and IT, Faculty of Engineering, University of Qom, Qom, Iran |
BookMark | eNp9kMFKw0AQhhepYK19AU99gbQzm80mK15K0VooetHzMtlsdGuaLZvY4tubGgXx0NM_DHw_M98lG9S-toxdI0wRUM420211oCkHzrsFCMAzNuRSyijjKQz-zBds3DQbAOAZYhyLIZstA-3eJo_2I1DVRXvw4b25mcwnucsr57e2Dc40E7-3Ye_s4Yqdl1Q1dvyTI_Zyf_e8eIjWT8vVYr6OTCygjTLKRcIV5oaENFSQLMtUiEQIhTGmKUJirc0QeBKTTCUvVAmS56QyBSrO4xFb9b2Fp43eBbel8Kk9Of298OFVU2idqaxOC5lxUQpMCxKQgkoUSsQcQcYGhOq6sr7LBN80wZbauJZa5-s2kKs0gj561Bt99KiPHnXvsUP5P_T3lJPQbQ_ZTlAnLejGOFsbW7hgTdt94E7hX5M7io4 |
CitedBy_id | crossref_primary_10_3389_frai_2024_1427534 crossref_primary_10_1007_s12273_023_1041_1 crossref_primary_10_1109_ACCESS_2025_3528373 crossref_primary_10_1007_s11227_024_06336_x crossref_primary_10_1007_s12273_024_1125_6 |
Cites_doi | 10.1126/science.122.3159.108 10.1109/TGRS.2019.2945591 10.1155/2018/1827074 10.1109/CVPR.2019.00532 10.1016/j.jvcir.2021.103055 10.5958/2249-7315.2018.00002.3 10.1016/j.knosys.2020.106292 10.1007/978-3-030-45439-5_25 10.1109/IJCNN.2005.1555942 10.1016/j.patcog.2020.107410 10.1186/s12911-018-0594-x 10.1073/pnas.0707962104 10.1109/CVPR.2019.00371 10.1109/ACCESS.2019.2902865 10.1007/s00521-020-05087-z 10.1109/TMI.2019.2911203 10.1007/s11192-009-0146-3 10.1016/j.media.2019.101539 10.1109/ICDM.2019.00070 10.1007/s13042-020-01152-0 10.1177/0165551518761013 10.1016/j.cels.2019.03.006 10.1016/j.knosys.2019.105443 10.1109/HICSS.2014.231 10.1109/MSP.2017.2693418 10.1109/TNN.2008.2005605 10.1016/j.aiopen.2021.01.001 10.1109/ICASSP.2018.8462105 10.1007/978-3-319-93803-5_55 10.1016/j.knosys.2021.106994 10.1109/ACCESS.2020.2989443 10.1016/j.eswa.2020.114104 10.1145/3366423.3380214 10.1371/journal.pone.0191163 10.1016/j.neucom.2008.07.021 10.1609/aaai.v32i1.11782 10.1109/INFOCOM.2019.8737631 10.1038/nature14539 10.1177/0165551519877049 10.1145/3340531.3411975 10.1016/j.knosys.2021.107299 10.1145/3292500.3330790 10.18653/v1/D19-1480 10.1109/ACCESS.2020.2966409 10.1109/GrC.2007.11 10.1016/j.knosys.2021.107403 10.18653/v1/D18-1244 10.1016/j.neucom.2018.05.095 10.1177/0165551521990617 10.1007/978-3-030-33491-8_48 10.1177/0165551507087238 10.1007/978-3-030-01246-5_41 10.1145/3132847.3132961 10.24963/ijcai.2018/505 10.1109/3ICT51146.2020.9311975 10.1016/j.knosys.2019.105020 10.1109/MWSCAS48704.2020.9184643 10.1007/978-3-030-01264-9_42 10.1007/s11192-015-1612-8 10.18653/v1/P19-1260 10.1109/LGRS.2013.2273792 10.1109/CVPR.2019.01230 10.1016/j.physrep.2009.11.002 10.1177/0038038588022001007 10.1007/978-3-319-93417-4_38 10.1007/978-981-15-1699-3_6 10.1109/ACCESS.2020.2973923 10.1007/978-3-030-15127-0_19 10.1016/j.neucom.2020.03.031 10.1007/978-3-030-47436-2_41 10.1186/1742-5581-3-1 10.1002/aris.2007.1440410120 10.1016/j.joi.2010.03.002 10.1007/978-3-031-02145-9 10.1016/j.knosys.2020.105548 10.1002/asi.20591 10.1016/j.neunet.2020.06.005 10.1016/j.neucom.2020.04.110 10.1145/3448250 10.1016/j.dss.2015.03.008 10.1016/j.neucom.2020.03.086 10.1016/j.jbankfin.2017.05.010 10.1186/s40649-019-0069-y 10.1038/s41597-019-0152-0 10.1109/CVPR.2018.00717 10.1109/CVPR.2017.576 10.1109/ACCESS.2020.2993538 10.1061/(ASCE)0733-9429(2008)134:6(822) 10.1007/s10479-019-03282-3 10.18653/v1/D17-1159 10.1109/CVPR.2019.00010 10.1016/j.knosys.2017.11.018 10.1002/asi.21181 10.24963/ijcai.2020/181 10.1109/ACCESS.2020.2973039 10.1109/CVPR.2019.00981 10.1145/3363574 10.1109/LGRS.2018.2869563 10.1007/978-3-030-32236-6_52 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.mlwa.2022.100401 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2666-8270 |
ExternalDocumentID | oai_doaj_org_article_7d6824f417da40709591611b1063c049 10_1016_j_mlwa_2022_100401 S2666827022000780 |
GroupedDBID | 6I. AAEDW AAFTH AAXUO AEXQZ ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c340t-8ab45291bca46cada6ff744544913177105eee810253a6762d9f062ba989093b3 |
IEDL.DBID | DOA |
ISSN | 2666-8270 |
IngestDate | Wed Aug 27 01:24:33 EDT 2025 Thu Apr 24 23:09:00 EDT 2025 Tue Jul 01 02:33:45 EDT 2025 Fri Feb 23 02:38:22 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graph representation learning Graph Convolutional Network Bibliometrics Graph Neural Network |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-8ab45291bca46cada6ff744544913177105eee810253a6762d9f062ba989093b3 |
ORCID | 0000-0001-6826-4692 |
OpenAccessLink | https://doaj.org/article/7d6824f417da40709591611b1063c049 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7d6824f417da40709591611b1063c049 crossref_citationtrail_10_1016_j_mlwa_2022_100401 crossref_primary_10_1016_j_mlwa_2022_100401 elsevier_sciencedirect_doi_10_1016_j_mlwa_2022_100401 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Machine learning with applications |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Li, Cui, Wu, Zhang, Wang (b66) 2019 Martínez, Nin, Tomás, Rubio (b85) 2019 Zhang, Wu, Tian, Zhang, Lu (b155) 2021; 222 Singh, Uddin, Pinto (b107) 2015; 104 Yang, Yang, Jin, Zhang (b140) 2014; 11 Hu, Tang, Tang, Liu (b40) 2013 LeCun, Bengio, Hinton (b59) 2015; 521 Burnham (b8) 2006; 3 (pp. 5425–5434). Mojgani, Jalali, Keramatfar (b86) 2020 Scarselli, Tsoi, Gori, Hagenbuchner (b101) 2004 You, Tian, Yu, Lv (b146) 2020; 58 Wang, He, Wang, Feng, Chua (b126) 2019 Dhere, Sivaswamy (b21) 2021 Yu, Xu, Wang (b147) 2018; 141 Zhang, Xu (b156) 2021; 229 Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., & Welling, M. (2018). Modeling Relational Data with Graph Convolutional Networks. In Chen, Z.-M., Wei, X.-S., Wang, P., & Guo, Y. (2019). Multi-Label Image Recognition With Graph Convolutional Networks. In Bronstein, Bruna, LeCun, Szlam, Vandergheynst (b7) 2017; 34 Zhang, Y., Qi, P., & Manning, C. D. (2018). Graph convolution over pruned dependency trees improves relation extraction. In Garfield (b26) 1955; 122 (pp. 11–20). Jing, Wang, Shao, Huo, Zhang (b45) 2020; 8 Chen, Lin, Li, Li, Zhou, Sun (b12) 2020 Chen, Xie, Wang, Liu, Xu, Hao (b15) 2018; 18 Bianchini, Dimitri, Maggini, Scarselli (b3) 2018 Zhao, Hou, Wu (b159) 2020; 193 Zhang, Zhang, Xu, Zhou, Liu, Gu (b157) 2019; 7 Deuerlein (b19) 2008; 134 Rebecq, Ranftl, Koltun, Scaramuzza (b97) 2019 Devlin, Chang, Lee, Toutanova (b20) 2018 Tang, Liu, Shah, Shi, Mitra, Wang (b116) 2020 Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In Trentin, Di Iorio (b120) 2018; 313 (pp. 729–734). 722. . AlQuraishi (b1) 2019; 8 Zhao, Gao, Liu, Zhao, Xu (b158) 2020; 8 Lu, Lv, Cao, Xie, Peng, Du (b79) 2020; 400 Heimerl, F., Lohmann, S., Lange, S., & Ertl, T. (2014). Word Cloud Explorer: Text Analytics Based on Word Clouds. In Xie, Chen, Peng (b133) 2020; 402 Giudici, Sarlin, Spelta (b31) 2020; 112 Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b100) 2009; 20 Wang, Xu, Kwak, Zeng (b129) 2020 Giudici, Polinesi (b29) 2021; 299 Chen, Bentley, Mori, Misawa, Fujiwara, Rueckert (b10) 2019; 58 Zou, Yang, Zhang (b164) 2018; 13 van Eck, Waltman (b123) 2010; 84 Cham. Sun, C., Huang, L., & Qiu, X. (2019). Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. In Fortunato (b25) 2010; 486 Lei, K., Qin, M., Bai, B., Zhang, G., & Yang, M. (2019). GCN-GAN: A Non-linear Temporal Link Prediction Model for Weighted Dynamic Networks. In González-Pereira, Guerrero-Bote, Moya-Anegón (b33) 2010; 4 Trentin, Di Iorio (b119) 2009; 73 Huang, C., Wu, X., Zhang, X., Zhang, C., Zhao, J., Yin, D., et al. (2019). Online Purchase Prediction via Multi-Scale Modeling of Behavior Dynamics. In Ding, Yang, Chen (b22) 2020 Mahdavi, Khoshraftar, An (b81) 2019 Yao, T., Pan, Y., Li, Y., & Mei, T. (2018). Exploring Visual Relationship for Image Captioning. In Yu, T., Yin, H., & Zhu, Z. (2018). Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. In Kumar, Raghavan, Rajagopalan, Sivakumar, Tompkins, Upfal (b56) 2000 Marcheggiani, D., & Titov, I. (2017). Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling. In Leordeanu (b63) 2020 Nguyen, H., Nguyen, D. T., & Nguyen, T. (2019). Estimating County Health Indices Using Graph Neural Networks. In Ouyang, W., Zhang, Y., Zhu, M., Zhang, X., Chen, H., Ren, Y., et al. (2019). Interpretable Spatial-Temporal Attention Graph Convolution Network for Service Part Hierarchical Demand Forecast. In Sun, X., Man, Y., Zhao, Y., He, J., & Liu, N. (2019). Yan, Xiong, Lin (b136) 2018 (pp. 12018–12027). Gogoglou, Nguyen, Salimov, Rider, Bruss (b32) 2020 Grover, Leskovec (b35) 2016 Ebrahim, Poshtan, Jamali, Ebrahim (b24) 2020; 8 Wang, D., Lin, J., Cui, P., Jia, Q., Wang, Z., Fang, Y., et al. (2019). A Semi-Supervised Graph Attentive Network for Financial Fraud Detection. In Zhang, Chen, Zhang (b149) 2021; 231 Gori, M., Monfardini, G., & Scarselli, F. (2005). A new model for learning in graph domains. In Ding, Zhu, Feng, Zhang, Cheng (b23) 2020; 403 Liu, Chen, Yang, Zhou, Li, Song (b76) 2018 Hong, Kim, Chen, Lin, Yap, Shen (b38) 2019; 38 Lee, Rossi, Kim, Ahmed, Koh (b60) 2019; 13 Keramatfar, chakoli, Esparaein (b48) 2015; 2 Marin, Wellman (b84) 2011 Tan, Z., Zhao, X., & Wang, W. (2017). Representation Learning of Large-Scale Knowledge Graphs via Entity Feature Combinations. In Zhang, Song, Huang, Swami, Chawla (b153) 2019 Qiu, Li, Huang, YIn (b96) 2019 Giudici, Raffinetti (b30) 2021; 167 Hirsch (b37) 2007; 104 Shi, L., Zhang, Y., Cheng, J., & Lu, H. (2019). Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition. In Zhang, Li, Xia, Wang, Jin (b151) 2020 Bondy, Murty (b6) 1976 Hong Kong, China. Leordeanu (b62) 2020 Khanfor, A., Nammouchi, A., Ghazzai, H., Yang, Y., Haider, M. R., & Massoud, Y. (2020). Graph Neural Networks-based Clustering for Social Internet of Things. In Lu, Wu, Mao, Wang, Zhang (b80) 2015; 74 Casas-Valadez, M. A., Faz-Mendoza, A., Medina-Rodriguez, C. E., Cobo, M., Gamboa-Rosales, N. K., & López-Robles, J. R. (2020). Research trends in Sentiment Analysis and Opinion Mining from Knowledge Management approach: A science mapping from 2007 to 2020. In Keramatfar, Amirkhani, Bidgoly (b47) 2022 Tang, Yao, Sun, Wang, Tang, Aggarwal (b117) 2020 Chen, Ding, Xu, Wang, Hao, Zhou (b11) 2018; 2018 Huang, B., & Carley, K. (2019). Laranjeira (b57) 2020 Yin, Li, Zhang, Lu (b143) 2019; 185 Spinelli, Scardapane, Uncini (b111) 2020; 129 Yang, Wei, Chen, Wu (b139) 2019 Bin, Chen, Wei, Chen, Gao, Sang (b4) 2020; 106 Nicolaisen (b89) 2007; 41 Nicolaisen (b90) 2010; 61 Le, Mikolov (b58) 2014 Ying, He, Chen, Eksombatchai, Hamilton, Leskovec (b144) 2018 West (b131) 2001 Li, Sun, Zhu, Tang, Zhang, Ma (b69) 2021; 33 Persson, Danell, Schneider (b94) 2009 Lu, Z., Du, P., & Nie, J.-Y. (2020). VGCN-BERT: Augmenting BERT with graph embedding for text classification. In Li, Qin, Liu, Yang, Li (b68) 2019 Chen, Xie (b14) 2020 Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for Quantum chemistry. In Khiste, Paithankar (b52) 2017; 3 Speriosu, M., Sudan, N., Upadhyay, S., & Baldridge, J. (2011). Twitter polarity classification with label propagation over lexical links and the follower graph. In Kipf, Welling (b54) 2016 Bo, D., Wang, X., Shi, C., Zhu, M., Lu, E., & Cui, P. (2020). Structural Deep Clustering Network. In Jiang, Wang, Yao (b44) 2022 Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., & Tian, Q. (2019). Actional-Structural Graph Convolutional Networks for Skeleton-Based Action Recognition. In Zhu, Ghahramani (b163) 2002 Mao, M., Li, Z., Zhao, Z., & Zeng, L. (2018). Bibliometric analysis of the deep learning research status with the data from Web of Science. In Zhao, M., Jia, W., & Huang, Y. (2020). Velickovic, Cucurull, Casanova, Romero, Liò, Bengio (b125) 2018 Tu, M., Wang, G., Huang, J., Tang, Y., He, X., & Zhou, B. (2019). Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs. In Cook, Holder (b17) 2006 Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., & Bronstein, M. (2017). Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs. In Song, Yu, Yuan, Liu (b108) 2021; 76 Liu, Sabbata (b77) 2019 Li, Lei (b67) 2021; 47 Qin, Shang, Tian, Wang, Zhang, Tang (b95) 2019; 16 Xie, Xu, Li, Yang, Gao (b135) 2020; 194 Wu, He, Xu (b132) 2019 Liben-Nowell, Kleinberg (b74) 2007; 58 Yao, J. (2007). A Ten-year Review of Granular Computing. In Liu (b75) 2012; 5 Li, Tarlow, Brockschmidt, Zemel (b70) 2016 Deng, S., Wang, S., Rangwala, H., Wang, L., & Ning, Y. (2020). Cola-GNN: Cross-location Attention based Graph Neural Networks for Long-term ILI Prediction. In Zhang, M., Cui, Z., Neumann, M., & Chen, Y. (2018). An End-to-End Deep Learning Architecture for Graph Classification. In Li, Wu, Wu, Wang (b72) 2020 Thelwall (b118) 2008; 34 Leordeanu (b64) 2020 (pp. 3590–3598). Bengio, Lecun, Hinton (b2) 2021; 64 Li, Xu, Wang, Wang (b73) 2020; 11 Zhou, Cui, Hu, Zhang, Yang, Liu (b161) 2020; 1 Wang, X., Ye, Y., & Gupta, A. (2018). Zero-shot recognition via semantic embeddings and knowledge graphs. In Sboev, A., Selivanov, A., Rybka, R., Moloshnikov, I., & Bogachev, D. (2020). Gievska, Madjarov (b27) 2019 Sügis, Dauvillier, Leontjeva, Adler, Hindie, Moncion (b112) 2019; 6 (pp. 734–734). Seo, Oh, Lee (b104) 2020; 8 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention is all you need. In Kim, J., Kim, T., Kim, S., & Yoo, C. (2019). Edge-Labeling Graph Neural Network for Few-Shot Learning. In Keramatfar, Amirkhani (b46) 2019; 45 van Eck, Waltman (b122) 2007 Khiste, Maske, Deshmukh (b51) 2018; 8 Roberto, Gerardo (b98) 2020; 9 Jeong, Jang, Shin, Park, Choi (b43) 2020 Shen, Shen, Xiong, Wang, Wang, Han (b105) 2020 Li, Q., Wu, X.-M., Liu, H., Zhang, X., & Guan, Z. (2019). Label efficient semi-supervised learning via graph filtering. In Scott (b103) 1988; 22 Yang, Ding, Chen (b137) 2019 Chiu, C. C., Sainath, T. N., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen, Z., et al. (2018). State-of-the-Art Speech Recognition with Sequence-to-Sequence Models. In Zhang, Tong, Xu, Maciejewski (b154) 2019; 6 Perozzi, Al-Rfou, Skiena (b93) 2014 You, J., Liu, B., Ying, R., Pande, V., & Leskovec, J. (2018). Graph convolutional policy network for goal-directed molecular graph generation. In Pennec, Sommer, Fletcher (b92) 2019 Yang, J., Lu, J., Lee, S., Batra, D., & Parikh, D. (2018). Spinelli, I., Scardapane, S., Scarpiniti, M., & Uncini, A. (2017). Efficient data augmentation using graph imputation neural networks. In Xie, Y., Li, S., Yang, C., Wong, R. C.-W., & Han, J. (2020). When Do GNNs Work: Understanding and Improving Neighborhood Aggregation. In Hou, Chen, Li, Cheng, Yang (b39) 2019 Zhou, Huang, Hu, He (b162) 2020; 205 Wang, Huang, Wang (b127) 2020; 8 CVPR, (pp. 5172–5181). Khiste (b50) 2017; 3 Leordeanu (10.1016/j.mlwa.2022.100401_b63) 2020 Li (10.1016/j.mlwa.2022.100401_b73) 2020; 11 Zhang (10.1016/j.mlwa.2022.100401_b153) 2019 West (10.1016/j.mlwa.2022.100401_b131) 2001 10.1016/j.mlwa.2022.100401_b82 10.1016/j.mlwa.2022.100401_b83 Devlin (10.1016/j.mlwa.2022.100401_b20) 2018 Zhu (10.1016/j.mlwa.2022.100401_b163) 2002 Bianchini (10.1016/j.mlwa.2022.100401_b3) 2018 10.1016/j.mlwa.2022.100401_b113 10.1016/j.mlwa.2022.100401_b115 10.1016/j.mlwa.2022.100401_b114 Zhao (10.1016/j.mlwa.2022.100401_b159) 2020; 193 Shen (10.1016/j.mlwa.2022.100401_b105) 2020 10.1016/j.mlwa.2022.100401_b121 Gogoglou (10.1016/j.mlwa.2022.100401_b32) 2020 Scarselli (10.1016/j.mlwa.2022.100401_b100) 2009; 20 LeCun (10.1016/j.mlwa.2022.100401_b59) 2015; 521 Xie (10.1016/j.mlwa.2022.100401_b133) 2020; 402 10.1016/j.mlwa.2022.100401_b88 Chen (10.1016/j.mlwa.2022.100401_b11) 2018; 2018 Bin (10.1016/j.mlwa.2022.100401_b4) 2020; 106 10.1016/j.mlwa.2022.100401_b87 Wu (10.1016/j.mlwa.2022.100401_b132) 2019 Tang (10.1016/j.mlwa.2022.100401_b116) 2020 10.1016/j.mlwa.2022.100401_b91 Yu (10.1016/j.mlwa.2022.100401_b147) 2018; 141 Kumar (10.1016/j.mlwa.2022.100401_b56) 2000 Wang (10.1016/j.mlwa.2022.100401_b127) 2020; 8 10.1016/j.mlwa.2022.100401_b128 AlQuraishi (10.1016/j.mlwa.2022.100401_b1) 2019; 8 Chen (10.1016/j.mlwa.2022.100401_b14) 2020 Khiste (10.1016/j.mlwa.2022.100401_b51) 2018; 8 10.1016/j.mlwa.2022.100401_b124 Zhang (10.1016/j.mlwa.2022.100401_b157) 2019; 7 Liu (10.1016/j.mlwa.2022.100401_b75) 2012; 5 Song (10.1016/j.mlwa.2022.100401_b108) 2021; 76 Nicolaisen (10.1016/j.mlwa.2022.100401_b90) 2010; 61 10.1016/j.mlwa.2022.100401_b130 Scarselli (10.1016/j.mlwa.2022.100401_b101) 2004 10.1016/j.mlwa.2022.100401_b18 10.1016/j.mlwa.2022.100401_b99 Qiu (10.1016/j.mlwa.2022.100401_b96) 2019 Spinelli (10.1016/j.mlwa.2022.100401_b111) 2020; 129 Li (10.1016/j.mlwa.2022.100401_b69) 2021; 33 10.1016/j.mlwa.2022.100401_b16 10.1016/j.mlwa.2022.100401_b13 Dhere (10.1016/j.mlwa.2022.100401_b21) 2021 Xie (10.1016/j.mlwa.2022.100401_b135) 2020; 194 Singh (10.1016/j.mlwa.2022.100401_b107) 2015; 104 Seo (10.1016/j.mlwa.2022.100401_b104) 2020; 8 Ding (10.1016/j.mlwa.2022.100401_b23) 2020; 403 Lu (10.1016/j.mlwa.2022.100401_b79) 2020; 400 Fortunato (10.1016/j.mlwa.2022.100401_b25) 2010; 486 Hou (10.1016/j.mlwa.2022.100401_b40) 2019 10.1016/j.mlwa.2022.100401_b28 Trentin (10.1016/j.mlwa.2022.100401_b120) 2018; 313 Giudici (10.1016/j.mlwa.2022.100401_b31) 2020; 112 Khiste (10.1016/j.mlwa.2022.100401_b50) 2017; 3 Qin (10.1016/j.mlwa.2022.100401_b95) 2019; 16 Hu (10.1016/j.mlwa.2022.100401_b41) 2013 Lu (10.1016/j.mlwa.2022.100401_b80) 2015; 74 Zou (10.1016/j.mlwa.2022.100401_b164) 2018; 13 10.1016/j.mlwa.2022.100401_b109 10.1016/j.mlwa.2022.100401_b106 Li (10.1016/j.mlwa.2022.100401_b67) 2021; 47 10.1016/j.mlwa.2022.100401_b102 Marin (10.1016/j.mlwa.2022.100401_b84) 2011 Zhang (10.1016/j.mlwa.2022.100401_b155) 2021; 222 10.1016/j.mlwa.2022.100401_b9 10.1016/j.mlwa.2022.100401_b110 Chen (10.1016/j.mlwa.2022.100401_b12) 2020 Perozzi (10.1016/j.mlwa.2022.100401_b93) 2014 10.1016/j.mlwa.2022.100401_b5 Laranjeira (10.1016/j.mlwa.2022.100401_b57) 2020 10.1016/j.mlwa.2022.100401_b34 Ding (10.1016/j.mlwa.2022.100401_b22) 2020 Giudici (10.1016/j.mlwa.2022.100401_b30) 2021; 167 10.1016/j.mlwa.2022.100401_b36 Wang (10.1016/j.mlwa.2022.100401_b129) 2020 Kipf (10.1016/j.mlwa.2022.100401_b54) 2016 González-Pereira (10.1016/j.mlwa.2022.100401_b33) 2010; 4 Mahdavi (10.1016/j.mlwa.2022.100401_b81) 2019 Persson (10.1016/j.mlwa.2022.100401_b94) 2009 Zhang (10.1016/j.mlwa.2022.100401_b156) 2021; 229 Hirsch (10.1016/j.mlwa.2022.100401_b37) 2005; 15 Li (10.1016/j.mlwa.2022.100401_b70) 2016 Cook (10.1016/j.mlwa.2022.100401_b17) 2006 Roberto (10.1016/j.mlwa.2022.100401_b98) 2020; 9 Ying (10.1016/j.mlwa.2022.100401_b144) 2018 10.1016/j.mlwa.2022.100401_b160 Yan (10.1016/j.mlwa.2022.100401_b136) 2018 10.1016/j.mlwa.2022.100401_b42 10.1016/j.mlwa.2022.100401_b43 Zhou (10.1016/j.mlwa.2022.100401_b162) 2020; 205 10.1016/j.mlwa.2022.100401_b49 Zhou (10.1016/j.mlwa.2022.100401_b161) 2020; 1 Deuerlein (10.1016/j.mlwa.2022.100401_b19) 2008; 134 Le (10.1016/j.mlwa.2022.100401_b58) 2014 Hong (10.1016/j.mlwa.2022.100401_b39) 2019; 38 Jeong (10.1016/j.mlwa.2022.100401_b44) 2020 Liu (10.1016/j.mlwa.2022.100401_b77) 2019 Lee (10.1016/j.mlwa.2022.100401_b60) 2019; 13 Khiste (10.1016/j.mlwa.2022.100401_b52) 2017; 3 Wang (10.1016/j.mlwa.2022.100401_b126) 2019 Ebrahim (10.1016/j.mlwa.2022.100401_b24) 2020; 8 Jing (10.1016/j.mlwa.2022.100401_b45) 2020; 8 van Eck (10.1016/j.mlwa.2022.100401_b122) 2007 Trentin (10.1016/j.mlwa.2022.100401_b119) 2009; 73 Yang (10.1016/j.mlwa.2022.100401_b137) 2019 Hirsch (10.1016/j.mlwa.2022.100401_b38) 2007; 104 Li (10.1016/j.mlwa.2022.100401_b66) 2019 Chen (10.1016/j.mlwa.2022.100401_b15) 2018; 18 Tang (10.1016/j.mlwa.2022.100401_b117) 2020 10.1016/j.mlwa.2022.100401_b55 10.1016/j.mlwa.2022.100401_b53 Rebecq (10.1016/j.mlwa.2022.100401_b97) 2019 Leordeanu (10.1016/j.mlwa.2022.100401_b62) 2020 Nicolaisen (10.1016/j.mlwa.2022.100401_b89) 2007; 41 Burnham (10.1016/j.mlwa.2022.100401_b8) 2006; 3 van Eck (10.1016/j.mlwa.2022.100401_b123) 2010; 84 10.1016/j.mlwa.2022.100401_b61 Grover (10.1016/j.mlwa.2022.100401_b35) 2016 Liu (10.1016/j.mlwa.2022.100401_b76) 2018 Mojgani (10.1016/j.mlwa.2022.100401_b86) 2020 10.1016/j.mlwa.2022.100401_b138 Keramatfar (10.1016/j.mlwa.2022.100401_b46) 2019; 45 Giudici (10.1016/j.mlwa.2022.100401_b29) 2021; 299 10.1016/j.mlwa.2022.100401_b134 Garfield (10.1016/j.mlwa.2022.100401_b26) 1955; 122 10.1016/j.mlwa.2022.100401_b142 Martínez (10.1016/j.mlwa.2022.100401_b85) 2019 10.1016/j.mlwa.2022.100401_b141 Yin (10.1016/j.mlwa.2022.100401_b143) 2019; 185 Scott (10.1016/j.mlwa.2022.100401_b103) 1988; 22 Keramatfar (10.1016/j.mlwa.2022.100401_b48) 2015; 2 Liben-Nowell (10.1016/j.mlwa.2022.100401_b74) 2007; 58 Pennec (10.1016/j.mlwa.2022.100401_b92) 2019 Bengio (10.1016/j.mlwa.2022.100401_b2) 2021; 64 10.1016/j.mlwa.2022.100401_b65 Bronstein (10.1016/j.mlwa.2022.100401_b7) 2017; 34 Leordeanu (10.1016/j.mlwa.2022.100401_b64) 2020 Zhang (10.1016/j.mlwa.2022.100401_b154) 2019; 6 Velickovic (10.1016/j.mlwa.2022.100401_b125) 2018 Li (10.1016/j.mlwa.2022.100401_b68) 2019 Zhang (10.1016/j.mlwa.2022.100401_b149) 2021; 231 10.1016/j.mlwa.2022.100401_b71 Sügis (10.1016/j.mlwa.2022.100401_b112) 2019; 6 Thelwall (10.1016/j.mlwa.2022.100401_b118) 2008; 34 Li (10.1016/j.mlwa.2022.100401_b72) 2020 Yang (10.1016/j.mlwa.2022.100401_b139) 2019 Gievska (10.1016/j.mlwa.2022.100401_b27) 2019 Zhang (10.1016/j.mlwa.2022.100401_b151) 2020 10.1016/j.mlwa.2022.100401_b145 Keramatfar (10.1016/j.mlwa.2022.100401_b47) 2021 10.1016/j.mlwa.2022.100401_b148 Zhao (10.1016/j.mlwa.2022.100401_b158) 2020; 8 10.1016/j.mlwa.2022.100401_b152 Bondy (10.1016/j.mlwa.2022.100401_b6) 1976 Yang (10.1016/j.mlwa.2022.100401_b140) 2014; 11 10.1016/j.mlwa.2022.100401_b150 10.1016/j.mlwa.2022.100401_b78 You (10.1016/j.mlwa.2022.100401_b146) 2020; 58 Chen (10.1016/j.mlwa.2022.100401_b10) 2019; 58 |
References_xml | – reference: Zhao, M., Jia, W., & Huang, Y. (2020). – volume: 8 start-page: 76632 year: 2020 end-page: 76641 ident: b158 article-title: Spatiotemporal data fusion in graph convolutional networks for traffic prediction publication-title: IEEE Access – year: 2016 ident: b70 article-title: Gated graph sequence neural networks – volume: 1 start-page: 57 year: 2020 end-page: 81 ident: b161 article-title: Graph neural networks: A review of methods and applications publication-title: AI Open – reference: Sun, C., Huang, L., & Qiu, X. (2019). Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. In – reference: Tu, M., Wang, G., Huang, J., Tang, Y., He, X., & Zhou, B. (2019). Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs. In – year: 2021 ident: b21 article-title: Self-supervised learning for segmentation – start-page: 1 year: 2020 end-page: 16 ident: b43 article-title: A context-aware citation recommendation model with BERT and graph convolutional networks publication-title: Scientometrics – start-page: 9 year: 2009 end-page: 24 ident: b94 article-title: How to use bibexcel for various types of bibliometric analysis publication-title: Celebrating scholarly communication studies: a festschrift for Olle persson at his 60th birthday, vol. 5 – volume: 8 start-page: 32816 year: 2020 end-page: 32825 ident: b104 article-title: Reliable knowledge graph path representation learning publication-title: IEEE Access – reference: Sboev, A., Selivanov, A., Rybka, R., Moloshnikov, I., & Bogachev, D. (2020). – reference: Nguyen, H., Nguyen, D. T., & Nguyen, T. (2019). Estimating County Health Indices Using Graph Neural Networks. In – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b59 article-title: Deep learning publication-title: Nature – volume: 13 year: 2019 ident: b60 article-title: Attention models in graphs: A survey publication-title: ACM Transactions on Knowledge Discovery from Data – year: 2020 ident: b64 article-title: Unsupervised visual learning: From pixels to seeing – year: 2019 ident: b39 article-title: A representation learning framework for property graphs publication-title: Paper presented at the proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining – reference: Zhang, Y., Qi, P., & Manning, C. D. (2018). Graph convolution over pruned dependency trees improves relation extraction. In – start-page: 25 year: 2011 ident: b84 article-title: Social network analysis: An introduction publication-title: The SAGE handbook of social network analysis, vol. 11 – year: 2019 ident: b81 article-title: Dynamic joint variational graph autoencoders – year: 2018 ident: b136 article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition publication-title: Proceedings of the AAAI conference on artificial intelligence, vol. 32, no.1 – year: 2018 ident: b76 article-title: Heterogeneous graph neural networks for malicious account detection publication-title: Paper presented at the proceedings of the 27th ACM international conference on information and knowledge management – volume: 104 start-page: 19193 year: 2007 ident: b37 article-title: Does the h index have predictive power? publication-title: Proceedings of the National Academy of Sciences – year: 2019 ident: b85 article-title: Graph convolutional networks on customer/supplier graph data to improve default prediction – volume: 122 start-page: 108 year: 1955 end-page: 111 ident: b26 article-title: Citation indexes for science: A new dimension in documentation through association of ideas publication-title: Science – reference: Bo, D., Wang, X., Shi, C., Zhu, M., Lu, E., & Cui, P. (2020). Structural Deep Clustering Network. In – reference: Casas-Valadez, M. A., Faz-Mendoza, A., Medina-Rodriguez, C. E., Cobo, M., Gamboa-Rosales, N. K., & López-Robles, J. R. (2020). Research trends in Sentiment Analysis and Opinion Mining from Knowledge Management approach: A science mapping from 2007 to 2020. In – reference: Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., & Bronstein, M. (2017). Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs. In – volume: 231 year: 2021 ident: b149 article-title: Spatiotemporal fuzzy-graph convolutional network model with dynamic feature encoding for traffic forecasting publication-title: Knowledge-Based Systems – reference: Shi, L., Zhang, Y., Cheng, J., & Lu, H. (2019). Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition. In – year: 2020 ident: b105 article-title: Taxoexpan: Self-supervised taxonomy expansion with position-enhanced graph neural network – reference: (pp. 11–20). – volume: 2 start-page: 33 year: 2015 end-page: 38 ident: b48 article-title: Quantity or quality? Comparative assessment of the science production of Iran, Turkey and Malaysia during 1996–2013 publication-title: Caspian Journal of Scientometrics – volume: 73 start-page: 204 year: 2009 end-page: 212 ident: b119 article-title: Classification of graphical data made easy publication-title: Neurocomputing – volume: 74 start-page: 12 year: 2015 end-page: 32 ident: b80 article-title: Recommender system application developments: A survey publication-title: Decision Support Systems – reference: (pp. 5425–5434). – reference: Speriosu, M., Sudan, N., Upadhyay, S., & Baldridge, J. (2011). Twitter polarity classification with label propagation over lexical links and the follower graph. In – year: 1976 ident: b6 article-title: Graph theory with applications vol. 290 – year: 2019 ident: b139 article-title: Using external knowledge for financial event prediction based on graph neural networks publication-title: Paper presented at the proceedings of the 28th ACM international conference on information and knowledge management – reference: Heimerl, F., Lohmann, S., Lange, S., & Ertl, T. (2014). Word Cloud Explorer: Text Analytics Based on Word Clouds. In – volume: 129 start-page: 249 year: 2020 end-page: 260 ident: b111 article-title: Missing data imputation with adversarially-trained graph convolutional networks publication-title: Neural Networks – reference: (pp. 734–734). – volume: 193 year: 2020 ident: b159 article-title: Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification publication-title: Knowledge-Based Systems – year: 2019 ident: b153 article-title: Heterogeneous graph neural network publication-title: Paper presented at the proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining – reference: . Hong Kong, China. – year: 2020 ident: b32 article-title: Navigating the dynamics of financial embeddings over time publication-title: Paper presented at the proceedings of the first ACM international conference on AI in finance – reference: Yang, J., Lu, J., Lee, S., Batra, D., & Parikh, D. (2018). – volume: 9 year: 2020 ident: b98 article-title: Research trends in the international literature on natural language processing, 2000–2019 — A bibliometric study publication-title: Journal of Scientometric Research – volume: 112 year: 2020 ident: b31 article-title: The interconnected nature of financial systems: Direct and common exposures publication-title: Journal of Banking & Finance – volume: 7 start-page: 32754 year: 2019 end-page: 32764 ident: b157 article-title: Modeling IoT equipment with graph neural networks publication-title: IEEE Access – start-page: 3438 year: 2020 end-page: 3445 ident: b12 article-title: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view publication-title: Proceedings of the AAAI conference on artificial intelligence, vol. 34, no. 04 – year: 2019 ident: b96 article-title: Rethinking the item order in session-based recommendation with graph neural networks publication-title: Paper presented at the proceedings of the 28th ACM international conference on information and knowledge management – year: 2020 ident: b63 article-title: Coupling appearance and motion: Unsupervised clustering for object segmentation through space and time – start-page: 1 year: 2020 end-page: 18 ident: b86 article-title: Bibliometric study of traumatic brain injury rehabilitation publication-title: Neuropsychological Rehabilitation – volume: 194 year: 2020 ident: b135 article-title: Heterogeneous graph neural networks for noisy few-shot relation classification publication-title: Knowledge-Based Systems – reference: Lu, Z., Du, P., & Nie, J.-Y. (2020). VGCN-BERT: Augmenting BERT with graph embedding for text classification. In – volume: 185 year: 2019 ident: b143 article-title: A deeper graph neural network for recommender systems publication-title: Knowledge-Based Systems – reference: Spinelli, I., Scardapane, S., Scarpiniti, M., & Uncini, A. (2017). Efficient data augmentation using graph imputation neural networks. In – year: 2001 ident: b131 article-title: Introduction to graph theory (vol. 2) – volume: 8 start-page: 38472 year: 2020 end-page: 38480 ident: b127 article-title: Global relation reasoning graph convolutional networks for human pose estimation publication-title: IEEE Access – volume: 299 start-page: 443 year: 2021 end-page: 457 ident: b29 article-title: Crypto price discovery through correlation networks publication-title: Annals of Operations Research – reference: Lei, K., Qin, M., Bai, B., Zhang, G., & Yang, M. (2019). GCN-GAN: A Non-linear Temporal Link Prediction Model for Weighted Dynamic Networks. In – reference: Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for Quantum chemistry. In – volume: 58 start-page: 1019 year: 2007 end-page: 1031 ident: b74 article-title: The link-prediction problem for social networks publication-title: Journal of the American Society for Information Science and Technology – volume: 41 start-page: 609 year: 2007 end-page: 641 ident: b89 article-title: Citation analysis publication-title: Annual Review of Information Science and Technology – volume: 222 year: 2021 ident: b155 article-title: Ethics and privacy of artificial intelligence: Understandings from bibliometrics publication-title: Knowledge-Based Systems – volume: 8 year: 2019 ident: b1 article-title: End-to-end differentiable learning of protein structure publication-title: Cell Systems – volume: 229 year: 2021 ident: b156 article-title: Graph neural networks with multiple kernel ensemble attention publication-title: Knowledge-Based Systems – year: 2022 ident: b47 article-title: Multi-thread hierarchical deep model for context-aware sentiment analysis publication-title: Journal of Information Science – volume: 402 start-page: 245 year: 2020 end-page: 255 ident: b133 article-title: Point clouds learning with attention-based graph convolution networks publication-title: Neurocomputing – start-page: 253 year: 2020 end-page: 295 ident: b62 article-title: Unsupervised learning towards the future publication-title: Unsupervised learning in space and time: a modern approach for computer vision using graph-based techniques and deep neural networks – year: 2019 ident: b77 article-title: Estimating locations of social media content through a graph-based link prediction publication-title: Paper presented at the proceedings of the 13th workshop on geographic information retrieval – year: 2004 ident: b101 article-title: Graphical-based learning environments for pattern recognition – volume: 134 start-page: 822 year: 2008 end-page: 832 ident: b19 article-title: Decomposition model of a general water supply network graph publication-title: Journal of Hydraulic Engineering – volume: 2018 year: 2018 ident: b11 article-title: A bibliometric review of natural language processing empowered mobile computing publication-title: Wireless Communications and Mobile Computing – volume: 6 start-page: 151 year: 2019 ident: b112 article-title: HENA, heterogeneous network-based data set for Alzheimer’s disease publication-title: Scientific Data – year: 2019 ident: b137 article-title: Attention-based generative graph convolutional network for skeleton-based human action recognition publication-title: Paper presented at the proceedings of the 3rd international conference on video and image processing – volume: 106 year: 2020 ident: b4 article-title: Structure-aware human pose estimation with graph convolutional networks publication-title: Pattern Recognition – year: 2018 ident: b20 article-title: Bert: Pre-training of deep bidirectional transformers for language understanding – year: 2007 ident: b122 article-title: VOS: A new method for visualizing similarities between objects – volume: 18 start-page: 14 year: 2018 ident: b15 article-title: A bibliometric analysis of natural language processing in medical research publication-title: BMC Medical Informatics and Decision Making – year: 2000 ident: b56 article-title: The web as a graph publication-title: Paper presented at the proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems – year: 2006 ident: b17 article-title: Mining graph data – year: 2013 ident: b40 article-title: Exploiting social relations for sentiment analysis in microblogging publication-title: Paper presented at the proceedings of the sixth acm international conference on web search and data mining – year: 2016 ident: b54 article-title: Variational graph auto-encoders – volume: 84 start-page: 523 year: 2010 end-page: 538 ident: b123 article-title: Software survey: Vosviewer, a computer program for bibliometric mapping publication-title: Scientometrics – reference: Deng, S., Wang, S., Rangwala, H., Wang, L., & Ning, Y. (2020). Cola-GNN: Cross-location Attention based Graph Neural Networks for Long-term ILI Prediction. In – volume: 205 year: 2020 ident: b162 article-title: SK-GCN: Modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification publication-title: Knowledge-Based Systems – reference: Chiu, C. C., Sainath, T. N., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen, Z., et al. (2018). State-of-the-Art Speech Recognition with Sequence-to-Sequence Models. In – year: 2020 ident: b72 article-title: Few-shot learning for new user recommendation in location-based social networks publication-title: Paper presented at the proceedings of the web conference 2020 – volume: 403 start-page: 348 year: 2020 end-page: 359 ident: b23 article-title: Interpretable spatio-temporal attention LSTM model for flood forecasting publication-title: Neurocomputing – volume: 3 start-page: 1 year: 2006 ident: b8 article-title: Scopus database: A review publication-title: Biomedical Digital Libraries – volume: 5 start-page: 1 year: 2012 end-page: 167 ident: b75 article-title: Sentiment analysis and opinion mining publication-title: Synthesis Lectures on Human Language Technologies – volume: 76 year: 2021 ident: b108 article-title: Human pose estimation and its application to action recognition: A survey publication-title: Journal of Visual Communication and Image Representation – reference: (pp. 729–734). 722. – volume: 34 start-page: 18 year: 2017 end-page: 42 ident: b7 article-title: Geometric deep learning: Going beyond euclidean data publication-title: IEEE Signal Processing Magazine – reference: Tan, Z., Zhao, X., & Wang, W. (2017). Representation Learning of Large-Scale Knowledge Graphs via Entity Feature Combinations. In – volume: 104 start-page: 529 year: 2015 end-page: 553 ident: b107 article-title: Computer science research: the top 100 institutions in India and in the world publication-title: Scientometrics – year: 2019 ident: b132 article-title: DEMO-Net: Degree-specific graph neural networks for node and graph classification publication-title: Paper presented at the proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining – reference: Chen, Z.-M., Wei, X.-S., Wang, P., & Guo, Y. (2019). Multi-Label Image Recognition With Graph Convolutional Networks. In – year: 2020 ident: b22 article-title: A semantics-guided graph convolutional network for skeleton-based action recognition publication-title: Paper presented at the proceedings of the 2020 the 4th international conference on innovation in artificial intelligence – year: 2014 ident: b58 article-title: Distributed representations of sentences and documents publication-title: Paper presented at the proceedings of the 31st international conference on international conference on machine learning - vol. 32 – year: 2019 ident: b68 article-title: Spam review detection with graph convolutional networks publication-title: Paper presented at the proceedings of the 28th ACM international conference on information and knowledge management – reference: Yao, J. (2007). A Ten-year Review of Granular Computing. In – volume: 38 start-page: 2717 year: 2019 end-page: 2725 ident: b38 article-title: Longitudinal prediction of infant diffusion MRI data via graph convolutional adversarial networks publication-title: IEEE Transactions on Medical Imaging – volume: 58 year: 2019 ident: b10 article-title: Self-supervised learning for medical image analysis using image context restoration publication-title: Medical Image Analysis – volume: 47 start-page: 161 year: 2021 end-page: 175 ident: b67 article-title: A bibliometric analysis of topic modelling studies (2000–2017) publication-title: Journal of Information Science – reference: Marcheggiani, D., & Titov, I. (2017). Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling. In – reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention is all you need. In – reference: Zhang, M., Cui, Z., Neumann, M., & Chen, Y. (2018). An End-to-End Deep Learning Architecture for Graph Classification. In – year: 2022 ident: b44 article-title: Structuration analysis of e-government studies: A bibliometric analysis based on knowledge maps publication-title: Journal of Information Science – reference: Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., & Welling, M. (2018). Modeling Relational Data with Graph Convolutional Networks. In – volume: 141 start-page: 188 year: 2018 end-page: 199 ident: b147 article-title: Bibliometric analysis of fuzzy theory research in China: A 30-year perspective publication-title: Knowledge-Based Systems – year: 2019 ident: b66 article-title: Fi-GNN: Modeling feature interactions via graph neural networks for CTR prediction publication-title: Paper presented at the proceedings of the 28th ACM international conference on information and knowledge management – reference: Wang, D., Lin, J., Cui, P., Jia, Q., Wang, Z., Fang, Y., et al. (2019). A Semi-Supervised Graph Attentive Network for Financial Fraud Detection. In – volume: 61 start-page: 205 year: 2010 end-page: 207 ident: b90 article-title: Bibliometrics and citation analysis: From the science citation index to cybermetrics publication-title: Journal of the American Society for Information Science and Technology – volume: 64 start-page: 58 year: 2021 end-page: 65 ident: b2 article-title: Deep learning for AI publication-title: Communications of the ACM – start-page: 3852 year: 2019 end-page: 3861 ident: b97 article-title: Events-to-video: Bringing modern computer vision to event cameras publication-title: 2019 IEEE/CVF conference on computer vision and pattern recognition – start-page: 1 year: 2020 end-page: 33 ident: b14 article-title: A structural topic modeling-based bibliometric study of sentiment analysis literature publication-title: Cognitive Computation – reference: Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., & Tian, Q. (2019). Actional-Structural Graph Convolutional Networks for Skeleton-Based Action Recognition. In – reference: Gori, M., Monfardini, G., & Scarselli, F. (2005). A new model for learning in graph domains. In – volume: 45 start-page: 3 year: 2019 end-page: 15 ident: b46 article-title: Bibliometrics of sentiment analysis literature publication-title: Journal of Information Science – reference: Yu, T., Yin, H., & Zhu, Z. (2018). Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. In – volume: 8 start-page: 15800 year: 2020 end-page: 15811 ident: b45 article-title: Unsupervised graph representation learning with variable heat kernel publication-title: IEEE Access – year: 2019 ident: b27 article-title: ICT innovations 2019 publication-title: Big data processing and mining: 11th international conference ICT innovations 2019, Ohrid, North Macedonia, October (2019) 17–19, proceedings vol. 1110 – reference: (pp. 3590–3598). – year: 2016 ident: b35 article-title: node2vec: Scalable feature learning for networks publication-title: Paper presented at the proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining – volume: 11 start-page: 651 year: 2014 end-page: 655 ident: b140 article-title: Semi-supervised hyperspectral image classification using spatio-spectral Laplacian support vector machine publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 3 start-page: 81 year: 2017 end-page: 88 ident: b52 article-title: Analysis of bibliometric term in scopus publication-title: International Journal of Library Science and Information Management (IJLSIM) – reference: Huang, B., & Carley, K. (2019). – volume: 16 start-page: 241 year: 2019 end-page: 245 ident: b95 article-title: Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 8 start-page: 90202 year: 2020 end-page: 90215 ident: b24 article-title: Quantitative and qualitative analysis of time-series classification using deep learning publication-title: IEEE Access – reference: Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In – reference: (pp. 12018–12027). – year: 2019 ident: b126 article-title: Neural graph collaborative filtering publication-title: Paper presented at the proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval – reference: Li, Q., Wu, X.-M., Liu, H., Zhang, X., & Guan, Z. (2019). Label efficient semi-supervised learning via graph filtering. In – year: 2018 ident: b144 article-title: Graph convolutional neural networks for web-scale recommender systems publication-title: Paper presented at the proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining – volume: 58 start-page: 1281 year: 2020 end-page: 1293 ident: b146 article-title: Pixel-level remote sensing image recognition based on bidirectional word vectors publication-title: IEEE Transactions on Geoscience and Remote Sensing – reference: . – reference: CVPR, (pp. 5172–5181). – volume: 3 start-page: 879 year: 2017 end-page: 882 ident: b50 article-title: Publication productivity of ‘consortia’by scopus during 1989–2016 publication-title: International Journal of Current Innovation Research – volume: 4 start-page: 379 year: 2010 end-page: 391 ident: b33 article-title: A new approach to the metric of journals’ scientific prestige: The SJR indicator publication-title: Journal of Informetrics – volume: 8 start-page: 10 year: 2018 end-page: 19 ident: b51 article-title: Knowledge management output in scopus during 2007 to 2016 publication-title: Asian Journal of Research in Social Sciences and Humanities – reference: Huang, C., Wu, X., Zhang, X., Zhang, C., Zhao, J., Yin, D., et al. (2019). Online Purchase Prediction via Multi-Scale Modeling of Behavior Dynamics. In – volume: 167 year: 2021 ident: b30 article-title: Shapley-Lorenz explainable artificial intelligence publication-title: Expert Systems with Applications – volume: 22 start-page: 109 year: 1988 end-page: 127 ident: b103 article-title: Social network analysis publication-title: Sociology – volume: 34 start-page: 605 year: 2008 end-page: 621 ident: b118 article-title: Bibliometrics to webometrics publication-title: Journal of Information Science – year: 2020 ident: b151 article-title: Revisiting graph neural networks for link prediction – reference: You, J., Liu, B., Ying, R., Pande, V., & Leskovec, J. (2018). Graph convolutional policy network for goal-directed molecular graph generation. In – volume: 486 start-page: 75 year: 2010 end-page: 174 ident: b25 article-title: Community detection in graphs publication-title: Physics Reports – year: 2019 ident: b92 article-title: Riemannian geometric statistics in medical image analysis – reference: Sun, X., Man, Y., Zhao, Y., He, J., & Liu, N. (2019). – year: 2002 ident: b163 article-title: Learning from labeled and unlabeled data with label propagation – volume: 13 year: 2018 ident: b164 article-title: Microblog sentiment analysis using social and topic context publication-title: PLoS One – volume: 313 start-page: 14 year: 2018 end-page: 24 ident: b120 article-title: Nonparametric small random networks for graph-structured pattern recognition publication-title: Neurocomputing – volume: 33 start-page: 1773 year: 2021 end-page: 1784 ident: b69 article-title: Improve relation extraction with dual attention-guided graph convolutional networks publication-title: Neural Computing and Applications – reference: Ouyang, W., Zhang, Y., Zhu, M., Zhang, X., Chen, H., Ren, Y., et al. (2019). Interpretable Spatial-Temporal Attention Graph Convolution Network for Service Part Hierarchical Demand Forecast. In – start-page: 29 year: 2018 end-page: 51 ident: b3 article-title: Deep neural networks for structured data publication-title: Computational intelligence for pattern recognition – year: 2018 ident: b125 article-title: Graph attention networks – volume: 20 start-page: 61 year: 2009 end-page: 80 ident: b100 article-title: The graph neural network model publication-title: IEEE Transactions on Neural Networks – reference: . Cham. – year: 2020 ident: b129 article-title: A simple training strategy for graph autoencoder publication-title: Paper presented at the proceedings of the 2020 12th international conference on machine learning and computing – reference: . – year: 2020 ident: b57 article-title: What is traffic prediction and how does it work? – year: 2020 ident: b116 article-title: Knowing your FATE: Friendship, action and temporal explanations for user engagement prediction on social apps publication-title: Paper presented at the proceedings of the 26th acm sigkdd international conference on knowledge discovery & data mining, virtual event – reference: Mao, M., Li, Z., Zhao, Z., & Zeng, L. (2018). Bibliometric analysis of the deep learning research status with the data from Web of Science. In – year: 2020 ident: b117 article-title: Investigating and mitigating degree-related biases in graph convoltuional networks publication-title: Paper presented at the proceedings of the 29th ACM international conference on information & knowledge management, virtual event – reference: Xie, Y., Li, S., Yang, C., Wong, R. C.-W., & Han, J. (2020). When Do GNNs Work: Understanding and Improving Neighborhood Aggregation. In – reference: Kim, J., Kim, T., Kim, S., & Yoo, C. (2019). Edge-Labeling Graph Neural Network for Few-Shot Learning. In – volume: 400 start-page: 34 year: 2020 end-page: 45 ident: b79 article-title: LSTM variants meet graph neural networks for road speed prediction publication-title: Neurocomputing – reference: Wang, X., Ye, Y., & Gupta, A. (2018). Zero-shot recognition via semantic embeddings and knowledge graphs. In – reference: Yao, T., Pan, Y., Li, Y., & Mei, T. (2018). Exploring Visual Relationship for Image Captioning. In – volume: 6 start-page: 11 year: 2019 ident: b154 article-title: Graph convolutional networks: A comprehensive review publication-title: Computational Social Networks – volume: 11 start-page: 2807 year: 2020 end-page: 2826 ident: b73 article-title: A bibliometric analysis on deep learning during 2007–2019 publication-title: International Journal of Machine Learning and Cybernetics – year: 2014 ident: b93 article-title: DeepWalk: Online learning of social representations publication-title: Paper presented at the proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining – reference: Khanfor, A., Nammouchi, A., Ghazzai, H., Yang, Y., Haider, M. R., & Massoud, Y. (2020). Graph Neural Networks-based Clustering for Social Internet of Things. In – start-page: 253 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b62 article-title: Unsupervised learning towards the future – year: 2020 ident: 10.1016/j.mlwa.2022.100401_b22 article-title: A semantics-guided graph convolutional network for skeleton-based action recognition – volume: 122 start-page: 108 issue: 3159 year: 1955 ident: 10.1016/j.mlwa.2022.100401_b26 article-title: Citation indexes for science: A new dimension in documentation through association of ideas publication-title: Science doi: 10.1126/science.122.3159.108 – volume: 58 start-page: 1281 issue: 2 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b146 article-title: Pixel-level remote sensing image recognition based on bidirectional word vectors publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2019.2945591 – volume: 2018 year: 2018 ident: 10.1016/j.mlwa.2022.100401_b11 article-title: A bibliometric review of natural language processing empowered mobile computing publication-title: Wireless Communications and Mobile Computing doi: 10.1155/2018/1827074 – year: 2002 ident: 10.1016/j.mlwa.2022.100401_b163 – ident: 10.1016/j.mlwa.2022.100401_b124 – ident: 10.1016/j.mlwa.2022.100401_b13 doi: 10.1109/CVPR.2019.00532 – volume: 76 year: 2021 ident: 10.1016/j.mlwa.2022.100401_b108 article-title: Human pose estimation and its application to action recognition: A survey publication-title: Journal of Visual Communication and Image Representation doi: 10.1016/j.jvcir.2021.103055 – volume: 8 start-page: 10 issue: 1 year: 2018 ident: 10.1016/j.mlwa.2022.100401_b51 article-title: Knowledge management output in scopus during 2007 to 2016 publication-title: Asian Journal of Research in Social Sciences and Humanities doi: 10.5958/2249-7315.2018.00002.3 – volume: 205 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b162 article-title: SK-GCN: Modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106292 – ident: 10.1016/j.mlwa.2022.100401_b78 doi: 10.1007/978-3-030-45439-5_25 – ident: 10.1016/j.mlwa.2022.100401_b34 doi: 10.1109/IJCNN.2005.1555942 – ident: 10.1016/j.mlwa.2022.100401_b110 – volume: 106 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b4 article-title: Structure-aware human pose estimation with graph convolutional networks publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107410 – volume: 18 start-page: 14 issue: 1 year: 2018 ident: 10.1016/j.mlwa.2022.100401_b15 article-title: A bibliometric analysis of natural language processing in medical research publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-018-0594-x – volume: 104 start-page: 19193 issue: 49 year: 2007 ident: 10.1016/j.mlwa.2022.100401_b38 article-title: Does the h index have predictive power? publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0707962104 – year: 2020 ident: 10.1016/j.mlwa.2022.100401_b129 article-title: A simple training strategy for graph autoencoder – ident: 10.1016/j.mlwa.2022.100401_b65 doi: 10.1109/CVPR.2019.00371 – volume: 7 start-page: 32754 year: 2019 ident: 10.1016/j.mlwa.2022.100401_b157 article-title: Modeling IoT equipment with graph neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902865 – ident: 10.1016/j.mlwa.2022.100401_b55 – year: 2020 ident: 10.1016/j.mlwa.2022.100401_b116 article-title: Knowing your FATE: Friendship, action and temporal explanations for user engagement prediction on social apps – volume: 33 start-page: 1773 issue: 6 year: 2021 ident: 10.1016/j.mlwa.2022.100401_b69 article-title: Improve relation extraction with dual attention-guided graph convolutional networks publication-title: Neural Computing and Applications doi: 10.1007/s00521-020-05087-z – volume: 38 start-page: 2717 issue: 12 year: 2019 ident: 10.1016/j.mlwa.2022.100401_b39 article-title: Longitudinal prediction of infant diffusion MRI data via graph convolutional adversarial networks publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2019.2911203 – volume: 84 start-page: 523 issue: 2 year: 2010 ident: 10.1016/j.mlwa.2022.100401_b123 article-title: Software survey: Vosviewer, a computer program for bibliometric mapping publication-title: Scientometrics doi: 10.1007/s11192-009-0146-3 – volume: 58 year: 2019 ident: 10.1016/j.mlwa.2022.100401_b10 article-title: Self-supervised learning for medical image analysis using image context restoration publication-title: Medical Image Analysis doi: 10.1016/j.media.2019.101539 – year: 2020 ident: 10.1016/j.mlwa.2022.100401_b32 article-title: Navigating the dynamics of financial embeddings over time – year: 2019 ident: 10.1016/j.mlwa.2022.100401_b40 article-title: A representation learning framework for property graphs – ident: 10.1016/j.mlwa.2022.100401_b128 doi: 10.1109/ICDM.2019.00070 – year: 2018 ident: 10.1016/j.mlwa.2022.100401_b76 article-title: Heterogeneous graph neural networks for malicious account detection – year: 2020 ident: 10.1016/j.mlwa.2022.100401_b117 article-title: Investigating and mitigating degree-related biases in graph convoltuional networks – ident: 10.1016/j.mlwa.2022.100401_b109 – volume: 11 start-page: 2807 issue: 12 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b73 article-title: A bibliometric analysis on deep learning during 2007–2019 publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-020-01152-0 – ident: 10.1016/j.mlwa.2022.100401_b28 – year: 2019 ident: 10.1016/j.mlwa.2022.100401_b27 article-title: ICT innovations 2019 – volume: 45 start-page: 3 issue: 1 year: 2019 ident: 10.1016/j.mlwa.2022.100401_b46 article-title: Bibliometrics of sentiment analysis literature publication-title: Journal of Information Science doi: 10.1177/0165551518761013 – year: 2019 ident: 10.1016/j.mlwa.2022.100401_b137 article-title: Attention-based generative graph convolutional network for skeleton-based human action recognition – volume: 8 issue: 4 year: 2019 ident: 10.1016/j.mlwa.2022.100401_b1 article-title: End-to-end differentiable learning of protein structure publication-title: Cell Systems doi: 10.1016/j.cels.2019.03.006 – volume: 193 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b159 article-title: Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105443 – ident: 10.1016/j.mlwa.2022.100401_b36 doi: 10.1109/HICSS.2014.231 – volume: 34 start-page: 18 issue: 4 year: 2017 ident: 10.1016/j.mlwa.2022.100401_b7 article-title: Geometric deep learning: Going beyond euclidean data publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2017.2693418 – volume: 20 start-page: 61 issue: 1 year: 2009 ident: 10.1016/j.mlwa.2022.100401_b100 article-title: The graph neural network model publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2008.2005605 – volume: 1 start-page: 57 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b161 article-title: Graph neural networks: A review of methods and applications publication-title: AI Open doi: 10.1016/j.aiopen.2021.01.001 – ident: 10.1016/j.mlwa.2022.100401_b16 doi: 10.1109/ICASSP.2018.8462105 – year: 2016 ident: 10.1016/j.mlwa.2022.100401_b35 article-title: node2vec: Scalable feature learning for networks – year: 2019 ident: 10.1016/j.mlwa.2022.100401_b77 article-title: Estimating locations of social media content through a graph-based link prediction – ident: 10.1016/j.mlwa.2022.100401_b82 doi: 10.1007/978-3-319-93803-5_55 – start-page: 29 year: 2018 ident: 10.1016/j.mlwa.2022.100401_b3 article-title: Deep neural networks for structured data – volume: 222 year: 2021 ident: 10.1016/j.mlwa.2022.100401_b155 article-title: Ethics and privacy of artificial intelligence: Understandings from bibliometrics publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.106994 – start-page: 1 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b44 article-title: A context-aware citation recommendation model with BERT and graph convolutional networks publication-title: Scientometrics – volume: 8 start-page: 76632 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b158 article-title: Spatiotemporal data fusion in graph convolutional networks for traffic prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989443 – volume: 167 year: 2021 ident: 10.1016/j.mlwa.2022.100401_b30 article-title: Shapley-Lorenz explainable artificial intelligence publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114104 – ident: 10.1016/j.mlwa.2022.100401_b5 doi: 10.1145/3366423.3380214 – ident: 10.1016/j.mlwa.2022.100401_b145 – start-page: 9 year: 2009 ident: 10.1016/j.mlwa.2022.100401_b94 article-title: How to use bibexcel for various types of bibliometric analysis – volume: 13 issue: 2 year: 2018 ident: 10.1016/j.mlwa.2022.100401_b164 article-title: Microblog sentiment analysis using social and topic context publication-title: PLoS One doi: 10.1371/journal.pone.0191163 – volume: 3 start-page: 81 issue: 3 year: 2017 ident: 10.1016/j.mlwa.2022.100401_b52 article-title: Analysis of bibliometric term in scopus publication-title: International Journal of Library Science and Information Management (IJLSIM) – year: 2018 ident: 10.1016/j.mlwa.2022.100401_b144 article-title: Graph convolutional neural networks for web-scale recommender systems – year: 2004 ident: 10.1016/j.mlwa.2022.100401_b101 – volume: 73 start-page: 204 issue: 1 year: 2009 ident: 10.1016/j.mlwa.2022.100401_b119 article-title: Classification of graphical data made easy publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.07.021 – volume: 3 start-page: 879 issue: 11 year: 2017 ident: 10.1016/j.mlwa.2022.100401_b50 article-title: Publication productivity of ‘consortia’by scopus during 1989–2016 publication-title: International Journal of Current Innovation Research – year: 2020 ident: 10.1016/j.mlwa.2022.100401_b63 – year: 2013 ident: 10.1016/j.mlwa.2022.100401_b41 article-title: Exploiting social relations for sentiment analysis in microblogging – ident: 10.1016/j.mlwa.2022.100401_b150 doi: 10.1609/aaai.v32i1.11782 – volume: 15 issue: 102 year: 2005 ident: 10.1016/j.mlwa.2022.100401_b37 article-title: An index to quantify an individual’s scientific research output publication-title: Proc Natl Acad Sci U S A – year: 2019 ident: 10.1016/j.mlwa.2022.100401_b96 article-title: Rethinking the item order in session-based recommendation with graph neural networks – ident: 10.1016/j.mlwa.2022.100401_b61 doi: 10.1109/INFOCOM.2019.8737631 – year: 2014 ident: 10.1016/j.mlwa.2022.100401_b93 article-title: DeepWalk: Online learning of social representations – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.mlwa.2022.100401_b59 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2018 ident: 10.1016/j.mlwa.2022.100401_b136 article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition – volume: 47 start-page: 161 issue: 2 year: 2021 ident: 10.1016/j.mlwa.2022.100401_b67 article-title: A bibliometric analysis of topic modelling studies (2000–2017) publication-title: Journal of Information Science doi: 10.1177/0165551519877049 – ident: 10.1016/j.mlwa.2022.100401_b18 doi: 10.1145/3340531.3411975 – start-page: 3852 year: 2019 ident: 10.1016/j.mlwa.2022.100401_b97 article-title: Events-to-video: Bringing modern computer vision to event cameras – volume: 229 year: 2021 ident: 10.1016/j.mlwa.2022.100401_b156 article-title: Graph neural networks with multiple kernel ensemble attention publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107299 – ident: 10.1016/j.mlwa.2022.100401_b43 doi: 10.1145/3292500.3330790 – ident: 10.1016/j.mlwa.2022.100401_b42 doi: 10.18653/v1/D19-1480 – volume: 8 start-page: 15800 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b45 article-title: Unsupervised graph representation learning with variable heat kernel publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966409 – year: 2019 ident: 10.1016/j.mlwa.2022.100401_b92 – ident: 10.1016/j.mlwa.2022.100401_b141 doi: 10.1109/GrC.2007.11 – volume: 231 year: 2021 ident: 10.1016/j.mlwa.2022.100401_b149 article-title: Spatiotemporal fuzzy-graph convolutional network model with dynamic feature encoding for traffic forecasting publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107403 – ident: 10.1016/j.mlwa.2022.100401_b152 doi: 10.18653/v1/D18-1244 – volume: 313 start-page: 14 year: 2018 ident: 10.1016/j.mlwa.2022.100401_b120 article-title: Nonparametric small random networks for graph-structured pattern recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.095 – year: 2021 ident: 10.1016/j.mlwa.2022.100401_b47 article-title: Multi-thread hierarchical deep model for context-aware sentiment analysis publication-title: Journal of Information Science doi: 10.1177/0165551521990617 – ident: 10.1016/j.mlwa.2022.100401_b99 doi: 10.1007/978-3-030-33491-8_48 – volume: 34 start-page: 605 issue: 4 year: 2008 ident: 10.1016/j.mlwa.2022.100401_b118 article-title: Bibliometrics to webometrics publication-title: Journal of Information Science doi: 10.1177/0165551507087238 – ident: 10.1016/j.mlwa.2022.100401_b138 doi: 10.1007/978-3-030-01246-5_41 – year: 2019 ident: 10.1016/j.mlwa.2022.100401_b126 article-title: Neural graph collaborative filtering – year: 2014 ident: 10.1016/j.mlwa.2022.100401_b58 article-title: Distributed representations of sentences and documents – ident: 10.1016/j.mlwa.2022.100401_b115 doi: 10.1145/3132847.3132961 – ident: 10.1016/j.mlwa.2022.100401_b148 doi: 10.24963/ijcai.2018/505 – ident: 10.1016/j.mlwa.2022.100401_b9 doi: 10.1109/3ICT51146.2020.9311975 – volume: 185 year: 2019 ident: 10.1016/j.mlwa.2022.100401_b143 article-title: A deeper graph neural network for recommender systems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105020 – year: 2019 ident: 10.1016/j.mlwa.2022.100401_b85 – ident: 10.1016/j.mlwa.2022.100401_b49 doi: 10.1109/MWSCAS48704.2020.9184643 – ident: 10.1016/j.mlwa.2022.100401_b142 doi: 10.1007/978-3-030-01264-9_42 – year: 2019 ident: 10.1016/j.mlwa.2022.100401_b153 article-title: Heterogeneous graph neural network – volume: 104 start-page: 529 issue: 2 year: 2015 ident: 10.1016/j.mlwa.2022.100401_b107 article-title: Computer science research: the top 100 institutions in India and in the world publication-title: Scientometrics doi: 10.1007/s11192-015-1612-8 – ident: 10.1016/j.mlwa.2022.100401_b121 doi: 10.18653/v1/P19-1260 – year: 2021 ident: 10.1016/j.mlwa.2022.100401_b21 – volume: 11 start-page: 651 issue: 3 year: 2014 ident: 10.1016/j.mlwa.2022.100401_b140 article-title: Semi-supervised hyperspectral image classification using spatio-spectral Laplacian support vector machine publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2013.2273792 – ident: 10.1016/j.mlwa.2022.100401_b106 doi: 10.1109/CVPR.2019.01230 – volume: 486 start-page: 75 issue: 3 year: 2010 ident: 10.1016/j.mlwa.2022.100401_b25 article-title: Community detection in graphs publication-title: Physics Reports doi: 10.1016/j.physrep.2009.11.002 – volume: 22 start-page: 109 issue: 1 year: 1988 ident: 10.1016/j.mlwa.2022.100401_b103 article-title: Social network analysis publication-title: Sociology doi: 10.1177/0038038588022001007 – ident: 10.1016/j.mlwa.2022.100401_b102 doi: 10.1007/978-3-319-93417-4_38 – ident: 10.1016/j.mlwa.2022.100401_b88 doi: 10.1007/978-981-15-1699-3_6 – volume: 8 start-page: 32816 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b104 article-title: Reliable knowledge graph path representation learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2973923 – ident: 10.1016/j.mlwa.2022.100401_b114 doi: 10.1007/978-3-030-15127-0_19 – volume: 400 start-page: 34 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b79 article-title: LSTM variants meet graph neural networks for road speed prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.031 – year: 2020 ident: 10.1016/j.mlwa.2022.100401_b72 article-title: Few-shot learning for new user recommendation in location-based social networks – year: 2001 ident: 10.1016/j.mlwa.2022.100401_b131 – year: 2019 ident: 10.1016/j.mlwa.2022.100401_b66 article-title: Fi-GNN: Modeling feature interactions via graph neural networks for CTR prediction – ident: 10.1016/j.mlwa.2022.100401_b160 doi: 10.1007/978-3-030-47436-2_41 – volume: 3 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.mlwa.2022.100401_b8 article-title: Scopus database: A review publication-title: Biomedical Digital Libraries doi: 10.1186/1742-5581-3-1 – volume: 41 start-page: 609 issue: 1 year: 2007 ident: 10.1016/j.mlwa.2022.100401_b89 article-title: Citation analysis publication-title: Annual Review of Information Science and Technology doi: 10.1002/aris.2007.1440410120 – start-page: 1 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b14 article-title: A structural topic modeling-based bibliometric study of sentiment analysis literature publication-title: Cognitive Computation – volume: 4 start-page: 379 issue: 3 year: 2010 ident: 10.1016/j.mlwa.2022.100401_b33 article-title: A new approach to the metric of journals’ scientific prestige: The SJR indicator publication-title: Journal of Informetrics doi: 10.1016/j.joi.2010.03.002 – volume: 5 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.mlwa.2022.100401_b75 article-title: Sentiment analysis and opinion mining publication-title: Synthesis Lectures on Human Language Technologies doi: 10.1007/978-3-031-02145-9 – year: 2019 ident: 10.1016/j.mlwa.2022.100401_b132 article-title: DEMO-Net: Degree-specific graph neural networks for node and graph classification – volume: 194 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b135 article-title: Heterogeneous graph neural networks for noisy few-shot relation classification publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.105548 – volume: 58 start-page: 1019 issue: 7 year: 2007 ident: 10.1016/j.mlwa.2022.100401_b74 article-title: The link-prediction problem for social networks publication-title: Journal of the American Society for Information Science and Technology doi: 10.1002/asi.20591 – year: 2018 ident: 10.1016/j.mlwa.2022.100401_b125 – volume: 2 start-page: 33 issue: 1 year: 2015 ident: 10.1016/j.mlwa.2022.100401_b48 article-title: Quantity or quality? Comparative assessment of the science production of Iran, Turkey and Malaysia during 1996–2013 publication-title: Caspian Journal of Scientometrics – volume: 129 start-page: 249 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b111 article-title: Missing data imputation with adversarially-trained graph convolutional networks publication-title: Neural Networks doi: 10.1016/j.neunet.2020.06.005 – start-page: 1 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b86 article-title: Bibliometric study of traumatic brain injury rehabilitation publication-title: Neuropsychological Rehabilitation – volume: 403 start-page: 348 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b23 article-title: Interpretable spatio-temporal attention LSTM model for flood forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.110 – year: 2019 ident: 10.1016/j.mlwa.2022.100401_b139 article-title: Using external knowledge for financial event prediction based on graph neural networks – volume: 64 start-page: 58 issue: 7 year: 2021 ident: 10.1016/j.mlwa.2022.100401_b2 article-title: Deep learning for AI publication-title: Communications of the ACM doi: 10.1145/3448250 – volume: 74 start-page: 12 year: 2015 ident: 10.1016/j.mlwa.2022.100401_b80 article-title: Recommender system application developments: A survey publication-title: Decision Support Systems doi: 10.1016/j.dss.2015.03.008 – volume: 402 start-page: 245 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b133 article-title: Point clouds learning with attention-based graph convolution networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.086 – volume: 112 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b31 article-title: The interconnected nature of financial systems: Direct and common exposures publication-title: Journal of Banking & Finance doi: 10.1016/j.jbankfin.2017.05.010 – year: 2007 ident: 10.1016/j.mlwa.2022.100401_b122 – volume: 6 start-page: 11 issue: 1 year: 2019 ident: 10.1016/j.mlwa.2022.100401_b154 article-title: Graph convolutional networks: A comprehensive review publication-title: Computational Social Networks doi: 10.1186/s40649-019-0069-y – volume: 6 start-page: 151 issue: 1 year: 2019 ident: 10.1016/j.mlwa.2022.100401_b112 article-title: HENA, heterogeneous network-based data set for Alzheimer’s disease publication-title: Scientific Data doi: 10.1038/s41597-019-0152-0 – ident: 10.1016/j.mlwa.2022.100401_b130 doi: 10.1109/CVPR.2018.00717 – year: 2019 ident: 10.1016/j.mlwa.2022.100401_b81 – start-page: 25 year: 2011 ident: 10.1016/j.mlwa.2022.100401_b84 article-title: Social network analysis: An introduction – ident: 10.1016/j.mlwa.2022.100401_b87 doi: 10.1109/CVPR.2017.576 – start-page: 3438 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b12 article-title: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view – volume: 8 start-page: 90202 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b24 article-title: Quantitative and qualitative analysis of time-series classification using deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2993538 – year: 2020 ident: 10.1016/j.mlwa.2022.100401_b64 – year: 2020 ident: 10.1016/j.mlwa.2022.100401_b57 – year: 2019 ident: 10.1016/j.mlwa.2022.100401_b68 article-title: Spam review detection with graph convolutional networks – year: 2016 ident: 10.1016/j.mlwa.2022.100401_b70 – volume: 134 start-page: 822 issue: 6 year: 2008 ident: 10.1016/j.mlwa.2022.100401_b19 article-title: Decomposition model of a general water supply network graph publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)0733-9429(2008)134:6(822) – volume: 299 start-page: 443 issue: 1 year: 2021 ident: 10.1016/j.mlwa.2022.100401_b29 article-title: Crypto price discovery through correlation networks publication-title: Annals of Operations Research doi: 10.1007/s10479-019-03282-3 – year: 2006 ident: 10.1016/j.mlwa.2022.100401_b17 – year: 2018 ident: 10.1016/j.mlwa.2022.100401_b20 – year: 2016 ident: 10.1016/j.mlwa.2022.100401_b54 – ident: 10.1016/j.mlwa.2022.100401_b83 doi: 10.18653/v1/D17-1159 – ident: 10.1016/j.mlwa.2022.100401_b53 doi: 10.1109/CVPR.2019.00010 – ident: 10.1016/j.mlwa.2022.100401_b113 – volume: 141 start-page: 188 year: 2018 ident: 10.1016/j.mlwa.2022.100401_b147 article-title: Bibliometric analysis of fuzzy theory research in China: A 30-year perspective publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.11.018 – volume: 61 start-page: 205 issue: 1 year: 2010 ident: 10.1016/j.mlwa.2022.100401_b90 article-title: Bibliometrics and citation analysis: From the science citation index to cybermetrics publication-title: Journal of the American Society for Information Science and Technology doi: 10.1002/asi.21181 – ident: 10.1016/j.mlwa.2022.100401_b134 doi: 10.24963/ijcai.2020/181 – volume: 8 start-page: 38472 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b127 article-title: Global relation reasoning graph convolutional networks for human pose estimation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2973039 – volume: 9 issue: 3 year: 2020 ident: 10.1016/j.mlwa.2022.100401_b98 article-title: Research trends in the international literature on natural language processing, 2000–2019 — A bibliometric study publication-title: Journal of Scientometric Research – year: 2000 ident: 10.1016/j.mlwa.2022.100401_b56 article-title: The web as a graph – ident: 10.1016/j.mlwa.2022.100401_b71 doi: 10.1109/CVPR.2019.00981 – year: 2020 ident: 10.1016/j.mlwa.2022.100401_b105 – volume: 13 issue: 6 year: 2019 ident: 10.1016/j.mlwa.2022.100401_b60 article-title: Attention models in graphs: A survey publication-title: ACM Transactions on Knowledge Discovery from Data doi: 10.1145/3363574 – volume: 16 start-page: 241 issue: 2 year: 2019 ident: 10.1016/j.mlwa.2022.100401_b95 article-title: Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2018.2869563 – year: 1976 ident: 10.1016/j.mlwa.2022.100401_b6 – ident: 10.1016/j.mlwa.2022.100401_b91 doi: 10.1007/978-3-030-32236-6_52 – year: 2020 ident: 10.1016/j.mlwa.2022.100401_b151 |
SSID | ssj0002811334 |
Score | 2.3309574 |
Snippet | Recently, graph neural networks (GNN) have become a hot topic in machine learning community. This paper presents a Scopus-based bibliometric overview of the... Recently, graph neural networks (GNNs) have become a hot topic in machine learning community. This paper presents a Scopus-based bibliometric overview of the... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100401 |
SubjectTerms | Bibliometrics Graph Convolutional Network Graph Neural Network Graph representation learning |
Title | Graph Neural Networks: A bibliometrics overview |
URI | https://dx.doi.org/10.1016/j.mlwa.2022.100401 https://doaj.org/article/7d6824f417da40709591611b1063c049 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5KQMbiho_4sRsBbVUSO1EpW6WX5FalYJoERu_nbs4qTqVhSVD4jjJXeTv8_n8HSF3FbUhMJWlDuAuBcRzqfFOplwBW7fSAEJjQH88kaOpeJnls51SX5gTFuWBo-F6hZclE5WghTcw-cCwFZAUamEqwx3QWxx9AfN2JlOLOmREYfKFS8oAQDItWZE1O2Zictfb8htFhxjDLAHRVIRpUakW798Bpx3AGR6To4YpJv34hifkIKxOSe8ZBaYTlNSAa5OYw71-SPqJndslbqVHxf11gomZGPQ_I9Ph4PVplDY1D1LHRbZJS2NxKZRaZ4R0xhtZVYUQuRCKAtQDH8hDCCXQgpwbCSOZV1UmmTWqVJnilp-Tzup9FS5I4igXghljCm6Fl75UtJTcW2aBNXCruoS236xdIwiOdSmWus38Wmi0k0Y76WinLrnf3vMR5TD2tn5EU25bopR1fQIcrBsH678c3CV56wjdsIKI9tDVfM_DL__j4VfkELuM-SvXpLP5_Ao3wEI29rb-4eA4_hn8Aps10sg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Neural+Networks%3A+A+bibliometrics+overview&rft.jtitle=Machine+learning+with+applications&rft.au=Abdalsamad+Keramatfar&rft.au=Mohadeseh+Rafiee&rft.au=Hossein+Amirkhani&rft.date=2022-12-01&rft.pub=Elsevier&rft.issn=2666-8270&rft.eissn=2666-8270&rft.volume=10&rft.spage=100401&rft_id=info:doi/10.1016%2Fj.mlwa.2022.100401&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7d6824f417da40709591611b1063c049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-8270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-8270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-8270&client=summon |