Semi-polar (11–22) AlN epitaxial films on m-plane sapphire substrates with greatly improved crystalline quality obtained by high-temperature annealing
•Semi-polar AlN film quality was massively improved by high-temperature annealing.•Neither a high-temperature MOCVD nor an ex situ sputtering process is required.•The proposed method provides better AlN quality than previously reported results.•The proposed method is suitable for mass-producing low-...
Saved in:
Published in | Journal of crystal growth Vol. 570; p. 126207 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.09.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Semi-polar AlN film quality was massively improved by high-temperature annealing.•Neither a high-temperature MOCVD nor an ex situ sputtering process is required.•The proposed method provides better AlN quality than previously reported results.•The proposed method is suitable for mass-producing low-cost high-quality AlN film.
This study addresses the difficulty of obtaining relatively low-cost semi-polar (11–22) AlN films epitaxially grown on m-plane sapphire substrates with high crystalline quality by applying a cost-effective high-temperature annealing process conducted at 1700 °C to films grown via standard-temperature metal organic chemical vapor deposition. The X-ray diffraction rocking curves of the annealed films along the [11–23] and [10–10] directions obtain full width at half maximum values of 0.152° and 0.193°, respectively. Atomic force microscopy results demonstrate the occurrence of a significant recrystallization process in the columnar formations of AlN films during annealing, resulting in increased AlN crystal grain size. Raman spectroscopy measurements reveal that the semi-polar (11–22) AlN films are subject to increased compressive stress after the annealing process. Transmission electron microscopy analyses confirm that our semi-polar AlN films provide appropriately low dislocation and basal stacking fault densities of 5.6 × 109 cm−2 and 1.05 × 105 cm−1, respectively. The proposed approach therefore obtains low-cost AlN films that are suitable for the mass manufacture of efficient optoelectronic devices. |
---|---|
AbstractList | This study addresses the difficulty of obtaining relatively low-cost semi-polar (11–22) AlN films epitaxially grown on m-plane sapphire substrates with high crystalline quality by applying a cost-effective high-temperature annealing process conducted at 1700 °C to films grown via standard-temperature metal organic chemical vapor deposition. The X-ray diffraction rocking curves of the annealed films along the [11–23] and [10–10] directions obtain full width at half maximum values of 0.152° and 0.193°, respectively. Atomic force microscopy results demonstrate the occurrence of a significant recrystallization process in the columnar formations of AlN films during annealing, resulting in increased AlN crystal grain size. Raman spectroscopy measurements reveal that the semi-polar (11–22) AlN films are subject to increased compressive stress after the annealing process. Transmission electron microscopy analyses confirm that our semi-polar AlN films provide appropriately low dislocation and basal stacking fault densities of 5.6 × 109 cm−2 and 1.05 × 105 cm−1, respectively. The proposed approach therefore obtains low-cost AlN films that are suitable for the mass manufacture of efficient optoelectronic devices. •Semi-polar AlN film quality was massively improved by high-temperature annealing.•Neither a high-temperature MOCVD nor an ex situ sputtering process is required.•The proposed method provides better AlN quality than previously reported results.•The proposed method is suitable for mass-producing low-cost high-quality AlN film. This study addresses the difficulty of obtaining relatively low-cost semi-polar (11–22) AlN films epitaxially grown on m-plane sapphire substrates with high crystalline quality by applying a cost-effective high-temperature annealing process conducted at 1700 °C to films grown via standard-temperature metal organic chemical vapor deposition. The X-ray diffraction rocking curves of the annealed films along the [11–23] and [10–10] directions obtain full width at half maximum values of 0.152° and 0.193°, respectively. Atomic force microscopy results demonstrate the occurrence of a significant recrystallization process in the columnar formations of AlN films during annealing, resulting in increased AlN crystal grain size. Raman spectroscopy measurements reveal that the semi-polar (11–22) AlN films are subject to increased compressive stress after the annealing process. Transmission electron microscopy analyses confirm that our semi-polar AlN films provide appropriately low dislocation and basal stacking fault densities of 5.6 × 109 cm−2 and 1.05 × 105 cm−1, respectively. The proposed approach therefore obtains low-cost AlN films that are suitable for the mass manufacture of efficient optoelectronic devices. |
ArticleNumber | 126207 |
Author | Chen, Shirong Xing, Kun Cheng, Xueying Liang, Huaguo Wang, Liancheng Zhang, Yun |
Author_xml | – sequence: 1 givenname: Kun orcidid: 0000-0002-0644-2833 surname: Xing fullname: Xing, Kun email: k.xing@hfut.edu.cn organization: School of Electronic Science & Applied Physics, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China – sequence: 2 givenname: Xueying surname: Cheng fullname: Cheng, Xueying organization: School of Electronic Science & Applied Physics, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China – sequence: 3 givenname: Liancheng surname: Wang fullname: Wang, Liancheng organization: State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China – sequence: 4 givenname: Shirong surname: Chen fullname: Chen, Shirong organization: School of Electronic Science & Applied Physics, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China – sequence: 5 givenname: Yun surname: Zhang fullname: Zhang, Yun email: yzhang@ujs.edu.cn organization: School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 6 givenname: Huaguo surname: Liang fullname: Liang, Huaguo organization: School of Electronic Science & Applied Physics, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China |
BookMark | eNqFkctu1DAYhS1UJKYtr4AssYFFBl8Sx0gsqCpuUlUWwNpynD8zjhw7tZ2W7HgHNjwfT4JHUzbddOOLfL7jX-ecohMfPCD0gpItJVS8GbejiWvaxbBlhNEtZYKR9gnaUNnyqiGEnaBNWVlFWC2fodOURkIKSckG_fkGk63m4HTEryj9--s3Y6_xhbvGMNusf1rt8GDdlHDweKpmpz3gpOd5b2M5LF3KUWdI-M7mPd5F0Nmt2E5zDLfQ48NgWTtnC3WzaGfzikOXdbn3uFvx3u72VYZphuKyFEftPRSZ352jp4N2CZ7f72fox8cP3y8_V1dfP325vLiqDK9JrqRkMAAZSEsH3XasaTjp6rd9zwWXste9lgCgRW3qmjdcciaJKQ8NAUnpIPgZenn0LRPfLJCyGsMSfflSsaZlggpBWFGJo8rEkFKEQc3RTjquihJ1aEGN6n8L6tCCOrZQwHcPQFNizTb4kpt1j-PvjziUCG4tRJWMBW-gL_GbrPpgH7P4B9YCrZw |
CitedBy_id | crossref_primary_10_1016_j_mssp_2022_107002 crossref_primary_10_1063_5_0162548 crossref_primary_10_3390_cryst13071076 crossref_primary_10_1039_D4CE00335G crossref_primary_10_1016_j_jcrysgro_2022_126855 crossref_primary_10_1016_j_tsf_2023_139939 crossref_primary_10_3390_ma15082945 |
Cites_doi | 10.1039/C9CE00702D 10.1063/1.124193 10.1016/j.apsusc.2018.07.138 10.1063/1.1344567 10.1016/j.jcrysgro.2014.09.043 10.1063/1.2168028 10.1063/1.127009 10.1016/j.spmi.2020.106493 10.1364/AOP.10.000043 10.1143/JJAP.45.L659 10.1063/1.2404938 10.1063/1.5085012 10.7567/APEX.9.025501 10.1038/nature04760 10.1016/j.jcrysgro.2018.11.009 10.1063/1.2716375 10.1039/C8CE00770E 10.1063/1.371971 10.1016/j.jcrysgro.2016.08.028 10.1063/1.4978855 10.7567/1347-4065/ab0f1c 10.1038/35022529 10.1063/1.122786 10.1016/j.jcrysgro.2012.06.047 10.1063/1.2889444 10.1063/1.3129307 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Sep 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Sep 15, 2021 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.jcrysgro.2021.126207 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-5002 |
ExternalDocumentID | 10_1016_j_jcrysgro_2021_126207 S0022024821001822 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSZ T5K TN5 XPP ~02 ~G- 29K 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- RIG SEW SMS SPG SSH VH1 WUQ ZMT 7SR 7U5 8BQ 8FD AFXIZ EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c340t-882efe0f071fa7b25530b49dd36388dada8eeea64c4435383280c88d50e811f63 |
IEDL.DBID | .~1 |
ISSN | 0022-0248 |
IngestDate | Fri Jul 25 05:52:42 EDT 2025 Tue Jul 01 01:29:06 EDT 2025 Thu Apr 24 22:59:38 EDT 2025 Fri Feb 23 02:40:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Semi-polar AlN growth MOCVD Low defect density High temperature annealing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-882efe0f071fa7b25530b49dd36388dada8eeea64c4435383280c88d50e811f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0644-2833 |
PQID | 2572616602 |
PQPubID | 2045452 |
ParticipantIDs | proquest_journals_2572616602 crossref_primary_10_1016_j_jcrysgro_2021_126207 crossref_citationtrail_10_1016_j_jcrysgro_2021_126207 elsevier_sciencedirect_doi_10_1016_j_jcrysgro_2021_126207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-15 |
PublicationDateYYYYMMDD | 2021-09-15 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of crystal growth |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Kim, Lin, Jiang, Chow, Botchkarev, Morkoc (b0020) 1998; 73 Ben, Sun, Jia, Jiang, Shi, Liu, Wang, Kai, Wu, Li (b0085) 2018; 20 Wang, Xu, Xie, Sun, Liu, Ge, Kang, Qin, Yang, Wang, Shen (b0090) 2019; 114 Abell, Moustakas (b0065) 2008; 92 Jo, Itokazu, Kuwaba, Hirayama (b0105) 2019; 507 Feng, Ai, Liu, Yu, Yang, Dong, Guo, Zhang (b0110) 2020; 141 Li, Jiang, Sun, Guo (b0015) 2018; 10 Kuball, Hayes, Prins, van Uden, Dunstan, Shi, Edgar (b0150) 2001; 78 Jo, Itokazu, Kuwaba, Hirayama (b0050) 2019; 58 Li, Zhang, Luo, Liang, Wuu, He, Wan, Feng (b0145) 2018; 458 Miyake, Nishio, Suzuki, Hiramatsu, Fukuyama, Kaur, Kuwano (b0075) 2016; 9 Xing, Tseng, Wang, Chi, Wang, Chen, Liang (b0120) 2019; 114 Xing, Chen, Tao, Lee, Wang, Xu, Liang (b0125) 2019; 12 Bai, Xu, Guzman, Xing, Gong, Hou, Wang (b0040) 2015; 107 Lahourcade, Bellet-Amalric, Monroy, Abouzaid, Ruterana (b0115) 2007; 90 Wang, Xu, Wang, Xie, Sun, Liu, Lang, Zhang, Ge, Kang, Qin, Yang, Wang, Shen (b0095) 2019; 21 Inoue, Tamari, Taniguchi (b0010) 2017; 110 Miyake, Lin, Tokoro, Hiramatsu (b0080) 2016; 456 Waltereit, Brandt, Trampert, Grahn, Menniger, Ramsteiner, Reiche, Ploog (b0030) 2000; 406 Washiyama, Guan, Mita, Collazo, Sitar (b0100) 2020; 127 Lughi, Clarke (b0155) 2006; 89 Moram, Johnston, Hollander, Kappers, Humphreys (b0130) 2009; 105 Funato, Ueda, Kawakami, Narukawa, Kosugi, Takahashi, Mukai (b0035) 2006; 45 Jain, Willander, Narayan, Overstraeten (b0055) 2000; 87 Taniyasu, Kasu, Makimoto (b0005) 2006; 441 You, Lu, Johnson (b0070) 2006; 99 Stellmach, Frentrup, Mehnke, Pristovsek, Wernicke, Kneissl (b0045) 2012; 355 Dinh, Conroy, Zubialevich, Petkov, Holmes, Parbrook (b0060) 2015; 414 Langer, Simon, Ortiz, Pelekanos, Barski, André, Godlewski (b0025) 1999; 74 Yang, Miyagawa, Miyake, Hiramatsu, Harima (b0140) 2011; 4 Wagner, Bechstedt (b0135) 2000; 77 Wang (10.1016/j.jcrysgro.2021.126207_b0090) 2019; 114 Lughi (10.1016/j.jcrysgro.2021.126207_b0155) 2006; 89 Xing (10.1016/j.jcrysgro.2021.126207_b0125) 2019; 12 Li (10.1016/j.jcrysgro.2021.126207_b0145) 2018; 458 Abell (10.1016/j.jcrysgro.2021.126207_b0065) 2008; 92 Funato (10.1016/j.jcrysgro.2021.126207_b0035) 2006; 45 Waltereit (10.1016/j.jcrysgro.2021.126207_b0030) 2000; 406 Taniyasu (10.1016/j.jcrysgro.2021.126207_b0005) 2006; 441 Washiyama (10.1016/j.jcrysgro.2021.126207_b0100) 2020; 127 Dinh (10.1016/j.jcrysgro.2021.126207_b0060) 2015; 414 Miyake (10.1016/j.jcrysgro.2021.126207_b0075) 2016; 9 Kim (10.1016/j.jcrysgro.2021.126207_b0020) 1998; 73 Ben (10.1016/j.jcrysgro.2021.126207_b0085) 2018; 20 Bai (10.1016/j.jcrysgro.2021.126207_b0040) 2015; 107 Stellmach (10.1016/j.jcrysgro.2021.126207_b0045) 2012; 355 Li (10.1016/j.jcrysgro.2021.126207_b0015) 2018; 10 Jain (10.1016/j.jcrysgro.2021.126207_b0055) 2000; 87 Jo (10.1016/j.jcrysgro.2021.126207_b0105) 2019; 507 Wang (10.1016/j.jcrysgro.2021.126207_b0095) 2019; 21 Miyake (10.1016/j.jcrysgro.2021.126207_b0080) 2016; 456 Jo (10.1016/j.jcrysgro.2021.126207_b0050) 2019; 58 Inoue (10.1016/j.jcrysgro.2021.126207_b0010) 2017; 110 Wagner (10.1016/j.jcrysgro.2021.126207_b0135) 2000; 77 Yang (10.1016/j.jcrysgro.2021.126207_b0140) 2011; 4 Kuball (10.1016/j.jcrysgro.2021.126207_b0150) 2001; 78 Lahourcade (10.1016/j.jcrysgro.2021.126207_b0115) 2007; 90 Xing (10.1016/j.jcrysgro.2021.126207_b0120) 2019; 114 Langer (10.1016/j.jcrysgro.2021.126207_b0025) 1999; 74 Moram (10.1016/j.jcrysgro.2021.126207_b0130) 2009; 105 You (10.1016/j.jcrysgro.2021.126207_b0070) 2006; 99 Feng (10.1016/j.jcrysgro.2021.126207_b0110) 2020; 141 |
References_xml | – volume: 73 start-page: 3426 year: 1998 ident: b0020 publication-title: Appl. Phys. Lett. – volume: 141 year: 2020 ident: b0110 publication-title: Superlattices and Microstructures – volume: 107 year: 2015 ident: b0040 publication-title: Appl. Phys. Lett. – volume: 87 start-page: 965 year: 2000 ident: b0055 publication-title: J. Appl. Phys. – volume: 414 start-page: 94 year: 2015 ident: b0060 publication-title: J. Cryst. Growth – volume: 114 year: 2019 ident: b0120 publication-title: Appl. Phys. Lett. – volume: 127 year: 2020 ident: b0100 publication-title: J. Appl. Phys. – volume: 10 start-page: 43 year: 2018 ident: b0015 publication-title: Adv. Opt. Photonics – volume: 114 year: 2019 ident: b0090 publication-title: Appl. Phys. Lett. – volume: 21 start-page: 4632 year: 2019 ident: b0095 publication-title: CrystEngComm – volume: 58 start-page: SC1031 year: 2019 ident: b0050 publication-title: Jpn. J. Appl. Phys. – volume: 441 start-page: 325 year: 2006 ident: b0005 publication-title: Nature – volume: 4 year: 2011 ident: b0140 publication-title: Appl. Phys. Express – volume: 406 start-page: 865 year: 2000 ident: b0030 publication-title: Nature – volume: 110 year: 2017 ident: b0010 publication-title: Appl. Phys. Lett. – volume: 99 year: 2006 ident: b0070 publication-title: J. Appl. Phys. – volume: 20 start-page: 4623 year: 2018 ident: b0085 publication-title: CrystEngComm – volume: 507 start-page: 307 year: 2019 ident: b0105 publication-title: J. Cryst. Growth – volume: 12 year: 2019 ident: b0125 publication-title: Appl. Phys. Express – volume: 45 start-page: L659 year: 2006 ident: b0035 publication-title: Jpn. J. Appl. Phys. – volume: 456 start-page: 155 year: 2016 ident: b0080 publication-title: J. Cryst. Growth – volume: 74 start-page: 3827 year: 1999 ident: b0025 publication-title: Appl. Phys. Lett. – volume: 458 start-page: 972 year: 2018 ident: b0145 publication-title: Appl. Surf. Sci. – volume: 9 year: 2016 ident: b0075 publication-title: Appl. Phys. Express – volume: 355 start-page: 59 year: 2012 ident: b0045 publication-title: J. Cryst. Growth – volume: 78 start-page: 724 year: 2001 ident: b0150 publication-title: Appl. Phys. Lett. – volume: 90 year: 2007 ident: b0115 publication-title: Appl. Phys. Lett. – volume: 105 year: 2009 ident: b0130 publication-title: J. Appl. Phys. – volume: 89 year: 2006 ident: b0155 publication-title: Appl. Phys. Lett. – volume: 92 year: 2008 ident: b0065 publication-title: Appl. Phys. Lett. – volume: 77 start-page: 346 year: 2000 ident: b0135 publication-title: Appl. Phys. Lett. – volume: 21 start-page: 4632 year: 2019 ident: 10.1016/j.jcrysgro.2021.126207_b0095 publication-title: CrystEngComm doi: 10.1039/C9CE00702D – volume: 4 year: 2011 ident: 10.1016/j.jcrysgro.2021.126207_b0140 publication-title: Appl. Phys. Express – volume: 74 start-page: 3827 year: 1999 ident: 10.1016/j.jcrysgro.2021.126207_b0025 publication-title: Appl. Phys. Lett. doi: 10.1063/1.124193 – volume: 458 start-page: 972 year: 2018 ident: 10.1016/j.jcrysgro.2021.126207_b0145 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.07.138 – volume: 78 start-page: 724 year: 2001 ident: 10.1016/j.jcrysgro.2021.126207_b0150 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1344567 – volume: 127 year: 2020 ident: 10.1016/j.jcrysgro.2021.126207_b0100 publication-title: J. Appl. Phys. – volume: 414 start-page: 94 year: 2015 ident: 10.1016/j.jcrysgro.2021.126207_b0060 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2014.09.043 – volume: 99 year: 2006 ident: 10.1016/j.jcrysgro.2021.126207_b0070 publication-title: J. Appl. Phys. doi: 10.1063/1.2168028 – volume: 77 start-page: 346 year: 2000 ident: 10.1016/j.jcrysgro.2021.126207_b0135 publication-title: Appl. Phys. Lett. doi: 10.1063/1.127009 – volume: 12 year: 2019 ident: 10.1016/j.jcrysgro.2021.126207_b0125 publication-title: Appl. Phys. Express – volume: 141 year: 2020 ident: 10.1016/j.jcrysgro.2021.126207_b0110 publication-title: Superlattices and Microstructures doi: 10.1016/j.spmi.2020.106493 – volume: 10 start-page: 43 issue: 1 year: 2018 ident: 10.1016/j.jcrysgro.2021.126207_b0015 publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.10.000043 – volume: 45 start-page: L659 year: 2006 ident: 10.1016/j.jcrysgro.2021.126207_b0035 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.45.L659 – volume: 89 year: 2006 ident: 10.1016/j.jcrysgro.2021.126207_b0155 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2404938 – volume: 114 year: 2019 ident: 10.1016/j.jcrysgro.2021.126207_b0120 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5085012 – volume: 9 year: 2016 ident: 10.1016/j.jcrysgro.2021.126207_b0075 publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.025501 – volume: 441 start-page: 325 year: 2006 ident: 10.1016/j.jcrysgro.2021.126207_b0005 publication-title: Nature doi: 10.1038/nature04760 – volume: 507 start-page: 307 year: 2019 ident: 10.1016/j.jcrysgro.2021.126207_b0105 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2018.11.009 – volume: 90 year: 2007 ident: 10.1016/j.jcrysgro.2021.126207_b0115 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2716375 – volume: 20 start-page: 4623 year: 2018 ident: 10.1016/j.jcrysgro.2021.126207_b0085 publication-title: CrystEngComm doi: 10.1039/C8CE00770E – volume: 114 year: 2019 ident: 10.1016/j.jcrysgro.2021.126207_b0090 publication-title: Appl. Phys. Lett. – volume: 87 start-page: 965 year: 2000 ident: 10.1016/j.jcrysgro.2021.126207_b0055 publication-title: J. Appl. Phys. doi: 10.1063/1.371971 – volume: 456 start-page: 155 year: 2016 ident: 10.1016/j.jcrysgro.2021.126207_b0080 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2016.08.028 – volume: 110 year: 2017 ident: 10.1016/j.jcrysgro.2021.126207_b0010 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4978855 – volume: 58 start-page: SC1031 year: 2019 ident: 10.1016/j.jcrysgro.2021.126207_b0050 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/1347-4065/ab0f1c – volume: 406 start-page: 865 year: 2000 ident: 10.1016/j.jcrysgro.2021.126207_b0030 publication-title: Nature doi: 10.1038/35022529 – volume: 73 start-page: 3426 year: 1998 ident: 10.1016/j.jcrysgro.2021.126207_b0020 publication-title: Appl. Phys. Lett. doi: 10.1063/1.122786 – volume: 355 start-page: 59 year: 2012 ident: 10.1016/j.jcrysgro.2021.126207_b0045 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2012.06.047 – volume: 107 year: 2015 ident: 10.1016/j.jcrysgro.2021.126207_b0040 publication-title: Appl. Phys. Lett. – volume: 92 year: 2008 ident: 10.1016/j.jcrysgro.2021.126207_b0065 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2889444 – volume: 105 year: 2009 ident: 10.1016/j.jcrysgro.2021.126207_b0130 publication-title: J. Appl. Phys. doi: 10.1063/1.3129307 |
SSID | ssj0001610 |
Score | 2.3991027 |
Snippet | •Semi-polar AlN film quality was massively improved by high-temperature annealing.•Neither a high-temperature MOCVD nor an ex situ sputtering process is... This study addresses the difficulty of obtaining relatively low-cost semi-polar (11–22) AlN films epitaxially grown on m-plane sapphire substrates with high... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 126207 |
SubjectTerms | Annealing Atomic force microscopy Compressive properties Crystal structure Crystallinity Epitaxial growth Grain size High temperature High temperature annealing Low cost Low defect density Metalorganic chemical vapor deposition Microscopy MOCVD Optoelectronic devices Organic chemicals Organic chemistry Raman spectroscopy Recrystallization Sapphire Semi-polar AlN growth Stacking faults Substrates |
Title | Semi-polar (11–22) AlN epitaxial films on m-plane sapphire substrates with greatly improved crystalline quality obtained by high-temperature annealing |
URI | https://dx.doi.org/10.1016/j.jcrysgro.2021.126207 https://www.proquest.com/docview/2572616602 |
Volume | 570 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29btswECaCdEg7FG3aoml-cEOHdqAtUqQkj4aRwG1RL2mAbAQpkYUNxxYiB4iXIO-QJc-XJ8mdfpK0QJGho0RSkHin43eHu-8Y-xzHwSMQDlxpXXAlXMwHyguuU2dtcLm3MRUK_5wk4xP1_VSfbrBRVwtDaZWt7W9sem2t2zv9djf75XRKNb5SEiOXJBohPOeogl2lpOW9q8c0D0Q0UccYTrOfVAnPerP8fE3lE-gnStETRM6e_uuA-stU1-fP0Rv2ugWOMGze7S3b8ItttjXq-rVts1dPqAXfsdtjHOAlOa7wRYi76xspv8JwPgFPfUIuUe0gTOdnFSwXcMZLynmFypYlBauhQnNS09ZWQIFa-E3Qcr6GaR2C8AXQFyFsJ4wKTV3mGpaOwgw46NZALMicaK9azmawaM8tlb6_ZydHh79GY952YeB5rKIVRwjug48CYpFgUyepz5BTg6KI8dfNClvYzHtvE5UrhF7o8MosynFARz4TIiTxB7a5WC78RwZRnGvhlPBeEJN95nCW9UpHuRqEJKQ7THdbb_KWopw6ZcxNl4s2M53IDInMNCLbYf2HdWVD0vHsikEnWfOHuhk8SZ5du9epgml_-Mqg5UNfNEki-ek_Hr3LXtIV5aMIvcc2V-cXfh9Bz8od1Fp9wF4Mv_0YT-4BkUcFeA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV2xbtswED2kzpB2CNq0RZKmLYcO7cBYpEhZHg2jgdMkXpoA2QhSIgsbji1ELhBv-Ycs_b58Se8sKkgLFBm66nSCxDvdPR547wA-pWnwCIQDV1qXXAmX8r7yguuesza4wtuUGoXPxtnoQn271JcbMGx7YehYZYz9TUxfR-t4pRtXs1tNJtTjKyUxckmiEcI89ww2iZ1Kd2BzcHwyGj8EZAQ1SUsaTgqPGoWnh9PiekUdFLhVlOJQED9771856q9ovU5BRy9hO2JHNmhe7xVs-PkObA3bkW078OIRu-Br-PUdBbyivSv7LMT97Z2UX9hgNmaeRoXcoOexMJld1WwxZ1e8omOvrLZVRfVqVmNEWTPX1oxqtewHocvZik3WVQhfMvoiRO4EU1nTmrliC0eVBhS6FSMiZE7MV5G2mVkM6Za639_AxdHX8-GIx0EMvEhVsuSIwn3wSUA4EmzPSRo15FS_LFP8e_PSljb33ttMFQrRF-55ZZ4UKNCJz4UIWfoWOvPF3O8CS9JCC6eE94LI7HOHd1mvdFKofshCbw90u_SmiCzlNCxjZtrjaFPTmsyQyUxjsj3oPuhVDU_Hkxr91rLmD48zmEye1D1oXcHEf742GPxwO5plidz_j0d_hK3R-dmpOT0en7yD5ySh4ylCH0Bnef3Tv0cMtHQfoo__BnYrCCk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-polar+%2811%E2%80%9322%29+AlN+epitaxial+films+on+m-plane+sapphire+substrates+with+greatly+improved+crystalline+quality+obtained+by+high-temperature+annealing&rft.jtitle=Journal+of+crystal+growth&rft.au=Xing%2C+Kun&rft.au=Cheng%2C+Xueying&rft.au=Wang%2C+Liancheng&rft.au=Chen%2C+Shirong&rft.date=2021-09-15&rft.pub=Elsevier+BV&rft.issn=0022-0248&rft.eissn=1873-5002&rft.volume=570&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jcrysgro.2021.126207&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0248&client=summon |