A characterization of Thurston’s Master Teapot

We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in $\mathbb {C}\times \mathbb {R}$ belongs to the complement of the Master Teapot. As an application, we show that the intersection of the Master Teapot w...

Full description

Saved in:
Bibliographic Details
Published inErgodic theory and dynamical systems Vol. 43; no. 10; pp. 3354 - 3382
Main Authors LINDSEY, KATHRYN, WU, CHENXI
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.10.2023
Subjects
Online AccessGet full text
ISSN0143-3857
1469-4417
DOI10.1017/etds.2022.73

Cover

Abstract We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in $\mathbb {C}\times \mathbb {R}$ belongs to the complement of the Master Teapot. As an application, we show that the intersection of the Master Teapot with the unit cylinder is not symmetrical under reflection through the plane that is the product of the imaginary axis of $\mathbb {C}$ and $\mathbb {R}$ .
AbstractList We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in \(\mathbb {C}\times \mathbb {R}\) belongs to the complement of the Master Teapot. As an application, we show that the intersection of the Master Teapot with the unit cylinder is not symmetrical under reflection through the plane that is the product of the imaginary axis of \(\mathbb {C}\) and \(\mathbb {R}\).
We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in $\mathbb {C}\times \mathbb {R}$ belongs to the complement of the Master Teapot. As an application, we show that the intersection of the Master Teapot with the unit cylinder is not symmetrical under reflection through the plane that is the product of the imaginary axis of $\mathbb {C}$ and $\mathbb {R}$ .
Author WU, CHENXI
LINDSEY, KATHRYN
Author_xml – sequence: 1
  givenname: KATHRYN
  orcidid: 0000-0001-8164-6791
  surname: LINDSEY
  fullname: LINDSEY, KATHRYN
  email: kathryn.lindsey@bc.edu
  organization: †Department of Mathematics, Boston College, Boston 02467, MA, USA (e-mail: kathryn.lindsey@bc.edu)
– sequence: 2
  givenname: CHENXI
  orcidid: 0000-0001-5856-6435
  surname: WU
  fullname: WU, CHENXI
  email: wuchenxi2013@gmail.com
  organization: ‡Department of Mathematics, University of Wisconsin at Madison, Madison 53706, WI, USA
BookMark eNp1kE1OwzAQhS1UJNrCjgNEYkvCOLbjeFlV_ElFbMrasl2bpmrjYrsLWHENrsdJSGglJASrWcz33sx7IzRofWsROsdQYMD8yqZFLEooy4KTIzTEtBI5pZgP0BAwJTmpGT9BoxhXAEAwZ0MEk8wsVVAm2dC8qdT4NvMumy93ISbffr5_xOxBxW6bza3a-nSKjp1aR3t2mGP0dHM9n97ls8fb--lklhtCIeW8qkEr54hRVtUCCFe4rESlGVDBKoO5Y9q4EgSvGNEUiHYUDOMVMI0ZIWN0sffdBv-yszHJld-Ftjspy7qDGBG16KhyT5ngYwzWSdOk7xQpqGYtMci-Gdk3I_tmJO-tL3-JtqHZqPD6H14ccLXRoVk8259X_hR8AdSPdiQ
CitedBy_id crossref_primary_10_3390_fractalfract8120725
Cites_doi 10.1016/j.aim.2020.107481
10.1007/BF02901438
10.1017/etds.2016.17
10.1090/S0002-9947-08-04605-9
10.1016/S0167-2789(85)80008-7
10.1515/9781400851317-016
10.1007/BF02098448
10.4171/GGD/745
10.1017/S0143385707000053
10.1007/BFb0082847
10.1007/s10474-012-0252-1
10.1007/s10711-015-0089-1
10.4171/JEMS/1154
10.1088/0951-7715/15/4/309
10.4153/CMB-2010-028-7
10.4064/aa-88-4-333-350
10.1080/10586458.2006.10128977
10.3934/dcds.2016.36.323
10.1016/j.aim.2014.12.033
10.1016/j.tcs.2011.08.028
10.1088/0951-7715/16/5/311
10.1515/INTEG.2009.023
10.1216/RMJ-2014-44-1-113
10.1007/s00222-015-0605-9
10.4171/CMH/424
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press
The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press
– notice: The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
3V.
7SC
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/etds.2022.73
DatabaseName Cambridge University Press Wholly Gold Open Access Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

CrossRef
Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge University Press Wholly Gold Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-4417
EndPage 3382
ExternalDocumentID 10_1017_etds_2022_73
GroupedDBID --Z
-1D
-1F
-2P
-2V
-DZ
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
29G
3V.
4.4
5GY
5VS
6TJ
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ACBMC
ACCHT
ACETC
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AETEA
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IKXGN
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AAYXX
ABGDZ
ABHFL
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACOZI
AFZFC
AKMAY
ANOYL
CITATION
PHGZM
PHGZT
7SC
7U5
7XB
8FD
8FK
H8D
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c340t-7680baff3caea89037a12696b504956c17f5bcf2097653b403bf40c57605b1533
IEDL.DBID IKXGN
ISSN 0143-3857
IngestDate Fri Jul 25 10:48:29 EDT 2025
Tue Jul 01 00:22:28 EDT 2025
Thu Apr 24 23:00:56 EDT 2025
Wed Mar 13 05:55:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords topological entropy
37B40
kneading theory
37B10
symbolic dynamics
interval maps
37E15
37E05
Language English
License https://creativecommons.org/licenses/by/4.0 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-7680baff3caea89037a12696b504956c17f5bcf2097653b403bf40c57605b1533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8164-6791
0000-0001-5856-6435
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0143385722000736/type/journal_article
PQID 2860553989
PQPubID 36706
PageCount 29
ParticipantIDs proquest_journals_2860553989
crossref_citationtrail_10_1017_etds_2022_73
crossref_primary_10_1017_etds_2022_73
cambridge_journals_10_1017_etds_2022_73
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Ergodic theory and dynamical systems
PublicationTitleAlternate Ergod. Th. Dynam. Sys
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2015; 273
2011; 412
2002; 15
2010; 53
2004; 20
1993; 39
2020; 2020
2017; 92
2021; 377
2017; 37
2006; 15
2013; 139
2009; 9
1999; 88
2003; 16
2016; 203
1990; 134
2016; 180
1985; 15
2016; 36
2008; 360
2014; 44
2007; 27
1988; 1342
S0143385722000736_r23
S0143385722000736_r24
S0143385722000736_r25
S0143385722000736_r26
S0143385722000736_r27
S0143385722000736_r28
S0143385722000736_r9
S0143385722000736_r8
S0143385722000736_r7
S0143385722000736_r21
S0143385722000736_r22
Tiozzo (S0143385722000736_r29) 2020; 2020
S0143385722000736_r12
S0143385722000736_r13
S0143385722000736_r14
S0143385722000736_r15
S0143385722000736_r16
Calegari (S0143385722000736_r6) 2017; 37
S0143385722000736_r17
S0143385722000736_r18
Odlyzko (S0143385722000736_r20) 1993; 39
S0143385722000736_r19
S0143385722000736_r10
S0143385722000736_r11
S0143385722000736_r2
S0143385722000736_r1
S0143385722000736_r5
S0143385722000736_r4
S0143385722000736_r3
References_xml – volume: 15
  start-page: 421
  issue: 3
  year: 1985
  end-page: 432
  article-title: A Mandelbrot set for pairs of linear maps
  publication-title: Phys. D
– volume: 15
  start-page: 1127
  issue: 4
  year: 2002
  end-page: 1147
  article-title: On the Mandelbrot set for pairs of linear maps
  publication-title: Nonlinearity
– volume: 180
  start-page: 39
  year: 2016
  end-page: 48
  article-title: Constructing pseudo-Anosov maps with given dilatations
  publication-title: Geom. Dedicata
– volume: 1342
  start-page: 465
  year: 1988
  end-page: 563
  article-title: On iterated maps of the interval
  publication-title: Dyn. Syst.
– volume: 139
  start-page: 106
  issue: 1–2
  year: 2013
  end-page: 119
  article-title: Digital expansions with negative real bases
  publication-title: Acta Math. Hungar.
– volume: 412
  start-page: 6653
  issue: 48
  year: 2011
  end-page: 6665
  article-title: Number representation using generalized $\left(-\beta \right)$ -transformation
  publication-title: Theoret. Comput. Sci.
– volume: 53
  start-page: 140
  issue: 1
  year: 2010
  end-page: 152
  article-title: Pisot numbers from $\{0,\!1\}$ -polynomials
  publication-title: Canad. Math. Bull.
– volume: 39
  start-page: 317
  issue: 3–4
  year: 1993
  end-page: 348
  article-title: Zeros of polynomials with $0,\!1$ coefficients
  publication-title: Enseign. Math. (2)
– volume: 377
  start-page: 107481
  year: 2021
  article-title: The shape of Thurston’s Master Teapot
  publication-title: Adv. Math.
– volume: 273
  start-page: 651
  year: 2015
  end-page: 715
  article-title: Topological entropy of quadratic polynomials and dimension of sections of the Mandelbrot set
  publication-title: Adv. Math.
– volume: 9
  start-page: 239
  issue: A22
  year: 2009
  end-page: 259
  article-title: Beta-expansions with negative bases
  publication-title: Integers
– volume: 15
  start-page: 499
  issue: 4
  year: 2006
  end-page: 511
  article-title: Zeros of $\left\{-1,0,1\right\}$ power series and connectedness loci for self-affine sets
  publication-title: Exp. Math.
– volume: 44
  start-page: 113
  issue: 1
  year: 2014
  end-page: 138
  article-title: Negative Pisot and Salem numbers as roots of Newman polynomials
  publication-title: Rocky Mountain J. Math.
– volume: 92
  start-page: 777
  issue: 4
  year: 2017
  end-page: 800
  article-title: Generalized $\beta$ -transformations and the entropy of unimodal maps
  publication-title: Comment. Math. Helv.
– volume: 360
  start-page: 5145
  issue: 10
  year: 2008
  end-page: 5154
  article-title: Polynomials with coefficients from a finite set
  publication-title: Trans. Amer. Math. Soc.
– volume: 88
  start-page: 333
  issue: 4
  year: 1999
  end-page: 350
  article-title: On the number of irreducible polynomials with $0,\!1$ coefficients
  publication-title: Acta Arith.
– volume: 37
  start-page: 2487
  issue: 8
  year: 2017
  end-page: 2555
  article-title: Roots, Schottky semigroups, and a proof of Bandt’s conjecture
  publication-title: Ergod. Th. & Dynam. Sys.
– volume: 203
  start-page: 891
  issue: 3
  year: 2016
  end-page: 921
  article-title: Continuity of core entropy of quadratic polynomials
  publication-title: Invent. Math.
– volume: 16
  start-page: 1733
  issue: 5
  year: 2003
  end-page: 1749
  article-title: On the ‘Mandelbrot set’ for a pair of linear maps and complex Bernoulli convolutions
  publication-title: Nonlinearity
– volume: 134
  start-page: 587
  issue: 3
  year: 1990
  end-page: 617
  article-title: Similarity between the Mandelbrot set and Julia sets
  publication-title: Comm. Math. Phys.
– volume: 36
  start-page: 323
  issue: 1
  year: 2016
  end-page: 344
  article-title: Intermediate $\beta$ -shifts of finite type
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 27
  start-page: 1583
  issue: 5
  year: 2007
  end-page: 1598
  article-title: Invariant densities for generalized $\beta$ -maps
  publication-title: Ergod. Th. & Dynam. Sys.
– volume: 20
  start-page: 149
  issue: 2
  year: 2004
  end-page: 157
  article-title: ‘Mandelbrot set’ for a pair of linear maps: the local geometry
  publication-title: Anal. Theory Appl.
– volume: 2020
  start-page: 607
  year: 2020
  end-page: 640
  article-title: Galois conjugates of entropies of real unimodal maps
  publication-title: Int. Math. Res. Not. IMRN
– ident: S0143385722000736_r2
  doi: 10.1016/j.aim.2020.107481
– ident: S0143385722000736_r21
  doi: 10.1007/BF02901438
– volume: 37
  start-page: 2487
  year: 2017
  ident: S0143385722000736_r6
  article-title: Roots, Schottky semigroups, and a proof of Bandt’s conjecture
  publication-title: Ergod. Th. and Dynam. Sys.
  doi: 10.1017/etds.2016.17
– ident: S0143385722000736_r3
  doi: 10.1090/S0002-9947-08-04605-9
– ident: S0143385722000736_r4
  doi: 10.1016/S0167-2789(85)80008-7
– ident: S0143385722000736_r26
  doi: 10.1515/9781400851317-016
– ident: S0143385722000736_r16
  doi: 10.1007/BF02098448
– ident: S0143385722000736_r9
  doi: 10.4171/GGD/745
– ident: S0143385722000736_r10
  doi: 10.1017/S0143385707000053
– ident: S0143385722000736_r18
  doi: 10.1007/BFb0082847
– ident: S0143385722000736_r23
  doi: 10.1007/s10474-012-0252-1
– ident: S0143385722000736_r5
  doi: 10.1007/s10711-015-0089-1
– ident: S0143385722000736_r11
  doi: 10.4171/JEMS/1154
– ident: S0143385722000736_r1
  doi: 10.1088/0951-7715/15/4/309
– ident: S0143385722000736_r7
– ident: S0143385722000736_r19
  doi: 10.4153/CMB-2010-028-7
– ident: S0143385722000736_r15
  doi: 10.4064/aa-88-4-333-350
– ident: S0143385722000736_r22
  doi: 10.1080/10586458.2006.10128977
– ident: S0143385722000736_r17
  doi: 10.3934/dcds.2016.36.323
– ident: S0143385722000736_r14
– ident: S0143385722000736_r27
  doi: 10.1016/j.aim.2014.12.033
– ident: S0143385722000736_r8
  doi: 10.1016/j.tcs.2011.08.028
– ident: S0143385722000736_r24
  doi: 10.1088/0951-7715/16/5/311
– volume: 2020
  start-page: 607
  year: 2020
  ident: S0143385722000736_r29
  article-title: Galois conjugates of entropies of real unimodal maps
  publication-title: Int. Math. Res. Not. IMRN
– ident: S0143385722000736_r13
  doi: 10.1515/INTEG.2009.023
– volume: 39
  start-page: 317
  year: 1993
  ident: S0143385722000736_r20
  article-title: Zeros of polynomials with $0,\!1$ coefficients
  publication-title: Enseign. Math. (2)
– ident: S0143385722000736_r12
  doi: 10.1216/RMJ-2014-44-1-113
– ident: S0143385722000736_r28
  doi: 10.1007/s00222-015-0605-9
– ident: S0143385722000736_r25
  doi: 10.4171/CMH/424
SSID ssj0003175
Score 2.351167
Snippet We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in $\mathbb...
We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in \(\mathbb...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3354
SubjectTerms Dynamical systems
Entropy
Original Article
Polynomials
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA3aXvQgfmK1yh4UDxLNbpLN5iRVWorQItJCb0uSzeJB2upu7_4N_56_xEw33dKDnjMQmAwzb5LJewhd0TAXmbIMG1dsMJMsxJITjfPYhYfKrCta8N95MIz7Y_Y84RN_4Vb4scpVTlwm6mxm4I78Pkoc8OZUJvJh_oFBNQpeV72ExjZquhScuDhvPnaHL691LobqWA0xUkwTLvzoO5BG2zIDuu4ougPN9DWxwmaB2szPy6LT20d7Hi0Gnep4D9CWnR6i3UFNtVocIdIJTE26XP2pDGZ5MHpbLHHdz9d3EQwU0CEEI6vms_IYjXvd0VMfexkEbCgjJXYNAdEqz6lRViWSUKHCKJax5gS6GxOKnGuTR8QhC041I1TnjBjXSBCuAc6doMZ0NrWnKAizODEyy-BtjzHDtBEJi5Q0DjhoZkUL3dR-SH0wF2k1CCZS8FgKHksFbaHblZdS49nEQdTi_Q_r69p6XrFo_GHXXjl8vf365M_-Xz5HOyAGX43atVGj_FzYCwcZSn3p4-IXxhW_NA
  priority: 102
  providerName: ProQuest
Title A characterization of Thurston’s Master Teapot
URI https://www.cambridge.org/core/product/identifier/S0143385722000736/type/journal_article
https://www.proquest.com/docview/2860553989
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsMwEFyV9gIHxFMUSpUDiAMKcWLndSyoD0CtEGql3CLbcQQSaqs2vfMb_B5fgjdJU_VQibsVJxPHOxvPzgLcUDv1E66YKXWwMVnIbDN0iTBTTy8PnigdtLDeeTjyBhP2ErlRDaJ1LQzKKiuPg_wkP--PNi_sT63PpNDQqIWFsiSdX7m-4-TnTZ6FPy2t8hXEJfB70NCcwdZfQOP5NeqPql0a42Yhb6QmXqUUxaOdtMoSNPJ2nAfspr6xXNgOXds7dx6OekdwWPJIo1PMfww1NT2Bg2Flwro8BdIxZGXHXFRbGrPUGH-scsb3-_2zNIYcjRKMseLzWXYGk153_DQwywYJpqSMZKZOFYjgaUolVzwICfW57XihJ1yCeY-0_dQVMnWI5hwuFYxQkTIidYpBXIFE7xzq09lUXYBhJ14gwyTBUz_GJBPSD5jDQ6kphWDKb8JdhUNcYryMC4mYHyNiMSIW-7QJ92uUYln6jGO7i68do2-r0fPCX2PHuNYa8M30TqAfxKVhEF7--_auYB87xhd6vBbUs8VKXWtekYk27AW9fhsaj93R23u7XDB_qpDODg
linkProvider Cambridge University Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVlzQHEARmc2Fl8QAgBpYWWU5G4BdtxxAG1hQYhbvwGP8FH8SV4mqXqAW49Z5RIk8m853j8HsA-c9MwkYYTbcGGcMFdInyqSBrY8pCJsaCF553bd0Hjnt88-A9T8F2ehcGxyrInDht10tP4j_zEiyzx9pmIxFn_haBrFO6ulhYaeVncmo93u2QbnDYv7fs98Lz6VeeiQQpXAaIZpxmx_JoqmaZMSyMjQVkoXS8QgfIpLha0G6a-0qlHLVD7THHKVMqptryc-grZkb3vNMxyxgRaRUT166rzIxbnI5OMsMgPi0F7lKg2WYLi4J53jA7tIxmHcTgcR4MhxNWXYLHgps55XkzLMGW6K7DQroRdB6tAzx1dSTznJzidXup0nt6GLPLn82vgtCWKLzgdI_u9bA3uJ5KedZjp9rpmAxw3CSItkgR3EjnXXOkw4p4U2tIUxU1Yg8MqD3Hx6QzifOwsjDFjMWYsDlkNjsosxbrQLkcLjec_og-q6H6u2fFH3HaZ8NHjR3W2-f_lPZhrdNqtuNW8u92CebShz4f8tmEme30zO5asZGp3WCEOPE66JH8BAUn44g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+characterization+of+Thurston%E2%80%99s+Master+Teapot&rft.jtitle=Ergodic+theory+and+dynamical+systems&rft.au=LINDSEY%2C+KATHRYN&rft.au=WU%2C+CHENXI&rft.date=2023-10-01&rft.pub=Cambridge+University+Press&rft.issn=0143-3857&rft.eissn=1469-4417&rft.volume=43&rft.issue=10&rft.spage=3354&rft.epage=3382&rft_id=info:doi/10.1017%2Fetds.2022.73&rft.externalDocID=10_1017_etds_2022_73
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-3857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-3857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-3857&client=summon