Dynamic size effect of concrete under tension: A numerical study
•Dynamic tensile failure of 135 double-edge notched concrete specimens are simulated at mesoscopic under dynamic loadings.•The size effect in dynamic tensile strength of concrete under different strain rates is investigated.•The proposed Static and Dynamic unified Size Effect Law in this study can w...
Saved in:
Published in | International journal of impact engineering Vol. 132; p. 103318 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.10.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Dynamic tensile failure of 135 double-edge notched concrete specimens are simulated at mesoscopic under dynamic loadings.•The size effect in dynamic tensile strength of concrete under different strain rates is investigated.•The proposed Static and Dynamic unified Size Effect Law in this study can well describe the size effect on the tensile strength of concrete under different strain rates.
The macro nonlinearity and size effect of concrete are essentially attributed to the internal heterogeneity of concrete. Considering the heterogeneities and the strain rate effect of meso-components, the concrete was modelled as a three-phase composite composed of aggregate particles, mortar matrix and the interfacial transition zones (ITZs). Taking double-edge notched concrete specimens as examples, a meso-scale numerical model for the simulation of the failure and size effect of concrete under dynamic tensile loading with different strain rates from 10−5/s to 100/s was established. The effect of structural sizes on the dynamic tensile strength of concrete was explored. The numerical results indicate that dynamic size effect on tensile strength of concrete has an obvious discrepancy with the static one. There exists a critical strain rate (ε˙cr = 1/s), and at the strain rate the dynamic tensile strength turns to be independent on the structural size of the specimen. For the case less than the critical strain rate, the tensile strength decreases with increasing the specimen size, and the size effect on the dynamic tensile strength is weakened or suppressed as the strain rate increases. For the strain rate larger than the critical one, there is no obvious difference in the dynamic tensile strength of the concrete specimen having different structural sizes, and the corresponding size effect completely disappears. According to the influencing mechanism of strain rate effect and size effect, a Static and Dynamic unified Size Effect Law (i.e. SD-SEL) for tensile strength of concrete was built. The proposed SD-SEL was also verified by the mesoscopic numerical simulation results. |
---|---|
AbstractList | The macro nonlinearity and size effect of concrete are essentially attributed to the internal heterogeneity of concrete. Considering the heterogeneities and the strain rate effect of meso-components, the concrete was modelled as a three-phase composite composed of aggregate particles, mortar matrix and the interfacial transition zones (ITZs). Taking double-edge notched concrete specimens as examples, a meso-scale numerical model for the simulation of the failure and size effect of concrete under dynamic tensile loading with different strain rates from 10−5/s to 100/s was established. The effect of structural sizes on the dynamic tensile strength of concrete was explored. The numerical results indicate that dynamic size effect on tensile strength of concrete has an obvious discrepancy with the static one. There exists a critical strain rate (εcr = 1/s), and at the strain rate the dynamic tensile strength turns to be independent on the structural size of the specimen. For the case less than the critical strain rate, the tensile strength decreases with increasing the specimen size, and the size effect on the dynamic tensile strength is weakened or suppressed as the strain rate increases. For the strain rate larger than the critical one, there is no obvious difference in the dynamic tensile strength of the concrete specimen having different structural sizes, and the corresponding size effect completely disappears. According to the influencing mechanism of strain rate effect and size effect, a Static and Dynamic unified Size Effect Law (i.e. SD-SEL) for tensile strength of concrete was built. The proposed SD-SEL was also verified by the mesoscopic numerical simulation results. •Dynamic tensile failure of 135 double-edge notched concrete specimens are simulated at mesoscopic under dynamic loadings.•The size effect in dynamic tensile strength of concrete under different strain rates is investigated.•The proposed Static and Dynamic unified Size Effect Law in this study can well describe the size effect on the tensile strength of concrete under different strain rates. The macro nonlinearity and size effect of concrete are essentially attributed to the internal heterogeneity of concrete. Considering the heterogeneities and the strain rate effect of meso-components, the concrete was modelled as a three-phase composite composed of aggregate particles, mortar matrix and the interfacial transition zones (ITZs). Taking double-edge notched concrete specimens as examples, a meso-scale numerical model for the simulation of the failure and size effect of concrete under dynamic tensile loading with different strain rates from 10−5/s to 100/s was established. The effect of structural sizes on the dynamic tensile strength of concrete was explored. The numerical results indicate that dynamic size effect on tensile strength of concrete has an obvious discrepancy with the static one. There exists a critical strain rate (ε˙cr = 1/s), and at the strain rate the dynamic tensile strength turns to be independent on the structural size of the specimen. For the case less than the critical strain rate, the tensile strength decreases with increasing the specimen size, and the size effect on the dynamic tensile strength is weakened or suppressed as the strain rate increases. For the strain rate larger than the critical one, there is no obvious difference in the dynamic tensile strength of the concrete specimen having different structural sizes, and the corresponding size effect completely disappears. According to the influencing mechanism of strain rate effect and size effect, a Static and Dynamic unified Size Effect Law (i.e. SD-SEL) for tensile strength of concrete was built. The proposed SD-SEL was also verified by the mesoscopic numerical simulation results. |
ArticleNumber | 103318 |
Author | Du, Xiuli Jin, Liu Yu, Wenxuan Yang, Wangxian |
Author_xml | – sequence: 1 givenname: Liu surname: Jin fullname: Jin, Liu – sequence: 2 givenname: Wenxuan surname: Yu fullname: Yu, Wenxuan – sequence: 3 givenname: Xiuli surname: Du fullname: Du, Xiuli email: duxiuli2015@163.com – sequence: 4 givenname: Wangxian surname: Yang fullname: Yang, Wangxian |
BookMark | eNqFkE1Lw0AQhhepYFv9C7LgOXU2m2QT8dBSP6HgRcHbstlMZEOzqbsbof56U6IXLz0NDO_zzvDMyMR2Fgm5ZLBgwLLrZmEa0-7QfixiYMWw5JzlJ2TKclFEPIViQqYgeBKJhL-fkZn3DQATkMKULO_2VrVGU2--kWJdow60q6nurHYYkPa2QkcDWm86e0NX1PYtOqPVlvrQV_tzclqrrceL3zknbw_3r-unaPPy-LxebSLNEwiRSLFkZS5qhpkWaZ6qvEKV8SRPykyVBbIy5TGAjksoVAEMeV3xrBAasEzjlM_J1di7c91njz7IpuudHU7KOBZ5XgBnh9TtmNKu895hLbUJKgyvB6fMVjKQB2eykX_O5MGZHJ0NePYP3znTKrc_Di5HEAcFXwad9Nqg1VgZNxiVVWeOVfwAYbWL6g |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2023_131708 crossref_primary_10_1016_j_engfracmech_2021_107870 crossref_primary_10_1016_j_cemconcomp_2022_104678 crossref_primary_10_1016_j_jobe_2024_109781 crossref_primary_10_1016_j_engstruct_2021_112951 crossref_primary_10_1016_j_conbuildmat_2025_139907 crossref_primary_10_1016_j_tafmec_2021_103081 crossref_primary_10_1016_j_istruc_2021_02_033 crossref_primary_10_3390_ma16093527 crossref_primary_10_1016_j_conbuildmat_2024_137614 crossref_primary_10_1002_suco_202200215 crossref_primary_10_1016_j_ijimpeng_2025_105334 crossref_primary_10_1016_j_engfracmech_2021_107636 crossref_primary_10_1108_EC_10_2020_0564 crossref_primary_10_1016_j_istruc_2023_06_019 crossref_primary_10_1016_j_engfailanal_2024_108785 crossref_primary_10_1016_j_ijimpeng_2022_104279 crossref_primary_10_1016_j_cma_2023_116540 crossref_primary_10_1016_j_conbuildmat_2022_129978 crossref_primary_10_1016_j_engfracmech_2023_109107 crossref_primary_10_1061__ASCE_MT_1943_5533_0003439 crossref_primary_10_1680_jmacr_21_00147 crossref_primary_10_1016_j_engstruct_2022_114747 crossref_primary_10_1155_2022_5339603 crossref_primary_10_1016_j_engfracmech_2020_106979 crossref_primary_10_1016_j_conbuildmat_2024_134995 crossref_primary_10_1016_j_engfracmech_2020_106974 crossref_primary_10_1016_j_engfracmech_2022_108519 crossref_primary_10_1016_j_ijimpeng_2021_104139 crossref_primary_10_1016_j_ijimpeng_2020_103500 crossref_primary_10_1080_19648189_2021_2011424 crossref_primary_10_1016_j_coco_2021_100983 crossref_primary_10_1016_j_jobe_2024_110674 crossref_primary_10_1016_j_engstruct_2024_119138 crossref_primary_10_1016_j_engfracmech_2022_108661 crossref_primary_10_1016_j_conbuildmat_2022_127580 crossref_primary_10_1016_j_dibe_2024_100487 crossref_primary_10_1016_j_engfracmech_2021_108184 crossref_primary_10_1061_JMCEE7_MTENG_15629 crossref_primary_10_1016_j_compstruct_2021_113944 crossref_primary_10_1016_j_engfracmech_2024_110268 crossref_primary_10_1016_j_istruc_2024_106863 crossref_primary_10_1007_s43452_021_00248_w crossref_primary_10_1016_j_conbuildmat_2020_121034 crossref_primary_10_1016_j_conbuildmat_2021_124302 crossref_primary_10_1016_j_ijmecsci_2020_106130 crossref_primary_10_1016_j_cemconcomp_2023_105270 crossref_primary_10_1177_10567895211044189 crossref_primary_10_1016_j_compgeo_2021_104538 crossref_primary_10_1016_j_jobe_2024_109375 crossref_primary_10_1016_j_engfailanal_2021_105395 crossref_primary_10_1016_j_ijimpeng_2024_105188 crossref_primary_10_1007_s10409_022_22266_x crossref_primary_10_1016_j_engstruct_2021_113656 crossref_primary_10_1016_j_conbuildmat_2023_130346 crossref_primary_10_1016_j_conbuildmat_2024_135734 crossref_primary_10_1016_j_engfailanal_2025_109312 crossref_primary_10_1021_acsomega_2c06840 crossref_primary_10_1177_10567895221105590 crossref_primary_10_1016_j_engstruct_2021_112725 crossref_primary_10_1061__ASCE_CC_1943_5614_0001236 crossref_primary_10_3390_ma15186490 crossref_primary_10_1007_s43452_025_01122_9 crossref_primary_10_1016_j_conbuildmat_2021_122419 crossref_primary_10_1155_2021_9974606 crossref_primary_10_1016_j_mechmat_2024_105011 crossref_primary_10_1002_suco_202201111 crossref_primary_10_3390_ma18010015 crossref_primary_10_1016_j_engfracmech_2023_109808 crossref_primary_10_1016_j_cscm_2024_e03308 crossref_primary_10_1016_j_istruc_2024_108030 crossref_primary_10_1016_j_conbuildmat_2020_121867 crossref_primary_10_1016_j_engfracmech_2022_108417 |
Cites_doi | 10.1016/j.ijsolstr.2012.03.023 10.1016/S0020-7683(02)00526-7 10.1016/S0734-743X(01)00020-3 10.1007/BF02473124 10.1007/BF02473042 10.1016/j.engfracmech.2019.01.035 10.1016/j.ijimpeng.2013.12.005 10.1016/j.finel.2005.11.008 10.1016/j.corsci.2014.08.025 10.1016/0020-7683(89)90050-4 10.1016/j.ijimpeng.2014.02.005 10.1016/j.mechmat.2005.06.004 10.1016/j.conbuildmat.2018.01.033 10.1177/1369433216656430 10.1061/(ASCE)0733-9399(1990)116:8(1686) 10.1016/j.cemconres.2013.05.008 10.1007/s11340-009-9284-z 10.1016/j.ijimpeng.2005.05.008 10.1016/j.ijimpeng.2018.10.011 10.1007/s10704-012-9778-z 10.1016/j.compstruc.2016.09.005 10.1016/j.cemconres.2014.11.005 10.1016/j.ijimpeng.2013.04.008 10.1177/1056789512468915 10.1007/s00024-006-0056-8 10.1016/j.conbuildmat.2017.11.069 10.1061/(ASCE)0733-9399(2002)128:11(1119) 10.1016/j.conbuildmat.2015.02.002 10.1016/j.ijsolstr.2008.04.002 10.1016/j.compstruc.2004.05.016 10.1061/(ASCE)0899-1561(2006)18:4(485) 10.1016/j.ijimpeng.2016.05.003 10.1016/j.engfracmech.2017.03.048 10.1016/j.ijimpeng.2017.12.006 10.1016/j.compstruc.2008.04.013 10.1061/(ASCE)0733-9399(1998)124:8(892) 10.1016/j.ijimpeng.2016.06.009 10.3130/aijsaxx.77.0_1 10.1016/j.ijimpeng.2011.07.004 10.1007/BF02472016 10.1016/S0734-743X(02)00166-5 10.1016/j.cemconres.2006.03.003 10.1016/j.cemconres.2011.06.016 10.1016/j.cemconres.2013.03.021 10.1177/1056789517699054 10.1016/j.ijimpeng.2004.01.003 10.1260/2041-4196.1.1.145 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Oct 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Oct 2019 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2019.103318 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
ExternalDocumentID | 10_1016_j_ijimpeng_2019_103318 S0734743X18309278 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c340t-75eb1b87f1e6c7585a8dea63484b6ab9e1b53200c2b09a901e3fd3697c0eb5253 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Mon Sep 01 07:40:10 EDT 2025 Tue Jul 01 03:54:28 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Fri Feb 23 02:28:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Concrete Dynamic tension Static and dynamic unified size effect law Size effect Strain rate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-75eb1b87f1e6c7585a8dea63484b6ab9e1b53200c2b09a901e3fd3697c0eb5253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2278890315 |
PQPubID | 2045463 |
ParticipantIDs | proquest_journals_2278890315 crossref_citationtrail_10_1016_j_ijimpeng_2019_103318 crossref_primary_10_1016_j_ijimpeng_2019_103318 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2019_103318 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Birkimer, Lindemann (bib0058) 1971; 68 Du, Jin, Li (bib0005) 2017; 50 Bazant, Jirasek (bib0040) 2002; 128 Huang, Yang, Chen, Liu (bib0041) 2016; 97 Bischoff, Perry (bib0044) 1991; 24 Dilger, Koch, Kowalczyk (bib0043) 1984; 81 Malvar, Ross (bib0048) 1998; 95 Ranade, Li, Heard (bib0062) 2015; 68 Hentz, Donzé, Daudeville (bib0031) 2004; 82 Grote, Park, Zhou (bib0039) 2001; 25 Hao, Hao, Li, Chen (bib0015) 2016; 19 Hao, Hao, Jiang, Zhou (bib0011) 2013; 52 Carpinteri, Ferro (bib0003) 1994; 27 Zhou, Tang, Liu, Ma, Chen (bib0051) 2016; 95 Wu, Zhang, Huang, Jin (bib0060) 2005; 32 Du, Jin, Li (bib0004) 2017; 9 Weibull (bib0002) 1939; 153 Elfahal, Krauthammer (bib0017) 2005; 02 Snozzi, Caballero, Molinari (bib0023) 2011; 41 Du, Jin, Ma (bib0033) 2013; 22 John, Antoun, Rajendran (bib0055) 1992 Jin, Yu, Du, Zhang, Li (bib0045) 2019; 125 Krauthammer, Elfahal, Lim, Ohno, Beppu, Markeset (bib0016) 2003; 28 Bindiganavile, Banthia (bib0019) 2006; 18 Grassl, Grégoire, Solano, Pijaudier-Cabot (bib0027) 2012; 49 Li, Hao, Shi, Hao (bib0021) 2018; 161 Jin, Ding, Li, Du (bib0042) 2018; 27 Wang, Yang, Jivkov (bib0028) 2015; 80 Wriggers, Moftah (bib0036) 2006; 42 Erzar, Forquin (bib0009) 2010; 50 Zhou, Hao (bib0035) 2008; 86 Takeda (bib0052) 1962; 77 Pereira, Weerheijm, Sluys (bib0053) 2017; 176 Yan, Lin (bib0008) 2006; 36 Rossi, Van Mier, Toutlemonde, Le Maou, Boulay (bib0059) 1994; 27 Zhou, Hao (bib0022) 2008; 45 Bazant, Planas (bib0001) 1998 Man, van Mier (bib0026) 2008; 154 Ross, Tedesco (bib0054) 1989; 86 Körmeling, Reinhardt, Zieliński (bib0057) 1980 Ma, Xu, Li (bib0034) 2016; 177 Wang, Zhang, Wang, Song, Shang, Fang (bib0006) 2018; 165 Jin, Yu, Du, Yang (bib0046) 2019; 209 Hu, Zou, Peng, Zou (bib0020) 2015; 32 Antoun (bib0056) 1991 Lee, Fenves (bib0038) 1998; 124 Bažant, Tabbara, Kazemi, Pijaudier-Cabot (bib0029) 1990; 116 Pedersen, Simone, Sluys (bib0024) 2013; 50 Li, Meng (bib0007) 2003; 40 Du, Jin, Ma (bib0025) 2014; 66 Wang, Li, Song (bib0049) 2006; 163 Brara, Klepaczko (bib0061) 2006; 38 Snozzi, Gatuingt, Molinari (bib0050) 2012; 178 Hao, Hao, Li (bib0013) 2013; 60 Levi-Hevroni, Kochavi, Kofman, Gruntman, Sadot (bib0012) 2018; 114 Krauthammer, Elfahal, Lim, Ohno, Beppu, Mindess (bib0018) 2005; 31 Lubliner, Oliver, Oller, Onate (bib0037) 1989; 25 Qin, Zhang (bib0032) 2011; 38 (bib0047) 1991 Ožbolt, Sharma, İrhan, Sola (bib0010) 2014; 69 Hao, Hao, Li (bib0014) 2010; 1 Du, Jin, Zhang (bib0030) 2014; 89 Du (10.1016/j.ijimpeng.2019.103318_bib0025) 2014; 66 Malvar (10.1016/j.ijimpeng.2019.103318_bib0048) 1998; 95 Du (10.1016/j.ijimpeng.2019.103318_bib0033) 2013; 22 Hao (10.1016/j.ijimpeng.2019.103318_bib0014) 2010; 1 Pereira (10.1016/j.ijimpeng.2019.103318_bib0053) 2017; 176 John (10.1016/j.ijimpeng.2019.103318_bib0055) 1992 Wu (10.1016/j.ijimpeng.2019.103318_bib0060) 2005; 32 Krauthammer (10.1016/j.ijimpeng.2019.103318_bib0016) 2003; 28 Antoun (10.1016/j.ijimpeng.2019.103318_bib0056) 1991 Grassl (10.1016/j.ijimpeng.2019.103318_bib0027) 2012; 49 Körmeling (10.1016/j.ijimpeng.2019.103318_bib0057) 1980 Hentz (10.1016/j.ijimpeng.2019.103318_bib0031) 2004; 82 Huang (10.1016/j.ijimpeng.2019.103318_bib0041) 2016; 97 Man (10.1016/j.ijimpeng.2019.103318_bib0026) 2008; 154 Wriggers (10.1016/j.ijimpeng.2019.103318_bib0036) 2006; 42 Jin (10.1016/j.ijimpeng.2019.103318_bib0045) 2019; 125 Snozzi (10.1016/j.ijimpeng.2019.103318_bib0023) 2011; 41 Brara (10.1016/j.ijimpeng.2019.103318_bib0061) 2006; 38 Wang (10.1016/j.ijimpeng.2019.103318_bib0049) 2006; 163 Du (10.1016/j.ijimpeng.2019.103318_bib0030) 2014; 89 Bischoff (10.1016/j.ijimpeng.2019.103318_bib0044) 1991; 24 Ross (10.1016/j.ijimpeng.2019.103318_bib0054) 1989; 86 Hao (10.1016/j.ijimpeng.2019.103318_bib0015) 2016; 19 Bazant (10.1016/j.ijimpeng.2019.103318_bib0001) 1998 Jin (10.1016/j.ijimpeng.2019.103318_bib0042) 2018; 27 Erzar (10.1016/j.ijimpeng.2019.103318_bib0009) 2010; 50 Ranade (10.1016/j.ijimpeng.2019.103318_bib0062) 2015; 68 Wang (10.1016/j.ijimpeng.2019.103318_bib0028) 2015; 80 Rossi (10.1016/j.ijimpeng.2019.103318_bib0059) 1994; 27 Jin (10.1016/j.ijimpeng.2019.103318_bib0046) 2019; 209 Yan (10.1016/j.ijimpeng.2019.103318_bib0008) 2006; 36 Snozzi (10.1016/j.ijimpeng.2019.103318_bib0050) 2012; 178 Du (10.1016/j.ijimpeng.2019.103318_bib0004) 2017; 9 Bazant (10.1016/j.ijimpeng.2019.103318_bib0040) 2002; 128 (10.1016/j.ijimpeng.2019.103318_bib0047) 1991 Carpinteri (10.1016/j.ijimpeng.2019.103318_bib0003) 1994; 27 Grote (10.1016/j.ijimpeng.2019.103318_bib0039) 2001; 25 Li (10.1016/j.ijimpeng.2019.103318_bib0007) 2003; 40 Lee (10.1016/j.ijimpeng.2019.103318_bib0038) 1998; 124 Levi-Hevroni (10.1016/j.ijimpeng.2019.103318_bib0012) 2018; 114 Krauthammer (10.1016/j.ijimpeng.2019.103318_bib0018) 2005; 31 Li (10.1016/j.ijimpeng.2019.103318_bib0021) 2018; 161 Zhou (10.1016/j.ijimpeng.2019.103318_bib0051) 2016; 95 Takeda (10.1016/j.ijimpeng.2019.103318_bib0052) 1962; 77 Dilger (10.1016/j.ijimpeng.2019.103318_bib0043) 1984; 81 Wang (10.1016/j.ijimpeng.2019.103318_bib0006) 2018; 165 Weibull (10.1016/j.ijimpeng.2019.103318_bib0002) 1939; 153 Ožbolt (10.1016/j.ijimpeng.2019.103318_bib0010) 2014; 69 Bindiganavile (10.1016/j.ijimpeng.2019.103318_bib0019) 2006; 18 Hu (10.1016/j.ijimpeng.2019.103318_bib0020) 2015; 32 Hao (10.1016/j.ijimpeng.2019.103318_bib0013) 2013; 60 Elfahal (10.1016/j.ijimpeng.2019.103318_bib0017) 2005; 02 Ma (10.1016/j.ijimpeng.2019.103318_bib0034) 2016; 177 Du (10.1016/j.ijimpeng.2019.103318_bib0005) 2017; 50 Birkimer (10.1016/j.ijimpeng.2019.103318_bib0058) 1971; 68 Zhou (10.1016/j.ijimpeng.2019.103318_bib0022) 2008; 45 Bažant (10.1016/j.ijimpeng.2019.103318_bib0029) 1990; 116 Zhou (10.1016/j.ijimpeng.2019.103318_bib0035) 2008; 86 Lubliner (10.1016/j.ijimpeng.2019.103318_bib0037) 1989; 25 Hao (10.1016/j.ijimpeng.2019.103318_bib0011) 2013; 52 Pedersen (10.1016/j.ijimpeng.2019.103318_bib0024) 2013; 50 Qin (10.1016/j.ijimpeng.2019.103318_bib0032) 2011; 38 |
References_xml | – volume: 50 start-page: 74 year: 2013 end-page: 87 ident: bib0024 article-title: Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete publication-title: Cem Concr Res – volume: 45 start-page: 4648 year: 2008 end-page: 4661 ident: bib0022 article-title: Modelling of compressive behaviour of concrete-like materials at high strain rate publication-title: Int J Solids Struct – volume: 02 start-page: 77 year: 2005 ident: bib0017 article-title: Dynamic size effect in normal-and high-strength concrete cylinders publication-title: ACI Mater J – volume: 80 start-page: 262 year: 2015 end-page: 272 ident: bib0028 article-title: Monte carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study publication-title: Constr Build Mater – volume: 9 start-page: 28 year: 2017 end-page: 45 ident: bib0004 article-title: A state-of-the-art review on the size effect of concretes and concrete structures (I): concrete materials publication-title: Chin Civil Eng J – volume: 25 start-page: 869 year: 2001 end-page: 886 ident: bib0039 article-title: Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization publication-title: Int J Impact Eng – volume: 49 start-page: 1818 year: 2012 end-page: 1827 ident: bib0027 article-title: Meso-scale modelling of the size effect on the fracture process zone of concrete publication-title: Int J Solids Struct – volume: 28 start-page: 1001 year: 2003 end-page: 1016 ident: bib0016 article-title: Size effect for high-strength concrete cylinders subjected to axial impact publication-title: Int J Impact Eng – start-page: 7 year: 1998 end-page: 15 ident: bib0001 article-title: Fracture and size effect in concrete and other quasibrittle materials – volume: 27 start-page: 563 year: 1994 end-page: 571 ident: bib0003 article-title: Size effects on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructure publication-title: Mater Struct – volume: 209 start-page: 317 year: 2019 end-page: 332 ident: bib0046 article-title: Mesoscopic numerical simulation of dynamic size effect on the splitting-tensile strength of concrete publication-title: Eng Fracture Mech – volume: 165 start-page: 45 year: 2018 end-page: 57 ident: bib0006 article-title: Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading publication-title: Constr Build Mater – volume: 1 start-page: 145 year: 2010 end-page: 167 ident: bib0014 article-title: Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties publication-title: Int J Protect Struct – volume: 38 start-page: 1011 year: 2011 end-page: 1021 ident: bib0032 article-title: Numerical study of dynamic behavior of concrete by meso-scale particle element modeling publication-title: Int J Impact Eng – volume: 178 start-page: 179 year: 2012 end-page: 194 ident: bib0050 article-title: A meso-mechanical model for concrete under dynamic tensile and compressive loading publication-title: Int J Fracture – volume: 95 start-page: 165 year: 2016 end-page: 175 ident: bib0051 article-title: Mesoscopic simulation of the dynamic tensile behaviour of concrete based on a rate-dependent cohesive model publication-title: Int J Impact Eng – volume: 50 start-page: 24 year: 2017 end-page: 44 ident: bib0005 article-title: A state-of-the-art review on the size effect of concretes and concrete structures (II): RC members publication-title: Chin Civil Eng J – volume: 66 start-page: 5 year: 2014 end-page: 17 ident: bib0025 article-title: Numerical simulation of dynamic tensile-failure of concrete at meso-scale publication-title: Int J Impact Eng – volume: 128 start-page: 1119 year: 2002 end-page: 1149 ident: bib0040 article-title: Nonlocal integral formulations of plasticity and damage: survey of progress publication-title: J Eng Mech – volume: 27 start-page: 260 year: 1994 end-page: 264 ident: bib0059 article-title: Effect of loading rate on the strength of concrete subjected to uniaxial tension publication-title: Mater Struct – volume: 89 start-page: 189 year: 2014 end-page: 202 ident: bib0030 article-title: Modeling the cracking of cover concrete due to non-uniform corrosion of reinforcement publication-title: Corros Sci – volume: 124 start-page: 892 year: 1998 end-page: 900 ident: bib0038 article-title: Plastic-damage model for cyclic loading of concrete structures publication-title: J Eng Mech – volume: 60 start-page: 82 year: 2013 end-page: 106 ident: bib0013 article-title: Influence of end friction confinement on impact tests of concrete material at high strain rate publication-title: Int J Impact Eng – year: 1991 ident: bib0047 article-title: CEB-FIP model code 1990 – volume: 52 start-page: 63 year: 2013 end-page: 70 ident: bib0011 article-title: Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests publication-title: Cem Concr Res – volume: 41 start-page: 1130 year: 2011 end-page: 1142 ident: bib0023 article-title: Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading publication-title: Cem Concr Res – volume: 153 start-page: 1 year: 1939 end-page: 55 ident: bib0002 article-title: The phenomenon of rupture in solids publication-title: Proc R Swed Inst Eng Res – volume: 42 start-page: 623 year: 2006 end-page: 636 ident: bib0036 article-title: Mesoscale models for concrete: homogenisation and damage behavior publication-title: Finite Elem Anal Des – volume: 68 start-page: 94 year: 2015 end-page: 104 ident: bib0062 article-title: Tensile rate effects in high strength-high ductility concrete publication-title: Cem Concr Res – volume: 77 start-page: 1 year: 1962 end-page: 6 ident: bib0052 article-title: The mechanical properties of several kinds of concretes at Compressive, tensile and flexural tests in high rates of loading publication-title: Transactions of the Architectural Institute of Japan – start-page: 501 year: 1992 end-page: 504 ident: bib0055 article-title: Effect of strain rate and size on tensile strength of concrete publication-title: Proceedings of the 1991 APS topical conference on shock compression of condensed matter – volume: 97 start-page: 102 year: 2016 end-page: 115 ident: bib0041 article-title: Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images publication-title: Int J Impact Eng – volume: 36 start-page: 1371 year: 2006 end-page: 1378 ident: bib0008 article-title: Dynamic properties of concrete in direct tension publication-title: Cem Concr Res – volume: 114 start-page: 93 year: 2018 end-page: 104 ident: bib0012 article-title: Experimental and numerical investigation on the dynamic increase factor of tensile strength in concrete publication-title: Int J Impact Eng – volume: 116 start-page: 1686 year: 1990 end-page: 1705 ident: bib0029 article-title: Random particle model for fracture of aggregate or fiber composites publication-title: J Eng Mech – volume: 40 start-page: 343 year: 2003 end-page: 360 ident: bib0007 article-title: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test publication-title: Int J Solids Struct – volume: 50 start-page: 941 year: 2010 end-page: 955 ident: bib0009 article-title: An experimental method to determine the tensile strength of concrete at high rates of strain publication-title: Exp Mech – volume: 38 start-page: 253 year: 2006 end-page: 267 ident: bib0061 article-title: Experimental characterization of concrete in dynamic tension publication-title: Mech Mater – year: 1980 ident: bib0057 article-title: Experiments on concrete under single and repeated uniaxial impact tensile loading – volume: 24 start-page: 425 year: 1991 end-page: 450 ident: bib0044 article-title: Compressive behaviour of concrete at high strain rates publication-title: Mater Struct – volume: 18 start-page: 485 year: 2006 end-page: 491 ident: bib0019 article-title: Size effects and the dynamic response of plain concrete publication-title: J Mater Civ Eng – year: 1991 ident: bib0056 article-title: Constitutive/failure model for the static and dynamic behaviors of concrete incorporating effects of damage and anisotropy – volume: 154 start-page: 61 year: 2008 end-page: 72 ident: bib0026 article-title: Size effect on strength and fracture energy for numerical concrete with realistic aggregate shapes publication-title: Adv Struct Eng – volume: 31 start-page: 461 year: 2005 end-page: 481 ident: bib0018 article-title: Size effect for normal strength concrete cylinders subjected to axial impact publication-title: Int J Impact Eng – volume: 86 start-page: 2013 year: 2008 end-page: 2026 ident: bib0035 article-title: Mesoscale modelling of concrete tensile failure mechanism at high strain rates publication-title: Comput Struct – volume: 177 start-page: 103 year: 2016 end-page: 113 ident: bib0034 article-title: Random aggregate model for mesoscopic structures and mechanical analysis of fully-graded concrete publication-title: Comput Struct – volume: 86 start-page: 475 year: 1989 end-page: 481 ident: bib0054 article-title: Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression publication-title: ACI Mater J – volume: 163 start-page: 1091 year: 2006 end-page: 1100 ident: bib0049 article-title: A method for testing dynamic tensile strength and elastic modulus of rock material using SHPB publication-title: Pure Appl Geophys – volume: 19 start-page: 193 year: 2016 end-page: 1223 ident: bib0015 article-title: Review of the current practices in blast-resistant analysis and design of concrete structures publication-title: Adv Struct Eng – volume: 27 start-page: 657 year: 2018 end-page: 685 ident: bib0042 article-title: Experimental and numerical investigations on the size effect of moderate high-strength reinforced concrete columns under small-eccentric compression publication-title: Int J Damage Mech – volume: 161 start-page: 84 year: 2018 end-page: 93 ident: bib0021 article-title: Specimen shape and size effects on the concrete compressive strength under static and dynamic tests publication-title: Constr Build Mater – volume: 176 start-page: 281 year: 2017 end-page: 299 ident: bib0053 article-title: A new effective rate dependent damage model for dynamic tensile failure of concrete publication-title: Eng Fract Mech – volume: 81 start-page: 73 year: 1984 end-page: 81 ident: bib0043 article-title: Ductility of plain and confined concrete under different strain rates publication-title: J Proc – volume: 32 start-page: 605 year: 2005 end-page: 617 ident: bib0060 article-title: Experimental and numerical investigation on the dynamic tensile strength of concrete publication-title: Int J Impact Eng – volume: 32 start-page: 132 year: 2015 end-page: 136 ident: bib0020 article-title: Energy absorption characteristics and size effect of concrete under different strain rates publication-title: J Yangtze River Sci Res Inst – volume: 69 start-page: 55 year: 2014 end-page: 68 ident: bib0010 article-title: Tensile behavior of concrete under high loading rates publication-title: Int J Impact Eng – volume: 25 start-page: 299 year: 1989 end-page: 326 ident: bib0037 article-title: A plastic-damage model for concrete publication-title: Int J Solids Struct – volume: 22 start-page: 878 year: 2013 end-page: 904 ident: bib0033 article-title: A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of reinforced concrete members publication-title: Int J Damage Mech – volume: 95 start-page: 735 year: 1998 end-page: 739 ident: bib0048 article-title: Review of strain rate effects for concrete in tension publication-title: ACI Mater J – volume: 68 start-page: 47 year: 1971 end-page: 49 ident: bib0058 article-title: Dynamic tensile strength of concrete materials publication-title: ACI J – volume: 125 start-page: 1 year: 2019 end-page: 12 ident: bib0045 article-title: Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates publication-title: Int J Impact Eng – volume: 82 start-page: 2509 year: 2004 end-page: 2524 ident: bib0031 article-title: Discrete element modelling of concrete submitted to dynamic loading at high strain rates publication-title: Comput Struct – volume: 49 start-page: 1818 issue: 13 year: 2012 ident: 10.1016/j.ijimpeng.2019.103318_bib0027 article-title: Meso-scale modelling of the size effect on the fracture process zone of concrete publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2012.03.023 – volume: 40 start-page: 343 issue: 2 year: 2003 ident: 10.1016/j.ijimpeng.2019.103318_bib0007 article-title: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(02)00526-7 – volume: 25 start-page: 869 issue: 9 year: 2001 ident: 10.1016/j.ijimpeng.2019.103318_bib0039 article-title: Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(01)00020-3 – volume: 27 start-page: 563 issue: 10 year: 1994 ident: 10.1016/j.ijimpeng.2019.103318_bib0003 article-title: Size effects on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructure publication-title: Mater Struct doi: 10.1007/BF02473124 – volume: 27 start-page: 260 issue: 5 year: 1994 ident: 10.1016/j.ijimpeng.2019.103318_bib0059 article-title: Effect of loading rate on the strength of concrete subjected to uniaxial tension publication-title: Mater Struct doi: 10.1007/BF02473042 – start-page: 501 year: 1992 ident: 10.1016/j.ijimpeng.2019.103318_bib0055 article-title: Effect of strain rate and size on tensile strength of concrete – volume: 209 start-page: 317 year: 2019 ident: 10.1016/j.ijimpeng.2019.103318_bib0046 article-title: Mesoscopic numerical simulation of dynamic size effect on the splitting-tensile strength of concrete publication-title: Eng Fracture Mech doi: 10.1016/j.engfracmech.2019.01.035 – volume: 66 start-page: 5 year: 2014 ident: 10.1016/j.ijimpeng.2019.103318_bib0025 article-title: Numerical simulation of dynamic tensile-failure of concrete at meso-scale publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2013.12.005 – volume: 42 start-page: 623 issue: 7 year: 2006 ident: 10.1016/j.ijimpeng.2019.103318_bib0036 article-title: Mesoscale models for concrete: homogenisation and damage behavior publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2005.11.008 – volume: 89 start-page: 189 year: 2014 ident: 10.1016/j.ijimpeng.2019.103318_bib0030 article-title: Modeling the cracking of cover concrete due to non-uniform corrosion of reinforcement publication-title: Corros Sci doi: 10.1016/j.corsci.2014.08.025 – volume: 25 start-page: 299 issue: 3 year: 1989 ident: 10.1016/j.ijimpeng.2019.103318_bib0037 article-title: A plastic-damage model for concrete publication-title: Int J Solids Struct doi: 10.1016/0020-7683(89)90050-4 – volume: 153 start-page: 1 year: 1939 ident: 10.1016/j.ijimpeng.2019.103318_bib0002 article-title: The phenomenon of rupture in solids publication-title: Proc R Swed Inst Eng Res – volume: 154 start-page: 61 issue: 1–2 year: 2008 ident: 10.1016/j.ijimpeng.2019.103318_bib0026 article-title: Size effect on strength and fracture energy for numerical concrete with realistic aggregate shapes publication-title: Adv Struct Eng – volume: 69 start-page: 55 year: 2014 ident: 10.1016/j.ijimpeng.2019.103318_bib0010 article-title: Tensile behavior of concrete under high loading rates publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.02.005 – volume: 86 start-page: 475 issue: 5 year: 1989 ident: 10.1016/j.ijimpeng.2019.103318_bib0054 article-title: Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression publication-title: ACI Mater J – volume: 38 start-page: 253 issue: 3 year: 2006 ident: 10.1016/j.ijimpeng.2019.103318_bib0061 article-title: Experimental characterization of concrete in dynamic tension publication-title: Mech Mater doi: 10.1016/j.mechmat.2005.06.004 – volume: 165 start-page: 45 year: 2018 ident: 10.1016/j.ijimpeng.2019.103318_bib0006 article-title: Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.01.033 – volume: 68 start-page: 47 issue: 1 year: 1971 ident: 10.1016/j.ijimpeng.2019.103318_bib0058 article-title: Dynamic tensile strength of concrete materials publication-title: ACI J – volume: 19 start-page: 193 issue: 8 year: 2016 ident: 10.1016/j.ijimpeng.2019.103318_bib0015 article-title: Review of the current practices in blast-resistant analysis and design of concrete structures publication-title: Adv Struct Eng doi: 10.1177/1369433216656430 – volume: 116 start-page: 1686 issue: 8 year: 1990 ident: 10.1016/j.ijimpeng.2019.103318_bib0029 article-title: Random particle model for fracture of aggregate or fiber composites publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(1990)116:8(1686) – volume: 52 start-page: 63 year: 2013 ident: 10.1016/j.ijimpeng.2019.103318_bib0011 article-title: Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2013.05.008 – volume: 50 start-page: 941 issue: 7 year: 2010 ident: 10.1016/j.ijimpeng.2019.103318_bib0009 article-title: An experimental method to determine the tensile strength of concrete at high rates of strain publication-title: Exp Mech doi: 10.1007/s11340-009-9284-z – volume: 32 start-page: 605 issue: 1–4 year: 2005 ident: 10.1016/j.ijimpeng.2019.103318_bib0060 article-title: Experimental and numerical investigation on the dynamic tensile strength of concrete publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2005.05.008 – volume: 125 start-page: 1 year: 2019 ident: 10.1016/j.ijimpeng.2019.103318_bib0045 article-title: Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2018.10.011 – volume: 178 start-page: 179 year: 2012 ident: 10.1016/j.ijimpeng.2019.103318_bib0050 article-title: A meso-mechanical model for concrete under dynamic tensile and compressive loading publication-title: Int J Fracture doi: 10.1007/s10704-012-9778-z – volume: 177 start-page: 103 year: 2016 ident: 10.1016/j.ijimpeng.2019.103318_bib0034 article-title: Random aggregate model for mesoscopic structures and mechanical analysis of fully-graded concrete publication-title: Comput Struct doi: 10.1016/j.compstruc.2016.09.005 – volume: 68 start-page: 94 year: 2015 ident: 10.1016/j.ijimpeng.2019.103318_bib0062 article-title: Tensile rate effects in high strength-high ductility concrete publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2014.11.005 – volume: 60 start-page: 82 year: 2013 ident: 10.1016/j.ijimpeng.2019.103318_bib0013 article-title: Influence of end friction confinement on impact tests of concrete material at high strain rate publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2013.04.008 – start-page: 7 year: 1998 ident: 10.1016/j.ijimpeng.2019.103318_bib0001 – volume: 22 start-page: 878 issue: 6 year: 2013 ident: 10.1016/j.ijimpeng.2019.103318_bib0033 article-title: A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of reinforced concrete members publication-title: Int J Damage Mech doi: 10.1177/1056789512468915 – year: 1991 ident: 10.1016/j.ijimpeng.2019.103318_bib0047 – volume: 163 start-page: 1091 year: 2006 ident: 10.1016/j.ijimpeng.2019.103318_bib0049 article-title: A method for testing dynamic tensile strength and elastic modulus of rock material using SHPB publication-title: Pure Appl Geophys doi: 10.1007/s00024-006-0056-8 – volume: 161 start-page: 84 year: 2018 ident: 10.1016/j.ijimpeng.2019.103318_bib0021 article-title: Specimen shape and size effects on the concrete compressive strength under static and dynamic tests publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.11.069 – volume: 128 start-page: 1119 issue: 11 year: 2002 ident: 10.1016/j.ijimpeng.2019.103318_bib0040 article-title: Nonlocal integral formulations of plasticity and damage: survey of progress publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(2002)128:11(1119) – volume: 80 start-page: 262 year: 2015 ident: 10.1016/j.ijimpeng.2019.103318_bib0028 article-title: Monte carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2015.02.002 – volume: 45 start-page: 4648 issue: 17 year: 2008 ident: 10.1016/j.ijimpeng.2019.103318_bib0022 article-title: Modelling of compressive behaviour of concrete-like materials at high strain rate publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2008.04.002 – year: 1980 ident: 10.1016/j.ijimpeng.2019.103318_bib0057 – volume: 82 start-page: 2509 issue: 29–30 year: 2004 ident: 10.1016/j.ijimpeng.2019.103318_bib0031 article-title: Discrete element modelling of concrete submitted to dynamic loading at high strain rates publication-title: Comput Struct doi: 10.1016/j.compstruc.2004.05.016 – volume: 18 start-page: 485 issue: 4 year: 2006 ident: 10.1016/j.ijimpeng.2019.103318_bib0019 article-title: Size effects and the dynamic response of plain concrete publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)0899-1561(2006)18:4(485) – volume: 95 start-page: 165 year: 2016 ident: 10.1016/j.ijimpeng.2019.103318_bib0051 article-title: Mesoscopic simulation of the dynamic tensile behaviour of concrete based on a rate-dependent cohesive model publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2016.05.003 – volume: 176 start-page: 281 year: 2017 ident: 10.1016/j.ijimpeng.2019.103318_bib0053 article-title: A new effective rate dependent damage model for dynamic tensile failure of concrete publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2017.03.048 – volume: 114 start-page: 93 year: 2018 ident: 10.1016/j.ijimpeng.2019.103318_bib0012 article-title: Experimental and numerical investigation on the dynamic increase factor of tensile strength in concrete publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2017.12.006 – volume: 86 start-page: 2013 issue: 21–22 year: 2008 ident: 10.1016/j.ijimpeng.2019.103318_bib0035 article-title: Mesoscale modelling of concrete tensile failure mechanism at high strain rates publication-title: Comput Struct doi: 10.1016/j.compstruc.2008.04.013 – volume: 124 start-page: 892 issue: 8 year: 1998 ident: 10.1016/j.ijimpeng.2019.103318_bib0038 article-title: Plastic-damage model for cyclic loading of concrete structures publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(1998)124:8(892) – volume: 97 start-page: 102 year: 2016 ident: 10.1016/j.ijimpeng.2019.103318_bib0041 article-title: Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2016.06.009 – volume: 77 start-page: 1 year: 1962 ident: 10.1016/j.ijimpeng.2019.103318_bib0052 article-title: The mechanical properties of several kinds of concretes at Compressive, tensile and flexural tests in high rates of loading publication-title: Transactions of the Architectural Institute of Japan doi: 10.3130/aijsaxx.77.0_1 – volume: 50 start-page: 24 issue: 11 year: 2017 ident: 10.1016/j.ijimpeng.2019.103318_bib0005 article-title: A state-of-the-art review on the size effect of concretes and concrete structures (II): RC members publication-title: Chin Civil Eng J – volume: 02 start-page: 77 issue: 2 year: 2005 ident: 10.1016/j.ijimpeng.2019.103318_bib0017 article-title: Dynamic size effect in normal-and high-strength concrete cylinders publication-title: ACI Mater J – volume: 38 start-page: 1011 year: 2011 ident: 10.1016/j.ijimpeng.2019.103318_bib0032 article-title: Numerical study of dynamic behavior of concrete by meso-scale particle element modeling publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2011.07.004 – year: 1991 ident: 10.1016/j.ijimpeng.2019.103318_bib0056 – volume: 24 start-page: 425 issue: 6 year: 1991 ident: 10.1016/j.ijimpeng.2019.103318_bib0044 article-title: Compressive behaviour of concrete at high strain rates publication-title: Mater Struct doi: 10.1007/BF02472016 – volume: 95 start-page: 735 issue: 6 year: 1998 ident: 10.1016/j.ijimpeng.2019.103318_bib0048 article-title: Review of strain rate effects for concrete in tension publication-title: ACI Mater J – volume: 9 start-page: 28 year: 2017 ident: 10.1016/j.ijimpeng.2019.103318_bib0004 article-title: A state-of-the-art review on the size effect of concretes and concrete structures (I): concrete materials publication-title: Chin Civil Eng J – volume: 28 start-page: 1001 issue: 9 year: 2003 ident: 10.1016/j.ijimpeng.2019.103318_bib0016 article-title: Size effect for high-strength concrete cylinders subjected to axial impact publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(02)00166-5 – volume: 36 start-page: 1371 issue: 7 year: 2006 ident: 10.1016/j.ijimpeng.2019.103318_bib0008 article-title: Dynamic properties of concrete in direct tension publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2006.03.003 – volume: 32 start-page: 132 issue: 5 year: 2015 ident: 10.1016/j.ijimpeng.2019.103318_bib0020 article-title: Energy absorption characteristics and size effect of concrete under different strain rates publication-title: J Yangtze River Sci Res Inst – volume: 41 start-page: 1130 issue: 11 year: 2011 ident: 10.1016/j.ijimpeng.2019.103318_bib0023 article-title: Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2011.06.016 – volume: 50 start-page: 74 year: 2013 ident: 10.1016/j.ijimpeng.2019.103318_bib0024 article-title: Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2013.03.021 – volume: 81 start-page: 73 issue: 1 year: 1984 ident: 10.1016/j.ijimpeng.2019.103318_bib0043 article-title: Ductility of plain and confined concrete under different strain rates publication-title: J Proc – volume: 27 start-page: 657 issue: 5 year: 2018 ident: 10.1016/j.ijimpeng.2019.103318_bib0042 article-title: Experimental and numerical investigations on the size effect of moderate high-strength reinforced concrete columns under small-eccentric compression publication-title: Int J Damage Mech doi: 10.1177/1056789517699054 – volume: 31 start-page: 461 issue: 4 year: 2005 ident: 10.1016/j.ijimpeng.2019.103318_bib0018 article-title: Size effect for normal strength concrete cylinders subjected to axial impact publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2004.01.003 – volume: 1 start-page: 145 issue: 1 year: 2010 ident: 10.1016/j.ijimpeng.2019.103318_bib0014 article-title: Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties publication-title: Int J Protect Struct doi: 10.1260/2041-4196.1.1.145 |
SSID | ssj0017050 |
Score | 2.533876 |
Snippet | •Dynamic tensile failure of 135 double-edge notched concrete specimens are simulated at mesoscopic under dynamic loadings.•The size effect in dynamic tensile... The macro nonlinearity and size effect of concrete are essentially attributed to the internal heterogeneity of concrete. Considering the heterogeneities and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103318 |
SubjectTerms | Computer simulation Concrete Concrete construction Dynamic tension Mathematical models Mesoscale phenomena Mortars (material) Numerical models Particulate composites Securities markets Size effect Size effects Static and dynamic unified size effect law Strain rate Tensile strength |
Title | Dynamic size effect of concrete under tension: A numerical study |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2019.103318 https://www.proquest.com/docview/2278890315 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWqssCA-BSFgjywpklqx4mZqApVAdEFKnWzbMdBqaq0atOFgd-OLx9VQUgdGBPZUfRyvjs7790hdOsHodExU46OCWxQAuZIQ0OHET8wKiRSKjgaeB2x4Zg-T4JJA_VrLQzQKivfX_r0wltXd9wKTXeRpu6bNU5q49_EGqXHuyEIfikNwco7XxuaB1SLKc5Z7GAHRm-phKeddJra5DT7AIoXB_05geYffweoX666iD-DI3RYJY64V77bMWqY7AQdbJUTPEX3D2V7ebxKPw0umRp4nmC75bW5YW4wCMaWuOCsz7M73MPZuvxhM8NFmdkzNB48vveHTtUhwdGEerkTWjx9FYWJb5iGzF9GsZGM0IgqJhU3voLGD57uKo9LG_oNSWLCeKg9o4JuQM5RM5tn5gJhu_S13fv4TGmPGhlxmYBOVTKPUpMw1UJBDYvQVflw6GIxEzVPbCpqOAXAKUo4W8jdzFuUBTR2zuA16uKHKQjr5XfObdefSVSLcSVA7RtxaGdx-Y9HX6F9uCqJfG3UzJdrc20TklzdFBZ3g_Z6Ty_D0TfmTN-U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VMgAD4ineeGANTWrHSZioCihA24VW6mbZroNSVWlF24Vfjy8PVBBSB9YkF0Wfz_eI7-4DuPH8wOgRV44eUUxQfO5IwwKHU883KqBSKvw10O3xeMBehv6wBu2qFwbLKkvbX9j03FqXVxolmo1ZmjberHIy6_-GVindqBmEG7CJ06n8Omy2nl_j3vdhQuDmRK34vIMCK43C49t0nNr4NHvHKq8IW9Ap8n_87aN-WevcBT3twW4ZO5JW8Xn7UDPZAeysTBQ8hPuHgmGezNNPQ4piDTJNiM16bXi4MAR7xj5IXrY-ze5Ii2TL4sxmQvJJs0cweHrst2OnJElwNGXuwgkspJ4Kg8QzXGPwL8ORkZyykCkuVWQ8hdwPrm4qN5LW-xuajCiPAu0a5Td9egz1bJqZEyB292ub_nhcaZcZGUYywVZVyV3GTMLVKfgVLEKXE8SRyGIiqlKxsajgFAinKOA8hca33KyYobFWIqpQFz-0QVhDv1b2olomUe7HucCG3zBCRouzf7z6GrbifrcjOs-913PYxjtFXd8F1BcfS3Np45OFuir17wubCOJF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+size+effect+of+concrete+under+tension%3A+A+numerical+study&rft.jtitle=International+journal+of+impact+engineering&rft.au=Jin%2C+Liu&rft.au=Yu%2C+Wenxuan&rft.au=Du%2C+Xiuli&rft.au=Yang%2C+Wangxian&rft.date=2019-10-01&rft.pub=Elsevier+BV&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=132&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijimpeng.2019.103318&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |