Microstructure and properties of Ti2AlN thin film synthesized by vacuum annealing of high power pulsed magnetron sputtering deposited Ti/AlN multilayers

The (002) texture, compactness, and smoothness Ti2AlN thin films render them promising for many potential applications, especially in the surface modification of wear-resistant components. In this study, Ti2AlN thin films were fabricated by the vacuum annealing of Ti/AlN multilayers deposited by hig...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 425; p. 127749
Main Authors Ma, D.L., Deng, Q.Y., Liu, H.Y., Li, Y.T., Leng, Y.X.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.11.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The (002) texture, compactness, and smoothness Ti2AlN thin films render them promising for many potential applications, especially in the surface modification of wear-resistant components. In this study, Ti2AlN thin films were fabricated by the vacuum annealing of Ti/AlN multilayers deposited by high power pulsed magnetron sputtering (HPPMS). The influence of the multilayer modulation ratio and modulation period of Ti/AlN on the microstructure and properties of the Ti2AlN thin film were explored. The results indicate that a Ti/AlN modulation ratio close to 6:4 and period less than 30 nm are appropriate for yielding high-quality crystallized Ti2AlN thin films. The microstructure of the Ti2AlN thin film is (002) textured, nanocrystalline, smooth, and compact, which benefits from the HPPMS technique. The Ti2AlN thin film adheres well to the substrate and has a hardness of 32.5 ± 2.1 GPa and has a friction coefficient of 0.15 while tested with a Si3N4 friction pair. •The modulation ratio and period are critical for Ti2AlN thin film synthesis.•HPPMS improves the (002) texture and compactness of the Ti2AlN thin film.•HPPMS enhances the adhesion, hardness and wear resistance of the Ti2AlN thin film.
AbstractList The (002) texture, compactness, and smoothness Ti2AlN thin films render them promising for many potential applications, especially in the surface modification of wear-resistant components. In this study, Ti2AlN thin films were fabricated by the vacuum annealing of Ti/AlN multilayers deposited by high power pulsed magnetron sputtering (HPPMS). The influence of the multilayer modulation ratio and modulation period of Ti/AlN on the microstructure and properties of the Ti2AlN thin film were explored. The results indicate that a Ti/AlN modulation ratio close to 6:4 and period less than 30 nm are appropriate for yielding high-quality crystallized Ti2AlN thin films. The microstructure of the Ti2AlN thin film is (002) textured, nanocrystalline, smooth, and compact, which benefits from the HPPMS technique. The Ti2AlN thin film adheres well to the substrate and has a hardness of 32.5 ± 2.1 GPa and has a friction coefficient of 0.15 while tested with a Si3N4 friction pair. •The modulation ratio and period are critical for Ti2AlN thin film synthesis.•HPPMS improves the (002) texture and compactness of the Ti2AlN thin film.•HPPMS enhances the adhesion, hardness and wear resistance of the Ti2AlN thin film.
The (002) texture, compactness, and smoothness Ti2AlN thin films render them promising for many potential applications, especially in the surface modification of wear-resistant components. In this study, Ti2AlN thin films were fabricated by the vacuum annealing of Ti/AlN multilayers deposited by high power pulsed magnetron sputtering (HPPMS). The influence of the multilayer modulation ratio and modulation period of Ti/AlN on the microstructure and properties of the Ti2AlN thin film were explored. The results indicate that a Ti/AlN modulation ratio close to 6:4 and period less than 30 nm are appropriate for yielding high-quality crystallized Ti2AlN thin films. The microstructure of the Ti2AlN thin film is (002) textured, nanocrystalline, smooth, and compact, which benefits from the HPPMS technique. The Ti2AlN thin film adheres well to the substrate and has a hardness of 32.5 ± 2.1 GPa and has a friction coefficient of 0.15 while tested with a Si3N4 friction pair.
ArticleNumber 127749
Author Leng, Y.X.
Liu, H.Y.
Li, Y.T.
Deng, Q.Y.
Ma, D.L.
Author_xml – sequence: 1
  givenname: D.L.
  surname: Ma
  fullname: Ma, D.L.
  organization: College of Physics and Engineering, Chengdu Normal University, Chengdu 611130, China
– sequence: 2
  givenname: Q.Y.
  surname: Deng
  fullname: Deng, Q.Y.
  email: qydeng@hainanu.edu.cn
  organization: School of Materials Science and Engineering, Hainan University, Haikou 570228, China
– sequence: 3
  givenname: H.Y.
  surname: Liu
  fullname: Liu, H.Y.
  organization: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
– sequence: 4
  givenname: Y.T.
  surname: Li
  fullname: Li, Y.T.
  organization: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
– sequence: 5
  givenname: Y.X.
  surname: Leng
  fullname: Leng, Y.X.
  email: yxleng@263.net
  organization: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
BookMark eNqFkc1u1DAUhS3USkwLr4Assc7UP0ns7KgqaJHaspmuLce-mfEosYN_ioYn4XGbaGDN6i7u-c7RvecKXfjgAaFPlGwpoe3NcZtKHEzQecsIo1vKhKi7d2hDpegqzmtxgTaENaKSnWDv0VVKR0IIFV29QX-enIkh5VhMLhGw9hbPMcwQs4OEw4B3jt2OzzgfnMeDGyecTj4fILnfYHF_wq_alDItoAc9Or9fmYPbH_AcfkHEcxnTIpz03kOOweM0l5whrkoLc0guL-udu1lDpjJmN-oTxPQBXQ56QT_-ndfo5dvX3d1D9fjj_vvd7WNleE1yJSQMZqiZJpZba6XkWpNG9G3dN1I0NW174AMzNevangprjCTQtZJI3TUtN_wafT77Llf_LJCyOoYS_RKpWEvajhNK2KJqz6r1WSnCoOboJh1PihK1tqCO6l8Lam1BnVtYwC9nEJYbXh1ElYwDb8C6CCYrG9z_LN4Av-yZvA
CitedBy_id crossref_primary_10_3390_ma16237294
crossref_primary_10_1016_j_jmapro_2023_09_055
crossref_primary_10_1177_02670844231218221
crossref_primary_10_3390_coatings13020329
crossref_primary_10_1016_j_jmapro_2022_07_060
crossref_primary_10_1016_j_matchemphys_2023_128816
crossref_primary_10_1016_j_wear_2022_204583
Cites_doi 10.1063/1.1882752
10.1016/j.wear.2007.06.013
10.1016/j.tsf.2009.07.184
10.1016/j.wear.2011.01.043
10.1016/j.vacuum.2012.06.003
10.1016/j.jeurceramsoc.2018.07.028
10.1016/j.materresbull.2016.03.031
10.1016/j.vacuum.2016.10.032
10.1016/j.jallcom.2018.04.012
10.1063/1.4941271
10.1016/j.actamat.2007.04.006
10.1016/j.actamat.2017.03.055
10.1016/j.surfcoat.2017.09.042
10.1080/21663831.2019.1594428
10.1016/j.jeurceramsoc.2020.05.017
10.1016/j.apsusc.2016.01.229
10.1016/j.tsf.2009.10.145
10.1016/j.wear.2020.203414
10.1016/S0079-6786(00)00006-6
10.1063/1.2785958
10.1016/j.jallcom.2020.153984
10.1063/1.2731520
10.1002/pssr.201004100
10.1016/j.surfcoat.2011.03.081
10.1016/j.surfcoat.2011.11.013
10.1016/j.surfcoat.2015.09.038
10.1007/s40145-017-0224-6
10.1016/j.vacuum.2018.11.058
10.1016/j.surfcoat.2012.09.050
10.1116/1.3691832
10.1016/j.pmatsci.2006.02.002
10.1016/j.apsusc.2016.11.025
10.1016/j.apsusc.2016.11.183
10.1116/1.4916108
10.1016/j.ceramint.2018.06.055
10.1021/jp402373k
10.1063/1.2161943
10.1557/jmr.2012.8
10.1016/j.surfcoat.2014.08.034
10.1511/2001.28.736
10.1016/j.ceramint.2018.11.067
10.1016/j.jmst.2019.03.049
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Nov 15, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 15, 2021
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
JG9
DOI 10.1016/j.surfcoat.2021.127749
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
ExternalDocumentID 10_1016_j_surfcoat_2021_127749
S0257897221009233
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AGHFR
AKRWK
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
WUQ
7QQ
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c340t-78efcf42a0d3ddd883aa057b64b5875416be3f2c4296b17dcc80e96808a9563c3
IEDL.DBID AIKHN
ISSN 0257-8972
IngestDate Thu Oct 10 16:14:16 EDT 2024
Thu Sep 26 18:18:10 EDT 2024
Fri Feb 23 02:42:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ti2AlN
High power pulsed magnetron sputtering
Wear resistance
Microstructure
Hardness
Adhesion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-78efcf42a0d3ddd883aa057b64b5875416be3f2c4296b17dcc80e96808a9563c3
PQID 2606930102
PQPubID 2045394
ParticipantIDs proquest_journals_2606930102
crossref_primary_10_1016_j_surfcoat_2021_127749
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2021_127749
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Ibrahim, Rahman, Zhao, Veder, Zhou, Mohammadpour, Majeed, Nikoloski, Jiang (bb0145) 2018; 750
Emmerlich, Gassner, Eklund, Högberg, Hultman (bb0090) 2008; 264
Georgiou, Lopes, De Bilde, Drees (bb0225) 2020; 458-459
Cabioch, Alkazaz, Beaufort, Nicolai, Eyidi, Eklund (bb0060) 2016; 80
Jing, Yin, Yukimura, Sun, Leng, Huang (bb0135) 2012; 86
Joelsson, Flink, Birch, Hultman (bb0030) 2007; 102
Gupta, Barsoum (bb0095) 2011; 271
Hoglund, Beckers, Schell, von Borany, Birch, Hultman (bb0175) 2007; 90
Barsoum (bb0005) 2000; 28
Pshyk, Coy, Kempiński, Scheibe, Jurga (bb0085) 2019; 7
Wu, Wu, Jiang, Ma, Chen, Sun, Leng, Huang (bb0125) 2017; 135
Raman, Shchelkanov, Mclain, Ruzic (bb0120) 2015; 33
Joelsson, Horling, Birch, Hultman (bb0040) 2005; 86
Wang, Liu, Wang, Li, Ke, Wang (bb0050) 2017; 396
Zhang, Wang, Lee, Ke, Nowak, Kim (bb0020) 2012; 212
Eklund, Beckers, Jansson, Högberg, Hultman (bb0015) 2010; 518
Li, Zhao, Qi, Li, Zheng, Qian, Sheng (bb0025) 2018; 44
Zhang, Hu, Wang, Zhou (bb0150) 2020; 38
Zhang, Jin, Chai, Pan, Seng, Goh, Wong, Sullivan, Wang (bb0205) 2016; 368
Gudmundsson, Brenning, Lundin, Helmersson (bb0110) 2012; 30
Ma, Liu, Deng, Yang, Silins, Huang, Leng (bb0190) 2019; 160
Höglund, Beckers, Schell, Borany, Birch, Hultman (bb0070) 2007; 90
Barsoum, Radovic (bb0075) 2011; vol. 41
Lin, Chistyakov (bb0180) 2017; 396
Hopfeld, Grieseler, Vogel, Romanus, Schaaf (bb0080) 2014; 257
Magnfalt, Fillon, Boyd, Helmersson, Sarakinos, Abadias (bb0170) 2016; 119
Li, Gonzalez-Julian, Malzbender (bb0155) 2020; 40
Lundin, Sarakinos (bb0100) 2012; 27
Mayrhofer, Mitterer, Hultman, Clemens (bb0165) 2006; 51
Beckers, Schell, Martins, Mücklich, Möller, Hultman (bb0035) 2006; 99
Cheng, Gao, Zhang, Wang, Wang, Liu (bb0140) 2020; 825
Gröner, Kirste, Oeser, Fromm, Wirth, Meyer, Burmeister, Eberl (bb0055) 2018; 343
Barsoum, El-Raghy (bb0010) 2001; 89
Griggs, Lang, Gruber, Tucker, Taheri, Barsoum (bb0215) 2017; 131
Xu, Zhu, Grasso, Suzuki, Kasahara, Tosa, Kim, Sakka, Zhu, Hu (bb0220) 2017; 6
Anders (bb0105) 2011; 205
Anders (bb0130) 2010; 518
Beckers, Eriksson, Lauridsen, Baehtz, Jensen, Hultman (bb0065) 2010; 4
Persson, Kodambaka, Petrov, Hultman (bb0160) 2007; 55
Wang, Chen, Wang, Wang, Zhang (bb0195) 2018; 38
Zhang, Xia, Wan, Wang, Kim (bb0200) 2019; 45
Wu, Wang, Yu, Jiang, Sun, Jing, Zhu, Wu, Leng, Huang (bb0115) 2015; 281
Yang, Keunecke, Stein, Gao, Gong, Jiang, Bewilogua, Sun (bb0045) 2012; 206
Ma, Li, Deng, Huang, Leng, Huang (bb0185) 2019; 33(01n03
Zhang, Nie, Shen, Chai, Pan, Wong, Sullivan, Jin, Wang (bb0210) 2013; 117
Beckers (10.1016/j.surfcoat.2021.127749_bb0065) 2010; 4
Gudmundsson (10.1016/j.surfcoat.2021.127749_bb0110) 2012; 30
Wu (10.1016/j.surfcoat.2021.127749_bb0125) 2017; 135
Pshyk (10.1016/j.surfcoat.2021.127749_bb0085) 2019; 7
Wu (10.1016/j.surfcoat.2021.127749_bb0115) 2015; 281
Ma (10.1016/j.surfcoat.2021.127749_bb0190) 2019; 160
Mayrhofer (10.1016/j.surfcoat.2021.127749_bb0165) 2006; 51
Ma (10.1016/j.surfcoat.2021.127749_bb0185) 2019; 33(01n03
Zhang (10.1016/j.surfcoat.2021.127749_bb0200) 2019; 45
Barsoum (10.1016/j.surfcoat.2021.127749_bb0010) 2001; 89
Wang (10.1016/j.surfcoat.2021.127749_bb0050) 2017; 396
Hopfeld (10.1016/j.surfcoat.2021.127749_bb0080) 2014; 257
Emmerlich (10.1016/j.surfcoat.2021.127749_bb0090) 2008; 264
Beckers (10.1016/j.surfcoat.2021.127749_bb0035) 2006; 99
Anders (10.1016/j.surfcoat.2021.127749_bb0105) 2011; 205
Gupta (10.1016/j.surfcoat.2021.127749_bb0095) 2011; 271
Georgiou (10.1016/j.surfcoat.2021.127749_bb0225) 2020; 458-459
Joelsson (10.1016/j.surfcoat.2021.127749_bb0030) 2007; 102
Gröner (10.1016/j.surfcoat.2021.127749_bb0055) 2018; 343
Hoglund (10.1016/j.surfcoat.2021.127749_bb0175) 2007; 90
Höglund (10.1016/j.surfcoat.2021.127749_bb0070) 2007; 90
Ibrahim (10.1016/j.surfcoat.2021.127749_bb0145) 2018; 750
Cheng (10.1016/j.surfcoat.2021.127749_bb0140) 2020; 825
Xu (10.1016/j.surfcoat.2021.127749_bb0220) 2017; 6
Zhang (10.1016/j.surfcoat.2021.127749_bb0205) 2016; 368
Lundin (10.1016/j.surfcoat.2021.127749_bb0100) 2012; 27
Griggs (10.1016/j.surfcoat.2021.127749_bb0215) 2017; 131
Joelsson (10.1016/j.surfcoat.2021.127749_bb0040) 2005; 86
Cabioch (10.1016/j.surfcoat.2021.127749_bb0060) 2016; 80
Zhang (10.1016/j.surfcoat.2021.127749_bb0210) 2013; 117
Anders (10.1016/j.surfcoat.2021.127749_bb0130) 2010; 518
Lin (10.1016/j.surfcoat.2021.127749_bb0180) 2017; 396
Eklund (10.1016/j.surfcoat.2021.127749_bb0015) 2010; 518
Zhang (10.1016/j.surfcoat.2021.127749_bb0150) 2020; 38
Magnfalt (10.1016/j.surfcoat.2021.127749_bb0170) 2016; 119
Jing (10.1016/j.surfcoat.2021.127749_bb0135) 2012; 86
Li (10.1016/j.surfcoat.2021.127749_bb0155) 2020; 40
Raman (10.1016/j.surfcoat.2021.127749_bb0120) 2015; 33
Zhang (10.1016/j.surfcoat.2021.127749_bb0020) 2012; 212
Wang (10.1016/j.surfcoat.2021.127749_bb0195) 2018; 38
Persson (10.1016/j.surfcoat.2021.127749_bb0160) 2007; 55
Barsoum (10.1016/j.surfcoat.2021.127749_bb0005) 2000; 28
Yang (10.1016/j.surfcoat.2021.127749_bb0045) 2012; 206
Barsoum (10.1016/j.surfcoat.2021.127749_bb0075) 2011; vol. 41
Li (10.1016/j.surfcoat.2021.127749_bb0025) 2018; 44
References_xml – volume: 205
  start-page: S1
  year: 2011
  end-page: S9
  ident: bb0105
  article-title: Discharge physics of high power impulse magnetron sputtering
  publication-title: Surf. Coat. Technol.
  contributor:
    fullname: Anders
– volume: 212
  start-page: 199
  year: 2012
  end-page: 206
  ident: bb0020
  article-title: Nanocrystalline thin films synthesized from a Ti
  publication-title: Surf. Coat. Technol.
  contributor:
    fullname: Kim
– volume: 28
  start-page: 201
  year: 2000
  end-page: 281
  ident: bb0005
  article-title: The M
  publication-title: Prog. Solid State Chem.
  contributor:
    fullname: Barsoum
– volume: 33
  year: 2015
  ident: bb0120
  article-title: High power pulsed magnetron sputtering: a method to increase deposition rate
  publication-title: J. Vac. Sci. Technol. A.
  contributor:
    fullname: Ruzic
– volume: 86
  year: 2005
  ident: bb0040
  article-title: Single-crystal Ti
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Hultman
– volume: 206
  start-page: 2661
  year: 2012
  end-page: 2666
  ident: bb0045
  article-title: Formation of Ti
  publication-title: Surf. Coat. Technol.
  contributor:
    fullname: Sun
– volume: 90
  year: 2007
  ident: bb0070
  article-title: Topotaxial growth of Ti
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Hultman
– volume: vol. 41
  start-page: 195
  year: 2011
  end-page: 227
  ident: bb0075
  article-title: Elastic and mechanical properties of the MAX phases
  publication-title: Annual Review of Materials Research
  contributor:
    fullname: Radovic
– volume: 102
  year: 2007
  ident: bb0030
  article-title: Deposition of single-crystal Ti
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Hultman
– volume: 4
  start-page: 121
  year: 2010
  end-page: 123
  ident: bb0065
  article-title: Formation of basal plane fiber-textured Ti
  publication-title: Physica Status Solidi-Rapid Research Letters
  contributor:
    fullname: Hultman
– volume: 45
  start-page: 3940
  year: 2019
  end-page: 3947
  ident: bb0200
  article-title: Microstructures and properties of amorphous, polycrystalline, and M
  publication-title: Ceram. Int.
  contributor:
    fullname: Kim
– volume: 264
  start-page: 914
  year: 2008
  end-page: 919
  ident: bb0090
  article-title: Micro and macroscale tribological behavior of epitaxial Ti
  publication-title: Wear
  contributor:
    fullname: Hultman
– volume: 396
  start-page: 129
  year: 2017
  end-page: 137
  ident: bb0180
  article-title: C-axis orientated AlN films deposited using deep oscillation magnetron sputtering
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Chistyakov
– volume: 80
  start-page: 58
  year: 2016
  end-page: 63
  ident: bb0060
  article-title: Ti
  publication-title: Mater. Res. Bull.
  contributor:
    fullname: Eklund
– volume: 281
  start-page: 27
  year: 2015
  end-page: 34
  ident: bb0115
  article-title: Modulate the deposition rate through changing the combination of frequency and pulse width at constant duty cycle
  publication-title: Surf. Coat. Technol.
  contributor:
    fullname: Huang
– volume: 518
  start-page: 1851
  year: 2010
  end-page: 1878
  ident: bb0015
  article-title: The M
  publication-title: Thin Solid Films
  contributor:
    fullname: Hultman
– volume: 51
  start-page: 1032
  year: 2006
  end-page: 1114
  ident: bb0165
  article-title: Microstructural design of hard coatings
  publication-title: Prog. Mater. Sci.
  contributor:
    fullname: Clemens
– volume: 343
  start-page: 166
  year: 2018
  end-page: 171
  ident: bb0055
  article-title: Microstructural investigations of polycrystalline Ti
  publication-title: Surf. Coat. Technol.
  contributor:
    fullname: Eberl
– volume: 257
  start-page: 286
  year: 2014
  end-page: 294
  ident: bb0080
  article-title: Tribological behavior of selected M
  publication-title: Surf. Coat. Technol.
  contributor:
    fullname: Schaaf
– volume: 38
  start-page: 205
  year: 2020
  end-page: 220
  ident: bb0150
  article-title: Structural defects in MAX phases and their derivative MXenes: a look forward
  publication-title: J. Mater. Sci. Technol.
  contributor:
    fullname: Zhou
– volume: 89
  start-page: 334
  year: 2001
  end-page: 343
  ident: bb0010
  article-title: The MAX phases: unique new carbide and nitride materials
  publication-title: Am. Sci.
  contributor:
    fullname: El-Raghy
– volume: 825
  year: 2020
  ident: bb0140
  article-title: Influence of crystallinity of CuCo
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Liu
– volume: 271
  start-page: 1878
  year: 2011
  end-page: 1894
  ident: bb0095
  article-title: On the tribology of the MAX phases and their composites during dry sliding: a review
  publication-title: Wear
  contributor:
    fullname: Barsoum
– volume: 55
  start-page: 4401
  year: 2007
  end-page: 4407
  ident: bb0160
  article-title: Epitaxial Ti
  publication-title: Acta Mater.
  contributor:
    fullname: Hultman
– volume: 27
  start-page: 780
  year: 2012
  end-page: 792
  ident: bb0100
  article-title: An introduction to thin film processing using high-power impulse magnetron sputtering
  publication-title: J. Mater. Res.
  contributor:
    fullname: Sarakinos
– volume: 86
  start-page: 2114
  year: 2012
  end-page: 2119
  ident: bb0135
  article-title: Titanium film deposition by high-power impulse magnetron sputtering: influence of pulse duration
  publication-title: VACUUM
  contributor:
    fullname: Huang
– volume: 117
  start-page: 11656
  year: 2013
  end-page: 11662
  ident: bb0210
  article-title: Charge distribution in the single crystalline Ti
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Wang
– volume: 458-459
  start-page: 203414
  year: 2020
  ident: bb0225
  article-title: How can we measure sliding Wear in an efficient way?
  publication-title: Wear
  contributor:
    fullname: Drees
– volume: 160
  start-page: 410
  year: 2019
  end-page: 417
  ident: bb0190
  article-title: Optimal target sputtering mode for aluminum nitride thin film deposition by high power pulsed magnetron sputtering
  publication-title: Vacuum
  contributor:
    fullname: Leng
– volume: 44
  start-page: 17530
  year: 2018
  end-page: 17534
  ident: bb0025
  article-title: Preparation of single-phase Ti
  publication-title: Ceram. Int.
  contributor:
    fullname: Sheng
– volume: 30
  year: 2012
  ident: bb0110
  article-title: High power impulse magnetron sputtering discharge
  publication-title: J. Vac. Sci. Technol. A
  contributor:
    fullname: Helmersson
– volume: 750
  start-page: 451
  year: 2018
  end-page: 464
  ident: bb0145
  article-title: Annealing effects on microstructural, optical, and mechanical properties of sputtered CrN thin film coatings: experimental studies and finite element modeling
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Jiang
– volume: 131
  start-page: 141
  year: 2017
  end-page: 155
  ident: bb0215
  article-title: Spherical nanoindentation, modeling and transmission electron microscopy evidence for ripplocations in Ti
  publication-title: Acta Mater.
  contributor:
    fullname: Barsoum
– volume: 135
  start-page: 93
  year: 2017
  end-page: 100
  ident: bb0125
  article-title: Plasma characteristics and properties of Cu films prepared by high power pulsed magnetron sputtering
  publication-title: Vacuum
  contributor:
    fullname: Huang
– volume: 90
  year: 2007
  ident: bb0175
  article-title: Topotaxial growth of Ti
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Hultman
– volume: 99
  year: 2006
  ident: bb0035
  article-title: Microstructure and nonbasal-plane growth of epitaxial Ti[sub 2]AlN thin films
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Hultman
– volume: 7
  start-page: 244
  year: 2019
  end-page: 250
  ident: bb0085
  article-title: Low-temperature growth of epitaxial Ti
  publication-title: Materials Research Letters
  contributor:
    fullname: Jurga
– volume: 40
  start-page: 4445
  year: 2020
  end-page: 4453
  ident: bb0155
  article-title: Fabrication and mechanical performance of Ti
  publication-title: J. Eur. Ceram. Soc.
  contributor:
    fullname: Malzbender
– volume: 396
  start-page: 1435
  year: 2017
  end-page: 1442
  ident: bb0050
  article-title: Dense and high-stability Ti
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Wang
– volume: 518
  start-page: 4087
  year: 2010
  end-page: 4090
  ident: bb0130
  article-title: A structure zone diagram including plasma-based deposition and ion etching
  publication-title: Thin Solid Films
  contributor:
    fullname: Anders
– volume: 33(01n03
  year: 2019
  ident: bb0185
  article-title: Tailoring the texture of titanium thin films deposited by high-power pulsed magnetron sputtering
  publication-title: International Journal of Modern Physics B
  contributor:
    fullname: Huang
– volume: 6
  start-page: 120
  year: 2017
  end-page: 128
  ident: bb0220
  article-title: Effect of texture microstructure on tribological properties of tailored Ti
  publication-title: Journal of Advanced Ceramics
  contributor:
    fullname: Hu
– volume: 38
  start-page: 4892
  year: 2018
  end-page: 4898
  ident: bb0195
  article-title: Microstructure evolution of polycrystalline Ti
  publication-title: J. Eur. Ceram. Soc.
  contributor:
    fullname: Zhang
– volume: 368
  start-page: 88
  year: 2016
  end-page: 96
  ident: bb0205
  article-title: Temperature-dependent microstructural evolution of Ti
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Wang
– volume: 119
  year: 2016
  ident: bb0170
  article-title: Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Abadias
– volume: 86
  issue: 11
  year: 2005
  ident: 10.1016/j.surfcoat.2021.127749_bb0040
  article-title: Single-crystal Ti2AlN thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1882752
  contributor:
    fullname: Joelsson
– volume: 264
  start-page: 914
  issue: 11
  year: 2008
  ident: 10.1016/j.surfcoat.2021.127749_bb0090
  article-title: Micro and macroscale tribological behavior of epitaxial Ti3SiC2 thin films
  publication-title: Wear
  doi: 10.1016/j.wear.2007.06.013
  contributor:
    fullname: Emmerlich
– volume: 518
  start-page: 1851
  issue: 8
  year: 2010
  ident: 10.1016/j.surfcoat.2021.127749_bb0015
  article-title: The Mn+1AXn phases: materials science and thin-film processing
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2009.07.184
  contributor:
    fullname: Eklund
– volume: 271
  start-page: 1878
  issue: 9–10
  year: 2011
  ident: 10.1016/j.surfcoat.2021.127749_bb0095
  article-title: On the tribology of the MAX phases and their composites during dry sliding: a review
  publication-title: Wear
  doi: 10.1016/j.wear.2011.01.043
  contributor:
    fullname: Gupta
– volume: 86
  start-page: 2114
  issue: 12
  year: 2012
  ident: 10.1016/j.surfcoat.2021.127749_bb0135
  article-title: Titanium film deposition by high-power impulse magnetron sputtering: influence of pulse duration
  publication-title: VACUUM
  doi: 10.1016/j.vacuum.2012.06.003
  contributor:
    fullname: Jing
– volume: 33(01n03
  year: 2019
  ident: 10.1016/j.surfcoat.2021.127749_bb0185
  article-title: Tailoring the texture of titanium thin films deposited by high-power pulsed magnetron sputtering
  publication-title: International Journal of Modern Physics B
  contributor:
    fullname: Ma
– volume: 38
  start-page: 4892
  issue: 15
  year: 2018
  ident: 10.1016/j.surfcoat.2021.127749_bb0195
  article-title: Microstructure evolution of polycrystalline Ti2AlN MAX phase film during post-deposition annealing
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.07.028
  contributor:
    fullname: Wang
– volume: 80
  start-page: 58
  year: 2016
  ident: 10.1016/j.surfcoat.2021.127749_bb0060
  article-title: Ti2AlN thin films synthesized by annealing of (Ti+Al)/AlN multilayers
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2016.03.031
  contributor:
    fullname: Cabioch
– volume: 135
  start-page: 93
  year: 2017
  ident: 10.1016/j.surfcoat.2021.127749_bb0125
  article-title: Plasma characteristics and properties of Cu films prepared by high power pulsed magnetron sputtering
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2016.10.032
  contributor:
    fullname: Wu
– volume: 750
  start-page: 451
  year: 2018
  ident: 10.1016/j.surfcoat.2021.127749_bb0145
  article-title: Annealing effects on microstructural, optical, and mechanical properties of sputtered CrN thin film coatings: experimental studies and finite element modeling
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.04.012
  contributor:
    fullname: Ibrahim
– volume: vol. 41
  start-page: 195
  year: 2011
  ident: 10.1016/j.surfcoat.2021.127749_bb0075
  article-title: Elastic and mechanical properties of the MAX phases
  contributor:
    fullname: Barsoum
– volume: 119
  issue: 5
  year: 2016
  ident: 10.1016/j.surfcoat.2021.127749_bb0170
  article-title: Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4941271
  contributor:
    fullname: Magnfalt
– volume: 55
  start-page: 4401
  issue: 13
  year: 2007
  ident: 10.1016/j.surfcoat.2021.127749_bb0160
  article-title: Epitaxial Ti2AlN(0001) thin film deposition by dual-target reactive magnetron sputtering
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.04.006
  contributor:
    fullname: Persson
– volume: 131
  start-page: 141
  year: 2017
  ident: 10.1016/j.surfcoat.2021.127749_bb0215
  article-title: Spherical nanoindentation, modeling and transmission electron microscopy evidence for ripplocations in Ti3SiC2
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.03.055
  contributor:
    fullname: Griggs
– volume: 343
  start-page: 166
  year: 2018
  ident: 10.1016/j.surfcoat.2021.127749_bb0055
  article-title: Microstructural investigations of polycrystalline Ti2AlN prepared by physical vapor deposition of Ti-AlN multilayers
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2017.09.042
  contributor:
    fullname: Gröner
– volume: 7
  start-page: 244
  issue: 6
  year: 2019
  ident: 10.1016/j.surfcoat.2021.127749_bb0085
  article-title: Low-temperature growth of epitaxial Ti2AlC MAX phase thin films by low-rate layer-by-layer PVD
  publication-title: Materials Research Letters
  doi: 10.1080/21663831.2019.1594428
  contributor:
    fullname: Pshyk
– volume: 40
  start-page: 4445
  issue: 13
  year: 2020
  ident: 10.1016/j.surfcoat.2021.127749_bb0155
  article-title: Fabrication and mechanical performance of Ti2AlN prepared by FAST/SPS
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.05.017
  contributor:
    fullname: Li
– volume: 368
  start-page: 88
  year: 2016
  ident: 10.1016/j.surfcoat.2021.127749_bb0205
  article-title: Temperature-dependent microstructural evolution of Ti2AlN thin films deposited by reactive magnetron sputtering
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.01.229
  contributor:
    fullname: Zhang
– volume: 518
  start-page: 4087
  issue: 15
  year: 2010
  ident: 10.1016/j.surfcoat.2021.127749_bb0130
  article-title: A structure zone diagram including plasma-based deposition and ion etching
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2009.10.145
  contributor:
    fullname: Anders
– volume: 458-459
  start-page: 203414
  year: 2020
  ident: 10.1016/j.surfcoat.2021.127749_bb0225
  article-title: How can we measure sliding Wear in an efficient way?
  publication-title: Wear
  doi: 10.1016/j.wear.2020.203414
  contributor:
    fullname: Georgiou
– volume: 28
  start-page: 201
  issue: 1
  year: 2000
  ident: 10.1016/j.surfcoat.2021.127749_bb0005
  article-title: The MN+ 1AXN phases: a new class of solids: thermodynamically stable nanolaminates
  publication-title: Prog. Solid State Chem.
  doi: 10.1016/S0079-6786(00)00006-6
  contributor:
    fullname: Barsoum
– volume: 102
  issue: 7
  year: 2007
  ident: 10.1016/j.surfcoat.2021.127749_bb0030
  article-title: Deposition of single-crystal Ti2AlN thin films by reactive magnetron sputtering from a 2Ti:Al compound target
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2785958
  contributor:
    fullname: Joelsson
– volume: 825
  year: 2020
  ident: 10.1016/j.surfcoat.2021.127749_bb0140
  article-title: Influence of crystallinity of CuCo2S4 on its supercapacitive behavior
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.153984
  contributor:
    fullname: Cheng
– volume: 90
  issue: 17
  year: 2007
  ident: 10.1016/j.surfcoat.2021.127749_bb0175
  article-title: Topotaxial growth of Ti2AlN by solid state reaction in AlN/Ti(0001) multilayer thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2731520
  contributor:
    fullname: Hoglund
– volume: 4
  start-page: 121
  issue: 5–6
  year: 2010
  ident: 10.1016/j.surfcoat.2021.127749_bb0065
  article-title: Formation of basal plane fiber-textured Ti2AlN films on amorphous substrates
  publication-title: Physica Status Solidi-Rapid Research Letters
  doi: 10.1002/pssr.201004100
  contributor:
    fullname: Beckers
– volume: 205
  start-page: S1
  year: 2011
  ident: 10.1016/j.surfcoat.2021.127749_bb0105
  article-title: Discharge physics of high power impulse magnetron sputtering
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2011.03.081
  contributor:
    fullname: Anders
– volume: 206
  start-page: 2661
  issue: 10
  year: 2012
  ident: 10.1016/j.surfcoat.2021.127749_bb0045
  article-title: Formation of Ti2AlN phase after post-heat treatment of Ti–Al–N films deposited by pulsed magnetron sputtering
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2011.11.013
  contributor:
    fullname: Yang
– volume: 281
  start-page: 27
  year: 2015
  ident: 10.1016/j.surfcoat.2021.127749_bb0115
  article-title: Modulate the deposition rate through changing the combination of frequency and pulse width at constant duty cycle
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2015.09.038
  contributor:
    fullname: Wu
– volume: 6
  start-page: 120
  issue: 2
  year: 2017
  ident: 10.1016/j.surfcoat.2021.127749_bb0220
  article-title: Effect of texture microstructure on tribological properties of tailored Ti3AlC2 ceramic
  publication-title: Journal of Advanced Ceramics
  doi: 10.1007/s40145-017-0224-6
  contributor:
    fullname: Xu
– volume: 160
  start-page: 410
  year: 2019
  ident: 10.1016/j.surfcoat.2021.127749_bb0190
  article-title: Optimal target sputtering mode for aluminum nitride thin film deposition by high power pulsed magnetron sputtering
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2018.11.058
  contributor:
    fullname: Ma
– volume: 212
  start-page: 199
  year: 2012
  ident: 10.1016/j.surfcoat.2021.127749_bb0020
  article-title: Nanocrystalline thin films synthesized from a Ti2AlN compound target by high power impulse magnetron sputtering technique
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2012.09.050
  contributor:
    fullname: Zhang
– volume: 30
  issue: 3
  year: 2012
  ident: 10.1016/j.surfcoat.2021.127749_bb0110
  article-title: High power impulse magnetron sputtering discharge
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.3691832
  contributor:
    fullname: Gudmundsson
– volume: 51
  start-page: 1032
  issue: 8
  year: 2006
  ident: 10.1016/j.surfcoat.2021.127749_bb0165
  article-title: Microstructural design of hard coatings
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2006.02.002
  contributor:
    fullname: Mayrhofer
– volume: 396
  start-page: 129
  year: 2017
  ident: 10.1016/j.surfcoat.2021.127749_bb0180
  article-title: C-axis orientated AlN films deposited using deep oscillation magnetron sputtering
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.11.025
  contributor:
    fullname: Lin
– volume: 396
  start-page: 1435
  year: 2017
  ident: 10.1016/j.surfcoat.2021.127749_bb0050
  article-title: Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.11.183
  contributor:
    fullname: Wang
– volume: 33
  issue: 3
  year: 2015
  ident: 10.1016/j.surfcoat.2021.127749_bb0120
  article-title: High power pulsed magnetron sputtering: a method to increase deposition rate
  publication-title: J. Vac. Sci. Technol. A.
  doi: 10.1116/1.4916108
  contributor:
    fullname: Raman
– volume: 44
  start-page: 17530
  issue: 14
  year: 2018
  ident: 10.1016/j.surfcoat.2021.127749_bb0025
  article-title: Preparation of single-phase Ti2AlN coating by magnetron sputtering with cost-efficient hot-pressed Ti-Al-N targets
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.06.055
  contributor:
    fullname: Li
– volume: 117
  start-page: 11656
  issue: 22
  year: 2013
  ident: 10.1016/j.surfcoat.2021.127749_bb0210
  article-title: Charge distribution in the single crystalline Ti2AlN thin films grown on MgO(111) substrates
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp402373k
  contributor:
    fullname: Zhang
– volume: 99
  issue: 3
  year: 2006
  ident: 10.1016/j.surfcoat.2021.127749_bb0035
  article-title: Microstructure and nonbasal-plane growth of epitaxial Ti[sub 2]AlN thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2161943
  contributor:
    fullname: Beckers
– volume: 27
  start-page: 780
  issue: 5
  year: 2012
  ident: 10.1016/j.surfcoat.2021.127749_bb0100
  article-title: An introduction to thin film processing using high-power impulse magnetron sputtering
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2012.8
  contributor:
    fullname: Lundin
– volume: 90
  issue: 17
  year: 2007
  ident: 10.1016/j.surfcoat.2021.127749_bb0070
  article-title: Topotaxial growth of Ti2AlN by solid state reaction in AlN∕Ti(0001) multilayer thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2731520
  contributor:
    fullname: Höglund
– volume: 257
  start-page: 286
  year: 2014
  ident: 10.1016/j.surfcoat.2021.127749_bb0080
  article-title: Tribological behavior of selected Mn+1AXn phase thin films on silicon substrates
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.08.034
  contributor:
    fullname: Hopfeld
– volume: 89
  start-page: 334
  issue: 4
  year: 2001
  ident: 10.1016/j.surfcoat.2021.127749_bb0010
  article-title: The MAX phases: unique new carbide and nitride materials
  publication-title: Am. Sci.
  doi: 10.1511/2001.28.736
  contributor:
    fullname: Barsoum
– volume: 45
  start-page: 3940
  issue: 3
  year: 2019
  ident: 10.1016/j.surfcoat.2021.127749_bb0200
  article-title: Microstructures and properties of amorphous, polycrystalline, and M(n+1)AX(n)-phase Ti-Al-N films synthesized from an M(n+1)AX(n)-phase Ti2AlN compound target
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.11.067
  contributor:
    fullname: Zhang
– volume: 38
  start-page: 205
  year: 2020
  ident: 10.1016/j.surfcoat.2021.127749_bb0150
  article-title: Structural defects in MAX phases and their derivative MXenes: a look forward
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.03.049
  contributor:
    fullname: Zhang
SSID ssj0001794
Score 2.4470954
Snippet The (002) texture, compactness, and smoothness Ti2AlN thin films render them promising for many potential applications, especially in the surface modification...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 127749
SubjectTerms Adhesion
Aluminum nitride
Coefficient of friction
Crystallization
Hardness
High power pulsed magnetron sputtering
Magnetron sputtering
Microstructure
Modulation
Multilayers
Photovoltaic cells
Smoothness
Substrates
Thin films
Ti2AlN
Vacuum annealing
Wear resistance
Title Microstructure and properties of Ti2AlN thin film synthesized by vacuum annealing of high power pulsed magnetron sputtering deposited Ti/AlN multilayers
URI https://dx.doi.org/10.1016/j.surfcoat.2021.127749
https://www.proquest.com/docview/2606930102
Volume 425
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADLba7QE4ICggWko1B65pJo9JJsfVqtUC6l7YSr2N5hVItZuN9lGpPfR38HOx86gKEuLAMQ9PRmPH_uzx2ACfpC58anwUWC95gPg2CwpXuqAUXNs050a0dbovZ9n0Kv1yLa73YDKchaG0yl73dzq91db9nbBfzbCpqvAbJ2kr8hidFo4wJdmHg3aTaAQH489fp7NHhUwy14ZaBCpkJHhyUPgGVdS6tCtNaZVxdBbFCIeKv9moP7R1a4IuXsHLHjuycTe917Dn60N4Nhlath3CiyfVBd_Az0tKtusKxO7WnunasYZi72sqospWJZtX8XgxY9sfVc3KarFkm7saAeGmuveOmTt2q-1ut0TCGuEkjkk0VN-YNdRbjTU7nLNjS_299hRRZ5umbXtNbzrfpoPh43kV0kfazMWFJoT_Fq4uzueTadA3YghskvJtkEtf2jKNNXeJc07KRGvEeSZLjUB_BzGd8UkZW7RtmYlyZ63kvqCmHhrdr8Qm72BUr2r_HlgqElxhk2na8BQ-LqTl0hibx8JL48wRhMPSq6art6GGRLQbNTBLEbNUx6wjKAYOqd8kR6FR-CftycBS1f-7G4UeHvWHROR1_B9Df4DndEXHFiNxAiNktv-I-GVrTmH_7CE67aX0F_Xw87s
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9lA4ICggCqX4wDXEeThxjqsV1faxe2Er9Wb5FUi1m432gVR-CT-XmTxQQao49BpnnMgz-eYbZzwD8EnqwqfGR4H1kgfIb7OgcKULSsG1TXNuRFunezrLJtfpxY242YPxcBaG0ip77O8wvUXr_krYr2bYVFX4lZO1FXmMQQtHmpI8gQNkAwUa-8Ho_HIy-wPIZHPtVotAQEaBeweFbxGi1qVdaUqrjKPPUYx0qHjIR_2D1q0LOnsBz3vuyEbd672EPV8fweF4aNl2BM_uVRd8Bb-mlGzXFYjdrT3TtWMN7b2vqYgqW5VsXsWjxYxtv1c1K6vFkm3uaiSEm-qnd8zcsR_a7nZLFKyRTuKcJEP1jVlDvdVYs8N3dmypv9WedtTZpmnbXtOdzrfpYDg8r0J6SJu5uNDE8F_D9dmX-XgS9I0YApukfBvk0pe2TGPNXeKckzLRGnmeyVIjMN5BTmd8UsYWfVtmotxZK7kvqKmHxvArsckb2K9XtX8LLBUJrrDJNP3wFD4upOXSGJvHwkvjzDGEw9Krpqu3oYZEtFs1KEuRslSnrGMoBg2pvyxHoVP4r-zJoFLVf7sbhREe9YdE5vXuEVN_hMPJfHqlrs5nl-_hKY3QEcZInMA-Kt5_QC6zNae9rf4G88P1uA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+and+properties+of+Ti2AlN+thin+film+synthesized+by+vacuum+annealing+of+high+power+pulsed+magnetron+sputtering+deposited+Ti%2FAlN+multilayers&rft.jtitle=Surface+%26+coatings+technology&rft.au=Ma%2C+D.L.&rft.au=Deng%2C+Q.Y.&rft.au=Liu%2C+H.Y.&rft.au=Li%2C+Y.T.&rft.date=2021-11-15&rft.pub=Elsevier+B.V&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=425&rft_id=info:doi/10.1016%2Fj.surfcoat.2021.127749&rft.externalDocID=S0257897221009233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon