Semi-polar (11–22) AlN epitaxial films on m-plane sapphire substrates with greatly improved crystalline quality obtained by high-temperature annealing

•Semi-polar AlN film quality was massively improved by high-temperature annealing.•Neither a high-temperature MOCVD nor an ex situ sputtering process is required.•The proposed method provides better AlN quality than previously reported results.•The proposed method is suitable for mass-producing low-...

Full description

Saved in:
Bibliographic Details
Published inJournal of crystal growth Vol. 570; p. 126207
Main Authors Xing, Kun, Cheng, Xueying, Wang, Liancheng, Chen, Shirong, Zhang, Yun, Liang, Huaguo
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.09.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Semi-polar AlN film quality was massively improved by high-temperature annealing.•Neither a high-temperature MOCVD nor an ex situ sputtering process is required.•The proposed method provides better AlN quality than previously reported results.•The proposed method is suitable for mass-producing low-cost high-quality AlN film. This study addresses the difficulty of obtaining relatively low-cost semi-polar (11–22) AlN films epitaxially grown on m-plane sapphire substrates with high crystalline quality by applying a cost-effective high-temperature annealing process conducted at 1700 °C to films grown via standard-temperature metal organic chemical vapor deposition. The X-ray diffraction rocking curves of the annealed films along the [11–23] and [10–10] directions obtain full width at half maximum values of 0.152° and 0.193°, respectively. Atomic force microscopy results demonstrate the occurrence of a significant recrystallization process in the columnar formations of AlN films during annealing, resulting in increased AlN crystal grain size. Raman spectroscopy measurements reveal that the semi-polar (11–22) AlN films are subject to increased compressive stress after the annealing process. Transmission electron microscopy analyses confirm that our semi-polar AlN films provide appropriately low dislocation and basal stacking fault densities of 5.6 × 109 cm−2 and 1.05 × 105 cm−1, respectively. The proposed approach therefore obtains low-cost AlN films that are suitable for the mass manufacture of efficient optoelectronic devices.
AbstractList This study addresses the difficulty of obtaining relatively low-cost semi-polar (11–22) AlN films epitaxially grown on m-plane sapphire substrates with high crystalline quality by applying a cost-effective high-temperature annealing process conducted at 1700 °C to films grown via standard-temperature metal organic chemical vapor deposition. The X-ray diffraction rocking curves of the annealed films along the [11–23] and [10–10] directions obtain full width at half maximum values of 0.152° and 0.193°, respectively. Atomic force microscopy results demonstrate the occurrence of a significant recrystallization process in the columnar formations of AlN films during annealing, resulting in increased AlN crystal grain size. Raman spectroscopy measurements reveal that the semi-polar (11–22) AlN films are subject to increased compressive stress after the annealing process. Transmission electron microscopy analyses confirm that our semi-polar AlN films provide appropriately low dislocation and basal stacking fault densities of 5.6 × 109 cm−2 and 1.05 × 105 cm−1, respectively. The proposed approach therefore obtains low-cost AlN films that are suitable for the mass manufacture of efficient optoelectronic devices.
•Semi-polar AlN film quality was massively improved by high-temperature annealing.•Neither a high-temperature MOCVD nor an ex situ sputtering process is required.•The proposed method provides better AlN quality than previously reported results.•The proposed method is suitable for mass-producing low-cost high-quality AlN film. This study addresses the difficulty of obtaining relatively low-cost semi-polar (11–22) AlN films epitaxially grown on m-plane sapphire substrates with high crystalline quality by applying a cost-effective high-temperature annealing process conducted at 1700 °C to films grown via standard-temperature metal organic chemical vapor deposition. The X-ray diffraction rocking curves of the annealed films along the [11–23] and [10–10] directions obtain full width at half maximum values of 0.152° and 0.193°, respectively. Atomic force microscopy results demonstrate the occurrence of a significant recrystallization process in the columnar formations of AlN films during annealing, resulting in increased AlN crystal grain size. Raman spectroscopy measurements reveal that the semi-polar (11–22) AlN films are subject to increased compressive stress after the annealing process. Transmission electron microscopy analyses confirm that our semi-polar AlN films provide appropriately low dislocation and basal stacking fault densities of 5.6 × 109 cm−2 and 1.05 × 105 cm−1, respectively. The proposed approach therefore obtains low-cost AlN films that are suitable for the mass manufacture of efficient optoelectronic devices.
ArticleNumber 126207
Author Chen, Shirong
Xing, Kun
Cheng, Xueying
Liang, Huaguo
Wang, Liancheng
Zhang, Yun
Author_xml – sequence: 1
  givenname: Kun
  orcidid: 0000-0002-0644-2833
  surname: Xing
  fullname: Xing, Kun
  email: k.xing@hfut.edu.cn
  organization: School of Electronic Science & Applied Physics, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
– sequence: 2
  givenname: Xueying
  surname: Cheng
  fullname: Cheng, Xueying
  organization: School of Electronic Science & Applied Physics, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
– sequence: 3
  givenname: Liancheng
  surname: Wang
  fullname: Wang, Liancheng
  organization: State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
– sequence: 4
  givenname: Shirong
  surname: Chen
  fullname: Chen, Shirong
  organization: School of Electronic Science & Applied Physics, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
– sequence: 5
  givenname: Yun
  surname: Zhang
  fullname: Zhang, Yun
  email: yzhang@ujs.edu.cn
  organization: School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 6
  givenname: Huaguo
  surname: Liang
  fullname: Liang, Huaguo
  organization: School of Electronic Science & Applied Physics, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
BookMark eNqFkctu1DAYhS1UJKYtr4AssYFFBl8Sx0gsqCpuUlUWwNpynD8zjhw7tZ2W7HgHNjwfT4JHUzbddOOLfL7jX-ecohMfPCD0gpItJVS8GbejiWvaxbBlhNEtZYKR9gnaUNnyqiGEnaBNWVlFWC2fodOURkIKSckG_fkGk63m4HTEryj9--s3Y6_xhbvGMNusf1rt8GDdlHDweKpmpz3gpOd5b2M5LF3KUWdI-M7mPd5F0Nmt2E5zDLfQ48NgWTtnC3WzaGfzikOXdbn3uFvx3u72VYZphuKyFEftPRSZ352jp4N2CZ7f72fox8cP3y8_V1dfP325vLiqDK9JrqRkMAAZSEsH3XasaTjp6rd9zwWXste9lgCgRW3qmjdcciaJKQ8NAUnpIPgZenn0LRPfLJCyGsMSfflSsaZlggpBWFGJo8rEkFKEQc3RTjquihJ1aEGN6n8L6tCCOrZQwHcPQFNizTb4kpt1j-PvjziUCG4tRJWMBW-gL_GbrPpgH7P4B9YCrZw
CitedBy_id crossref_primary_10_1016_j_mssp_2022_107002
crossref_primary_10_1063_5_0162548
crossref_primary_10_3390_cryst13071076
crossref_primary_10_1039_D4CE00335G
crossref_primary_10_1016_j_jcrysgro_2022_126855
crossref_primary_10_1016_j_tsf_2023_139939
crossref_primary_10_3390_ma15082945
Cites_doi 10.1039/C9CE00702D
10.1063/1.124193
10.1016/j.apsusc.2018.07.138
10.1063/1.1344567
10.1016/j.jcrysgro.2014.09.043
10.1063/1.2168028
10.1063/1.127009
10.1016/j.spmi.2020.106493
10.1364/AOP.10.000043
10.1143/JJAP.45.L659
10.1063/1.2404938
10.1063/1.5085012
10.7567/APEX.9.025501
10.1038/nature04760
10.1016/j.jcrysgro.2018.11.009
10.1063/1.2716375
10.1039/C8CE00770E
10.1063/1.371971
10.1016/j.jcrysgro.2016.08.028
10.1063/1.4978855
10.7567/1347-4065/ab0f1c
10.1038/35022529
10.1063/1.122786
10.1016/j.jcrysgro.2012.06.047
10.1063/1.2889444
10.1063/1.3129307
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Sep 15, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Sep 15, 2021
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.jcrysgro.2021.126207
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-5002
ExternalDocumentID 10_1016_j_jcrysgro_2021_126207
S0022024821001822
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSZ
T5K
TN5
XPP
~02
~G-
29K
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
SSH
VH1
WUQ
ZMT
7SR
7U5
8BQ
8FD
AFXIZ
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c340t-882efe0f071fa7b25530b49dd36388dada8eeea64c4435383280c88d50e811f63
IEDL.DBID .~1
ISSN 0022-0248
IngestDate Fri Jul 25 05:52:42 EDT 2025
Tue Jul 01 01:29:06 EDT 2025
Thu Apr 24 22:59:38 EDT 2025
Fri Feb 23 02:40:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Semi-polar AlN growth
MOCVD
Low defect density
High temperature annealing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-882efe0f071fa7b25530b49dd36388dada8eeea64c4435383280c88d50e811f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0644-2833
PQID 2572616602
PQPubID 2045452
ParticipantIDs proquest_journals_2572616602
crossref_primary_10_1016_j_jcrysgro_2021_126207
crossref_citationtrail_10_1016_j_jcrysgro_2021_126207
elsevier_sciencedirect_doi_10_1016_j_jcrysgro_2021_126207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of crystal growth
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Kim, Lin, Jiang, Chow, Botchkarev, Morkoc (b0020) 1998; 73
Ben, Sun, Jia, Jiang, Shi, Liu, Wang, Kai, Wu, Li (b0085) 2018; 20
Wang, Xu, Xie, Sun, Liu, Ge, Kang, Qin, Yang, Wang, Shen (b0090) 2019; 114
Abell, Moustakas (b0065) 2008; 92
Jo, Itokazu, Kuwaba, Hirayama (b0105) 2019; 507
Feng, Ai, Liu, Yu, Yang, Dong, Guo, Zhang (b0110) 2020; 141
Li, Jiang, Sun, Guo (b0015) 2018; 10
Kuball, Hayes, Prins, van Uden, Dunstan, Shi, Edgar (b0150) 2001; 78
Jo, Itokazu, Kuwaba, Hirayama (b0050) 2019; 58
Li, Zhang, Luo, Liang, Wuu, He, Wan, Feng (b0145) 2018; 458
Miyake, Nishio, Suzuki, Hiramatsu, Fukuyama, Kaur, Kuwano (b0075) 2016; 9
Xing, Tseng, Wang, Chi, Wang, Chen, Liang (b0120) 2019; 114
Xing, Chen, Tao, Lee, Wang, Xu, Liang (b0125) 2019; 12
Bai, Xu, Guzman, Xing, Gong, Hou, Wang (b0040) 2015; 107
Lahourcade, Bellet-Amalric, Monroy, Abouzaid, Ruterana (b0115) 2007; 90
Wang, Xu, Wang, Xie, Sun, Liu, Lang, Zhang, Ge, Kang, Qin, Yang, Wang, Shen (b0095) 2019; 21
Inoue, Tamari, Taniguchi (b0010) 2017; 110
Miyake, Lin, Tokoro, Hiramatsu (b0080) 2016; 456
Waltereit, Brandt, Trampert, Grahn, Menniger, Ramsteiner, Reiche, Ploog (b0030) 2000; 406
Washiyama, Guan, Mita, Collazo, Sitar (b0100) 2020; 127
Lughi, Clarke (b0155) 2006; 89
Moram, Johnston, Hollander, Kappers, Humphreys (b0130) 2009; 105
Funato, Ueda, Kawakami, Narukawa, Kosugi, Takahashi, Mukai (b0035) 2006; 45
Jain, Willander, Narayan, Overstraeten (b0055) 2000; 87
Taniyasu, Kasu, Makimoto (b0005) 2006; 441
You, Lu, Johnson (b0070) 2006; 99
Stellmach, Frentrup, Mehnke, Pristovsek, Wernicke, Kneissl (b0045) 2012; 355
Dinh, Conroy, Zubialevich, Petkov, Holmes, Parbrook (b0060) 2015; 414
Langer, Simon, Ortiz, Pelekanos, Barski, André, Godlewski (b0025) 1999; 74
Yang, Miyagawa, Miyake, Hiramatsu, Harima (b0140) 2011; 4
Wagner, Bechstedt (b0135) 2000; 77
Wang (10.1016/j.jcrysgro.2021.126207_b0090) 2019; 114
Lughi (10.1016/j.jcrysgro.2021.126207_b0155) 2006; 89
Xing (10.1016/j.jcrysgro.2021.126207_b0125) 2019; 12
Li (10.1016/j.jcrysgro.2021.126207_b0145) 2018; 458
Abell (10.1016/j.jcrysgro.2021.126207_b0065) 2008; 92
Funato (10.1016/j.jcrysgro.2021.126207_b0035) 2006; 45
Waltereit (10.1016/j.jcrysgro.2021.126207_b0030) 2000; 406
Taniyasu (10.1016/j.jcrysgro.2021.126207_b0005) 2006; 441
Washiyama (10.1016/j.jcrysgro.2021.126207_b0100) 2020; 127
Dinh (10.1016/j.jcrysgro.2021.126207_b0060) 2015; 414
Miyake (10.1016/j.jcrysgro.2021.126207_b0075) 2016; 9
Kim (10.1016/j.jcrysgro.2021.126207_b0020) 1998; 73
Ben (10.1016/j.jcrysgro.2021.126207_b0085) 2018; 20
Bai (10.1016/j.jcrysgro.2021.126207_b0040) 2015; 107
Stellmach (10.1016/j.jcrysgro.2021.126207_b0045) 2012; 355
Li (10.1016/j.jcrysgro.2021.126207_b0015) 2018; 10
Jain (10.1016/j.jcrysgro.2021.126207_b0055) 2000; 87
Jo (10.1016/j.jcrysgro.2021.126207_b0105) 2019; 507
Wang (10.1016/j.jcrysgro.2021.126207_b0095) 2019; 21
Miyake (10.1016/j.jcrysgro.2021.126207_b0080) 2016; 456
Jo (10.1016/j.jcrysgro.2021.126207_b0050) 2019; 58
Inoue (10.1016/j.jcrysgro.2021.126207_b0010) 2017; 110
Wagner (10.1016/j.jcrysgro.2021.126207_b0135) 2000; 77
Yang (10.1016/j.jcrysgro.2021.126207_b0140) 2011; 4
Kuball (10.1016/j.jcrysgro.2021.126207_b0150) 2001; 78
Lahourcade (10.1016/j.jcrysgro.2021.126207_b0115) 2007; 90
Xing (10.1016/j.jcrysgro.2021.126207_b0120) 2019; 114
Langer (10.1016/j.jcrysgro.2021.126207_b0025) 1999; 74
Moram (10.1016/j.jcrysgro.2021.126207_b0130) 2009; 105
You (10.1016/j.jcrysgro.2021.126207_b0070) 2006; 99
Feng (10.1016/j.jcrysgro.2021.126207_b0110) 2020; 141
References_xml – volume: 73
  start-page: 3426
  year: 1998
  ident: b0020
  publication-title: Appl. Phys. Lett.
– volume: 141
  year: 2020
  ident: b0110
  publication-title: Superlattices and Microstructures
– volume: 107
  year: 2015
  ident: b0040
  publication-title: Appl. Phys. Lett.
– volume: 87
  start-page: 965
  year: 2000
  ident: b0055
  publication-title: J. Appl. Phys.
– volume: 414
  start-page: 94
  year: 2015
  ident: b0060
  publication-title: J. Cryst. Growth
– volume: 114
  year: 2019
  ident: b0120
  publication-title: Appl. Phys. Lett.
– volume: 127
  year: 2020
  ident: b0100
  publication-title: J. Appl. Phys.
– volume: 10
  start-page: 43
  year: 2018
  ident: b0015
  publication-title: Adv. Opt. Photonics
– volume: 114
  year: 2019
  ident: b0090
  publication-title: Appl. Phys. Lett.
– volume: 21
  start-page: 4632
  year: 2019
  ident: b0095
  publication-title: CrystEngComm
– volume: 58
  start-page: SC1031
  year: 2019
  ident: b0050
  publication-title: Jpn. J. Appl. Phys.
– volume: 441
  start-page: 325
  year: 2006
  ident: b0005
  publication-title: Nature
– volume: 4
  year: 2011
  ident: b0140
  publication-title: Appl. Phys. Express
– volume: 406
  start-page: 865
  year: 2000
  ident: b0030
  publication-title: Nature
– volume: 110
  year: 2017
  ident: b0010
  publication-title: Appl. Phys. Lett.
– volume: 99
  year: 2006
  ident: b0070
  publication-title: J. Appl. Phys.
– volume: 20
  start-page: 4623
  year: 2018
  ident: b0085
  publication-title: CrystEngComm
– volume: 507
  start-page: 307
  year: 2019
  ident: b0105
  publication-title: J. Cryst. Growth
– volume: 12
  year: 2019
  ident: b0125
  publication-title: Appl. Phys. Express
– volume: 45
  start-page: L659
  year: 2006
  ident: b0035
  publication-title: Jpn. J. Appl. Phys.
– volume: 456
  start-page: 155
  year: 2016
  ident: b0080
  publication-title: J. Cryst. Growth
– volume: 74
  start-page: 3827
  year: 1999
  ident: b0025
  publication-title: Appl. Phys. Lett.
– volume: 458
  start-page: 972
  year: 2018
  ident: b0145
  publication-title: Appl. Surf. Sci.
– volume: 9
  year: 2016
  ident: b0075
  publication-title: Appl. Phys. Express
– volume: 355
  start-page: 59
  year: 2012
  ident: b0045
  publication-title: J. Cryst. Growth
– volume: 78
  start-page: 724
  year: 2001
  ident: b0150
  publication-title: Appl. Phys. Lett.
– volume: 90
  year: 2007
  ident: b0115
  publication-title: Appl. Phys. Lett.
– volume: 105
  year: 2009
  ident: b0130
  publication-title: J. Appl. Phys.
– volume: 89
  year: 2006
  ident: b0155
  publication-title: Appl. Phys. Lett.
– volume: 92
  year: 2008
  ident: b0065
  publication-title: Appl. Phys. Lett.
– volume: 77
  start-page: 346
  year: 2000
  ident: b0135
  publication-title: Appl. Phys. Lett.
– volume: 21
  start-page: 4632
  year: 2019
  ident: 10.1016/j.jcrysgro.2021.126207_b0095
  publication-title: CrystEngComm
  doi: 10.1039/C9CE00702D
– volume: 4
  year: 2011
  ident: 10.1016/j.jcrysgro.2021.126207_b0140
  publication-title: Appl. Phys. Express
– volume: 74
  start-page: 3827
  year: 1999
  ident: 10.1016/j.jcrysgro.2021.126207_b0025
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.124193
– volume: 458
  start-page: 972
  year: 2018
  ident: 10.1016/j.jcrysgro.2021.126207_b0145
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.07.138
– volume: 78
  start-page: 724
  year: 2001
  ident: 10.1016/j.jcrysgro.2021.126207_b0150
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1344567
– volume: 127
  year: 2020
  ident: 10.1016/j.jcrysgro.2021.126207_b0100
  publication-title: J. Appl. Phys.
– volume: 414
  start-page: 94
  year: 2015
  ident: 10.1016/j.jcrysgro.2021.126207_b0060
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2014.09.043
– volume: 99
  year: 2006
  ident: 10.1016/j.jcrysgro.2021.126207_b0070
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2168028
– volume: 77
  start-page: 346
  year: 2000
  ident: 10.1016/j.jcrysgro.2021.126207_b0135
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.127009
– volume: 12
  year: 2019
  ident: 10.1016/j.jcrysgro.2021.126207_b0125
  publication-title: Appl. Phys. Express
– volume: 141
  year: 2020
  ident: 10.1016/j.jcrysgro.2021.126207_b0110
  publication-title: Superlattices and Microstructures
  doi: 10.1016/j.spmi.2020.106493
– volume: 10
  start-page: 43
  issue: 1
  year: 2018
  ident: 10.1016/j.jcrysgro.2021.126207_b0015
  publication-title: Adv. Opt. Photonics
  doi: 10.1364/AOP.10.000043
– volume: 45
  start-page: L659
  year: 2006
  ident: 10.1016/j.jcrysgro.2021.126207_b0035
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.45.L659
– volume: 89
  year: 2006
  ident: 10.1016/j.jcrysgro.2021.126207_b0155
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2404938
– volume: 114
  year: 2019
  ident: 10.1016/j.jcrysgro.2021.126207_b0120
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5085012
– volume: 9
  year: 2016
  ident: 10.1016/j.jcrysgro.2021.126207_b0075
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.9.025501
– volume: 441
  start-page: 325
  year: 2006
  ident: 10.1016/j.jcrysgro.2021.126207_b0005
  publication-title: Nature
  doi: 10.1038/nature04760
– volume: 507
  start-page: 307
  year: 2019
  ident: 10.1016/j.jcrysgro.2021.126207_b0105
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2018.11.009
– volume: 90
  year: 2007
  ident: 10.1016/j.jcrysgro.2021.126207_b0115
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2716375
– volume: 20
  start-page: 4623
  year: 2018
  ident: 10.1016/j.jcrysgro.2021.126207_b0085
  publication-title: CrystEngComm
  doi: 10.1039/C8CE00770E
– volume: 114
  year: 2019
  ident: 10.1016/j.jcrysgro.2021.126207_b0090
  publication-title: Appl. Phys. Lett.
– volume: 87
  start-page: 965
  year: 2000
  ident: 10.1016/j.jcrysgro.2021.126207_b0055
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.371971
– volume: 456
  start-page: 155
  year: 2016
  ident: 10.1016/j.jcrysgro.2021.126207_b0080
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2016.08.028
– volume: 110
  year: 2017
  ident: 10.1016/j.jcrysgro.2021.126207_b0010
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4978855
– volume: 58
  start-page: SC1031
  year: 2019
  ident: 10.1016/j.jcrysgro.2021.126207_b0050
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/1347-4065/ab0f1c
– volume: 406
  start-page: 865
  year: 2000
  ident: 10.1016/j.jcrysgro.2021.126207_b0030
  publication-title: Nature
  doi: 10.1038/35022529
– volume: 73
  start-page: 3426
  year: 1998
  ident: 10.1016/j.jcrysgro.2021.126207_b0020
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.122786
– volume: 355
  start-page: 59
  year: 2012
  ident: 10.1016/j.jcrysgro.2021.126207_b0045
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2012.06.047
– volume: 107
  year: 2015
  ident: 10.1016/j.jcrysgro.2021.126207_b0040
  publication-title: Appl. Phys. Lett.
– volume: 92
  year: 2008
  ident: 10.1016/j.jcrysgro.2021.126207_b0065
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2889444
– volume: 105
  year: 2009
  ident: 10.1016/j.jcrysgro.2021.126207_b0130
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3129307
SSID ssj0001610
Score 2.3991027
Snippet •Semi-polar AlN film quality was massively improved by high-temperature annealing.•Neither a high-temperature MOCVD nor an ex situ sputtering process is...
This study addresses the difficulty of obtaining relatively low-cost semi-polar (11–22) AlN films epitaxially grown on m-plane sapphire substrates with high...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126207
SubjectTerms Annealing
Atomic force microscopy
Compressive properties
Crystal structure
Crystallinity
Epitaxial growth
Grain size
High temperature
High temperature annealing
Low cost
Low defect density
Metalorganic chemical vapor deposition
Microscopy
MOCVD
Optoelectronic devices
Organic chemicals
Organic chemistry
Raman spectroscopy
Recrystallization
Sapphire
Semi-polar AlN growth
Stacking faults
Substrates
Title Semi-polar (11–22) AlN epitaxial films on m-plane sapphire substrates with greatly improved crystalline quality obtained by high-temperature annealing
URI https://dx.doi.org/10.1016/j.jcrysgro.2021.126207
https://www.proquest.com/docview/2572616602
Volume 570
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29btswECaCdEg7FG3aoml-cEOHdqAtUqQkj4aRwG1RL2mAbAQpkYUNxxYiB4iXIO-QJc-XJ8mdfpK0QJGho0RSkHin43eHu-8Y-xzHwSMQDlxpXXAlXMwHyguuU2dtcLm3MRUK_5wk4xP1_VSfbrBRVwtDaZWt7W9sem2t2zv9djf75XRKNb5SEiOXJBohPOeogl2lpOW9q8c0D0Q0UccYTrOfVAnPerP8fE3lE-gnStETRM6e_uuA-stU1-fP0Rv2ugWOMGze7S3b8ItttjXq-rVts1dPqAXfsdtjHOAlOa7wRYi76xspv8JwPgFPfUIuUe0gTOdnFSwXcMZLynmFypYlBauhQnNS09ZWQIFa-E3Qcr6GaR2C8AXQFyFsJ4wKTV3mGpaOwgw46NZALMicaK9azmawaM8tlb6_ZydHh79GY952YeB5rKIVRwjug48CYpFgUyepz5BTg6KI8dfNClvYzHtvE5UrhF7o8MosynFARz4TIiTxB7a5WC78RwZRnGvhlPBeEJN95nCW9UpHuRqEJKQ7THdbb_KWopw6ZcxNl4s2M53IDInMNCLbYf2HdWVD0vHsikEnWfOHuhk8SZ5du9epgml_-Mqg5UNfNEki-ek_Hr3LXtIV5aMIvcc2V-cXfh9Bz8od1Fp9wF4Mv_0YT-4BkUcFeA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV2xbtswED2kzpB2CNq0RZKmLYcO7cBYpEhZHg2jgdMkXpoA2QhSIgsbji1ELhBv-Ycs_b58Se8sKkgLFBm66nSCxDvdPR547wA-pWnwCIQDV1qXXAmX8r7yguuesza4wtuUGoXPxtnoQn271JcbMGx7YehYZYz9TUxfR-t4pRtXs1tNJtTjKyUxckmiEcI89ww2iZ1Kd2BzcHwyGj8EZAQ1SUsaTgqPGoWnh9PiekUdFLhVlOJQED9771856q9ovU5BRy9hO2JHNmhe7xVs-PkObA3bkW078OIRu-Br-PUdBbyivSv7LMT97Z2UX9hgNmaeRoXcoOexMJld1WwxZ1e8omOvrLZVRfVqVmNEWTPX1oxqtewHocvZik3WVQhfMvoiRO4EU1nTmrliC0eVBhS6FSMiZE7MV5G2mVkM6Za639_AxdHX8-GIx0EMvEhVsuSIwn3wSUA4EmzPSRo15FS_LFP8e_PSljb33ttMFQrRF-55ZZ4UKNCJz4UIWfoWOvPF3O8CS9JCC6eE94LI7HOHd1mvdFKofshCbw90u_SmiCzlNCxjZtrjaFPTmsyQyUxjsj3oPuhVDU_Hkxr91rLmD48zmEye1D1oXcHEf742GPxwO5plidz_j0d_hK3R-dmpOT0en7yD5ySh4ylCH0Bnef3Tv0cMtHQfoo__BnYrCCk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-polar+%2811%E2%80%9322%29+AlN+epitaxial+films+on+m-plane+sapphire+substrates+with+greatly+improved+crystalline+quality+obtained+by+high-temperature+annealing&rft.jtitle=Journal+of+crystal+growth&rft.au=Xing%2C+Kun&rft.au=Cheng%2C+Xueying&rft.au=Wang%2C+Liancheng&rft.au=Chen%2C+Shirong&rft.date=2021-09-15&rft.pub=Elsevier+BV&rft.issn=0022-0248&rft.eissn=1873-5002&rft.volume=570&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jcrysgro.2021.126207&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0248&client=summon