Dancing samba with Ramanujan partition congruences
The article presents an algorithm to compute a C[t]-module basis G for a given subalgebra A over a polynomial ring R=C[x] with a Euclidean domain C as the domain of coefficients and t a given element of A. The reduction modulo G allows a subalgebra membership test. The algorithm also works for more...
Saved in:
Published in | Journal of symbolic computation Vol. 84; pp. 14 - 24 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The article presents an algorithm to compute a C[t]-module basis G for a given subalgebra A over a polynomial ring R=C[x] with a Euclidean domain C as the domain of coefficients and t a given element of A. The reduction modulo G allows a subalgebra membership test. The algorithm also works for more general rings R, in particular for a ring R⊂C((q)) with the property that f∈R is zero if and only if the order of f is positive. As an application, we algorithmically derive an explicit identity (in terms of quotients of Dedekind η-functions and Klein's j-invariant) that shows that p(11n+6) is divisible by 11 for every natural number n where p(n) denotes the number of partitions of n. |
---|---|
AbstractList | The article presents an algorithm to compute a C[t]-module basis G for a given subalgebra A over a polynomial ring R=C[x] with a Euclidean domain C as the domain of coefficients and t a given element of A. The reduction modulo G allows a subalgebra membership test. The algorithm also works for more general rings R, in particular for a ring R⊂C((q)) with the property that f∈R is zero if and only if the order of f is positive. As an application, we algorithmically derive an explicit identity (in terms of quotients of Dedekind η-functions and Klein's j-invariant) that shows that p(11n+6) is divisible by 11 for every natural number n where p(n) denotes the number of partitions of n. |
Author | Hemmecke, Ralf |
Author_xml | – sequence: 1 givenname: Ralf surname: Hemmecke fullname: Hemmecke, Ralf email: hemmecke@risc.jku.at organization: Research Institute for Symbolic Computation, Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz, Austria |
BookMark | eNp9j81KxDAURoOM4MzoA7jrC7TemyZNiysZf2FAEAV34TZJxxQnHZKO4tvbYVy7-lbn45wFm4UhOMYuEQoErK76ok-m4ICqAF4A4AmbIzQyr6V8n7E5KKFyhQrP2CKlHgAaUco547cUjA-bLNG2pezbjx_ZC20p7HsK2Y7i6Ec_hMwMYRP3LhiXztlpR5_JXfztkr3d372uHvP188PT6madm1LAmNfU8o4LshXUZQudM9YKa7lDWTecqqZB66pSWceVJWVr09aVESSlFcqiKJcMj78mDilF1-ld9FuKPxpBH6J1r6dofYjWwPUUPTHXR8ZNYl_eRZ2MP1hbH50ZtR38P_Qv4Bxh1g |
CitedBy_id | crossref_primary_10_1016_j_jmaa_2021_125864 crossref_primary_10_1080_10652469_2020_1806261 crossref_primary_10_1016_j_jsc_2018_10_001 crossref_primary_10_1016_j_jsc_2020_05_003 crossref_primary_10_1007_s00026_019_00457_4 |
Cites_doi | 10.1016/j.jsc.2014.09.018 10.1007/BF01378341 10.1007/978-1-4684-9884-4 10.2307/2371972 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jsc.2017.02.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1095-855X |
EndPage | 24 |
ExternalDocumentID | 10_1016_j_jsc_2017_02_001 S0747717117300147 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZU3 ~G- 0SF AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c340t-8ab2f24ad6083b0fecdd4dd2e15892a6991de637de27da7d8cb86c4a55d47d143 |
IEDL.DBID | IXB |
ISSN | 0747-7171 |
IngestDate | Thu Sep 26 16:19:09 EDT 2024 Fri Feb 23 02:31:32 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Number theoretic algorithm Partition identities Subalgebra basis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-8ab2f24ad6083b0fecdd4dd2e15892a6991de637de27da7d8cb86c4a55d47d143 |
OpenAccessLink | https://doi.org/10.1016/j.jsc.2017.02.001 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_jsc_2017_02_001 elsevier_sciencedirect_doi_10_1016_j_jsc_2017_02_001 |
PublicationCentury | 2000 |
PublicationDate | January-February 2018 2018-01-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January-February 2018 |
PublicationDecade | 2010 |
PublicationTitle | Journal of symbolic computation |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ramanujan (br0070) 1919; 19 Lehner (br0030) 1943; 65 Radu (br0060) 2015; 68 Ramanujan (br0080) 1921; 9 Paule, Radu (br0100) 2017 Serre (br0090) 1973 br0020 Paule, Radu (br0040) 2015 Becker, Weispfenning (br0010) 1993; vol. 141 Lehner (10.1016/j.jsc.2017.02.001_br0030) 1943; 65 Ramanujan (10.1016/j.jsc.2017.02.001_br0080) 1921; 9 Serre (10.1016/j.jsc.2017.02.001_br0090) 1973 Paule (10.1016/j.jsc.2017.02.001_br0040) 2015 Becker (10.1016/j.jsc.2017.02.001_br0010) 1993; vol. 141 Ramanujan (10.1016/j.jsc.2017.02.001_br0070) 1919; 19 Paule (10.1016/j.jsc.2017.02.001_br0100) 2017 Radu (10.1016/j.jsc.2017.02.001_br0060) 2015; 68 |
References_xml | – volume: vol. 141 year: 1993 ident: br0010 article-title: Gröbner Bases. A Computational Approach to Commutative Algebra publication-title: Graduate Texts in Mathematics contributor: fullname: Weispfenning – year: 2017 ident: br0100 article-title: A new witness identity for publication-title: Number Theory in Honor of Krishna Alladi's 60th Birthday contributor: fullname: Radu – volume: 19 start-page: 207 year: 1919 end-page: 210 ident: br0070 article-title: Some properties of publication-title: Proc. Camb. Philos. Soc. contributor: fullname: Ramanujan – ident: br0020 article-title: FriCAS – an advanced computer algebra system – volume: 68 start-page: 225 year: 2015 end-page: 253 ident: br0060 article-title: An algorithmic approach to Ramanujan–Kolberg identities publication-title: J. Symb. Comput. contributor: fullname: Radu – volume: 9 start-page: 147 year: 1921 end-page: 153 ident: br0080 article-title: Congruence properties of partitions publication-title: Math. Z. contributor: fullname: Ramanujan – volume: 65 start-page: 492 year: 1943 end-page: 520 ident: br0030 article-title: Ramanujan identities involving the partition function for the moduli publication-title: Am. J. Math. contributor: fullname: Lehner – year: 1973 ident: br0090 article-title: A Course in Arithmetic publication-title: Graduate Texts in Mathematics contributor: fullname: Serre – start-page: 511 year: 2015 end-page: 544 ident: br0040 article-title: Partition analysis, modular functions, and computer algebra publication-title: Recent Trends in Combinatorics contributor: fullname: Radu – volume: 68 start-page: 225 issue: 1 year: 2015 ident: 10.1016/j.jsc.2017.02.001_br0060 article-title: An algorithmic approach to Ramanujan–Kolberg identities publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2014.09.018 contributor: fullname: Radu – volume: 9 start-page: 147 issue: 1–2 year: 1921 ident: 10.1016/j.jsc.2017.02.001_br0080 article-title: Congruence properties of partitions publication-title: Math. Z. doi: 10.1007/BF01378341 contributor: fullname: Ramanujan – year: 1973 ident: 10.1016/j.jsc.2017.02.001_br0090 article-title: A Course in Arithmetic doi: 10.1007/978-1-4684-9884-4 contributor: fullname: Serre – volume: 65 start-page: 492 issue: 3 year: 1943 ident: 10.1016/j.jsc.2017.02.001_br0030 article-title: Ramanujan identities involving the partition function for the moduli 11a publication-title: Am. J. Math. doi: 10.2307/2371972 contributor: fullname: Lehner – volume: vol. 141 year: 1993 ident: 10.1016/j.jsc.2017.02.001_br0010 article-title: Gröbner Bases. A Computational Approach to Commutative Algebra contributor: fullname: Becker – start-page: 511 year: 2015 ident: 10.1016/j.jsc.2017.02.001_br0040 article-title: Partition analysis, modular functions, and computer algebra contributor: fullname: Paule – volume: 19 start-page: 207 year: 1919 ident: 10.1016/j.jsc.2017.02.001_br0070 article-title: Some properties of p(n), the number of partitions of n publication-title: Proc. Camb. Philos. Soc. contributor: fullname: Ramanujan – year: 2017 ident: 10.1016/j.jsc.2017.02.001_br0100 article-title: A new witness identity for 11|p(11n+6) contributor: fullname: Paule |
SSID | ssj0009435 |
Score | 2.239107 |
Snippet | The article presents an algorithm to compute a C[t]-module basis G for a given subalgebra A over a polynomial ring R=C[x] with a Euclidean domain C as the... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 14 |
SubjectTerms | Number theoretic algorithm Partition identities Subalgebra basis |
Title | Dancing samba with Ramanujan partition congruences |
URI | https://dx.doi.org/10.1016/j.jsc.2017.02.001 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gXrz4NuKD7MGTSaXbbl9HIBK0ygFFuTX7wkBCJYJXf7sztI2a6MXTps1u0n7TznyzOw-ACxUo6kWjnUD6yhEG_RRpxcTxfIPSVwJJCm0N3A_C_kjcjoNxDbpVLgyFVZa6v9Dpa21d3mmVaLYW02nrgUq_ozPCOZVc54Iyyn20zpTEN-58Fd4VRZNNnOzQ7Opkcx3jNVtSFUMeFWU7-e-26Zu96e3CdkkUWbt4lj2o2XwfdqomDKz8Jw_AI7mh_WFLOVeS0b4qG8q5zN9nMmcLehfCnqHf-_JWRE0fwqh3_djtO2UjBEf7wl05sVTexBPShEiYlDux2hhhjGd5ECeeDJHjGRv6kbFeZGRkYq3iUAsZBEZEBhnREdTz19weA4vQofM1-nxJoAWPTSKsdXUy0Uj0QqtVAy4rCLJFUe8iqwLBZhnilRFemetRMFwDRAVS9kNoGerjv5ed_G_ZKWzhVVzsf5xBfYWgnSMjWKkmbFx98CZstjtP6R2NN2l_QGM6fE6b6w_iE1t1uMw |
link.rule.ids | 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ7U9qAX38b63IMnE1JYFhaOtbGp9nHQ1vS22RemTYqNrf_f2QJRE714BSaBb2Dmm93hG4AbFSk3i0Z7kQyVxwzWKdKyzKOhQe8rhiTFLQ0MR3Fvwh6n0bQGnepfGNdWWcb-IqZvonV5pFWi2VrOZq1nJ_2OxUgQOMn1gPEtaCAb4FiBNdp3L_3Bl_YuK-Zs4vWeM6g2NzdtXvOVEzIMeKHcGfyenr6lnO4-7JZckbSL2zmAms0PYa-aw0DKz_IIqHMdpiCykgsliVtaJU9yIfOPuczJ0j2Og59g6fv6XjROH8Okez_u9LxyFoKnQ-avvUQqmlEmTYycSfmZ1cYwY6gNoiSlMkaaZ2wccmMpN5KbRKsk1kxGkWHcICk6gXr-lttTIBxrulBj2ZdGmgWJSZm1vk4zjVwvtlo14baCQCwLyQtR9YLNBeIlHF7Cp64frgmsAkn88JvAkPy32dn_zK5huzceDsTgYdQ_hx08kxTLIRdQXyOAl0gQ1uqqfAE-AQxpt1I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dancing+samba+with+Ramanujan+partition+congruences&rft.jtitle=Journal+of+symbolic+computation&rft.au=Hemmecke%2C+Ralf&rft.date=2018-01-01&rft.issn=0747-7171&rft.volume=84&rft.spage=14&rft.epage=24&rft_id=info:doi/10.1016%2Fj.jsc.2017.02.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsc_2017_02_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-7171&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-7171&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-7171&client=summon |