Energy absorption characteristics of additively manufactured plate-lattices under low- velocity impact loading
•Hybrid plate-lattices exhibit higher energy absorption capacity and progressive failure compared to elementary ones.•The effectiveness of hybrid plate-lattices are more significant at higher impact energies (> 40 J).•The relative density decides the best balance between stiffness and unstable da...
Saved in:
Published in | International journal of impact engineering Vol. 149; p. 103768 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.03.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Hybrid plate-lattices exhibit higher energy absorption capacity and progressive failure compared to elementary ones.•The effectiveness of hybrid plate-lattices are more significant at higher impact energies (> 40 J).•The relative density decides the best balance between stiffness and unstable damage growth.•The hybrid plate-lattices achieve a direction-independent impact response•The hybrid plate-lattices exhibit higher specific energy absorption than that of the conventional aluminum lattices and other practical metamaterials.
This study is focused on the low-velocity impact response of 3D plate-lattices fabricated via stereolithography additive manufacturing (AM). Elementary (SC, BCC and FCC) and hybrid (SC-BCC, SC-FCC and SC-BCC-FCC) configurations were tested and the effects of impact energy, relative density, plate-thickness, multiple impacts and impact angle on the dynamic crushing behavior and energy absorption characteristics were analyzed. The experimental results reveal that the hybrid lattices, due to the existence of larger number of open and closed sub-cells, were able to attenuate the peak impact stress transmitted to the structure and extend the duration of the load pulse (high toughness). A significant energy dependency of contact force-displacement characteristics of hybrid structures was noticed with increase in impact energy. The SC-BCC-FCC hybrid plate-lattices depicted a 70% increase in toughness and their specific energy absorption capacity is higher than the conventional aluminum lattices and other practical metamaterials. Experimental observations also revealed that the distribution of plates in each elementary structure in hybrid configuration plays an important role in mitigating the deleterious failure mode by transforming the brittle mode fracture into progressive damage of the plate-lattices. This paper, believed to be the first comprehensive experimental study, discusses the role of relative density, plate-thickness, multiple impacts, impact energy and oblique impact on the low velocity impact response of geometrically hybridized plate-lattice structures. The results of this investigation suggest that the concept of hybridization of plate-lattice architectures in conjunction with AM will enable development of lightweight high impact energy absorbing structures for a wide variety of applications.
[Display omitted] |
---|---|
AbstractList | •Hybrid plate-lattices exhibit higher energy absorption capacity and progressive failure compared to elementary ones.•The effectiveness of hybrid plate-lattices are more significant at higher impact energies (> 40 J).•The relative density decides the best balance between stiffness and unstable damage growth.•The hybrid plate-lattices achieve a direction-independent impact response•The hybrid plate-lattices exhibit higher specific energy absorption than that of the conventional aluminum lattices and other practical metamaterials.
This study is focused on the low-velocity impact response of 3D plate-lattices fabricated via stereolithography additive manufacturing (AM). Elementary (SC, BCC and FCC) and hybrid (SC-BCC, SC-FCC and SC-BCC-FCC) configurations were tested and the effects of impact energy, relative density, plate-thickness, multiple impacts and impact angle on the dynamic crushing behavior and energy absorption characteristics were analyzed. The experimental results reveal that the hybrid lattices, due to the existence of larger number of open and closed sub-cells, were able to attenuate the peak impact stress transmitted to the structure and extend the duration of the load pulse (high toughness). A significant energy dependency of contact force-displacement characteristics of hybrid structures was noticed with increase in impact energy. The SC-BCC-FCC hybrid plate-lattices depicted a 70% increase in toughness and their specific energy absorption capacity is higher than the conventional aluminum lattices and other practical metamaterials. Experimental observations also revealed that the distribution of plates in each elementary structure in hybrid configuration plays an important role in mitigating the deleterious failure mode by transforming the brittle mode fracture into progressive damage of the plate-lattices. This paper, believed to be the first comprehensive experimental study, discusses the role of relative density, plate-thickness, multiple impacts, impact energy and oblique impact on the low velocity impact response of geometrically hybridized plate-lattice structures. The results of this investigation suggest that the concept of hybridization of plate-lattice architectures in conjunction with AM will enable development of lightweight high impact energy absorbing structures for a wide variety of applications.
[Display omitted] This study is focused on the low-velocity impact response of 3D plate-lattices fabricated via stereolithography additive manufacturing (AM). Elementary (SC, BCC and FCC) and hybrid (SC-BCC, SC-FCC and SC-BCC-FCC) configurations were tested and the effects of impact energy, relative density, plate-thickness, multiple impacts and impact angle on the dynamic crushing behavior and energy absorption characteristics were analyzed. The experimental results reveal that the hybrid lattices, due to the existence of larger number of open and closed sub-cells, were able to attenuate the peak impact stress transmitted to the structure and extend the duration of the load pulse (high toughness). A significant energy dependency of contact force-displacement characteristics of hybrid structures was noticed with increase in impact energy. The SC-BCC-FCC hybrid plate-lattices depicted a 70% increase in toughness and their specific energy absorption capacity is higher than the conventional aluminum lattices and other practical metamaterials. Experimental observations also revealed that the distribution of plates in each elementary structure in hybrid configuration plays an important role in mitigating the deleterious failure mode by transforming the brittle mode fracture into progressive damage of the plate-lattices. This paper, believed to be the first comprehensive experimental study, discusses the role of relative density, plate-thickness, multiple impacts, impact energy and oblique impact on the low velocity impact response of geometrically hybridized plate-lattice structures. The results of this investigation suggest that the concept of hybridization of plate-lattice architectures in conjunction with AM will enable development of lightweight high impact energy absorbing structures for a wide variety of applications. |
ArticleNumber | 103768 |
Author | Schneider, Johannes Ubaid, Jabir Gupta, N K Kumar, S Andrew, J Jefferson Velmurugan, R |
Author_xml | – sequence: 1 givenname: J Jefferson surname: Andrew fullname: Andrew, J Jefferson organization: Department of Mechanical Engineering, Khalifa University of Science and Technology, Masdar Campus, Masdar City, P.O. Box 54224, Abu Dhabi, UAE – sequence: 2 givenname: Johannes orcidid: 0000-0001-7190-9682 surname: Schneider fullname: Schneider, Johannes organization: Department of Mechanical Engineering, Khalifa University of Science and Technology, Masdar Campus, Masdar City, P.O. Box 54224, Abu Dhabi, UAE – sequence: 3 givenname: Jabir orcidid: 0000-0003-3258-0874 surname: Ubaid fullname: Ubaid, Jabir organization: Department of Mechanical Engineering, Khalifa University of Science and Technology, Masdar Campus, Masdar City, P.O. Box 54224, Abu Dhabi, UAE – sequence: 4 givenname: R surname: Velmurugan fullname: Velmurugan, R organization: Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India – sequence: 5 givenname: N K surname: Gupta fullname: Gupta, N K organization: Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi 110016, India – sequence: 6 givenname: S surname: Kumar fullname: Kumar, S email: s.kumar@eng.oxon.org organization: Department of Mechanical Engineering, Khalifa University of Science and Technology, Masdar Campus, Masdar City, P.O. Box 54224, Abu Dhabi, UAE |
BookMark | eNqFkE9rHCEYh6WkkE3arxCEnGfzOu6oAz0khPwpBHrJoTcx-s7WYVYn6iTst6_LNpdeclF4fX4_X54zchJiQEIuGKwZMHE1rv3odzOG7bqF9jDkUqgvZMWU7BveQX9CViD5ppEb_vuUnOU8AjAJHaxIuAuYtntqXnJMc_ExUPvHJGMLJp-Lt5nGgRrnfPFvOO3pzoRlqM9LQkfnyRRs6lFBzHQJDhOd4ntDKxutL3taN6t0HRrnw_Yb-TqYKeP3f_c5eb6_e759bJ5-Pfy8vXlqLN9AaWRrHDjVgcMODOPGKcU7JRD6TggHRvQvg2COSxSt5LxnqlMGmELsZcf4Obk81s4pvi6Yix7jkkL9Ubcb1UNbW0Slfhwpm2LOCQddNzYHByUZP2kG-iBYj_pDsD4I1kfBNS7-i8_J70zafx68PgaxGnjzmHS2HoNF5xPaol30n1X8BSyBnWQ |
CitedBy_id | crossref_primary_10_1021_acsami_3c02746 crossref_primary_10_1016_j_jpowsour_2021_229625 crossref_primary_10_1080_15397734_2024_2326609 crossref_primary_10_1007_s00170_020_06580_4 crossref_primary_10_1016_j_ijimpeng_2022_104320 crossref_primary_10_1016_j_compstruct_2022_115945 crossref_primary_10_1016_j_compstruct_2024_118267 crossref_primary_10_1007_s40964_023_00529_1 crossref_primary_10_1080_15376494_2023_2258523 crossref_primary_10_1016_j_mfglet_2024_09_089 crossref_primary_10_1007_s12034_025_03401_w crossref_primary_10_1016_j_jmbbm_2023_106328 crossref_primary_10_1080_15376494_2024_2372458 crossref_primary_10_1016_j_compstruct_2022_116088 crossref_primary_10_1080_15376494_2023_2167246 crossref_primary_10_3390_ma17163952 crossref_primary_10_1016_j_jmrt_2023_12_089 crossref_primary_10_1016_j_tws_2022_110495 crossref_primary_10_1016_j_compstruct_2023_116993 crossref_primary_10_1016_j_mtcomm_2024_108349 crossref_primary_10_1016_j_mtcomm_2024_110656 crossref_primary_10_1016_j_matdes_2022_111564 crossref_primary_10_1016_j_tws_2024_111580 crossref_primary_10_1016_j_engstruct_2024_118122 crossref_primary_10_1016_j_engstruct_2024_119572 crossref_primary_10_1007_s00170_024_13430_0 crossref_primary_10_1016_j_tws_2023_111408 crossref_primary_10_1088_1755_1315_830_1_012072 crossref_primary_10_1088_1742_6596_2891_4_042016 crossref_primary_10_1016_j_tws_2024_111697 crossref_primary_10_1016_j_ijmecsci_2023_108795 crossref_primary_10_1155_2021_1766952 crossref_primary_10_1177_07316844241226834 crossref_primary_10_3390_ma17102181 crossref_primary_10_1016_j_matdes_2021_109923 crossref_primary_10_1007_s11665_021_05873_3 crossref_primary_10_1016_j_compstruct_2022_115415 crossref_primary_10_1016_j_eml_2021_101358 crossref_primary_10_1061_JENMDT_EMENG_7537 crossref_primary_10_1080_17452759_2022_2085119 crossref_primary_10_1016_j_ijimpeng_2022_104488 crossref_primary_10_3390_polym16060729 crossref_primary_10_1016_j_ast_2023_108583 crossref_primary_10_1080_17452759_2024_2342430 crossref_primary_10_1088_1742_6596_2892_1_012003 crossref_primary_10_1080_17452759_2023_2166851 crossref_primary_10_3390_met12071189 crossref_primary_10_1016_j_tws_2022_110468 crossref_primary_10_1016_j_tws_2024_111950 crossref_primary_10_1021_acsami_2c19456 crossref_primary_10_1002_adem_202402999 crossref_primary_10_1016_j_jmbbm_2021_104869 crossref_primary_10_1002_adem_202301650 crossref_primary_10_1016_j_ijmecsci_2022_107126 crossref_primary_10_1016_j_rineng_2022_100372 crossref_primary_10_1016_j_tws_2021_108649 crossref_primary_10_3390_cryst12040447 crossref_primary_10_1016_j_addma_2023_103626 crossref_primary_10_1016_j_ijimpeng_2022_104233 crossref_primary_10_1016_j_ijmecsci_2024_109724 crossref_primary_10_3390_polym15193858 crossref_primary_10_1002_adem_202201780 crossref_primary_10_1002_pts_2779 crossref_primary_10_1016_j_tws_2022_109355 crossref_primary_10_1002_adem_202401892 crossref_primary_10_1016_j_tws_2022_110451 crossref_primary_10_3390_polym14030618 crossref_primary_10_1016_j_compstruct_2022_116058 crossref_primary_10_1016_j_jmrt_2024_04_114 crossref_primary_10_1016_j_compstruct_2022_115484 crossref_primary_10_1080_15376494_2021_1995547 crossref_primary_10_1002_adem_202300431 crossref_primary_10_1016_j_compstruct_2022_116172 crossref_primary_10_1016_j_ijmecsci_2023_108102 crossref_primary_10_1016_j_matdes_2022_111122 crossref_primary_10_1002_advs_202405835 crossref_primary_10_1016_j_compstruct_2025_119015 crossref_primary_10_1016_j_mtcomm_2022_104439 crossref_primary_10_1088_2631_6331_ad2c0f crossref_primary_10_1007_s11831_024_10100_y crossref_primary_10_1002_adem_202401881 crossref_primary_10_1016_j_ijmecsci_2022_107428 crossref_primary_10_1080_15376494_2024_2447055 crossref_primary_10_1016_j_tws_2022_109778 crossref_primary_10_3390_machines10100965 crossref_primary_10_1016_j_tws_2025_112980 crossref_primary_10_1016_j_jmrt_2023_09_061 crossref_primary_10_1016_j_ijimpeng_2022_104427 crossref_primary_10_3390_agronomy11122594 crossref_primary_10_1021_acsami_3c02498 crossref_primary_10_1016_j_compstruct_2024_118132 crossref_primary_10_1016_j_tws_2023_110894 crossref_primary_10_1016_j_enganabound_2022_04_016 crossref_primary_10_3390_ma17194844 crossref_primary_10_1016_j_compstruct_2022_116397 crossref_primary_10_1016_j_tws_2023_111349 crossref_primary_10_1088_1361_665X_ac68b4 crossref_primary_10_1016_j_ijimpeng_2025_105321 crossref_primary_10_1080_15376494_2022_2104974 crossref_primary_10_1177_10996362241238272 crossref_primary_10_1016_j_ijmecsci_2022_107531 crossref_primary_10_1016_j_tws_2022_109803 crossref_primary_10_1016_j_ijnonlinmec_2022_104329 crossref_primary_10_1016_j_ijmecsci_2024_109232 crossref_primary_10_3390_ma15010378 |
Cites_doi | 10.1016/j.ijsolstr.2004.10.032 10.1016/j.actamat.2016.05.054 10.1016/j.ijimpeng.2016.11.016 10.1126/science.1252291 10.1016/j.matdes.2018.01.059 10.1002/adfm.201400451 10.1016/j.ijmecsci.2013.01.006 10.1016/j.compstruct.2015.08.035 10.1016/j.compositesb.2013.12.006 10.1016/j.compstruct.2017.10.070 10.1016/j.matdes.2018.05.059 10.1021/acsami.9b12880 10.1016/j.proeng.2011.11.2530 10.1126/science.1255908 10.1016/j.compstruct.2019.111007 10.1016/S1359-6454(00)00379-7 10.1007/s10853-013-7974-5 10.1016/j.compstruct.2012.02.001 10.1016/j.matdes.2018.11.035 10.1016/0022-5096(63)90060-7 10.1177/0021998318779430 10.1002/adma.201501546 10.1108/RPJ-07-2016-0122 10.1108/SD-10-2015-0162 10.1016/j.msea.2013.07.070 10.1016/j.matdes.2017.01.010 10.1016/j.matdes.2019.107655 10.1016/j.ijimpeng.2017.02.007 10.1016/j.ijplas.2006.02.006 10.1017/CBO9781139878326 10.1016/j.ijimpeng.2019.103360 10.1016/j.matdes.2018.11.002 10.1016/j.ijimpeng.2013.04.007 10.1016/j.compstruct.2015.08.022 10.1016/j.ijimpeng.2017.09.018 10.1016/j.procir.2015.01.082 10.1080/0951192X.2017.1407456 10.1007/s10853-005-5019-4 10.1016/j.compscitech.2012.07.006 10.1038/nmat3915 10.1016/j.compositesb.2017.09.048 10.4028/www.scientific.net/AMM.24-25.413 10.1098/rsta.2005.1678 10.1016/j.ijsolstr.2009.07.024 10.1146/annurev-matsci-070115-031606 10.1115/1.4030007 10.1016/j.ijimpeng.2007.06.008 10.3390/ma8041871 10.1111/jiec.12609 10.1038/nmat4089 10.1016/j.ijsolstr.2017.12.025 10.1002/adem.201700883 10.1038/nature21075 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Mar 2021 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Mar 2021 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2020.103768 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
ExternalDocumentID | 10_1016_j_ijimpeng_2020_103768 S0734743X20308381 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c340t-72ad0d850de50a13ad883586e09566d0a69bf61d37e6273391858a018ee97513 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Fri Aug 15 23:10:48 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 Tue Jul 01 03:54:30 EDT 2025 Fri Feb 23 02:47:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Impact resistance plate-lattice structures Low-velocity impact Oblique impact Energy absorption Cellular structures |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-72ad0d850de50a13ad883586e09566d0a69bf61d37e6273391858a018ee97513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3258-0874 0000-0001-7190-9682 |
PQID | 2489025666 |
PQPubID | 2045463 |
ParticipantIDs | proquest_journals_2489025666 crossref_citationtrail_10_1016_j_ijimpeng_2020_103768 crossref_primary_10_1016_j_ijimpeng_2020_103768 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2020_103768 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Duoss (bib0020) 2014; 24 Ahmadi (bib0030) 2015; 8 Hasan (bib0056) 2010; 24-25 Srivastava, Srivastava (bib0010) 2014; 49 Bouville (bib0045) 2014; 13 Al-Saedi (bib0001) 2018; 144 Jin (bib0031) 2019; 169 Qiao, Chen (bib0040) 2015; 82 Gibson, L.J. and M.F. Ashby, Cellular Solids: Structure and Properties. 2 ed. Cambridge Solid State Science Series. 1997, Cambridge: Cambridge University Press. Ivañez (bib0042) 2015; 133 Andrew (bib0050) 2019; 224 Thomas, Alluru (bib0032) 2016; 32 Andrew, Srinivasan, Arockiarajan (bib0051) 2019; 53 Grenestedt (bib0011) 2005; 40 Han, Lee, Kang (bib0036) 2015; 27 Zhang (bib0052) 2017; 117 Andrew, Srinivasan, Arockiarajan (bib0049) 2018; 184 Harris, Winter, McShane (bib0027) 2017; 104 Dharmasena, K., et al., Mechanical Response of Metallic Honeycomb Sandwich Panel Structures to High-Intensity Dynamic Loading. Vol. 35. 2008. 1063-1074. Meza, Das, Greer (bib0029) 2014; 345 Minak, G., et al., Equivalent Stiffness As Measure Of Low Velocity Impact Damage Of Complex Composite Structures . Vol. Vol.10. 2012. 91-104. Wang (bib0053) 2011; 23 Savio, Meneghello, Concheri (bib0014) 2018; 24 Zheng (bib0019) 2014; 344 Kumar, Wardle, Arif, Ubaid (bib0065) 2018; 20 Gümrük, Mines (bib0025) 2013; 68 Jefferson Andrew (bib0057) 2015; 133 Tancogne‐Dejean (bib0012) 2018; 30 Hou (bib0041) 2018; 160 Klahn, Leutenecker, Meboldt (bib0015) 2015; 36 Navarro (bib0043) 2012; 94 Xiao, Song (bib0007) 2018; 111 Wang, Liu (bib0002) 2018; 135 Ozdemir (bib0037) 2017; 102 A Jansen, J. and S. Technimet, FRACTOGRAPHIC CHARACTERIZATION OF POLYCARBONATE FAILURE MODES. 2019. Kumar (bib0017) 2019; 11 Quinlan (bib0018) 2017; 21 Tancogne-Dejean, Spierings, Mohr (bib0023) 2016; 116 Wegst (bib0046) 2015; 14 Mohr (bib0024) 2005; 42 Rifaie, Jamal (bib0062) 2017 Helou, Kara (bib0013) 2018; 31 Bourell (bib0016) 2016; 46 Hashin, Shtrikman (bib0034) 1963; 11 Lee (bib0038) 2006; 22 Gurtner, Durand (bib0033) 2014; 470 Zhou (bib0047) 2012; 72 Habib (bib0005) 2018; 155 Andrew (bib0004) 2019; 134 Sarasini (bib0048) 2014; 59 Deshpande, Ashby, Fleck (bib0044) 2001; 49 Zheng (bib0006) 2014; 344 Duoss (bib0009) 2014; 24 Tancogne-Dejean, Mohr (bib0021) 2018; 138 Ashby (bib0003) 2005; 364 Gümrük, Mines, Karadeniz (bib0026) 2013; 586 Liu (bib0039) 2009; 46 Mines (bib0028) 2013; 60 Ling (bib0022) 2019; 162 Berger, Wadley, McMeeking (bib0035) 2017; 543 Helou (10.1016/j.ijimpeng.2020.103768_bib0013) 2018; 31 Ahmadi (10.1016/j.ijimpeng.2020.103768_bib0030) 2015; 8 Tancogne-Dejean (10.1016/j.ijimpeng.2020.103768_bib0023) 2016; 116 Grenestedt (10.1016/j.ijimpeng.2020.103768_bib0011) 2005; 40 Mohr (10.1016/j.ijimpeng.2020.103768_bib0024) 2005; 42 Ozdemir (10.1016/j.ijimpeng.2020.103768_bib0037) 2017; 102 10.1016/j.ijimpeng.2020.103768_bib0008 Bourell (10.1016/j.ijimpeng.2020.103768_bib0016) 2016; 46 Harris (10.1016/j.ijimpeng.2020.103768_bib0027) 2017; 104 Gurtner (10.1016/j.ijimpeng.2020.103768_bib0033) 2014; 470 Ivañez (10.1016/j.ijimpeng.2020.103768_bib0042) 2015; 133 10.1016/j.ijimpeng.2020.103768_bib0055 Zheng (10.1016/j.ijimpeng.2020.103768_bib0006) 2014; 344 Jefferson Andrew (10.1016/j.ijimpeng.2020.103768_bib0057) 2015; 133 10.1016/j.ijimpeng.2020.103768_bib0058 Deshpande (10.1016/j.ijimpeng.2020.103768_bib0044) 2001; 49 Zhou (10.1016/j.ijimpeng.2020.103768_bib0047) 2012; 72 Hashin (10.1016/j.ijimpeng.2020.103768_bib0034) 1963; 11 10.1016/j.ijimpeng.2020.103768_bib0054 Andrew (10.1016/j.ijimpeng.2020.103768_bib0051) 2019; 53 Zhang (10.1016/j.ijimpeng.2020.103768_bib0052) 2017; 117 Xiao (10.1016/j.ijimpeng.2020.103768_bib0007) 2018; 111 Navarro (10.1016/j.ijimpeng.2020.103768_bib0043) 2012; 94 Lee (10.1016/j.ijimpeng.2020.103768_bib0038) 2006; 22 Berger (10.1016/j.ijimpeng.2020.103768_bib0035) 2017; 543 Mines (10.1016/j.ijimpeng.2020.103768_bib0028) 2013; 60 Gümrük (10.1016/j.ijimpeng.2020.103768_bib0025) 2013; 68 Duoss (10.1016/j.ijimpeng.2020.103768_bib0009) 2014; 24 Wegst (10.1016/j.ijimpeng.2020.103768_bib0046) 2015; 14 Ashby (10.1016/j.ijimpeng.2020.103768_bib0003) 2005; 364 Andrew (10.1016/j.ijimpeng.2020.103768_bib0050) 2019; 224 Habib (10.1016/j.ijimpeng.2020.103768_bib0005) 2018; 155 Bouville (10.1016/j.ijimpeng.2020.103768_bib0045) 2014; 13 Savio (10.1016/j.ijimpeng.2020.103768_bib0014) 2018; 24 Al-Saedi (10.1016/j.ijimpeng.2020.103768_bib0001) 2018; 144 Klahn (10.1016/j.ijimpeng.2020.103768_bib0015) 2015; 36 Gümrük (10.1016/j.ijimpeng.2020.103768_bib0026) 2013; 586 Andrew (10.1016/j.ijimpeng.2020.103768_bib0004) 2019; 134 Tancogne-Dejean (10.1016/j.ijimpeng.2020.103768_bib0021) 2018; 138 Tancogne‐Dejean (10.1016/j.ijimpeng.2020.103768_bib0012) 2018; 30 Meza (10.1016/j.ijimpeng.2020.103768_bib0029) 2014; 345 Hasan (10.1016/j.ijimpeng.2020.103768_bib0056) 2010; 24-25 Andrew (10.1016/j.ijimpeng.2020.103768_bib0049) 2018; 184 Thomas (10.1016/j.ijimpeng.2020.103768_bib0032) 2016; 32 Rifaie (10.1016/j.ijimpeng.2020.103768_bib0062) 2017 Han (10.1016/j.ijimpeng.2020.103768_bib0036) 2015; 27 Kumar (10.1016/j.ijimpeng.2020.103768_bib0065) 2018; 20 Hou (10.1016/j.ijimpeng.2020.103768_bib0041) 2018; 160 Srivastava (10.1016/j.ijimpeng.2020.103768_bib0010) 2014; 49 Sarasini (10.1016/j.ijimpeng.2020.103768_bib0048) 2014; 59 Wang (10.1016/j.ijimpeng.2020.103768_bib0002) 2018; 135 Quinlan (10.1016/j.ijimpeng.2020.103768_bib0018) 2017; 21 Ling (10.1016/j.ijimpeng.2020.103768_bib0022) 2019; 162 Kumar (10.1016/j.ijimpeng.2020.103768_bib0017) 2019; 11 Jin (10.1016/j.ijimpeng.2020.103768_bib0031) 2019; 169 Liu (10.1016/j.ijimpeng.2020.103768_bib0039) 2009; 46 Zheng (10.1016/j.ijimpeng.2020.103768_bib0019) 2014; 344 Qiao (10.1016/j.ijimpeng.2020.103768_bib0040) 2015; 82 Duoss (10.1016/j.ijimpeng.2020.103768_bib0020) 2014; 24 Wang (10.1016/j.ijimpeng.2020.103768_bib0053) 2011; 23 |
References_xml | – volume: 21 start-page: S15 year: 2017 end-page: S20 ident: bib0018 article-title: Industrial and Consumer Uses of Additive Manufacturing: A Discussion of Capabilities, Trajectories, and Challenges publication-title: Journal of Industrial Ecology – volume: 24 start-page: 351 year: 2018 end-page: 360 ident: bib0014 article-title: Geometric modeling of lattice structures for additive manufacturing publication-title: Rapid Prototyping Journal – volume: 42 start-page: 3235 year: 2005 end-page: 3260 ident: bib0024 article-title: Mechanism-based multi-surface plasticity model for ideal truss lattice materials publication-title: International Journal of Solids and Structures – volume: 20 start-page: 1700883 year: 2018 ident: bib0065 article-title: Stress reduction of 3D printed compliance‐tailored multilayers. publication-title: Advanced Engineering Materials – volume: 30 year: 2018 ident: bib0012 article-title: 3D Plate‐Lattices: An Emerging Class of Low‐Density Metamaterial Exhibiting Optimal Isotropic Stiffness publication-title: Advanced Materials – volume: 470 year: 2014 ident: bib0033 article-title: Stiffest elastic networks publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 53 start-page: 3 year: 2019 end-page: 17 ident: bib0051 article-title: Influence of patch lay-up configuration and hybridization on low velocity impact and post-impact tensile response of repaired glass fiber reinforced plastic composites publication-title: Journal of Composite Materials – volume: 49 start-page: 2681 year: 2014 end-page: 2692 ident: bib0010 article-title: On the polymeric foams: modeling and properties publication-title: Journal of materials science – volume: 364 start-page: 15 year: 2005 end-page: 30 ident: bib0003 article-title: The properties of foams and lattices publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences – reference: Minak, G., et al., Equivalent Stiffness As Measure Of Low Velocity Impact Damage Of Complex Composite Structures . Vol. Vol.10. 2012. 91-104. – volume: 24 start-page: 4905 year: 2014 end-page: 4913 ident: bib0020 article-title: Three-Dimensional Printing of Elastomeric, Cellular Architectures with Negative Stiffness publication-title: Advanced Functional Materials – volume: 133 start-page: 911 year: 2015 end-page: 920 ident: bib0057 article-title: Compression after impact strength of repaired GFRP composite laminates under repeated impact loading publication-title: Composite Structures – volume: 94 start-page: 1967 year: 2012 end-page: 1972 ident: bib0043 article-title: Experimental and numerical study of oblique impact on woven composite sandwich structure: Influence of the firing axis orientation publication-title: Composite Structures – volume: 224 year: 2019 ident: bib0050 article-title: Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review publication-title: Composite Structures – year: 2017 ident: bib0062 article-title: Resilience and Toughness Behavior of 3D-Printed Polymer Lattice Structures – volume: 102 start-page: 1 year: 2017 end-page: 15 ident: bib0037 article-title: Energy absorption in lattice structures in dynamics: Nonlinear FE simulations publication-title: International Journal of Impact Engineering – volume: 138 start-page: 24 year: 2018 end-page: 39 ident: bib0021 article-title: Elastically-isotropic truss lattice materials of reduced plastic anisotropy publication-title: International Journal of Solids and Structures – reference: A Jansen, J. and S. Technimet, FRACTOGRAPHIC CHARACTERIZATION OF POLYCARBONATE FAILURE MODES. 2019. – volume: 8 start-page: 1871 year: 2015 end-page: 1896 ident: bib0030 article-title: Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: The mechanical and morphological properties publication-title: Materials – volume: 32 start-page: 14 year: 2016 end-page: 16 ident: bib0032 article-title: Thriving in a downturn: aligning corporate strategy and the economic context to ensure stable growth publication-title: Strategic Direction – volume: 344 start-page: 1373 year: 2014 end-page: 1377 ident: bib0006 article-title: Ultralight, ultrastiff mechanical metamaterials publication-title: Science – volume: 13 start-page: 508 year: 2014 ident: bib0045 article-title: Strong, tough and stiff bioinspired ceramics from brittle constituents publication-title: Nature materials – volume: 46 start-page: 1 year: 2016 end-page: 18 ident: bib0016 article-title: Perspectives on Additive Manufacturing publication-title: Annual Review of Materials Research – volume: 68 start-page: 125 year: 2013 end-page: 139 ident: bib0025 article-title: Compressive behaviour of stainless steel micro-lattice structures publication-title: International Journal of Mechanical Sciences – volume: 133 start-page: 1127 year: 2015 end-page: 1136 ident: bib0042 article-title: The oblique impact response of composite sandwich plates publication-title: Composite Structures – volume: 60 start-page: 120 year: 2013 end-page: 132 ident: bib0028 article-title: Drop weight impact behaviour of sandwich panels with metallic micro lattice cores publication-title: International Journal of Impact Engineering – volume: 345 start-page: 1322 year: 2014 end-page: 1326 ident: bib0029 article-title: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices publication-title: Science – volume: 116 start-page: 14 year: 2016 end-page: 28 ident: bib0023 article-title: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading publication-title: Acta Materialia – volume: 31 start-page: 243 year: 2018 end-page: 261 ident: bib0013 article-title: Design, analysis and manufacturing of lattice structures: an overview publication-title: International Journal of Computer Integrated Manufacturing – volume: 27 start-page: 5506 year: 2015 end-page: 5511 ident: bib0036 article-title: A new type of low density material: Shellular publication-title: Advanced Materials – volume: 59 start-page: 204 year: 2014 end-page: 220 ident: bib0048 article-title: Drop-weight impact behaviour of woven hybrid basalt–carbon/epoxy composites publication-title: Composites Part B: Engineering – volume: 144 start-page: 32 year: 2018 end-page: 44 ident: bib0001 article-title: Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM publication-title: Materials & Design – volume: 49 start-page: 1035 year: 2001 end-page: 1040 ident: bib0044 article-title: Foam topology: bending versus stretching dominated architectures publication-title: Acta materialia – volume: 169 year: 2019 ident: bib0031 article-title: Failure and energy absorption characteristics of four lattice structures under dynamic loading publication-title: Materials & Design – volume: 344 start-page: 1373 year: 2014 end-page: 1377 ident: bib0019 article-title: Ultralight, ultrastiff mechanical metamaterials publication-title: Science – reference: Gibson, L.J. and M.F. Ashby, Cellular Solids: Structure and Properties. 2 ed. Cambridge Solid State Science Series. 1997, Cambridge: Cambridge University Press. – volume: 24-25 start-page: 413 year: 2010 end-page: 418 ident: bib0056 article-title: Comparison of the Drop Weight Impact Performance of Sandwich Panels with Aluminium Honeycomb and Titanium Alloy Micro Lattice Cores publication-title: Applied Mechanics and Materials – volume: 162 start-page: 106 year: 2019 end-page: 118 ident: bib0022 article-title: Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading publication-title: Materials & Design – volume: 82 year: 2015 ident: bib0040 article-title: Analyses on the In-Plane Impact Resistance of Auxetic Double Arrowhead Honeycombs publication-title: Journal of Applied Mechanics – volume: 184 start-page: 848 year: 2018 end-page: 859 ident: bib0049 article-title: The role of adhesively bonded super hybrid external patches on the impact and post-impact response of repaired glass/epoxy composite laminates publication-title: Composite Structures – volume: 40 start-page: 5853 year: 2005 end-page: 5857 ident: bib0011 article-title: On interactions between imperfections in cellular solids publication-title: Journal of materials science – volume: 22 start-page: 2118 year: 2006 end-page: 2145 ident: bib0038 article-title: Dynamic failure of metallic pyramidal truss core materials – Experiments and modeling publication-title: International Journal of Plasticity – volume: 72 start-page: 1781 year: 2012 end-page: 1790 ident: bib0047 article-title: The low velocity impact response of foam-based sandwich panels publication-title: Composites Science and Technology – volume: 543 start-page: 533 year: 2017 ident: bib0035 article-title: Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness publication-title: Nature – volume: 155 start-page: 86 year: 2018 end-page: 98 ident: bib0005 article-title: Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology publication-title: Materials & Design – volume: 117 start-page: 396 year: 2017 end-page: 408 ident: bib0052 article-title: Static and dynamic crushing responses of CFRP sandwich panels filled with different reinforced materials publication-title: Materials & Design – volume: 135 start-page: 232 year: 2018 end-page: 241 ident: bib0002 article-title: Mechanical performance of honeycomb filled with circular CFRP tubes publication-title: Composites Part B: Engineering – volume: 134 year: 2019 ident: bib0004 article-title: Impact performance enhancement of honeycombs through additive manufacturing-enabled geometrical tailoring publication-title: International Journal of Impact Engineering – volume: 24 start-page: 4905 year: 2014 end-page: 4913 ident: bib0009 article-title: Three‐dimensional printing of elastomeric, cellular architectures with negative stiffness publication-title: Advanced Functional Materials – volume: 36 start-page: 230 year: 2015 end-page: 235 ident: bib0015 article-title: Design Strategies for the Process of Additive Manufacturing publication-title: Procedia CIRP – volume: 104 start-page: 177 year: 2017 end-page: 191 ident: bib0027 article-title: Impact response of additively manufactured metallic hybrid lattice materials publication-title: International Journal of Impact Engineering – volume: 586 start-page: 392 year: 2013 end-page: 406 ident: bib0026 article-title: Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions publication-title: Materials Science and Engineering: A – reference: Dharmasena, K., et al., Mechanical Response of Metallic Honeycomb Sandwich Panel Structures to High-Intensity Dynamic Loading. Vol. 35. 2008. 1063-1074. – volume: 11 start-page: 42549 year: 2019 end-page: 42560 ident: bib0017 article-title: Tunable Energy Absorption Characteristics of Architected Honeycombs Enabled via Additive Manufacturing publication-title: ACS Applied Materials & Interfaces – volume: 46 start-page: 3988 year: 2009 end-page: 3998 ident: bib0039 article-title: A numerical study on the rate sensitivity of cellular metals publication-title: International Journal of Solids and Structures – volume: 11 start-page: 127 year: 1963 end-page: 140 ident: bib0034 article-title: A variational approach to the theory of the elastic behaviour of multiphase materials publication-title: Journal of the Mechanics and Physics of Solids – volume: 111 start-page: 255 year: 2018 end-page: 272 ident: bib0007 article-title: Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: Experiments publication-title: International Journal of Impact Engineering – volume: 23 start-page: 457 year: 2011 end-page: 463 ident: bib0053 article-title: Mechanical Response of Square Honeycomb Sandwich Plate with Asymmetric Face Sheet Subjected to Blast Loading publication-title: Procedia Engineering – volume: 160 start-page: 1305 year: 2018 end-page: 1321 ident: bib0041 article-title: Mechanical properties of sandwich composites with 3d-printed auxetic and non-auxetic lattice cores under low velocity impact publication-title: Materials & Design – volume: 14 start-page: 23 year: 2015 ident: bib0046 article-title: Bioinspired structural materials publication-title: Nature materials – volume: 42 start-page: 3235 issue: 11 year: 2005 ident: 10.1016/j.ijimpeng.2020.103768_bib0024 article-title: Mechanism-based multi-surface plasticity model for ideal truss lattice materials publication-title: International Journal of Solids and Structures doi: 10.1016/j.ijsolstr.2004.10.032 – volume: 116 start-page: 14 year: 2016 ident: 10.1016/j.ijimpeng.2020.103768_bib0023 article-title: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading publication-title: Acta Materialia doi: 10.1016/j.actamat.2016.05.054 – volume: 102 start-page: 1 year: 2017 ident: 10.1016/j.ijimpeng.2020.103768_bib0037 article-title: Energy absorption in lattice structures in dynamics: Nonlinear FE simulations publication-title: International Journal of Impact Engineering doi: 10.1016/j.ijimpeng.2016.11.016 – volume: 344 start-page: 1373 issue: 6190 year: 2014 ident: 10.1016/j.ijimpeng.2020.103768_bib0019 article-title: Ultralight, ultrastiff mechanical metamaterials publication-title: Science doi: 10.1126/science.1252291 – volume: 144 start-page: 32 year: 2018 ident: 10.1016/j.ijimpeng.2020.103768_bib0001 article-title: Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM publication-title: Materials & Design doi: 10.1016/j.matdes.2018.01.059 – volume: 24 start-page: 4905 issue: 31 year: 2014 ident: 10.1016/j.ijimpeng.2020.103768_bib0020 article-title: Three-Dimensional Printing of Elastomeric, Cellular Architectures with Negative Stiffness publication-title: Advanced Functional Materials doi: 10.1002/adfm.201400451 – volume: 68 start-page: 125 year: 2013 ident: 10.1016/j.ijimpeng.2020.103768_bib0025 article-title: Compressive behaviour of stainless steel micro-lattice structures publication-title: International Journal of Mechanical Sciences doi: 10.1016/j.ijmecsci.2013.01.006 – volume: 133 start-page: 1127 year: 2015 ident: 10.1016/j.ijimpeng.2020.103768_bib0042 article-title: The oblique impact response of composite sandwich plates publication-title: Composite Structures doi: 10.1016/j.compstruct.2015.08.035 – volume: 59 start-page: 204 year: 2014 ident: 10.1016/j.ijimpeng.2020.103768_bib0048 article-title: Drop-weight impact behaviour of woven hybrid basalt–carbon/epoxy composites publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2013.12.006 – volume: 184 start-page: 848 year: 2018 ident: 10.1016/j.ijimpeng.2020.103768_bib0049 article-title: The role of adhesively bonded super hybrid external patches on the impact and post-impact response of repaired glass/epoxy composite laminates publication-title: Composite Structures doi: 10.1016/j.compstruct.2017.10.070 – volume: 155 start-page: 86 year: 2018 ident: 10.1016/j.ijimpeng.2020.103768_bib0005 article-title: Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology publication-title: Materials & Design doi: 10.1016/j.matdes.2018.05.059 – volume: 11 start-page: 42549 issue: 45 year: 2019 ident: 10.1016/j.ijimpeng.2020.103768_bib0017 article-title: Tunable Energy Absorption Characteristics of Architected Honeycombs Enabled via Additive Manufacturing publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b12880 – volume: 23 start-page: 457 year: 2011 ident: 10.1016/j.ijimpeng.2020.103768_bib0053 article-title: Mechanical Response of Square Honeycomb Sandwich Plate with Asymmetric Face Sheet Subjected to Blast Loading publication-title: Procedia Engineering doi: 10.1016/j.proeng.2011.11.2530 – volume: 345 start-page: 1322 issue: 6202 year: 2014 ident: 10.1016/j.ijimpeng.2020.103768_bib0029 article-title: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices publication-title: Science doi: 10.1126/science.1255908 – volume: 224 year: 2019 ident: 10.1016/j.ijimpeng.2020.103768_bib0050 article-title: Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review publication-title: Composite Structures doi: 10.1016/j.compstruct.2019.111007 – volume: 49 start-page: 1035 issue: 6 year: 2001 ident: 10.1016/j.ijimpeng.2020.103768_bib0044 article-title: Foam topology: bending versus stretching dominated architectures publication-title: Acta materialia doi: 10.1016/S1359-6454(00)00379-7 – volume: 49 start-page: 2681 issue: 7 year: 2014 ident: 10.1016/j.ijimpeng.2020.103768_bib0010 article-title: On the polymeric foams: modeling and properties publication-title: Journal of materials science doi: 10.1007/s10853-013-7974-5 – volume: 94 start-page: 1967 issue: 6 year: 2012 ident: 10.1016/j.ijimpeng.2020.103768_bib0043 article-title: Experimental and numerical study of oblique impact on woven composite sandwich structure: Influence of the firing axis orientation publication-title: Composite Structures doi: 10.1016/j.compstruct.2012.02.001 – volume: 162 start-page: 106 year: 2019 ident: 10.1016/j.ijimpeng.2020.103768_bib0022 article-title: Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading publication-title: Materials & Design doi: 10.1016/j.matdes.2018.11.035 – volume: 11 start-page: 127 issue: 2 year: 1963 ident: 10.1016/j.ijimpeng.2020.103768_bib0034 article-title: A variational approach to the theory of the elastic behaviour of multiphase materials publication-title: Journal of the Mechanics and Physics of Solids doi: 10.1016/0022-5096(63)90060-7 – volume: 53 start-page: 3 issue: 1 year: 2019 ident: 10.1016/j.ijimpeng.2020.103768_bib0051 article-title: Influence of patch lay-up configuration and hybridization on low velocity impact and post-impact tensile response of repaired glass fiber reinforced plastic composites publication-title: Journal of Composite Materials doi: 10.1177/0021998318779430 – volume: 27 start-page: 5506 issue: 37 year: 2015 ident: 10.1016/j.ijimpeng.2020.103768_bib0036 article-title: A new type of low density material: Shellular publication-title: Advanced Materials doi: 10.1002/adma.201501546 – volume: 470 year: 2014 ident: 10.1016/j.ijimpeng.2020.103768_bib0033 article-title: Stiffest elastic networks – volume: 24 start-page: 4905 issue: 31 year: 2014 ident: 10.1016/j.ijimpeng.2020.103768_bib0009 article-title: Three‐dimensional printing of elastomeric, cellular architectures with negative stiffness publication-title: Advanced Functional Materials doi: 10.1002/adfm.201400451 – ident: 10.1016/j.ijimpeng.2020.103768_bib0054 – volume: 24 start-page: 351 issue: 2 year: 2018 ident: 10.1016/j.ijimpeng.2020.103768_bib0014 article-title: Geometric modeling of lattice structures for additive manufacturing publication-title: Rapid Prototyping Journal doi: 10.1108/RPJ-07-2016-0122 – ident: 10.1016/j.ijimpeng.2020.103768_bib0058 – volume: 32 start-page: 14 issue: 2 year: 2016 ident: 10.1016/j.ijimpeng.2020.103768_bib0032 article-title: Thriving in a downturn: aligning corporate strategy and the economic context to ensure stable growth publication-title: Strategic Direction doi: 10.1108/SD-10-2015-0162 – volume: 586 start-page: 392 year: 2013 ident: 10.1016/j.ijimpeng.2020.103768_bib0026 article-title: Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions publication-title: Materials Science and Engineering: A doi: 10.1016/j.msea.2013.07.070 – volume: 117 start-page: 396 year: 2017 ident: 10.1016/j.ijimpeng.2020.103768_bib0052 article-title: Static and dynamic crushing responses of CFRP sandwich panels filled with different reinforced materials publication-title: Materials & Design doi: 10.1016/j.matdes.2017.01.010 – volume: 169 year: 2019 ident: 10.1016/j.ijimpeng.2020.103768_bib0031 article-title: Failure and energy absorption characteristics of four lattice structures under dynamic loading publication-title: Materials & Design doi: 10.1016/j.matdes.2019.107655 – volume: 104 start-page: 177 year: 2017 ident: 10.1016/j.ijimpeng.2020.103768_bib0027 article-title: Impact response of additively manufactured metallic hybrid lattice materials publication-title: International Journal of Impact Engineering doi: 10.1016/j.ijimpeng.2017.02.007 – volume: 22 start-page: 2118 issue: 11 year: 2006 ident: 10.1016/j.ijimpeng.2020.103768_bib0038 article-title: Dynamic failure of metallic pyramidal truss core materials – Experiments and modeling publication-title: International Journal of Plasticity doi: 10.1016/j.ijplas.2006.02.006 – ident: 10.1016/j.ijimpeng.2020.103768_bib0008 doi: 10.1017/CBO9781139878326 – volume: 134 year: 2019 ident: 10.1016/j.ijimpeng.2020.103768_bib0004 article-title: Impact performance enhancement of honeycombs through additive manufacturing-enabled geometrical tailoring publication-title: International Journal of Impact Engineering doi: 10.1016/j.ijimpeng.2019.103360 – volume: 30 issue: 45 year: 2018 ident: 10.1016/j.ijimpeng.2020.103768_bib0012 article-title: 3D Plate‐Lattices: An Emerging Class of Low‐Density Metamaterial Exhibiting Optimal Isotropic Stiffness publication-title: Advanced Materials – volume: 160 start-page: 1305 year: 2018 ident: 10.1016/j.ijimpeng.2020.103768_bib0041 article-title: Mechanical properties of sandwich composites with 3d-printed auxetic and non-auxetic lattice cores under low velocity impact publication-title: Materials & Design doi: 10.1016/j.matdes.2018.11.002 – volume: 60 start-page: 120 year: 2013 ident: 10.1016/j.ijimpeng.2020.103768_bib0028 article-title: Drop weight impact behaviour of sandwich panels with metallic micro lattice cores publication-title: International Journal of Impact Engineering doi: 10.1016/j.ijimpeng.2013.04.007 – volume: 133 start-page: 911 year: 2015 ident: 10.1016/j.ijimpeng.2020.103768_bib0057 article-title: Compression after impact strength of repaired GFRP composite laminates under repeated impact loading publication-title: Composite Structures doi: 10.1016/j.compstruct.2015.08.022 – volume: 111 start-page: 255 year: 2018 ident: 10.1016/j.ijimpeng.2020.103768_bib0007 article-title: Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: Experiments publication-title: International Journal of Impact Engineering doi: 10.1016/j.ijimpeng.2017.09.018 – volume: 36 start-page: 230 year: 2015 ident: 10.1016/j.ijimpeng.2020.103768_bib0015 article-title: Design Strategies for the Process of Additive Manufacturing publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.01.082 – volume: 31 start-page: 243 issue: 3 year: 2018 ident: 10.1016/j.ijimpeng.2020.103768_bib0013 article-title: Design, analysis and manufacturing of lattice structures: an overview publication-title: International Journal of Computer Integrated Manufacturing doi: 10.1080/0951192X.2017.1407456 – volume: 40 start-page: 5853 issue: 22 year: 2005 ident: 10.1016/j.ijimpeng.2020.103768_bib0011 article-title: On interactions between imperfections in cellular solids publication-title: Journal of materials science doi: 10.1007/s10853-005-5019-4 – volume: 72 start-page: 1781 issue: 14 year: 2012 ident: 10.1016/j.ijimpeng.2020.103768_bib0047 article-title: The low velocity impact response of foam-based sandwich panels publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2012.07.006 – volume: 13 start-page: 508 issue: 5 year: 2014 ident: 10.1016/j.ijimpeng.2020.103768_bib0045 article-title: Strong, tough and stiff bioinspired ceramics from brittle constituents publication-title: Nature materials doi: 10.1038/nmat3915 – volume: 344 start-page: 1373 issue: 6190 year: 2014 ident: 10.1016/j.ijimpeng.2020.103768_bib0006 article-title: Ultralight, ultrastiff mechanical metamaterials publication-title: Science doi: 10.1126/science.1252291 – volume: 135 start-page: 232 year: 2018 ident: 10.1016/j.ijimpeng.2020.103768_bib0002 article-title: Mechanical performance of honeycomb filled with circular CFRP tubes publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2017.09.048 – volume: 24-25 start-page: 413 year: 2010 ident: 10.1016/j.ijimpeng.2020.103768_bib0056 article-title: Comparison of the Drop Weight Impact Performance of Sandwich Panels with Aluminium Honeycomb and Titanium Alloy Micro Lattice Cores publication-title: Applied Mechanics and Materials doi: 10.4028/www.scientific.net/AMM.24-25.413 – year: 2017 ident: 10.1016/j.ijimpeng.2020.103768_bib0062 – volume: 364 start-page: 15 issue: 1838 year: 2005 ident: 10.1016/j.ijimpeng.2020.103768_bib0003 article-title: The properties of foams and lattices publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rsta.2005.1678 – volume: 46 start-page: 3988 issue: 22 year: 2009 ident: 10.1016/j.ijimpeng.2020.103768_bib0039 article-title: A numerical study on the rate sensitivity of cellular metals publication-title: International Journal of Solids and Structures doi: 10.1016/j.ijsolstr.2009.07.024 – volume: 46 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.ijimpeng.2020.103768_bib0016 article-title: Perspectives on Additive Manufacturing publication-title: Annual Review of Materials Research doi: 10.1146/annurev-matsci-070115-031606 – volume: 82 issue: 5 year: 2015 ident: 10.1016/j.ijimpeng.2020.103768_bib0040 article-title: Analyses on the In-Plane Impact Resistance of Auxetic Double Arrowhead Honeycombs publication-title: Journal of Applied Mechanics doi: 10.1115/1.4030007 – ident: 10.1016/j.ijimpeng.2020.103768_bib0055 doi: 10.1016/j.ijimpeng.2007.06.008 – volume: 8 start-page: 1871 issue: 4 year: 2015 ident: 10.1016/j.ijimpeng.2020.103768_bib0030 article-title: Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: The mechanical and morphological properties publication-title: Materials doi: 10.3390/ma8041871 – volume: 21 start-page: S15 issue: S1 year: 2017 ident: 10.1016/j.ijimpeng.2020.103768_bib0018 article-title: Industrial and Consumer Uses of Additive Manufacturing: A Discussion of Capabilities, Trajectories, and Challenges publication-title: Journal of Industrial Ecology doi: 10.1111/jiec.12609 – volume: 14 start-page: 23 issue: 1 year: 2015 ident: 10.1016/j.ijimpeng.2020.103768_bib0046 article-title: Bioinspired structural materials publication-title: Nature materials doi: 10.1038/nmat4089 – volume: 138 start-page: 24 year: 2018 ident: 10.1016/j.ijimpeng.2020.103768_bib0021 article-title: Elastically-isotropic truss lattice materials of reduced plastic anisotropy publication-title: International Journal of Solids and Structures doi: 10.1016/j.ijsolstr.2017.12.025 – volume: 20 start-page: 1700883 issue: 1 year: 2018 ident: 10.1016/j.ijimpeng.2020.103768_bib0065 article-title: Stress reduction of 3D printed compliance‐tailored multilayers. publication-title: Advanced Engineering Materials doi: 10.1002/adem.201700883 – volume: 543 start-page: 533 issue: 7646 year: 2017 ident: 10.1016/j.ijimpeng.2020.103768_bib0035 article-title: Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness publication-title: Nature doi: 10.1038/nature21075 |
SSID | ssj0017050 |
Score | 2.6085901 |
Snippet | •Hybrid plate-lattices exhibit higher energy absorption capacity and progressive failure compared to elementary ones.•The effectiveness of hybrid... This study is focused on the low-velocity impact response of 3D plate-lattices fabricated via stereolithography additive manufacturing (AM). Elementary (SC,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103768 |
SubjectTerms | Additive manufacturing Aluminum Body centered cubic lattice Cellular structures Configurations Contact force Density Energy Energy absorption Face centered cubic lattice Failure modes Hybrid structures Impact loads Impact resistance Impact response Lithography Low-velocity impact Metamaterials Oblique impact plate-lattice structures Thickness |
Title | Energy absorption characteristics of additively manufactured plate-lattices under low- velocity impact loading |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2020.103768 https://www.proquest.com/docview/2489025666 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUqWGBAfIqPgjywuvly4mSsEKiA6EKRullOfEGpSlqlrRALv52zk1QFITGwZLBiKzo7d8_Je8-EXAsf0iTnHksh0YxD5rM00cAy7sW5AiVcy3Z_GkaDF_4wDscdctNqYQytssn9dU632bppcZpoOvOicJ5xcXKsf2PfWK4EVn7NuTCrvPe5pnkYtxj7nQVvZubuDZXwpFdMCgSn5SvuE_1af24sV38vUD9Sta0_d_tkrwGOtF8_2wHpQHlIdjfsBI9IeWuFfFSli1llUwHNvvsx01lODYPI5LjpB31T5cooG1YVaDqfIuxkeDF0uAU14rKKTmfvjBpaUYZondaSSmy0xPtjMrq7Hd0MWHOeAssC7i6Z8JV2dRy6GkJXeYHSMeKvOAJjRhhpV0VJmkeeDgREiGqCBGt5rFwvBkhE6AUnZKuclXBKqM9zyINU4TCI-OIMUSLPPBEBF0LEIM5I2MZQZo3XuDnyYipbUtlEtrGXJvayjv0Zcdb95rXbxp89knaK5Ld1I7Ek_Nm3286pbN7chfS5_fOKu7rzfwx9QXZ8Q36xZLUu2VpWK7hE9LJMr-zyvCLb_fvHwfAL8fDxeg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQOQAHxCrK6gNX0yxOnBwRApWtF4rUm-XEE9SqpFUXIf6eGSdBgJA4cMnBiq1o7Mw8y-89M3auAsjSQvoig9QKCXkgstSCyKWfFAaM8hzb_bEXd5_l3SAarLCrRgtDtMo691c53WXruqVTR7MzHQ47T7g4Jda_QUCWKyHJr1fJnSpqsdXL2_tu7_MwQXnuolZ6X1CHL0Lh0cVwNER8Wr7gVjGoJOjkuvp7jfqRrV0JutlimzV25JfV522zFSh32MYXR8FdVl47LR832Xwyc9mA598tmfmk4EQiojQ3fuevplySuGE5A8unY0SeAh_EiJtz0pfN-HjyJjgxi3IE7LxSVWKj497vsf7Ndf-qK-orFUQeSm8hVGCsZ5PIsxB5xg-NTRCCJTGQH2FsPROnWRH7NlQQI7AJUyznifH8BCBVkR_us1Y5KeGA8UAWUISZwWEQ9CU5AkWZ-yoGqZRKQLVZ1MRQ57XdON16MdYNr2ykm9hrir2uYt9mnc9-08pw488eaTNF-tvS0VgV_ux73Myprn_euQ6kO3zFjd3hP4Y-Y2vd_uODfrjt3R-x9YC4MI67dsxai9kSThDMLLLTerF-ADbN9Cs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+absorption+characteristics+of+additively+manufactured+plate-lattices+under+low-+velocity+impact+loading&rft.jtitle=International+journal+of+impact+engineering&rft.au=Andrew%2C+J+Jefferson&rft.au=Schneider%2C+Johannes&rft.au=Ubaid%2C+Jabir&rft.au=Velmurugan%2C+R&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=149&rft_id=info:doi/10.1016%2Fj.ijimpeng.2020.103768&rft.externalDocID=S0734743X20308381 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |