Geometric inhomogeneous random graphs

Real-world networks, like social networks or the internet infrastructure, have structural properties such as large clustering coefficients that can best be described in terms of an underlying geometry. This is why the focus of the literature on theoretical models for real-world networks shifted from...

Full description

Saved in:
Bibliographic Details
Published inTheoretical computer science Vol. 760; pp. 35 - 54
Main Authors Bringmann, Karl, Keusch, Ralph, Lengler, Johannes
Format Journal Article
LanguageEnglish
Published Elsevier B.V 14.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Real-world networks, like social networks or the internet infrastructure, have structural properties such as large clustering coefficients that can best be described in terms of an underlying geometry. This is why the focus of the literature on theoretical models for real-world networks shifted from classic models without geometry, such as Chung–Lu random graphs, to modern geometry-based models, such as hyperbolic random graphs. With this paper we contribute to the theoretical analysis of these modern, more realistic random graph models. Instead of studying directly hyperbolic random graphs, we use a generalization that we call geometric inhomogeneous random graphs (GIRGs). Since we ignore constant factors in the edge probabilities, GIRGs are technically simpler (specifically, we avoid hyperbolic cosines), while preserving the qualitative behavior of hyperbolic random graphs, and we suggest to replace hyperbolic random graphs by this new model in future theoretical studies. We prove the following fundamental structural and algorithmic results on GIRGs. (1) We provide a sampling algorithm that generates a random graph from our model in expected linear time, improving the best-known sampling algorithm for hyperbolic random graphs by a substantial factor O(n). (2) We establish that GIRGs have clustering coefficients in Ω(1), (3) we prove that GIRGs have small separators, i.e., it suffices to delete a sublinear number of edges to break the giant component into two large pieces, and (4) we show how to compress GIRGs using an expected linear number of bits. •GIRGs are a random graph model that reproduces many features of real-world networks.•The model contains the celebrated hyperbolic random graphs as special case.•They have large clustering coefficient, small separators, and small entropy.•We present a linear-time sampling algorithm and a linear-space compression algorithm.
AbstractList Real-world networks, like social networks or the internet infrastructure, have structural properties such as large clustering coefficients that can best be described in terms of an underlying geometry. This is why the focus of the literature on theoretical models for real-world networks shifted from classic models without geometry, such as Chung–Lu random graphs, to modern geometry-based models, such as hyperbolic random graphs. With this paper we contribute to the theoretical analysis of these modern, more realistic random graph models. Instead of studying directly hyperbolic random graphs, we use a generalization that we call geometric inhomogeneous random graphs (GIRGs). Since we ignore constant factors in the edge probabilities, GIRGs are technically simpler (specifically, we avoid hyperbolic cosines), while preserving the qualitative behavior of hyperbolic random graphs, and we suggest to replace hyperbolic random graphs by this new model in future theoretical studies. We prove the following fundamental structural and algorithmic results on GIRGs. (1) We provide a sampling algorithm that generates a random graph from our model in expected linear time, improving the best-known sampling algorithm for hyperbolic random graphs by a substantial factor O(n). (2) We establish that GIRGs have clustering coefficients in Ω(1), (3) we prove that GIRGs have small separators, i.e., it suffices to delete a sublinear number of edges to break the giant component into two large pieces, and (4) we show how to compress GIRGs using an expected linear number of bits. •GIRGs are a random graph model that reproduces many features of real-world networks.•The model contains the celebrated hyperbolic random graphs as special case.•They have large clustering coefficient, small separators, and small entropy.•We present a linear-time sampling algorithm and a linear-space compression algorithm.
Author Keusch, Ralph
Lengler, Johannes
Bringmann, Karl
Author_xml – sequence: 1
  givenname: Karl
  surname: Bringmann
  fullname: Bringmann, Karl
  email: kbringma@mpi-inf.mpg.de
  organization: Max-Planck-Institute for Informatics, Saarbrücken, Germany
– sequence: 2
  givenname: Ralph
  surname: Keusch
  fullname: Keusch, Ralph
  email: rkeusch@inf.ethz.ch
  organization: Institute of Theoretical Computer Science, ETH Zurich, Switzerland
– sequence: 3
  givenname: Johannes
  surname: Lengler
  fullname: Lengler, Johannes
  email: lenglerj@inf.ethz.ch
  organization: Institute of Theoretical Computer Science, ETH Zurich, Switzerland
BookMark eNp9j01LAzEQhoNUsK3-AG-9eNx18tHNBk9StAoFL3oO2ey0TekmJYmC_96U9uShwzu8c3kGngkZ-eCRkHsKNQXaPO7qbFPNgLY1lFBxRca0lapiTIkRGQMHUXEl5zdkktIOysxlMyYPSwwD5ujszPltGMIGPYbvNIvG92GYbaI5bNMtuV6bfcK7c0_J1-vL5-KtWn0s3xfPq8pyAblqmUFpzZyppiyjqun6FtialxNV2wGT2HW9AAncqE41wAwgtxQEZdj2fEro6a-NIaWIa32IbjDxV1PQR0-908VTHz01lFBRGPmPsS6b7ILP0bj9RfLpRGJR-nEYdbIOvcXeRbRZ98FdoP8ATSRuMQ
CitedBy_id crossref_primary_10_1103_PhysRevE_106_054303
crossref_primary_10_1214_23_ECP567
crossref_primary_10_1007_s00285_019_01406_8
crossref_primary_10_1007_s10955_023_03122_6
crossref_primary_10_1007_s11071_021_06710_x
crossref_primary_10_1103_PhysRevE_106_064311
crossref_primary_10_1214_22_EJP748
crossref_primary_10_1007_s00454_023_00507_y
crossref_primary_10_1002_rsa_21168
crossref_primary_10_1016_j_aej_2023_07_062
crossref_primary_10_1103_PhysRevResearch_2_023040
crossref_primary_10_1214_20_AOP1489
crossref_primary_10_1017_jpr_2024_18
crossref_primary_10_1017_apr_2022_61
crossref_primary_10_3390_math11092171
crossref_primary_10_1017_apr_2024_43
crossref_primary_10_1073_pnas_2112607118
crossref_primary_10_1007_s10955_024_03254_3
crossref_primary_10_1002_rsa_21249
crossref_primary_10_1016_j_artint_2021_103537
crossref_primary_10_1016_j_crmeth_2025_100985
crossref_primary_10_1063_5_0139844
crossref_primary_10_25728_ubs_2024_109_5
crossref_primary_10_1038_s42254_020_00264_4
crossref_primary_10_1515_itit_2019_0041
crossref_primary_10_1145_3633778
crossref_primary_10_1214_21_ECP380
crossref_primary_10_1016_j_spa_2023_104236
crossref_primary_10_1017_jpr_2022_44
crossref_primary_10_1145_3369782
crossref_primary_10_1016_j_chaos_2020_109965
crossref_primary_10_1038_s41598_020_79507_4
crossref_primary_10_1038_s42005_022_01023_w
crossref_primary_10_1214_24_EJP1135
crossref_primary_10_1214_24_EJP1216
crossref_primary_10_1016_j_jcss_2021_11_003
crossref_primary_10_1007_s11040_021_09409_y
crossref_primary_10_1002_rsa_21220
crossref_primary_10_1093_comnet_cnac002
crossref_primary_10_1016_j_sigpro_2021_108335
crossref_primary_10_1093_comnet_cnz011
crossref_primary_10_1214_21_AIHP1149
crossref_primary_10_1371_journal_pone_0250435
crossref_primary_10_1103_PhysRevE_109_054131
crossref_primary_10_1017_jpr_2020_76
crossref_primary_10_1093_comnet_cnad010
crossref_primary_10_1017_nws_2022_32
crossref_primary_10_1017_nws_2024_13
crossref_primary_10_1137_18M121201X
Cites_doi 10.1016/j.spa.2015.08.005
10.1080/15427951.2008.10129304
10.1214/16-AAP1270
10.1126/science.286.5439.509
10.1007/s00453-017-0323-3
10.1093/comnet/cnu049
10.1073/pnas.252631999
10.1239/aap/1143936140
10.3390/risks3010001
10.1080/15427951.2008.10129305
10.1103/PhysRevE.71.036113
10.1007/PL00012580
10.1002/rsa.20168
10.1080/00018730110112519
10.1214/12-AIHP480
10.2140/pjm.1960.10.1181
10.1080/15427951.2004.10129081
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2018.08.014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 54
ExternalDocumentID 10_1016_j_tcs_2018_08_014
S0304397518305309
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BNPGV
CITATION
FGOYB
G-2
HZ~
R2-
SEW
SSH
TAE
WUQ
XJT
ZY4
ID FETCH-LOGICAL-c340t-82ae7ca52965292196bd802f3219e98b027ebbd40703a9b9602a0e3c10412e8d3
IEDL.DBID .~1
ISSN 0304-3975
IngestDate Tue Jul 01 03:17:59 EDT 2025
Thu Apr 24 23:13:17 EDT 2025
Fri Feb 23 02:19:02 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sampling algorithms
Real-world networks
Clustering coefficient
Random graph models
Hyperbolic random graphs
Compression algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-82ae7ca52965292196bd802f3219e98b027ebbd40703a9b9602a0e3c10412e8d3
OpenAccessLink http://hdl.handle.net/11858/00-001M-0000-002C-52F3-4
PageCount 20
ParticipantIDs crossref_primary_10_1016_j_tcs_2018_08_014
crossref_citationtrail_10_1016_j_tcs_2018_08_014
elsevier_sciencedirect_doi_10_1016_j_tcs_2018_08_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-14
PublicationDateYYYYMMDD 2019-02-14
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-14
  day: 14
PublicationDecade 2010
PublicationTitle Theoretical computer science
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Deprez, Hazra, Wüthrich (br0280) 2015; 3
Von Looz, Meyerhenke, Prutkin (br0500) 2015
Dorogovtsev, Mendes (br0300) 2002; 51
Boldi, Vigna (br0120) 2004
Chung, Lu (br0240) 2002; 6
Koch, Lengler (br0390) 2016
Bringmann, Friedrich (br0160) 2013
Friedrich, Krohmer (br0320) 2015
Bringmann, Keusch, Lengler (br0170) 2016
Clark, Munro (br0260) 1996
Bode, Fountoulakis, Müller (br0090) 2013
Aiello, Bonato, Cooper, Janssen, Prałat (br0020) 2008; 5
Jacob, Mörters (br0350) 2013
Abdullah, Bode, Müller (br0010) 2017
Devroye (br0290) 1986
Le Cam (br0410) 1960; 10
Bode, Fountoulakis, Müller (br0100) 2015; 3
Gugelmann, Panagiotou, Peter (br0330) 2012
Bradonjić, Hagberg, Percus (br0150) 2008; 5
Jacobson (br0360) 1989
Miller, Hagberg (br0430) 2011
Deijfen, van der Hofstad, Hooghiemstra (br0270) 2013; 49
Komjathy, Lodewjiks (br0400) 2018
Penrose (br0470) 2003
Candellero, Fountoulakis (br0200) 2016; 126
Chierichetti, Kumar, Lattanzi, Panconesi, Raghavan (br0220) 2009
Bollobás, Janson, Riordan (br0130) 2007; 31
Blandford, Blelloch, Kash (br0050) 2003
Bläsius, Friedrich, Krohmer, Laue (br0080) 2016
Batagelj, Brandes (br0040) 2005; 71
Norros, Reittu (br0440) 2006; 38
Kiwi, Mitsche (br0380) 2016
Kiwi, Mitsche (br0370) 2015
Peter (br0480) 2014
Chierichetti, Kumar, Lattanzi, Mitzenmacher, Panconesi, Raghavan (br0210) 2009
van der Hofstad, Komjathy (br0490) 2017
Bringmann, Keusch, Lengler, Maus, Molla (br0180) 2017
Succincter (br0460) 2008
Barabási, Albert (br0030) 1999; 286
Chung, Lu (br0230) 2002; 99
Evans, Gariepy (br0310) 1992
Chung, Lu (br0250) 2004; 1
Candellero, Fountoulakis (br0190) 2014
Lengler, Todorovic (br0420) 2017
Bonato, Janssen, Prałat (br0140) 2010
Papadopoulos, Krioukov, Boguñá, Vahdat (br0450) March 2010
Bläsius, Friedrich, Krohmer (br0060) 2016
Bläsius, Friedrich, Krohmer (br0070) 2018; 80
Heydenreich, Hulshof, Jorritsma (br0340) 2017; 27
Boguñá, Papadopoulos, Krioukov (br0110) September 2010; 1
Deijfen (10.1016/j.tcs.2018.08.014_br0270) 2013; 49
Evans (10.1016/j.tcs.2018.08.014_br0310) 1992
Peter (10.1016/j.tcs.2018.08.014_br0480) 2014
Jacobson (10.1016/j.tcs.2018.08.014_br0360) 1989
Deprez (10.1016/j.tcs.2018.08.014_br0280) 2015; 3
Barabási (10.1016/j.tcs.2018.08.014_br0030) 1999; 286
Bringmann (10.1016/j.tcs.2018.08.014_br0160) 2013
Bollobás (10.1016/j.tcs.2018.08.014_br0130) 2007; 31
Chung (10.1016/j.tcs.2018.08.014_br0250) 2004; 1
Norros (10.1016/j.tcs.2018.08.014_br0440) 2006; 38
Chierichetti (10.1016/j.tcs.2018.08.014_br0210) 2009
Bonato (10.1016/j.tcs.2018.08.014_br0140) 2010
Bringmann (10.1016/j.tcs.2018.08.014_br0180) 2017
Candellero (10.1016/j.tcs.2018.08.014_br0190) 2014
Jacob (10.1016/j.tcs.2018.08.014_br0350) 2013
Miller (10.1016/j.tcs.2018.08.014_br0430) 2011
Penrose (10.1016/j.tcs.2018.08.014_br0470) 2003
Kiwi (10.1016/j.tcs.2018.08.014_br0370) 2015
Succincter (10.1016/j.tcs.2018.08.014_br0460) 2008
Chung (10.1016/j.tcs.2018.08.014_br0240) 2002; 6
Clark (10.1016/j.tcs.2018.08.014_br0260) 1996
van der Hofstad (10.1016/j.tcs.2018.08.014_br0490)
Friedrich (10.1016/j.tcs.2018.08.014_br0320) 2015
Boldi (10.1016/j.tcs.2018.08.014_br0120) 2004
Kiwi (10.1016/j.tcs.2018.08.014_br0380)
Komjathy (10.1016/j.tcs.2018.08.014_br0400)
Heydenreich (10.1016/j.tcs.2018.08.014_br0340) 2017; 27
Koch (10.1016/j.tcs.2018.08.014_br0390) 2016
Le Cam (10.1016/j.tcs.2018.08.014_br0410) 1960; 10
Blandford (10.1016/j.tcs.2018.08.014_br0050) 2003
Devroye (10.1016/j.tcs.2018.08.014_br0290) 1986
Dorogovtsev (10.1016/j.tcs.2018.08.014_br0300) 2002; 51
Bode (10.1016/j.tcs.2018.08.014_br0100) 2015; 3
Batagelj (10.1016/j.tcs.2018.08.014_br0040) 2005; 71
Bläsius (10.1016/j.tcs.2018.08.014_br0070) 2018; 80
Candellero (10.1016/j.tcs.2018.08.014_br0200) 2016; 126
Gugelmann (10.1016/j.tcs.2018.08.014_br0330) 2012
Abdullah (10.1016/j.tcs.2018.08.014_br0010) 2017
Chierichetti (10.1016/j.tcs.2018.08.014_br0220) 2009
Chung (10.1016/j.tcs.2018.08.014_br0230) 2002; 99
Boguñá (10.1016/j.tcs.2018.08.014_br0110) 2010; 1
Aiello (10.1016/j.tcs.2018.08.014_br0020) 2008; 5
Bode (10.1016/j.tcs.2018.08.014_br0090) 2013
Von Looz (10.1016/j.tcs.2018.08.014_br0500) 2015
Papadopoulos (10.1016/j.tcs.2018.08.014_br0450) 2010
Bringmann (10.1016/j.tcs.2018.08.014_br0170)
Bradonjić (10.1016/j.tcs.2018.08.014_br0150) 2008; 5
Bläsius (10.1016/j.tcs.2018.08.014_br0060) 2016
Lengler (10.1016/j.tcs.2018.08.014_br0420)
Bläsius (10.1016/j.tcs.2018.08.014_br0080) 2016
References_xml – year: 2010
  ident: br0140
  article-title: A geometric model for on-line social networks
  publication-title: 1st International Workshop on Modeling Social Media
– year: 2014
  ident: br0480
  article-title: Random Graph Models for Complex Systems
– year: 1992
  ident: br0310
  article-title: Measure Theory and Fine Properties of Functions
  publication-title: Studies in Advanced Mathematics
– start-page: 425
  year: 2013
  end-page: 429
  ident: br0090
  article-title: On the giant component of random hyperbolic graphs
  publication-title: 7th European Conference on Combinatorics, Graph Theory and Applications
– start-page: 1
  year: 2014
  end-page: 12
  ident: br0190
  article-title: Clustering and the hyperbolic geometry of complex networks
  publication-title: 11th International Workshop on Algorithms and Models for the Web Graph
– start-page: 267
  year: 2013
  end-page: 278
  ident: br0160
  article-title: Exact and efficient generation of geometric random variates and random graphs
  publication-title: 40th International Colloquium on Automata, Languages, and Programming
– volume: 5
  start-page: 113
  year: 2008
  end-page: 139
  ident: br0150
  article-title: The structure of geographical threshold graphs
  publication-title: Internet Math.
– year: 2017
  ident: br0490
  article-title: Explosion and distances in scale-free percolation
– start-page: 383
  year: 1996
  end-page: 391
  ident: br0260
  article-title: Efficient suffix trees on secondary storage
  publication-title: Proceedings of the 7 Annual ACM–SIAM Symposium on Discrete Algorithms
– start-page: 549
  year: 1989
  end-page: 554
  ident: br0360
  article-title: Space-efficient static trees and graphs
  publication-title: 30th Annual IEEE Symposium on Foundations of Computer Science
– volume: 286
  start-page: 509
  year: 1999
  end-page: 512
  ident: br0030
  article-title: Emergence of scaling in random networks
  publication-title: Science
– start-page: 219
  year: 2009
  end-page: 228
  ident: br0210
  article-title: On compressing social networks
  publication-title: 15th International Conference on Knowledge Discovery and Data Mining
– year: 2003
  ident: br0470
  article-title: Random Geometric Graphs, Vol. 5
– volume: 31
  start-page: 3
  year: 2007
  end-page: 122
  ident: br0130
  article-title: The phase transition in inhomogeneous random graphs
  publication-title: Random Structures Algorithms
– start-page: 331
  year: 2009
  end-page: 340
  ident: br0220
  article-title: Models for the compressible web
  publication-title: 50th Annual IEEE Symposium on Foundations of Computer Science
– volume: 49
  start-page: 817
  year: 2013
  end-page: 838
  ident: br0270
  article-title: Scale-free percolation
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
– start-page: 679
  year: 2003
  end-page: 688
  ident: br0050
  article-title: Compact representations of separable graphs
  publication-title: Proceedings of the 14 Annual ACM–SIAM Symposium on Discrete Algorithms
– volume: 3
  year: 2015
  ident: br0280
  article-title: Inhomogeneous long-range percolation for real-life network modeling
  publication-title: Risks
– volume: 1
  start-page: 91
  year: 2004
  end-page: 113
  ident: br0250
  article-title: The average distance in a random graph with given expected degrees
  publication-title: Internet Math.
– year: 1986
  ident: br0290
  article-title: Nonuniform Random Variate Generation
– volume: 5
  start-page: 175
  year: 2008
  end-page: 196
  ident: br0020
  article-title: A spatial web graph model with local influence regions
  publication-title: Internet Math.
– start-page: 305
  year: 2008
  end-page: 313
  ident: br0460
  publication-title: 49th Annual IEEE Symposium on Foundations of Computer Science
– start-page: 595
  year: 2004
  end-page: 602
  ident: br0120
  article-title: The WebGraph framework I: compression techniques
  publication-title: 13th International Conference on World Wide Web
– start-page: 14
  year: 2013
  end-page: 25
  ident: br0350
  article-title: A spatial preferential attachment model with local clustering
  publication-title: Algorithms and Models for the Web Graph
– volume: 51
  start-page: 1079
  year: 2002
  end-page: 1187
  ident: br0300
  article-title: Evolution of networks
  publication-title: Adv. Phys.
– year: 2016
  ident: br0170
  article-title: Average distance in a general class of scale-free networks with underlying geometry
– volume: 27
  start-page: 2569
  year: 2017
  end-page: 2604
  ident: br0340
  article-title: Structures in supercritical scale-free percolation
  publication-title: Ann. Appl. Probab.
– start-page: 573
  year: 2012
  end-page: 585
  ident: br0330
  article-title: Random hyperbolic graphs: degree sequence and clustering
  publication-title: 39th International Colloquium on Automata, Languages, and Programming
– volume: 126
  start-page: 234
  year: 2016
  end-page: 264
  ident: br0200
  article-title: Bootstrap percolation and the geometry of complex networks
  publication-title: Stochastic Process. Appl.
– start-page: 2017
  year: 2017
  ident: br0010
  article-title: Typical distances in a geometric model for complex networks
  publication-title: Internet Math.
– start-page: 1
  year: 2016
  end-page: 15
  ident: br0390
  article-title: Bootstrap percolation on geometric inhomogeneous random graphs
  publication-title: 43rd International Colloquium on Automata, Languages, and Programming
– volume: 38
  start-page: 59
  year: 2006
  end-page: 75
  ident: br0440
  article-title: On a conditionally Poissonian graph process
  publication-title: Adv. in Appl. Probab.
– volume: 3
  start-page: 361
  year: 2015
  end-page: 387
  ident: br0100
  article-title: On a geometrisation of the Chung–Lu model for complex networks
  publication-title: J. Complex Netw.
– start-page: 115
  year: 2011
  end-page: 126
  ident: br0430
  article-title: Efficient generation of networks with given expected degrees
  publication-title: 8th International Conference on Algorithms and Models for the Web Graph
– volume: 71
  year: 2005
  ident: br0040
  article-title: Efficient generation of large random networks
  publication-title: Phys. Rev. E
– volume: 1
  year: September 2010
  ident: br0110
  article-title: Sustaining the Internet with hyperbolic mapping
  publication-title: Nat. Commun.
– year: 2015
  ident: br0320
  article-title: On the diameter of hyperbolic random graphs
  publication-title: 42nd International Colloquium on Automata, Languages, and Programming
– year: 2017
  ident: br0420
  article-title: Existence of small separators depends on geometry for geometric inhomogeneous random graphs
– volume: 80
  start-page: 2324
  year: 2018
  end-page: 2344
  ident: br0070
  article-title: Cliques in hyperbolic random graphs
  publication-title: Algorithmica
– year: 2018
  ident: br0400
  article-title: Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs
– volume: 99
  start-page: 15879
  year: 2002
  end-page: 15882
  ident: br0230
  article-title: The average distances in random graphs with given expected degrees
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 371
  year: 2017
  end-page: 380
  ident: br0180
  article-title: Greedy routing and the algorithmic small-world phenomenon
  publication-title: ACM Symposium on Principles of Distributed Computing
– start-page: 1
  year: March 2010
  end-page: 9
  ident: br0450
  article-title: Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces
  publication-title: 29th IEEE International Conference on Computer Communications
– year: 2016
  ident: br0380
  article-title: Spectral gap of random hyperbolic graphs and related parameters
– start-page: 1
  year: 2016
  end-page: 16
  ident: br0060
  article-title: Hyperbolic random graphs: separators and treewidth
  publication-title: 24th Annual European Symposium on Algorithms
– start-page: 467
  year: 2015
  end-page: 478
  ident: br0500
  article-title: Generating random hyperbolic graphs in subquadratic time
  publication-title: 26th International Symposium on Algorithms and Computation
– volume: 6
  start-page: 125
  year: 2002
  end-page: 145
  ident: br0240
  article-title: Connected components in random graphs with given expected degree sequences
  publication-title: Ann. Comb.
– start-page: 1
  year: 2016
  end-page: 18
  ident: br0080
  article-title: Efficient embedding of scale-free graphs in the hyperbolic plane
  publication-title: 24th Annual European Symposium on Algorithms
– start-page: 26
  year: 2015
  end-page: 39
  ident: br0370
  article-title: A bound for the diameter of random hyperbolic graphs
  publication-title: Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combinatorics
– volume: 10
  start-page: 1181
  year: 1960
  end-page: 1197
  ident: br0410
  article-title: An approximation theorem for the Poisson binomial distribution
  publication-title: Pacific J. Math.
– volume: 126
  start-page: 234
  year: 2016
  ident: 10.1016/j.tcs.2018.08.014_br0200
  article-title: Bootstrap percolation and the geometry of complex networks
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/j.spa.2015.08.005
– volume: 5
  start-page: 113
  issue: 1–2
  year: 2008
  ident: 10.1016/j.tcs.2018.08.014_br0150
  article-title: The structure of geographical threshold graphs
  publication-title: Internet Math.
  doi: 10.1080/15427951.2008.10129304
– volume: 27
  start-page: 2569
  issue: 4
  year: 2017
  ident: 10.1016/j.tcs.2018.08.014_br0340
  article-title: Structures in supercritical scale-free percolation
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/16-AAP1270
– volume: 286
  start-page: 509
  issue: 5439
  year: 1999
  ident: 10.1016/j.tcs.2018.08.014_br0030
  article-title: Emergence of scaling in random networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– start-page: 549
  year: 1989
  ident: 10.1016/j.tcs.2018.08.014_br0360
  article-title: Space-efficient static trees and graphs
– start-page: 1
  year: 2014
  ident: 10.1016/j.tcs.2018.08.014_br0190
  article-title: Clustering and the hyperbolic geometry of complex networks
– ident: 10.1016/j.tcs.2018.08.014_br0380
– ident: 10.1016/j.tcs.2018.08.014_br0420
– year: 2015
  ident: 10.1016/j.tcs.2018.08.014_br0320
  article-title: On the diameter of hyperbolic random graphs
– start-page: 467
  year: 2015
  ident: 10.1016/j.tcs.2018.08.014_br0500
  article-title: Generating random hyperbolic graphs in subquadratic time
– start-page: 115
  year: 2011
  ident: 10.1016/j.tcs.2018.08.014_br0430
  article-title: Efficient generation of networks with given expected degrees
– volume: 80
  start-page: 2324
  issue: 8
  year: 2018
  ident: 10.1016/j.tcs.2018.08.014_br0070
  article-title: Cliques in hyperbolic random graphs
  publication-title: Algorithmica
  doi: 10.1007/s00453-017-0323-3
– volume: 3
  start-page: 361
  issue: 3
  year: 2015
  ident: 10.1016/j.tcs.2018.08.014_br0100
  article-title: On a geometrisation of the Chung–Lu model for complex networks
  publication-title: J. Complex Netw.
  doi: 10.1093/comnet/cnu049
– volume: 99
  start-page: 15879
  issue: 25
  year: 2002
  ident: 10.1016/j.tcs.2018.08.014_br0230
  article-title: The average distances in random graphs with given expected degrees
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.252631999
– volume: 38
  start-page: 59
  issue: 1
  year: 2006
  ident: 10.1016/j.tcs.2018.08.014_br0440
  article-title: On a conditionally Poissonian graph process
  publication-title: Adv. in Appl. Probab.
  doi: 10.1239/aap/1143936140
– volume: 3
  issue: 1
  year: 2015
  ident: 10.1016/j.tcs.2018.08.014_br0280
  article-title: Inhomogeneous long-range percolation for real-life network modeling
  publication-title: Risks
  doi: 10.3390/risks3010001
– year: 1992
  ident: 10.1016/j.tcs.2018.08.014_br0310
  article-title: Measure Theory and Fine Properties of Functions
– year: 2010
  ident: 10.1016/j.tcs.2018.08.014_br0140
  article-title: A geometric model for on-line social networks
– ident: 10.1016/j.tcs.2018.08.014_br0490
– volume: 5
  start-page: 175
  issue: 1–2
  year: 2008
  ident: 10.1016/j.tcs.2018.08.014_br0020
  article-title: A spatial web graph model with local influence regions
  publication-title: Internet Math.
  doi: 10.1080/15427951.2008.10129305
– start-page: 1
  year: 2016
  ident: 10.1016/j.tcs.2018.08.014_br0080
  article-title: Efficient embedding of scale-free graphs in the hyperbolic plane
– start-page: 305
  year: 2008
  ident: 10.1016/j.tcs.2018.08.014_br0460
– start-page: 331
  year: 2009
  ident: 10.1016/j.tcs.2018.08.014_br0220
  article-title: Models for the compressible web
– volume: 71
  issue: 3
  year: 2005
  ident: 10.1016/j.tcs.2018.08.014_br0040
  article-title: Efficient generation of large random networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.036113
– year: 1986
  ident: 10.1016/j.tcs.2018.08.014_br0290
– start-page: 267
  year: 2013
  ident: 10.1016/j.tcs.2018.08.014_br0160
  article-title: Exact and efficient generation of geometric random variates and random graphs
– start-page: 573
  year: 2012
  ident: 10.1016/j.tcs.2018.08.014_br0330
  article-title: Random hyperbolic graphs: degree sequence and clustering
– start-page: 679
  year: 2003
  ident: 10.1016/j.tcs.2018.08.014_br0050
  article-title: Compact representations of separable graphs
– start-page: 595
  year: 2004
  ident: 10.1016/j.tcs.2018.08.014_br0120
  article-title: The WebGraph framework I: compression techniques
– volume: 6
  start-page: 125
  issue: 2
  year: 2002
  ident: 10.1016/j.tcs.2018.08.014_br0240
  article-title: Connected components in random graphs with given expected degree sequences
  publication-title: Ann. Comb.
  doi: 10.1007/PL00012580
– start-page: 425
  year: 2013
  ident: 10.1016/j.tcs.2018.08.014_br0090
  article-title: On the giant component of random hyperbolic graphs
– volume: 31
  start-page: 3
  issue: 1
  year: 2007
  ident: 10.1016/j.tcs.2018.08.014_br0130
  article-title: The phase transition in inhomogeneous random graphs
  publication-title: Random Structures Algorithms
  doi: 10.1002/rsa.20168
– start-page: 1
  year: 2016
  ident: 10.1016/j.tcs.2018.08.014_br0060
  article-title: Hyperbolic random graphs: separators and treewidth
– start-page: 1
  year: 2010
  ident: 10.1016/j.tcs.2018.08.014_br0450
  article-title: Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces
– year: 2014
  ident: 10.1016/j.tcs.2018.08.014_br0480
– ident: 10.1016/j.tcs.2018.08.014_br0400
– ident: 10.1016/j.tcs.2018.08.014_br0170
– year: 2003
  ident: 10.1016/j.tcs.2018.08.014_br0470
– start-page: 383
  year: 1996
  ident: 10.1016/j.tcs.2018.08.014_br0260
  article-title: Efficient suffix trees on secondary storage
– volume: 51
  start-page: 1079
  issue: 4
  year: 2002
  ident: 10.1016/j.tcs.2018.08.014_br0300
  article-title: Evolution of networks
  publication-title: Adv. Phys.
  doi: 10.1080/00018730110112519
– volume: 49
  start-page: 817
  issue: 3
  year: 2013
  ident: 10.1016/j.tcs.2018.08.014_br0270
  article-title: Scale-free percolation
  publication-title: Ann. Inst. Henri Poincaré Probab. Stat.
  doi: 10.1214/12-AIHP480
– start-page: 26
  year: 2015
  ident: 10.1016/j.tcs.2018.08.014_br0370
  article-title: A bound for the diameter of random hyperbolic graphs
– start-page: 14
  year: 2013
  ident: 10.1016/j.tcs.2018.08.014_br0350
  article-title: A spatial preferential attachment model with local clustering
– start-page: 2017
  year: 2017
  ident: 10.1016/j.tcs.2018.08.014_br0010
  article-title: Typical distances in a geometric model for complex networks
  publication-title: Internet Math.
– volume: 10
  start-page: 1181
  issue: 4
  year: 1960
  ident: 10.1016/j.tcs.2018.08.014_br0410
  article-title: An approximation theorem for the Poisson binomial distribution
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1960.10.1181
– volume: 1
  issue: 6
  year: 2010
  ident: 10.1016/j.tcs.2018.08.014_br0110
  article-title: Sustaining the Internet with hyperbolic mapping
  publication-title: Nat. Commun.
– volume: 1
  start-page: 91
  issue: 1
  year: 2004
  ident: 10.1016/j.tcs.2018.08.014_br0250
  article-title: The average distance in a random graph with given expected degrees
  publication-title: Internet Math.
  doi: 10.1080/15427951.2004.10129081
– start-page: 219
  year: 2009
  ident: 10.1016/j.tcs.2018.08.014_br0210
  article-title: On compressing social networks
– start-page: 1
  year: 2016
  ident: 10.1016/j.tcs.2018.08.014_br0390
  article-title: Bootstrap percolation on geometric inhomogeneous random graphs
– start-page: 371
  year: 2017
  ident: 10.1016/j.tcs.2018.08.014_br0180
  article-title: Greedy routing and the algorithmic small-world phenomenon
SSID ssj0000576
Score 2.5839782
Snippet Real-world networks, like social networks or the internet infrastructure, have structural properties such as large clustering coefficients that can best be...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Clustering coefficient
Compression algorithms
Hyperbolic random graphs
Random graph models
Real-world networks
Sampling algorithms
Title Geometric inhomogeneous random graphs
URI https://dx.doi.org/10.1016/j.tcs.2018.08.014
Volume 760
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZYGBRwFRHlUGWJBC49hJnbFUlBbULlCpW2THriiiSUXDym_nnDgFJGBgiBRHthSd76m7-w7gPFLhTPiR5wpNqcuUVK5AN99NQk2JIihQwvQ7j8bhYMLupsG0Br2qF8aUVVrdX-r0QlvbL21LzfZyPm8_mKQeWtMAmRI5qWjiY6xjuPzq_bPMA_2RMl9pMgC4u8psFjVeeWIQuwkvUDwJ-9k2fbE3_V3Yto6i0y3_ZQ9qOm3ATjWEwbEy2YCt0Rp4dbUPF7c6W5ghWYkzT5-yRYb8oTG4d9AkqWzhFPjUqwOY9G8eewPXTkJwE8q83OW-0J1EmBwpPqhkQqm4588ovuqIS4wttZSKGfkVkcSoxBeepgkxaFqaK3oI9TRL9RE4HsWQjnS41sxn6C1yEcyIVjzgiggheRO8igZxYmHCzbSKl7iqB3uOkWyxIVtsJlgS1oTL9ZFliZHx12ZWETb-dtEx6vDfjx3_79gJbOIqMmXWhJ1CPX9902foReSyVbBJCza6w_vBGFfD6fUHMo3F3g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KHtSDj6pYnznoRYjNZjfp5ijFWrXtxRZ6W3azW6zYpNh49bc7m0dVUA8eAiHZgTCZJzPzDcB5pMOJ9CPPlYZSl2mlXYlhvhuHhhJNUKGknXfuD8LuiN2Pg3EN2tUsjG2rLG1_YdNza10-aZbcbM6n0-ajLeqhNw1QKFGS7BDfKkP1tWsMrt4_-zwwICkKlrYEgMer0mbe5JXFFrKb8BzGk7CfndMXh9PZhs0yUnSui4_ZgZpJ6rBVbWFwSqWsw0Z_iby62IWLW5PO7Jas2JkmT-ksRQExmN076JN0OnNygOrFHow6N8N21y1XIbgxZV7mcl-aVixtkRQvtDKh0tzzJxRvTcQVJpdGKc2sAstIYVriS8_QmFg4LcM13YeVJE3MATgexZyOtLgxzGcYLnIZTIjRPOCaSKl4A7yKByIuccLtuooXUTWEPQtkm7BsE3aFJWENuFySzAuQjL8Os4qx4tufFmjEfyc7_B_ZGax1h_2e6N0NHo5gHd9EtueasGNYyV7fzAmGFJk6zUXmA0-wxmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+inhomogeneous+random+graphs&rft.jtitle=Theoretical+computer+science&rft.au=Bringmann%2C+Karl&rft.au=Keusch%2C+Ralph&rft.au=Lengler%2C+Johannes&rft.date=2019-02-14&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=760&rft.spage=35&rft.epage=54&rft_id=info:doi/10.1016%2Fj.tcs.2018.08.014&rft.externalDocID=S0304397518305309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon