Microstructure and properties of Ti2AlN thin film synthesized by vacuum annealing of high power pulsed magnetron sputtering deposited Ti/AlN multilayers
The (002) texture, compactness, and smoothness Ti2AlN thin films render them promising for many potential applications, especially in the surface modification of wear-resistant components. In this study, Ti2AlN thin films were fabricated by the vacuum annealing of Ti/AlN multilayers deposited by hig...
Saved in:
Published in | Surface & coatings technology Vol. 425; p. 127749 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.11.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The (002) texture, compactness, and smoothness Ti2AlN thin films render them promising for many potential applications, especially in the surface modification of wear-resistant components. In this study, Ti2AlN thin films were fabricated by the vacuum annealing of Ti/AlN multilayers deposited by high power pulsed magnetron sputtering (HPPMS). The influence of the multilayer modulation ratio and modulation period of Ti/AlN on the microstructure and properties of the Ti2AlN thin film were explored. The results indicate that a Ti/AlN modulation ratio close to 6:4 and period less than 30 nm are appropriate for yielding high-quality crystallized Ti2AlN thin films. The microstructure of the Ti2AlN thin film is (002) textured, nanocrystalline, smooth, and compact, which benefits from the HPPMS technique. The Ti2AlN thin film adheres well to the substrate and has a hardness of 32.5 ± 2.1 GPa and has a friction coefficient of 0.15 while tested with a Si3N4 friction pair.
•The modulation ratio and period are critical for Ti2AlN thin film synthesis.•HPPMS improves the (002) texture and compactness of the Ti2AlN thin film.•HPPMS enhances the adhesion, hardness and wear resistance of the Ti2AlN thin film. |
---|---|
AbstractList | The (002) texture, compactness, and smoothness Ti2AlN thin films render them promising for many potential applications, especially in the surface modification of wear-resistant components. In this study, Ti2AlN thin films were fabricated by the vacuum annealing of Ti/AlN multilayers deposited by high power pulsed magnetron sputtering (HPPMS). The influence of the multilayer modulation ratio and modulation period of Ti/AlN on the microstructure and properties of the Ti2AlN thin film were explored. The results indicate that a Ti/AlN modulation ratio close to 6:4 and period less than 30 nm are appropriate for yielding high-quality crystallized Ti2AlN thin films. The microstructure of the Ti2AlN thin film is (002) textured, nanocrystalline, smooth, and compact, which benefits from the HPPMS technique. The Ti2AlN thin film adheres well to the substrate and has a hardness of 32.5 ± 2.1 GPa and has a friction coefficient of 0.15 while tested with a Si3N4 friction pair.
•The modulation ratio and period are critical for Ti2AlN thin film synthesis.•HPPMS improves the (002) texture and compactness of the Ti2AlN thin film.•HPPMS enhances the adhesion, hardness and wear resistance of the Ti2AlN thin film. The (002) texture, compactness, and smoothness Ti2AlN thin films render them promising for many potential applications, especially in the surface modification of wear-resistant components. In this study, Ti2AlN thin films were fabricated by the vacuum annealing of Ti/AlN multilayers deposited by high power pulsed magnetron sputtering (HPPMS). The influence of the multilayer modulation ratio and modulation period of Ti/AlN on the microstructure and properties of the Ti2AlN thin film were explored. The results indicate that a Ti/AlN modulation ratio close to 6:4 and period less than 30 nm are appropriate for yielding high-quality crystallized Ti2AlN thin films. The microstructure of the Ti2AlN thin film is (002) textured, nanocrystalline, smooth, and compact, which benefits from the HPPMS technique. The Ti2AlN thin film adheres well to the substrate and has a hardness of 32.5 ± 2.1 GPa and has a friction coefficient of 0.15 while tested with a Si3N4 friction pair. |
ArticleNumber | 127749 |
Author | Leng, Y.X. Liu, H.Y. Li, Y.T. Deng, Q.Y. Ma, D.L. |
Author_xml | – sequence: 1 givenname: D.L. surname: Ma fullname: Ma, D.L. organization: College of Physics and Engineering, Chengdu Normal University, Chengdu 611130, China – sequence: 2 givenname: Q.Y. surname: Deng fullname: Deng, Q.Y. email: qydeng@hainanu.edu.cn organization: School of Materials Science and Engineering, Hainan University, Haikou 570228, China – sequence: 3 givenname: H.Y. surname: Liu fullname: Liu, H.Y. organization: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China – sequence: 4 givenname: Y.T. surname: Li fullname: Li, Y.T. organization: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China – sequence: 5 givenname: Y.X. surname: Leng fullname: Leng, Y.X. email: yxleng@263.net organization: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China |
BookMark | eNqFkc1u1DAUhS3USkwLr4Assc7UP0ns7KgqaJHaspmuLce-mfEosYN_ioYn4XGbaGDN6i7u-c7RvecKXfjgAaFPlGwpoe3NcZtKHEzQecsIo1vKhKi7d2hDpegqzmtxgTaENaKSnWDv0VVKR0IIFV29QX-enIkh5VhMLhGw9hbPMcwQs4OEw4B3jt2OzzgfnMeDGyecTj4fILnfYHF_wq_alDItoAc9Or9fmYPbH_AcfkHEcxnTIpz03kOOweM0l5whrkoLc0guL-udu1lDpjJmN-oTxPQBXQ56QT_-ndfo5dvX3d1D9fjj_vvd7WNleE1yJSQMZqiZJpZba6XkWpNG9G3dN1I0NW174AMzNevangprjCTQtZJI3TUtN_wafT77Llf_LJCyOoYS_RKpWEvajhNK2KJqz6r1WSnCoOboJh1PihK1tqCO6l8Lam1BnVtYwC9nEJYbXh1ElYwDb8C6CCYrG9z_LN4Av-yZvA |
CitedBy_id | crossref_primary_10_3390_ma16237294 crossref_primary_10_1016_j_jmapro_2023_09_055 crossref_primary_10_1177_02670844231218221 crossref_primary_10_3390_coatings13020329 crossref_primary_10_1016_j_jmapro_2022_07_060 crossref_primary_10_1016_j_matchemphys_2023_128816 crossref_primary_10_1016_j_wear_2022_204583 |
Cites_doi | 10.1063/1.1882752 10.1016/j.wear.2007.06.013 10.1016/j.tsf.2009.07.184 10.1016/j.wear.2011.01.043 10.1016/j.vacuum.2012.06.003 10.1016/j.jeurceramsoc.2018.07.028 10.1016/j.materresbull.2016.03.031 10.1016/j.vacuum.2016.10.032 10.1016/j.jallcom.2018.04.012 10.1063/1.4941271 10.1016/j.actamat.2007.04.006 10.1016/j.actamat.2017.03.055 10.1016/j.surfcoat.2017.09.042 10.1080/21663831.2019.1594428 10.1016/j.jeurceramsoc.2020.05.017 10.1016/j.apsusc.2016.01.229 10.1016/j.tsf.2009.10.145 10.1016/j.wear.2020.203414 10.1016/S0079-6786(00)00006-6 10.1063/1.2785958 10.1016/j.jallcom.2020.153984 10.1063/1.2731520 10.1002/pssr.201004100 10.1016/j.surfcoat.2011.03.081 10.1016/j.surfcoat.2011.11.013 10.1016/j.surfcoat.2015.09.038 10.1007/s40145-017-0224-6 10.1016/j.vacuum.2018.11.058 10.1016/j.surfcoat.2012.09.050 10.1116/1.3691832 10.1016/j.pmatsci.2006.02.002 10.1016/j.apsusc.2016.11.025 10.1016/j.apsusc.2016.11.183 10.1116/1.4916108 10.1016/j.ceramint.2018.06.055 10.1021/jp402373k 10.1063/1.2161943 10.1557/jmr.2012.8 10.1016/j.surfcoat.2014.08.034 10.1511/2001.28.736 10.1016/j.ceramint.2018.11.067 10.1016/j.jmst.2019.03.049 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Nov 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Nov 15, 2021 |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.surfcoat.2021.127749 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3347 |
ExternalDocumentID | 10_1016_j_surfcoat_2021_127749 S0257897221009233 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFJKZ AGHFR AKRWK ASPBG AVWKF AZFZN BBWZM CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- RIG SEW SMS SPG WUQ 7QQ 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c340t-78efcf42a0d3ddd883aa057b64b5875416be3f2c4296b17dcc80e96808a9563c3 |
IEDL.DBID | AIKHN |
ISSN | 0257-8972 |
IngestDate | Thu Oct 10 16:14:16 EDT 2024 Thu Sep 26 18:18:10 EDT 2024 Fri Feb 23 02:42:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ti2AlN High power pulsed magnetron sputtering Wear resistance Microstructure Hardness Adhesion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-78efcf42a0d3ddd883aa057b64b5875416be3f2c4296b17dcc80e96808a9563c3 |
PQID | 2606930102 |
PQPubID | 2045394 |
ParticipantIDs | proquest_journals_2606930102 crossref_primary_10_1016_j_surfcoat_2021_127749 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2021_127749 |
PublicationCentury | 2000 |
PublicationDate | 2021-11-15 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Surface & coatings technology |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Ibrahim, Rahman, Zhao, Veder, Zhou, Mohammadpour, Majeed, Nikoloski, Jiang (bb0145) 2018; 750 Emmerlich, Gassner, Eklund, Högberg, Hultman (bb0090) 2008; 264 Georgiou, Lopes, De Bilde, Drees (bb0225) 2020; 458-459 Cabioch, Alkazaz, Beaufort, Nicolai, Eyidi, Eklund (bb0060) 2016; 80 Jing, Yin, Yukimura, Sun, Leng, Huang (bb0135) 2012; 86 Joelsson, Flink, Birch, Hultman (bb0030) 2007; 102 Gupta, Barsoum (bb0095) 2011; 271 Hoglund, Beckers, Schell, von Borany, Birch, Hultman (bb0175) 2007; 90 Barsoum (bb0005) 2000; 28 Pshyk, Coy, Kempiński, Scheibe, Jurga (bb0085) 2019; 7 Wu, Wu, Jiang, Ma, Chen, Sun, Leng, Huang (bb0125) 2017; 135 Raman, Shchelkanov, Mclain, Ruzic (bb0120) 2015; 33 Joelsson, Horling, Birch, Hultman (bb0040) 2005; 86 Wang, Liu, Wang, Li, Ke, Wang (bb0050) 2017; 396 Zhang, Wang, Lee, Ke, Nowak, Kim (bb0020) 2012; 212 Eklund, Beckers, Jansson, Högberg, Hultman (bb0015) 2010; 518 Li, Zhao, Qi, Li, Zheng, Qian, Sheng (bb0025) 2018; 44 Zhang, Hu, Wang, Zhou (bb0150) 2020; 38 Zhang, Jin, Chai, Pan, Seng, Goh, Wong, Sullivan, Wang (bb0205) 2016; 368 Gudmundsson, Brenning, Lundin, Helmersson (bb0110) 2012; 30 Ma, Liu, Deng, Yang, Silins, Huang, Leng (bb0190) 2019; 160 Höglund, Beckers, Schell, Borany, Birch, Hultman (bb0070) 2007; 90 Barsoum, Radovic (bb0075) 2011; vol. 41 Lin, Chistyakov (bb0180) 2017; 396 Hopfeld, Grieseler, Vogel, Romanus, Schaaf (bb0080) 2014; 257 Magnfalt, Fillon, Boyd, Helmersson, Sarakinos, Abadias (bb0170) 2016; 119 Li, Gonzalez-Julian, Malzbender (bb0155) 2020; 40 Lundin, Sarakinos (bb0100) 2012; 27 Mayrhofer, Mitterer, Hultman, Clemens (bb0165) 2006; 51 Beckers, Schell, Martins, Mücklich, Möller, Hultman (bb0035) 2006; 99 Cheng, Gao, Zhang, Wang, Wang, Liu (bb0140) 2020; 825 Gröner, Kirste, Oeser, Fromm, Wirth, Meyer, Burmeister, Eberl (bb0055) 2018; 343 Barsoum, El-Raghy (bb0010) 2001; 89 Griggs, Lang, Gruber, Tucker, Taheri, Barsoum (bb0215) 2017; 131 Xu, Zhu, Grasso, Suzuki, Kasahara, Tosa, Kim, Sakka, Zhu, Hu (bb0220) 2017; 6 Anders (bb0105) 2011; 205 Anders (bb0130) 2010; 518 Beckers, Eriksson, Lauridsen, Baehtz, Jensen, Hultman (bb0065) 2010; 4 Persson, Kodambaka, Petrov, Hultman (bb0160) 2007; 55 Wang, Chen, Wang, Wang, Zhang (bb0195) 2018; 38 Zhang, Xia, Wan, Wang, Kim (bb0200) 2019; 45 Wu, Wang, Yu, Jiang, Sun, Jing, Zhu, Wu, Leng, Huang (bb0115) 2015; 281 Yang, Keunecke, Stein, Gao, Gong, Jiang, Bewilogua, Sun (bb0045) 2012; 206 Ma, Li, Deng, Huang, Leng, Huang (bb0185) 2019; 33(01n03 Zhang, Nie, Shen, Chai, Pan, Wong, Sullivan, Jin, Wang (bb0210) 2013; 117 Beckers (10.1016/j.surfcoat.2021.127749_bb0065) 2010; 4 Gudmundsson (10.1016/j.surfcoat.2021.127749_bb0110) 2012; 30 Wu (10.1016/j.surfcoat.2021.127749_bb0125) 2017; 135 Pshyk (10.1016/j.surfcoat.2021.127749_bb0085) 2019; 7 Wu (10.1016/j.surfcoat.2021.127749_bb0115) 2015; 281 Ma (10.1016/j.surfcoat.2021.127749_bb0190) 2019; 160 Mayrhofer (10.1016/j.surfcoat.2021.127749_bb0165) 2006; 51 Ma (10.1016/j.surfcoat.2021.127749_bb0185) 2019; 33(01n03 Zhang (10.1016/j.surfcoat.2021.127749_bb0200) 2019; 45 Barsoum (10.1016/j.surfcoat.2021.127749_bb0010) 2001; 89 Wang (10.1016/j.surfcoat.2021.127749_bb0050) 2017; 396 Hopfeld (10.1016/j.surfcoat.2021.127749_bb0080) 2014; 257 Emmerlich (10.1016/j.surfcoat.2021.127749_bb0090) 2008; 264 Beckers (10.1016/j.surfcoat.2021.127749_bb0035) 2006; 99 Anders (10.1016/j.surfcoat.2021.127749_bb0105) 2011; 205 Gupta (10.1016/j.surfcoat.2021.127749_bb0095) 2011; 271 Georgiou (10.1016/j.surfcoat.2021.127749_bb0225) 2020; 458-459 Joelsson (10.1016/j.surfcoat.2021.127749_bb0030) 2007; 102 Gröner (10.1016/j.surfcoat.2021.127749_bb0055) 2018; 343 Hoglund (10.1016/j.surfcoat.2021.127749_bb0175) 2007; 90 Höglund (10.1016/j.surfcoat.2021.127749_bb0070) 2007; 90 Ibrahim (10.1016/j.surfcoat.2021.127749_bb0145) 2018; 750 Cheng (10.1016/j.surfcoat.2021.127749_bb0140) 2020; 825 Xu (10.1016/j.surfcoat.2021.127749_bb0220) 2017; 6 Zhang (10.1016/j.surfcoat.2021.127749_bb0205) 2016; 368 Lundin (10.1016/j.surfcoat.2021.127749_bb0100) 2012; 27 Griggs (10.1016/j.surfcoat.2021.127749_bb0215) 2017; 131 Joelsson (10.1016/j.surfcoat.2021.127749_bb0040) 2005; 86 Cabioch (10.1016/j.surfcoat.2021.127749_bb0060) 2016; 80 Zhang (10.1016/j.surfcoat.2021.127749_bb0210) 2013; 117 Anders (10.1016/j.surfcoat.2021.127749_bb0130) 2010; 518 Lin (10.1016/j.surfcoat.2021.127749_bb0180) 2017; 396 Eklund (10.1016/j.surfcoat.2021.127749_bb0015) 2010; 518 Zhang (10.1016/j.surfcoat.2021.127749_bb0150) 2020; 38 Magnfalt (10.1016/j.surfcoat.2021.127749_bb0170) 2016; 119 Jing (10.1016/j.surfcoat.2021.127749_bb0135) 2012; 86 Li (10.1016/j.surfcoat.2021.127749_bb0155) 2020; 40 Raman (10.1016/j.surfcoat.2021.127749_bb0120) 2015; 33 Zhang (10.1016/j.surfcoat.2021.127749_bb0020) 2012; 212 Wang (10.1016/j.surfcoat.2021.127749_bb0195) 2018; 38 Persson (10.1016/j.surfcoat.2021.127749_bb0160) 2007; 55 Barsoum (10.1016/j.surfcoat.2021.127749_bb0005) 2000; 28 Yang (10.1016/j.surfcoat.2021.127749_bb0045) 2012; 206 Barsoum (10.1016/j.surfcoat.2021.127749_bb0075) 2011; vol. 41 Li (10.1016/j.surfcoat.2021.127749_bb0025) 2018; 44 |
References_xml | – volume: 205 start-page: S1 year: 2011 end-page: S9 ident: bb0105 article-title: Discharge physics of high power impulse magnetron sputtering publication-title: Surf. Coat. Technol. contributor: fullname: Anders – volume: 212 start-page: 199 year: 2012 end-page: 206 ident: bb0020 article-title: Nanocrystalline thin films synthesized from a Ti publication-title: Surf. Coat. Technol. contributor: fullname: Kim – volume: 28 start-page: 201 year: 2000 end-page: 281 ident: bb0005 article-title: The M publication-title: Prog. Solid State Chem. contributor: fullname: Barsoum – volume: 33 year: 2015 ident: bb0120 article-title: High power pulsed magnetron sputtering: a method to increase deposition rate publication-title: J. Vac. Sci. Technol. A. contributor: fullname: Ruzic – volume: 86 year: 2005 ident: bb0040 article-title: Single-crystal Ti publication-title: Appl. Phys. Lett. contributor: fullname: Hultman – volume: 206 start-page: 2661 year: 2012 end-page: 2666 ident: bb0045 article-title: Formation of Ti publication-title: Surf. Coat. Technol. contributor: fullname: Sun – volume: 90 year: 2007 ident: bb0070 article-title: Topotaxial growth of Ti publication-title: Appl. Phys. Lett. contributor: fullname: Hultman – volume: vol. 41 start-page: 195 year: 2011 end-page: 227 ident: bb0075 article-title: Elastic and mechanical properties of the MAX phases publication-title: Annual Review of Materials Research contributor: fullname: Radovic – volume: 102 year: 2007 ident: bb0030 article-title: Deposition of single-crystal Ti publication-title: J. Appl. Phys. contributor: fullname: Hultman – volume: 4 start-page: 121 year: 2010 end-page: 123 ident: bb0065 article-title: Formation of basal plane fiber-textured Ti publication-title: Physica Status Solidi-Rapid Research Letters contributor: fullname: Hultman – volume: 45 start-page: 3940 year: 2019 end-page: 3947 ident: bb0200 article-title: Microstructures and properties of amorphous, polycrystalline, and M publication-title: Ceram. Int. contributor: fullname: Kim – volume: 264 start-page: 914 year: 2008 end-page: 919 ident: bb0090 article-title: Micro and macroscale tribological behavior of epitaxial Ti publication-title: Wear contributor: fullname: Hultman – volume: 396 start-page: 129 year: 2017 end-page: 137 ident: bb0180 article-title: C-axis orientated AlN films deposited using deep oscillation magnetron sputtering publication-title: Appl. Surf. Sci. contributor: fullname: Chistyakov – volume: 80 start-page: 58 year: 2016 end-page: 63 ident: bb0060 article-title: Ti publication-title: Mater. Res. Bull. contributor: fullname: Eklund – volume: 281 start-page: 27 year: 2015 end-page: 34 ident: bb0115 article-title: Modulate the deposition rate through changing the combination of frequency and pulse width at constant duty cycle publication-title: Surf. Coat. Technol. contributor: fullname: Huang – volume: 518 start-page: 1851 year: 2010 end-page: 1878 ident: bb0015 article-title: The M publication-title: Thin Solid Films contributor: fullname: Hultman – volume: 51 start-page: 1032 year: 2006 end-page: 1114 ident: bb0165 article-title: Microstructural design of hard coatings publication-title: Prog. Mater. Sci. contributor: fullname: Clemens – volume: 343 start-page: 166 year: 2018 end-page: 171 ident: bb0055 article-title: Microstructural investigations of polycrystalline Ti publication-title: Surf. Coat. Technol. contributor: fullname: Eberl – volume: 257 start-page: 286 year: 2014 end-page: 294 ident: bb0080 article-title: Tribological behavior of selected M publication-title: Surf. Coat. Technol. contributor: fullname: Schaaf – volume: 38 start-page: 205 year: 2020 end-page: 220 ident: bb0150 article-title: Structural defects in MAX phases and their derivative MXenes: a look forward publication-title: J. Mater. Sci. Technol. contributor: fullname: Zhou – volume: 89 start-page: 334 year: 2001 end-page: 343 ident: bb0010 article-title: The MAX phases: unique new carbide and nitride materials publication-title: Am. Sci. contributor: fullname: El-Raghy – volume: 825 year: 2020 ident: bb0140 article-title: Influence of crystallinity of CuCo publication-title: J. Alloys Compd. contributor: fullname: Liu – volume: 271 start-page: 1878 year: 2011 end-page: 1894 ident: bb0095 article-title: On the tribology of the MAX phases and their composites during dry sliding: a review publication-title: Wear contributor: fullname: Barsoum – volume: 55 start-page: 4401 year: 2007 end-page: 4407 ident: bb0160 article-title: Epitaxial Ti publication-title: Acta Mater. contributor: fullname: Hultman – volume: 27 start-page: 780 year: 2012 end-page: 792 ident: bb0100 article-title: An introduction to thin film processing using high-power impulse magnetron sputtering publication-title: J. Mater. Res. contributor: fullname: Sarakinos – volume: 86 start-page: 2114 year: 2012 end-page: 2119 ident: bb0135 article-title: Titanium film deposition by high-power impulse magnetron sputtering: influence of pulse duration publication-title: VACUUM contributor: fullname: Huang – volume: 117 start-page: 11656 year: 2013 end-page: 11662 ident: bb0210 article-title: Charge distribution in the single crystalline Ti publication-title: J. Phys. Chem. C contributor: fullname: Wang – volume: 458-459 start-page: 203414 year: 2020 ident: bb0225 article-title: How can we measure sliding Wear in an efficient way? publication-title: Wear contributor: fullname: Drees – volume: 160 start-page: 410 year: 2019 end-page: 417 ident: bb0190 article-title: Optimal target sputtering mode for aluminum nitride thin film deposition by high power pulsed magnetron sputtering publication-title: Vacuum contributor: fullname: Leng – volume: 44 start-page: 17530 year: 2018 end-page: 17534 ident: bb0025 article-title: Preparation of single-phase Ti publication-title: Ceram. Int. contributor: fullname: Sheng – volume: 30 year: 2012 ident: bb0110 article-title: High power impulse magnetron sputtering discharge publication-title: J. Vac. Sci. Technol. A contributor: fullname: Helmersson – volume: 750 start-page: 451 year: 2018 end-page: 464 ident: bb0145 article-title: Annealing effects on microstructural, optical, and mechanical properties of sputtered CrN thin film coatings: experimental studies and finite element modeling publication-title: J. Alloys Compd. contributor: fullname: Jiang – volume: 131 start-page: 141 year: 2017 end-page: 155 ident: bb0215 article-title: Spherical nanoindentation, modeling and transmission electron microscopy evidence for ripplocations in Ti publication-title: Acta Mater. contributor: fullname: Barsoum – volume: 135 start-page: 93 year: 2017 end-page: 100 ident: bb0125 article-title: Plasma characteristics and properties of Cu films prepared by high power pulsed magnetron sputtering publication-title: Vacuum contributor: fullname: Huang – volume: 90 year: 2007 ident: bb0175 article-title: Topotaxial growth of Ti publication-title: Appl. Phys. Lett. contributor: fullname: Hultman – volume: 99 year: 2006 ident: bb0035 article-title: Microstructure and nonbasal-plane growth of epitaxial Ti[sub 2]AlN thin films publication-title: J. Appl. Phys. contributor: fullname: Hultman – volume: 7 start-page: 244 year: 2019 end-page: 250 ident: bb0085 article-title: Low-temperature growth of epitaxial Ti publication-title: Materials Research Letters contributor: fullname: Jurga – volume: 40 start-page: 4445 year: 2020 end-page: 4453 ident: bb0155 article-title: Fabrication and mechanical performance of Ti publication-title: J. Eur. Ceram. Soc. contributor: fullname: Malzbender – volume: 396 start-page: 1435 year: 2017 end-page: 1442 ident: bb0050 article-title: Dense and high-stability Ti publication-title: Appl. Surf. Sci. contributor: fullname: Wang – volume: 518 start-page: 4087 year: 2010 end-page: 4090 ident: bb0130 article-title: A structure zone diagram including plasma-based deposition and ion etching publication-title: Thin Solid Films contributor: fullname: Anders – volume: 33(01n03 year: 2019 ident: bb0185 article-title: Tailoring the texture of titanium thin films deposited by high-power pulsed magnetron sputtering publication-title: International Journal of Modern Physics B contributor: fullname: Huang – volume: 6 start-page: 120 year: 2017 end-page: 128 ident: bb0220 article-title: Effect of texture microstructure on tribological properties of tailored Ti publication-title: Journal of Advanced Ceramics contributor: fullname: Hu – volume: 38 start-page: 4892 year: 2018 end-page: 4898 ident: bb0195 article-title: Microstructure evolution of polycrystalline Ti publication-title: J. Eur. Ceram. Soc. contributor: fullname: Zhang – volume: 368 start-page: 88 year: 2016 end-page: 96 ident: bb0205 article-title: Temperature-dependent microstructural evolution of Ti publication-title: Appl. Surf. Sci. contributor: fullname: Wang – volume: 119 year: 2016 ident: bb0170 article-title: Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films publication-title: J. Appl. Phys. contributor: fullname: Abadias – volume: 86 issue: 11 year: 2005 ident: 10.1016/j.surfcoat.2021.127749_bb0040 article-title: Single-crystal Ti2AlN thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.1882752 contributor: fullname: Joelsson – volume: 264 start-page: 914 issue: 11 year: 2008 ident: 10.1016/j.surfcoat.2021.127749_bb0090 article-title: Micro and macroscale tribological behavior of epitaxial Ti3SiC2 thin films publication-title: Wear doi: 10.1016/j.wear.2007.06.013 contributor: fullname: Emmerlich – volume: 518 start-page: 1851 issue: 8 year: 2010 ident: 10.1016/j.surfcoat.2021.127749_bb0015 article-title: The Mn+1AXn phases: materials science and thin-film processing publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.07.184 contributor: fullname: Eklund – volume: 271 start-page: 1878 issue: 9–10 year: 2011 ident: 10.1016/j.surfcoat.2021.127749_bb0095 article-title: On the tribology of the MAX phases and their composites during dry sliding: a review publication-title: Wear doi: 10.1016/j.wear.2011.01.043 contributor: fullname: Gupta – volume: 86 start-page: 2114 issue: 12 year: 2012 ident: 10.1016/j.surfcoat.2021.127749_bb0135 article-title: Titanium film deposition by high-power impulse magnetron sputtering: influence of pulse duration publication-title: VACUUM doi: 10.1016/j.vacuum.2012.06.003 contributor: fullname: Jing – volume: 33(01n03 year: 2019 ident: 10.1016/j.surfcoat.2021.127749_bb0185 article-title: Tailoring the texture of titanium thin films deposited by high-power pulsed magnetron sputtering publication-title: International Journal of Modern Physics B contributor: fullname: Ma – volume: 38 start-page: 4892 issue: 15 year: 2018 ident: 10.1016/j.surfcoat.2021.127749_bb0195 article-title: Microstructure evolution of polycrystalline Ti2AlN MAX phase film during post-deposition annealing publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.07.028 contributor: fullname: Wang – volume: 80 start-page: 58 year: 2016 ident: 10.1016/j.surfcoat.2021.127749_bb0060 article-title: Ti2AlN thin films synthesized by annealing of (Ti+Al)/AlN multilayers publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2016.03.031 contributor: fullname: Cabioch – volume: 135 start-page: 93 year: 2017 ident: 10.1016/j.surfcoat.2021.127749_bb0125 article-title: Plasma characteristics and properties of Cu films prepared by high power pulsed magnetron sputtering publication-title: Vacuum doi: 10.1016/j.vacuum.2016.10.032 contributor: fullname: Wu – volume: 750 start-page: 451 year: 2018 ident: 10.1016/j.surfcoat.2021.127749_bb0145 article-title: Annealing effects on microstructural, optical, and mechanical properties of sputtered CrN thin film coatings: experimental studies and finite element modeling publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.04.012 contributor: fullname: Ibrahim – volume: vol. 41 start-page: 195 year: 2011 ident: 10.1016/j.surfcoat.2021.127749_bb0075 article-title: Elastic and mechanical properties of the MAX phases contributor: fullname: Barsoum – volume: 119 issue: 5 year: 2016 ident: 10.1016/j.surfcoat.2021.127749_bb0170 article-title: Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films publication-title: J. Appl. Phys. doi: 10.1063/1.4941271 contributor: fullname: Magnfalt – volume: 55 start-page: 4401 issue: 13 year: 2007 ident: 10.1016/j.surfcoat.2021.127749_bb0160 article-title: Epitaxial Ti2AlN(0001) thin film deposition by dual-target reactive magnetron sputtering publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.04.006 contributor: fullname: Persson – volume: 131 start-page: 141 year: 2017 ident: 10.1016/j.surfcoat.2021.127749_bb0215 article-title: Spherical nanoindentation, modeling and transmission electron microscopy evidence for ripplocations in Ti3SiC2 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.03.055 contributor: fullname: Griggs – volume: 343 start-page: 166 year: 2018 ident: 10.1016/j.surfcoat.2021.127749_bb0055 article-title: Microstructural investigations of polycrystalline Ti2AlN prepared by physical vapor deposition of Ti-AlN multilayers publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2017.09.042 contributor: fullname: Gröner – volume: 7 start-page: 244 issue: 6 year: 2019 ident: 10.1016/j.surfcoat.2021.127749_bb0085 article-title: Low-temperature growth of epitaxial Ti2AlC MAX phase thin films by low-rate layer-by-layer PVD publication-title: Materials Research Letters doi: 10.1080/21663831.2019.1594428 contributor: fullname: Pshyk – volume: 40 start-page: 4445 issue: 13 year: 2020 ident: 10.1016/j.surfcoat.2021.127749_bb0155 article-title: Fabrication and mechanical performance of Ti2AlN prepared by FAST/SPS publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.05.017 contributor: fullname: Li – volume: 368 start-page: 88 year: 2016 ident: 10.1016/j.surfcoat.2021.127749_bb0205 article-title: Temperature-dependent microstructural evolution of Ti2AlN thin films deposited by reactive magnetron sputtering publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.01.229 contributor: fullname: Zhang – volume: 518 start-page: 4087 issue: 15 year: 2010 ident: 10.1016/j.surfcoat.2021.127749_bb0130 article-title: A structure zone diagram including plasma-based deposition and ion etching publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.10.145 contributor: fullname: Anders – volume: 458-459 start-page: 203414 year: 2020 ident: 10.1016/j.surfcoat.2021.127749_bb0225 article-title: How can we measure sliding Wear in an efficient way? publication-title: Wear doi: 10.1016/j.wear.2020.203414 contributor: fullname: Georgiou – volume: 28 start-page: 201 issue: 1 year: 2000 ident: 10.1016/j.surfcoat.2021.127749_bb0005 article-title: The MN+ 1AXN phases: a new class of solids: thermodynamically stable nanolaminates publication-title: Prog. Solid State Chem. doi: 10.1016/S0079-6786(00)00006-6 contributor: fullname: Barsoum – volume: 102 issue: 7 year: 2007 ident: 10.1016/j.surfcoat.2021.127749_bb0030 article-title: Deposition of single-crystal Ti2AlN thin films by reactive magnetron sputtering from a 2Ti:Al compound target publication-title: J. Appl. Phys. doi: 10.1063/1.2785958 contributor: fullname: Joelsson – volume: 825 year: 2020 ident: 10.1016/j.surfcoat.2021.127749_bb0140 article-title: Influence of crystallinity of CuCo2S4 on its supercapacitive behavior publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.153984 contributor: fullname: Cheng – volume: 90 issue: 17 year: 2007 ident: 10.1016/j.surfcoat.2021.127749_bb0175 article-title: Topotaxial growth of Ti2AlN by solid state reaction in AlN/Ti(0001) multilayer thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.2731520 contributor: fullname: Hoglund – volume: 4 start-page: 121 issue: 5–6 year: 2010 ident: 10.1016/j.surfcoat.2021.127749_bb0065 article-title: Formation of basal plane fiber-textured Ti2AlN films on amorphous substrates publication-title: Physica Status Solidi-Rapid Research Letters doi: 10.1002/pssr.201004100 contributor: fullname: Beckers – volume: 205 start-page: S1 year: 2011 ident: 10.1016/j.surfcoat.2021.127749_bb0105 article-title: Discharge physics of high power impulse magnetron sputtering publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2011.03.081 contributor: fullname: Anders – volume: 206 start-page: 2661 issue: 10 year: 2012 ident: 10.1016/j.surfcoat.2021.127749_bb0045 article-title: Formation of Ti2AlN phase after post-heat treatment of Ti–Al–N films deposited by pulsed magnetron sputtering publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2011.11.013 contributor: fullname: Yang – volume: 281 start-page: 27 year: 2015 ident: 10.1016/j.surfcoat.2021.127749_bb0115 article-title: Modulate the deposition rate through changing the combination of frequency and pulse width at constant duty cycle publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2015.09.038 contributor: fullname: Wu – volume: 6 start-page: 120 issue: 2 year: 2017 ident: 10.1016/j.surfcoat.2021.127749_bb0220 article-title: Effect of texture microstructure on tribological properties of tailored Ti3AlC2 ceramic publication-title: Journal of Advanced Ceramics doi: 10.1007/s40145-017-0224-6 contributor: fullname: Xu – volume: 160 start-page: 410 year: 2019 ident: 10.1016/j.surfcoat.2021.127749_bb0190 article-title: Optimal target sputtering mode for aluminum nitride thin film deposition by high power pulsed magnetron sputtering publication-title: Vacuum doi: 10.1016/j.vacuum.2018.11.058 contributor: fullname: Ma – volume: 212 start-page: 199 year: 2012 ident: 10.1016/j.surfcoat.2021.127749_bb0020 article-title: Nanocrystalline thin films synthesized from a Ti2AlN compound target by high power impulse magnetron sputtering technique publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2012.09.050 contributor: fullname: Zhang – volume: 30 issue: 3 year: 2012 ident: 10.1016/j.surfcoat.2021.127749_bb0110 article-title: High power impulse magnetron sputtering discharge publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.3691832 contributor: fullname: Gudmundsson – volume: 51 start-page: 1032 issue: 8 year: 2006 ident: 10.1016/j.surfcoat.2021.127749_bb0165 article-title: Microstructural design of hard coatings publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2006.02.002 contributor: fullname: Mayrhofer – volume: 396 start-page: 129 year: 2017 ident: 10.1016/j.surfcoat.2021.127749_bb0180 article-title: C-axis orientated AlN films deposited using deep oscillation magnetron sputtering publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.11.025 contributor: fullname: Lin – volume: 396 start-page: 1435 year: 2017 ident: 10.1016/j.surfcoat.2021.127749_bb0050 article-title: Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.11.183 contributor: fullname: Wang – volume: 33 issue: 3 year: 2015 ident: 10.1016/j.surfcoat.2021.127749_bb0120 article-title: High power pulsed magnetron sputtering: a method to increase deposition rate publication-title: J. Vac. Sci. Technol. A. doi: 10.1116/1.4916108 contributor: fullname: Raman – volume: 44 start-page: 17530 issue: 14 year: 2018 ident: 10.1016/j.surfcoat.2021.127749_bb0025 article-title: Preparation of single-phase Ti2AlN coating by magnetron sputtering with cost-efficient hot-pressed Ti-Al-N targets publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.06.055 contributor: fullname: Li – volume: 117 start-page: 11656 issue: 22 year: 2013 ident: 10.1016/j.surfcoat.2021.127749_bb0210 article-title: Charge distribution in the single crystalline Ti2AlN thin films grown on MgO(111) substrates publication-title: J. Phys. Chem. C doi: 10.1021/jp402373k contributor: fullname: Zhang – volume: 99 issue: 3 year: 2006 ident: 10.1016/j.surfcoat.2021.127749_bb0035 article-title: Microstructure and nonbasal-plane growth of epitaxial Ti[sub 2]AlN thin films publication-title: J. Appl. Phys. doi: 10.1063/1.2161943 contributor: fullname: Beckers – volume: 27 start-page: 780 issue: 5 year: 2012 ident: 10.1016/j.surfcoat.2021.127749_bb0100 article-title: An introduction to thin film processing using high-power impulse magnetron sputtering publication-title: J. Mater. Res. doi: 10.1557/jmr.2012.8 contributor: fullname: Lundin – volume: 90 issue: 17 year: 2007 ident: 10.1016/j.surfcoat.2021.127749_bb0070 article-title: Topotaxial growth of Ti2AlN by solid state reaction in AlN∕Ti(0001) multilayer thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.2731520 contributor: fullname: Höglund – volume: 257 start-page: 286 year: 2014 ident: 10.1016/j.surfcoat.2021.127749_bb0080 article-title: Tribological behavior of selected Mn+1AXn phase thin films on silicon substrates publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.08.034 contributor: fullname: Hopfeld – volume: 89 start-page: 334 issue: 4 year: 2001 ident: 10.1016/j.surfcoat.2021.127749_bb0010 article-title: The MAX phases: unique new carbide and nitride materials publication-title: Am. Sci. doi: 10.1511/2001.28.736 contributor: fullname: Barsoum – volume: 45 start-page: 3940 issue: 3 year: 2019 ident: 10.1016/j.surfcoat.2021.127749_bb0200 article-title: Microstructures and properties of amorphous, polycrystalline, and M(n+1)AX(n)-phase Ti-Al-N films synthesized from an M(n+1)AX(n)-phase Ti2AlN compound target publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.11.067 contributor: fullname: Zhang – volume: 38 start-page: 205 year: 2020 ident: 10.1016/j.surfcoat.2021.127749_bb0150 article-title: Structural defects in MAX phases and their derivative MXenes: a look forward publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.03.049 contributor: fullname: Zhang |
SSID | ssj0001794 |
Score | 2.4470954 |
Snippet | The (002) texture, compactness, and smoothness Ti2AlN thin films render them promising for many potential applications, especially in the surface modification... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 127749 |
SubjectTerms | Adhesion Aluminum nitride Coefficient of friction Crystallization Hardness High power pulsed magnetron sputtering Magnetron sputtering Microstructure Modulation Multilayers Photovoltaic cells Smoothness Substrates Thin films Ti2AlN Vacuum annealing Wear resistance |
Title | Microstructure and properties of Ti2AlN thin film synthesized by vacuum annealing of high power pulsed magnetron sputtering deposited Ti/AlN multilayers |
URI | https://dx.doi.org/10.1016/j.surfcoat.2021.127749 https://www.proquest.com/docview/2606930102 |
Volume | 425 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADLba7QE4ICggWko1B65pJo9JJsfVqtUC6l7YSr2N5hVItZuN9lGpPfR38HOx86gKEuLAMQ9PRmPH_uzx2ACfpC58anwUWC95gPg2CwpXuqAUXNs050a0dbovZ9n0Kv1yLa73YDKchaG0yl73dzq91db9nbBfzbCpqvAbJ2kr8hidFo4wJdmHg3aTaAQH489fp7NHhUwy14ZaBCpkJHhyUPgGVdS6tCtNaZVxdBbFCIeKv9moP7R1a4IuXsHLHjuycTe917Dn60N4Nhlath3CiyfVBd_Az0tKtusKxO7WnunasYZi72sqospWJZtX8XgxY9sfVc3KarFkm7saAeGmuveOmTt2q-1ut0TCGuEkjkk0VN-YNdRbjTU7nLNjS_299hRRZ5umbXtNbzrfpoPh43kV0kfazMWFJoT_Fq4uzueTadA3YghskvJtkEtf2jKNNXeJc07KRGvEeSZLjUB_BzGd8UkZW7RtmYlyZ63kvqCmHhrdr8Qm72BUr2r_HlgqElxhk2na8BQ-LqTl0hibx8JL48wRhMPSq6art6GGRLQbNTBLEbNUx6wjKAYOqd8kR6FR-CftycBS1f-7G4UeHvWHROR1_B9Df4DndEXHFiNxAiNktv-I-GVrTmH_7CE67aX0F_Xw87s |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9lA4ICggCqX4wDXEeThxjqsV1faxe2Er9Wb5FUi1m432gVR-CT-XmTxQQao49BpnnMgz-eYbZzwD8EnqwqfGR4H1kgfIb7OgcKULSsG1TXNuRFunezrLJtfpxY242YPxcBaG0ip77O8wvUXr_krYr2bYVFX4lZO1FXmMQQtHmpI8gQNkAwUa-8Ho_HIy-wPIZHPtVotAQEaBeweFbxGi1qVdaUqrjKPPUYx0qHjIR_2D1q0LOnsBz3vuyEbd672EPV8fweF4aNl2BM_uVRd8Bb-mlGzXFYjdrT3TtWMN7b2vqYgqW5VsXsWjxYxtv1c1K6vFkm3uaiSEm-qnd8zcsR_a7nZLFKyRTuKcJEP1jVlDvdVYs8N3dmypv9WedtTZpmnbXtOdzrfpYDg8r0J6SJu5uNDE8F_D9dmX-XgS9I0YApukfBvk0pe2TGPNXeKckzLRGnmeyVIjMN5BTmd8UsYWfVtmotxZK7kvqKmHxvArsckb2K9XtX8LLBUJrrDJNP3wFD4upOXSGJvHwkvjzDGEw9Krpqu3oYZEtFs1KEuRslSnrGMoBg2pvyxHoVP4r-zJoFLVf7sbhREe9YdE5vXuEVN_hMPJfHqlrs5nl-_hKY3QEcZInMA-Kt5_QC6zNae9rf4G88P1uA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+and+properties+of+Ti2AlN+thin+film+synthesized+by+vacuum+annealing+of+high+power+pulsed+magnetron+sputtering+deposited+Ti%2FAlN+multilayers&rft.jtitle=Surface+%26+coatings+technology&rft.au=Ma%2C+D.L.&rft.au=Deng%2C+Q.Y.&rft.au=Liu%2C+H.Y.&rft.au=Li%2C+Y.T.&rft.date=2021-11-15&rft.pub=Elsevier+B.V&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=425&rft_id=info:doi/10.1016%2Fj.surfcoat.2021.127749&rft.externalDocID=S0257897221009233 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |