A characterization of Thurston’s Master Teapot
We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in $\mathbb {C}\times \mathbb {R}$ belongs to the complement of the Master Teapot. As an application, we show that the intersection of the Master Teapot w...
Saved in:
Published in | Ergodic theory and dynamical systems Vol. 43; no. 10; pp. 3354 - 3382 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0143-3857 1469-4417 |
DOI | 10.1017/etds.2022.73 |
Cover
Abstract | We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in
$\mathbb {C}\times \mathbb {R}$
belongs to the complement of the Master Teapot. As an application, we show that the intersection of the Master Teapot with the unit cylinder is not symmetrical under reflection through the plane that is the product of the imaginary axis of
$\mathbb {C}$
and
$\mathbb {R}$
. |
---|---|
AbstractList | We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in \(\mathbb {C}\times \mathbb {R}\) belongs to the complement of the Master Teapot. As an application, we show that the intersection of the Master Teapot with the unit cylinder is not symmetrical under reflection through the plane that is the product of the imaginary axis of \(\mathbb {C}\) and \(\mathbb {R}\). We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in $\mathbb {C}\times \mathbb {R}$ belongs to the complement of the Master Teapot. As an application, we show that the intersection of the Master Teapot with the unit cylinder is not symmetrical under reflection through the plane that is the product of the imaginary axis of $\mathbb {C}$ and $\mathbb {R}$ . |
Author | WU, CHENXI LINDSEY, KATHRYN |
Author_xml | – sequence: 1 givenname: KATHRYN orcidid: 0000-0001-8164-6791 surname: LINDSEY fullname: LINDSEY, KATHRYN email: kathryn.lindsey@bc.edu organization: †Department of Mathematics, Boston College, Boston 02467, MA, USA (e-mail: kathryn.lindsey@bc.edu) – sequence: 2 givenname: CHENXI orcidid: 0000-0001-5856-6435 surname: WU fullname: WU, CHENXI email: wuchenxi2013@gmail.com organization: ‡Department of Mathematics, University of Wisconsin at Madison, Madison 53706, WI, USA |
BookMark | eNp1kE1OwzAQhS1UJNrCjgNEYkvCOLbjeFlV_ElFbMrasl2bpmrjYrsLWHENrsdJSGglJASrWcz33sx7IzRofWsROsdQYMD8yqZFLEooy4KTIzTEtBI5pZgP0BAwJTmpGT9BoxhXAEAwZ0MEk8wsVVAm2dC8qdT4NvMumy93ISbffr5_xOxBxW6bza3a-nSKjp1aR3t2mGP0dHM9n97ls8fb--lklhtCIeW8qkEr54hRVtUCCFe4rESlGVDBKoO5Y9q4EgSvGNEUiHYUDOMVMI0ZIWN0sffdBv-yszHJld-Ftjspy7qDGBG16KhyT5ngYwzWSdOk7xQpqGYtMci-Gdk3I_tmJO-tL3-JtqHZqPD6H14ccLXRoVk8259X_hR8AdSPdiQ |
CitedBy_id | crossref_primary_10_3390_fractalfract8120725 |
Cites_doi | 10.1016/j.aim.2020.107481 10.1007/BF02901438 10.1017/etds.2016.17 10.1090/S0002-9947-08-04605-9 10.1016/S0167-2789(85)80008-7 10.1515/9781400851317-016 10.1007/BF02098448 10.4171/GGD/745 10.1017/S0143385707000053 10.1007/BFb0082847 10.1007/s10474-012-0252-1 10.1007/s10711-015-0089-1 10.4171/JEMS/1154 10.1088/0951-7715/15/4/309 10.4153/CMB-2010-028-7 10.4064/aa-88-4-333-350 10.1080/10586458.2006.10128977 10.3934/dcds.2016.36.323 10.1016/j.aim.2014.12.033 10.1016/j.tcs.2011.08.028 10.1088/0951-7715/16/5/311 10.1515/INTEG.2009.023 10.1216/RMJ-2014-44-1-113 10.1007/s00222-015-0605-9 10.4171/CMH/424 |
ContentType | Journal Article |
Copyright | The Author(s), 2022. Published by Cambridge University Press The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s), 2022. Published by Cambridge University Press – notice: The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | IKXGN AAYXX CITATION 3V. 7SC 7U5 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ H8D HCIFZ JQ2 K7- L6V L7M L~C L~D M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1017/etds.2022.73 |
DatabaseName | Cambridge University Press Wholly Gold Open Access Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student Aerospace Database SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: IKXGN name: Cambridge University Press Wholly Gold Open Access Journals url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1469-4417 |
EndPage | 3382 |
ExternalDocumentID | 10_1017_etds_2022_73 |
GroupedDBID | --Z -1D -1F -2P -2V -DZ -E. -~6 -~N -~X .FH 09C 09E 0E1 0R~ 29G 3V. 4.4 5GY 5VS 6TJ 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABXAU ABZCX ACBMC ACCHT ACETC ACGFS ACGOD ACIMK ACIWK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AETEA AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IKXGN IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KC5 KCGVB KFECR L6V L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S6- S6U SAAAG T9M TN5 UT1 VH1 WFFJZ WQ3 WXU WXY WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AAYXX ABGDZ ABHFL ABVKB ABVZP ABXHF ACDLN ACEJA ACOZI AFZFC AKMAY ANOYL CITATION PHGZM PHGZT 7SC 7U5 7XB 8FD 8FK H8D JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c340t-7680baff3caea89037a12696b504956c17f5bcf2097653b403bf40c57605b1533 |
IEDL.DBID | IKXGN |
ISSN | 0143-3857 |
IngestDate | Fri Jul 25 10:48:29 EDT 2025 Tue Jul 01 00:22:28 EDT 2025 Thu Apr 24 23:00:56 EDT 2025 Wed Mar 13 05:55:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | topological entropy 37B40 kneading theory 37B10 symbolic dynamics interval maps 37E15 37E05 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-7680baff3caea89037a12696b504956c17f5bcf2097653b403bf40c57605b1533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8164-6791 0000-0001-5856-6435 |
OpenAccessLink | https://www.cambridge.org/core/product/identifier/S0143385722000736/type/journal_article |
PQID | 2860553989 |
PQPubID | 36706 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2860553989 crossref_citationtrail_10_1017_etds_2022_73 crossref_primary_10_1017_etds_2022_73 cambridge_journals_10_1017_etds_2022_73 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Ergodic theory and dynamical systems |
PublicationTitleAlternate | Ergod. Th. Dynam. Sys |
PublicationYear | 2023 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2015; 273 2011; 412 2002; 15 2010; 53 2004; 20 1993; 39 2020; 2020 2017; 92 2021; 377 2017; 37 2006; 15 2013; 139 2009; 9 1999; 88 2003; 16 2016; 203 1990; 134 2016; 180 1985; 15 2016; 36 2008; 360 2014; 44 2007; 27 1988; 1342 S0143385722000736_r23 S0143385722000736_r24 S0143385722000736_r25 S0143385722000736_r26 S0143385722000736_r27 S0143385722000736_r28 S0143385722000736_r9 S0143385722000736_r8 S0143385722000736_r7 S0143385722000736_r21 S0143385722000736_r22 Tiozzo (S0143385722000736_r29) 2020; 2020 S0143385722000736_r12 S0143385722000736_r13 S0143385722000736_r14 S0143385722000736_r15 S0143385722000736_r16 Calegari (S0143385722000736_r6) 2017; 37 S0143385722000736_r17 S0143385722000736_r18 Odlyzko (S0143385722000736_r20) 1993; 39 S0143385722000736_r19 S0143385722000736_r10 S0143385722000736_r11 S0143385722000736_r2 S0143385722000736_r1 S0143385722000736_r5 S0143385722000736_r4 S0143385722000736_r3 |
References_xml | – volume: 15 start-page: 421 issue: 3 year: 1985 end-page: 432 article-title: A Mandelbrot set for pairs of linear maps publication-title: Phys. D – volume: 15 start-page: 1127 issue: 4 year: 2002 end-page: 1147 article-title: On the Mandelbrot set for pairs of linear maps publication-title: Nonlinearity – volume: 180 start-page: 39 year: 2016 end-page: 48 article-title: Constructing pseudo-Anosov maps with given dilatations publication-title: Geom. Dedicata – volume: 1342 start-page: 465 year: 1988 end-page: 563 article-title: On iterated maps of the interval publication-title: Dyn. Syst. – volume: 139 start-page: 106 issue: 1–2 year: 2013 end-page: 119 article-title: Digital expansions with negative real bases publication-title: Acta Math. Hungar. – volume: 412 start-page: 6653 issue: 48 year: 2011 end-page: 6665 article-title: Number representation using generalized $\left(-\beta \right)$ -transformation publication-title: Theoret. Comput. Sci. – volume: 53 start-page: 140 issue: 1 year: 2010 end-page: 152 article-title: Pisot numbers from $\{0,\!1\}$ -polynomials publication-title: Canad. Math. Bull. – volume: 39 start-page: 317 issue: 3–4 year: 1993 end-page: 348 article-title: Zeros of polynomials with $0,\!1$ coefficients publication-title: Enseign. Math. (2) – volume: 377 start-page: 107481 year: 2021 article-title: The shape of Thurston’s Master Teapot publication-title: Adv. Math. – volume: 273 start-page: 651 year: 2015 end-page: 715 article-title: Topological entropy of quadratic polynomials and dimension of sections of the Mandelbrot set publication-title: Adv. Math. – volume: 9 start-page: 239 issue: A22 year: 2009 end-page: 259 article-title: Beta-expansions with negative bases publication-title: Integers – volume: 15 start-page: 499 issue: 4 year: 2006 end-page: 511 article-title: Zeros of $\left\{-1,0,1\right\}$ power series and connectedness loci for self-affine sets publication-title: Exp. Math. – volume: 44 start-page: 113 issue: 1 year: 2014 end-page: 138 article-title: Negative Pisot and Salem numbers as roots of Newman polynomials publication-title: Rocky Mountain J. Math. – volume: 92 start-page: 777 issue: 4 year: 2017 end-page: 800 article-title: Generalized $\beta$ -transformations and the entropy of unimodal maps publication-title: Comment. Math. Helv. – volume: 360 start-page: 5145 issue: 10 year: 2008 end-page: 5154 article-title: Polynomials with coefficients from a finite set publication-title: Trans. Amer. Math. Soc. – volume: 88 start-page: 333 issue: 4 year: 1999 end-page: 350 article-title: On the number of irreducible polynomials with $0,\!1$ coefficients publication-title: Acta Arith. – volume: 37 start-page: 2487 issue: 8 year: 2017 end-page: 2555 article-title: Roots, Schottky semigroups, and a proof of Bandt’s conjecture publication-title: Ergod. Th. & Dynam. Sys. – volume: 203 start-page: 891 issue: 3 year: 2016 end-page: 921 article-title: Continuity of core entropy of quadratic polynomials publication-title: Invent. Math. – volume: 16 start-page: 1733 issue: 5 year: 2003 end-page: 1749 article-title: On the ‘Mandelbrot set’ for a pair of linear maps and complex Bernoulli convolutions publication-title: Nonlinearity – volume: 134 start-page: 587 issue: 3 year: 1990 end-page: 617 article-title: Similarity between the Mandelbrot set and Julia sets publication-title: Comm. Math. Phys. – volume: 36 start-page: 323 issue: 1 year: 2016 end-page: 344 article-title: Intermediate $\beta$ -shifts of finite type publication-title: Discrete Contin. Dyn. Syst. – volume: 27 start-page: 1583 issue: 5 year: 2007 end-page: 1598 article-title: Invariant densities for generalized $\beta$ -maps publication-title: Ergod. Th. & Dynam. Sys. – volume: 20 start-page: 149 issue: 2 year: 2004 end-page: 157 article-title: ‘Mandelbrot set’ for a pair of linear maps: the local geometry publication-title: Anal. Theory Appl. – volume: 2020 start-page: 607 year: 2020 end-page: 640 article-title: Galois conjugates of entropies of real unimodal maps publication-title: Int. Math. Res. Not. IMRN – ident: S0143385722000736_r2 doi: 10.1016/j.aim.2020.107481 – ident: S0143385722000736_r21 doi: 10.1007/BF02901438 – volume: 37 start-page: 2487 year: 2017 ident: S0143385722000736_r6 article-title: Roots, Schottky semigroups, and a proof of Bandt’s conjecture publication-title: Ergod. Th. and Dynam. Sys. doi: 10.1017/etds.2016.17 – ident: S0143385722000736_r3 doi: 10.1090/S0002-9947-08-04605-9 – ident: S0143385722000736_r4 doi: 10.1016/S0167-2789(85)80008-7 – ident: S0143385722000736_r26 doi: 10.1515/9781400851317-016 – ident: S0143385722000736_r16 doi: 10.1007/BF02098448 – ident: S0143385722000736_r9 doi: 10.4171/GGD/745 – ident: S0143385722000736_r10 doi: 10.1017/S0143385707000053 – ident: S0143385722000736_r18 doi: 10.1007/BFb0082847 – ident: S0143385722000736_r23 doi: 10.1007/s10474-012-0252-1 – ident: S0143385722000736_r5 doi: 10.1007/s10711-015-0089-1 – ident: S0143385722000736_r11 doi: 10.4171/JEMS/1154 – ident: S0143385722000736_r1 doi: 10.1088/0951-7715/15/4/309 – ident: S0143385722000736_r7 – ident: S0143385722000736_r19 doi: 10.4153/CMB-2010-028-7 – ident: S0143385722000736_r15 doi: 10.4064/aa-88-4-333-350 – ident: S0143385722000736_r22 doi: 10.1080/10586458.2006.10128977 – ident: S0143385722000736_r17 doi: 10.3934/dcds.2016.36.323 – ident: S0143385722000736_r14 – ident: S0143385722000736_r27 doi: 10.1016/j.aim.2014.12.033 – ident: S0143385722000736_r8 doi: 10.1016/j.tcs.2011.08.028 – ident: S0143385722000736_r24 doi: 10.1088/0951-7715/16/5/311 – volume: 2020 start-page: 607 year: 2020 ident: S0143385722000736_r29 article-title: Galois conjugates of entropies of real unimodal maps publication-title: Int. Math. Res. Not. IMRN – ident: S0143385722000736_r13 doi: 10.1515/INTEG.2009.023 – volume: 39 start-page: 317 year: 1993 ident: S0143385722000736_r20 article-title: Zeros of polynomials with $0,\!1$ coefficients publication-title: Enseign. Math. (2) – ident: S0143385722000736_r12 doi: 10.1216/RMJ-2014-44-1-113 – ident: S0143385722000736_r28 doi: 10.1007/s00222-015-0605-9 – ident: S0143385722000736_r25 doi: 10.4171/CMH/424 |
SSID | ssj0003175 |
Score | 2.351167 |
Snippet | We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in
$\mathbb... We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in \(\mathbb... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3354 |
SubjectTerms | Dynamical systems Entropy Original Article Polynomials |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA3aXvQgfmK1yh4UDxLNbpLN5iRVWorQItJCb0uSzeJB2upu7_4N_56_xEw33dKDnjMQmAwzb5LJewhd0TAXmbIMG1dsMJMsxJITjfPYhYfKrCta8N95MIz7Y_Y84RN_4Vb4scpVTlwm6mxm4I78Pkoc8OZUJvJh_oFBNQpeV72ExjZquhScuDhvPnaHL691LobqWA0xUkwTLvzoO5BG2zIDuu4ougPN9DWxwmaB2szPy6LT20d7Hi0Gnep4D9CWnR6i3UFNtVocIdIJTE26XP2pDGZ5MHpbLHHdz9d3EQwU0CEEI6vms_IYjXvd0VMfexkEbCgjJXYNAdEqz6lRViWSUKHCKJax5gS6GxOKnGuTR8QhC041I1TnjBjXSBCuAc6doMZ0NrWnKAizODEyy-BtjzHDtBEJi5Q0DjhoZkUL3dR-SH0wF2k1CCZS8FgKHksFbaHblZdS49nEQdTi_Q_r69p6XrFo_GHXXjl8vf365M_-Xz5HOyAGX43atVGj_FzYCwcZSn3p4-IXxhW_NA priority: 102 providerName: ProQuest |
Title | A characterization of Thurston’s Master Teapot |
URI | https://www.cambridge.org/core/product/identifier/S0143385722000736/type/journal_article https://www.proquest.com/docview/2860553989 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsMwEFyV9gIHxFMUSpUDiAMKcWLndSyoD0CtEGql3CLbcQQSaqs2vfMb_B5fgjdJU_VQibsVJxPHOxvPzgLcUDv1E66YKXWwMVnIbDN0iTBTTy8PnigdtLDeeTjyBhP2ErlRDaJ1LQzKKiuPg_wkP--PNi_sT63PpNDQqIWFsiSdX7m-4-TnTZ6FPy2t8hXEJfB70NCcwdZfQOP5NeqPql0a42Yhb6QmXqUUxaOdtMoSNPJ2nAfspr6xXNgOXds7dx6OekdwWPJIo1PMfww1NT2Bg2Flwro8BdIxZGXHXFRbGrPUGH-scsb3-_2zNIYcjRKMseLzWXYGk153_DQwywYJpqSMZKZOFYjgaUolVzwICfW57XihJ1yCeY-0_dQVMnWI5hwuFYxQkTIidYpBXIFE7xzq09lUXYBhJ14gwyTBUz_GJBPSD5jDQ6kphWDKb8JdhUNcYryMC4mYHyNiMSIW-7QJ92uUYln6jGO7i68do2-r0fPCX2PHuNYa8M30TqAfxKVhEF7--_auYB87xhd6vBbUs8VKXWtekYk27AW9fhsaj93R23u7XDB_qpDODg |
linkProvider | Cambridge University Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVlzQHEARmc2Fl8QAgBpYWWU5G4BdtxxAG1hQYhbvwGP8FH8SV4mqXqAW49Z5RIk8m853j8HsA-c9MwkYYTbcGGcMFdInyqSBrY8pCJsaCF553bd0Hjnt88-A9T8F2ehcGxyrInDht10tP4j_zEiyzx9pmIxFn_haBrFO6ulhYaeVncmo93u2QbnDYv7fs98Lz6VeeiQQpXAaIZpxmx_JoqmaZMSyMjQVkoXS8QgfIpLha0G6a-0qlHLVD7THHKVMqptryc-grZkb3vNMxyxgRaRUT166rzIxbnI5OMsMgPi0F7lKg2WYLi4J53jA7tIxmHcTgcR4MhxNWXYLHgps55XkzLMGW6K7DQroRdB6tAzx1dSTznJzidXup0nt6GLPLn82vgtCWKLzgdI_u9bA3uJ5KedZjp9rpmAxw3CSItkgR3EjnXXOkw4p4U2tIUxU1Yg8MqD3Hx6QzifOwsjDFjMWYsDlkNjsosxbrQLkcLjec_og-q6H6u2fFH3HaZ8NHjR3W2-f_lPZhrdNqtuNW8u92CebShz4f8tmEme30zO5asZGp3WCEOPE66JH8BAUn44g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+characterization+of+Thurston%E2%80%99s+Master+Teapot&rft.jtitle=Ergodic+theory+and+dynamical+systems&rft.au=LINDSEY%2C+KATHRYN&rft.au=WU%2C+CHENXI&rft.date=2023-10-01&rft.pub=Cambridge+University+Press&rft.issn=0143-3857&rft.eissn=1469-4417&rft.volume=43&rft.issue=10&rft.spage=3354&rft.epage=3382&rft_id=info:doi/10.1017%2Fetds.2022.73&rft.externalDocID=10_1017_etds_2022_73 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-3857&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-3857&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-3857&client=summon |