Passive fluid-induced vibration control of viscoelastic cylinder using nonlinear energy sink

This study focuses on the performance of the nonlinear energy sink (NES) in passive controlling the cantilever cylinder vibrations subjected to the external fluid flow. The nonlinear differential equations of motion are obtained by considering the large strain-displacement relation and viscoelastic...

Full description

Saved in:
Bibliographic Details
Published inMarine structures Vol. 81; p. 103116
Main Authors Nasrabadi, Mohammadali, Sevbitov, Andrei Vladimirovich, Maleki, Vahid Arab, Akbar, Narges, Javanshir, Ilghar
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study focuses on the performance of the nonlinear energy sink (NES) in passive controlling the cantilever cylinder vibrations subjected to the external fluid flow. The nonlinear differential equations of motion are obtained by considering the large strain-displacement relation and viscoelastic behavior. Wake oscillation in fluid-structure interaction is modeled based on the Van der Pol wake oscillator model with is the classic acceleration coupling between the cross-flow motion and wake. Based on the Von Karman strain-displacement relation, and Euler-Bernoulli beam theory, the nonlinear vibration equations which are coupled with attached NES motion are obtained using Newton's second law, and discretized by applying the Galerkin method. The fluid flow velocity and nonlinear stiffness, damping, and mass of the NES are studied to determine their effects on the vibration response of the system. The present study comprehensively evaluates the effects of adding a NES on the lock-in phenomenon and maximum oscillating amplitudes of a cantilever cylinder, and guides to determine the best design of NES for significant fluid-induced vibration mitigation. •NES is proposed for passive control of fluid-induced vibrations of viscoelastic beam.•Fluctuating nature of the vortex street is simulated by a nonlinear van der Pol oscillator.•Parametric study of the coupled nonlinear differential equations performed using Galerkin approach.•Results show the proper ability of using passive NES to control fluid-induced vibrations in structures.
AbstractList This study focuses on the performance of the nonlinear energy sink (NES) in passive controlling the cantilever cylinder vibrations subjected to the external fluid flow. The nonlinear differential equations of motion are obtained by considering the large strain-displacement relation and viscoelastic behavior. Wake oscillation in fluid-structure interaction is modeled based on the Van der Pol wake oscillator model with is the classic acceleration coupling between the cross-flow motion and wake. Based on the Von Karman strain-displacement relation, and Euler-Bernoulli beam theory, the nonlinear vibration equations which are coupled with attached NES motion are obtained using Newton's second law, and discretized by applying the Galerkin method. The fluid flow velocity and nonlinear stiffness, damping, and mass of the NES are studied to determine their effects on the vibration response of the system. The present study comprehensively evaluates the effects of adding a NES on the lock-in phenomenon and maximum oscillating amplitudes of a cantilever cylinder, and guides to determine the best design of NES for significant fluid-induced vibration mitigation.
This study focuses on the performance of the nonlinear energy sink (NES) in passive controlling the cantilever cylinder vibrations subjected to the external fluid flow. The nonlinear differential equations of motion are obtained by considering the large strain-displacement relation and viscoelastic behavior. Wake oscillation in fluid-structure interaction is modeled based on the Van der Pol wake oscillator model with is the classic acceleration coupling between the cross-flow motion and wake. Based on the Von Karman strain-displacement relation, and Euler-Bernoulli beam theory, the nonlinear vibration equations which are coupled with attached NES motion are obtained using Newton's second law, and discretized by applying the Galerkin method. The fluid flow velocity and nonlinear stiffness, damping, and mass of the NES are studied to determine their effects on the vibration response of the system. The present study comprehensively evaluates the effects of adding a NES on the lock-in phenomenon and maximum oscillating amplitudes of a cantilever cylinder, and guides to determine the best design of NES for significant fluid-induced vibration mitigation. •NES is proposed for passive control of fluid-induced vibrations of viscoelastic beam.•Fluctuating nature of the vortex street is simulated by a nonlinear van der Pol oscillator.•Parametric study of the coupled nonlinear differential equations performed using Galerkin approach.•Results show the proper ability of using passive NES to control fluid-induced vibrations in structures.
ArticleNumber 103116
Author Maleki, Vahid Arab
Akbar, Narges
Javanshir, Ilghar
Sevbitov, Andrei Vladimirovich
Nasrabadi, Mohammadali
Author_xml – sequence: 1
  givenname: Mohammadali
  surname: Nasrabadi
  fullname: Nasrabadi, Mohammadali
  organization: Department of Mechanical Engineering, Islamic Azad University, Karaj Branch, Karaj, Iran
– sequence: 2
  givenname: Andrei Vladimirovich
  surname: Sevbitov
  fullname: Sevbitov, Andrei Vladimirovich
  organization: Department of Propaedeutics of Dental Diseases, Sechenov First Moscow State Medical University, Moscow, Russia
– sequence: 3
  givenname: Vahid Arab
  orcidid: 0000-0001-8989-970X
  surname: Maleki
  fullname: Maleki, Vahid Arab
  organization: Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
– sequence: 4
  givenname: Narges
  surname: Akbar
  fullname: Akbar, Narges
  organization: Department of Mechanical Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran
– sequence: 5
  givenname: Ilghar
  surname: Javanshir
  fullname: Javanshir, Ilghar
  email: il.javanshir@gmail.com
  organization: Department of Mechanical Engineering, Guilan University, Rasht, Iran
BookMark eNqFkEtLAzEUhYMo2Kp_QQKup-Y2mRe4UIovKOhCd0KYSW4kdUxqkin03xutbty4utzDOffxTcm-8w4JOQU2AwbV-Wr23oWYwqhmczaHLHKAao9MoKl5IaBm-2TC2hKKhvP2kExjXDEGNQBMyMtjF6PdIDXDaHVhnR4VarqxfeiS9Y4q71LwA_Umi1F5HLqYrKJqO2QzBjpG615pvin32AWKDsPrlmb17ZgcmG6IePJTj8jzzfXT4q5YPtzeL66WheKCpaIGRKz7XgFXmjVNlY9TSvelbstWl0aUjRGMocBW9CU3uhWGodEdVkLwmvMjcrabuw7-Y8SY5MqPweWVcl7NoWzLilfZdbFzqeBjDGiksun7yRQ6O0hg8ounXMlfnvKLp9zxzPHqT3wdbHZu_w9e7oKYEWwsBhmVRZcx24AqSe3tfyM-AVPhmG8
CitedBy_id crossref_primary_10_1007_s40430_024_04690_8
crossref_primary_10_1016_j_ymssp_2022_109180
crossref_primary_10_1007_s11071_024_10557_3
crossref_primary_10_1016_j_marstruc_2024_103629
crossref_primary_10_1615_ComputThermalScien_2023047572
crossref_primary_10_1007_s41939_023_00227_z
crossref_primary_10_1007_s43538_025_00392_4
crossref_primary_10_1016_j_apor_2024_104404
crossref_primary_10_1016_j_oceaneng_2024_119352
crossref_primary_10_1007_s00707_023_03818_6
crossref_primary_10_1007_s41939_024_00660_8
crossref_primary_10_1177_10775463221135679
crossref_primary_10_1007_s13296_024_00923_7
crossref_primary_10_1016_j_istruc_2024_107892
crossref_primary_10_1186_s44147_024_00420_y
crossref_primary_10_1007_s11071_022_08094_y
crossref_primary_10_1007_s42417_023_00913_9
crossref_primary_10_1016_j_ymssp_2024_111159
crossref_primary_10_32604_fdmp_2022_019534
crossref_primary_10_1007_s00419_024_02710_6
crossref_primary_10_1016_j_ymssp_2024_112123
crossref_primary_10_1007_s43538_023_00177_7
crossref_primary_10_1080_15502287_2023_2265377
crossref_primary_10_1016_j_ymssp_2022_109172
crossref_primary_10_1186_s44147_024_00564_x
crossref_primary_10_1186_s44147_024_00565_w
crossref_primary_10_1016_j_apor_2024_104113
crossref_primary_10_1016_j_ast_2024_109409
crossref_primary_10_1016_j_soildyn_2024_108536
crossref_primary_10_1155_2023_4060591
crossref_primary_10_1063_5_0121829
crossref_primary_10_1007_s10483_023_2984_9
crossref_primary_10_1140_epjp_s13360_022_02670_2
crossref_primary_10_1007_s11071_022_08145_4
crossref_primary_10_1007_s41939_023_00197_2
crossref_primary_10_1615_ComputThermalScien_2022044534
crossref_primary_10_1007_s41939_023_00232_2
crossref_primary_10_1007_s12008_024_02184_4
crossref_primary_10_1080_15397734_2023_2277725
crossref_primary_10_1007_s43538_023_00217_2
crossref_primary_10_1063_5_0258061
crossref_primary_10_1016_j_ijnonlinmec_2023_104623
crossref_primary_10_1007_s41939_024_00535_y
crossref_primary_10_1016_j_oceaneng_2023_115506
crossref_primary_10_1088_2631_8695_ac8914
Cites_doi 10.1016/j.marstruc.2019.102637
10.1016/j.oceaneng.2019.106704
10.1007/s11071-017-3917-z
10.1016/j.marstruc.2021.102961
10.1016/j.marstruc.2020.102872
10.1016/j.marstruc.2021.102938
10.1016/j.cnsns.2021.105725
10.1007/s11071-018-4402-z
10.1016/j.marstruc.2009.06.004
10.3390/app7100987
10.1016/j.apm.2014.05.007
10.1016/j.oceaneng.2017.06.046
10.1016/j.jfluidstructs.2003.12.004
10.1016/j.marstruc.2020.102778
10.1007/s11071-019-04775-3
10.1016/j.oceaneng.2018.01.086
10.1016/j.engstruct.2018.06.099
10.1016/j.marstruc.2010.10.002
10.1007/s40435-019-00594-x
10.1016/j.ijmecsci.2006.10.005
10.1016/j.ijnonlinmec.2017.05.014
10.1016/j.ijnaoe.2021.02.002
10.1016/j.jsv.2019.115161
10.1007/s42241-020-0032-2
10.1016/j.cnsns.2016.05.014
10.1016/j.cnsns.2005.07.003
10.1016/j.engstruct.2015.11.018
10.1016/j.jweia.2020.104119
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2022
DBID AAYXX
CITATION
7ST
7TB
7TN
8FD
C1K
F1W
FR3
KR7
SOI
DOI 10.1016/j.marstruc.2021.103116
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
EISSN 1873-4170
ExternalDocumentID 10_1016_j_marstruc_2021_103116
S0951833921001684
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TB
7TN
8FD
C1K
EFKBS
F1W
FR3
KR7
SOI
ID FETCH-LOGICAL-c340t-71eee7bbc13cd0886017ccdb5d959d5f458f400e4e94b53fd94f0efdae6443733
IEDL.DBID .~1
ISSN 0951-8339
IngestDate Wed Aug 13 04:22:33 EDT 2025
Tue Jul 01 02:36:55 EDT 2025
Thu Apr 24 23:09:46 EDT 2025
Sat Feb 01 16:08:07 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear energy sink
Fluid-induced vibrations
Viscoelastic
Semi-analytical method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-71eee7bbc13cd0886017ccdb5d959d5f458f400e4e94b53fd94f0efdae6443733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8989-970X
PQID 2621595636
PQPubID 2045436
ParticipantIDs proquest_journals_2621595636
crossref_citationtrail_10_1016_j_marstruc_2021_103116
crossref_primary_10_1016_j_marstruc_2021_103116
elsevier_sciencedirect_doi_10_1016_j_marstruc_2021_103116
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Marine structures
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Nikoo, Bi, Hao (bib11) 2020; 95
Blanchard, Bergman, Vakakis (bib22) 2020; 99
Lin, Pan, O'Shea, Mechefske (bib1) 2009; 22
Wang, Fan, Lin (bib13) 2020; 32
Wang, Dalton, Hua, Wang, Chen, Song (bib23) 2017; 7
Liu, Li, Qiu, Leng, Li, Li (bib7) 2020; 195
Dai, Abdelkefi, Wang (bib17) 2017; 42
Fallah, Maleki (bib9) 2021; 53
Wang, Wang, Hua, Song, Chen (bib19) 2018; 173
Ma, Zhang, Zhao (bib15) 2010; 23
Stappenbelt, Lalji, Tan (bib35) 2007
Lin, Lu, Lei, Liu, Ko, Ju (bib2) 2021; 77
Wang, Wang, Liu, Li, Zhang, Wang (bib8) 2021; 13
Chen (bib32) 1985
Pais, Boote (bib18) 2017; 141
Wang, Lin, Liu (bib28) 2015; 39
Georgiades, Vakakis (bib34) 2007; 12
Facchinetti, De Langre, Biolley (bib30) 2004; 19
Chen, He, Zhang, Yao, Liu, Sun (bib20) 2018; 91
Mahmoodi, Khadem, Kokabi (bib27) 2007; 49
Song, Zhang, Li, Singla, Patil, Li, Mo (bib24) 2016; 142
Hong, Shah (bib12) 2018; 152
Xu, Han, Chu (bib33) 2017; 95
Verma, Jiang, Gao, Vedvik (bib3) 2020; 72
Blevins (bib31) 1977
Chen, Chen, Xu, Huang, Gao, Li (bib10) 2020; 199
Qu, Metrikine (bib29) 2020; 469
Sarmeili, Rezaei Ashtiani, Rabiee (bib26) 2021; 97
Janocha, Ong (bib5) 2021; 75
Chen, Huang, Huang, Liu, Ouyang (bib21) 2021; 77
Ramadasan, Tao, Dev (bib4) 2019; 67
Mondal, Chatterjee (bib14) 2020; 8
Dongyang, Abbas, Guoping, Xiaoting, Marzocca (bib16) 2018; 94
Bi, Hao (bib25) 2016; 109
Magnitskii, Sidorov (bib36) 2006; vol. 58
Mendes, Correia, Mourão, Pereira, Fantuzzi, De Jesus, Calçada (bib6) 2021; 26
Lin (10.1016/j.marstruc.2021.103116_bib2) 2021; 77
Song (10.1016/j.marstruc.2021.103116_bib24) 2016; 142
Facchinetti (10.1016/j.marstruc.2021.103116_bib30) 2004; 19
Magnitskii (10.1016/j.marstruc.2021.103116_bib36) 2006; vol. 58
Lin (10.1016/j.marstruc.2021.103116_bib1) 2009; 22
Dai (10.1016/j.marstruc.2021.103116_bib17) 2017; 42
Xu (10.1016/j.marstruc.2021.103116_bib33) 2017; 95
Mendes (10.1016/j.marstruc.2021.103116_bib6) 2021; 26
Chen (10.1016/j.marstruc.2021.103116_bib32) 1985
Mahmoodi (10.1016/j.marstruc.2021.103116_bib27) 2007; 49
Pais (10.1016/j.marstruc.2021.103116_bib18) 2017; 141
Nikoo (10.1016/j.marstruc.2021.103116_bib11) 2020; 95
Mondal (10.1016/j.marstruc.2021.103116_bib14) 2020; 8
Wang (10.1016/j.marstruc.2021.103116_bib8) 2021; 13
Janocha (10.1016/j.marstruc.2021.103116_bib5) 2021; 75
Wang (10.1016/j.marstruc.2021.103116_bib28) 2015; 39
Dongyang (10.1016/j.marstruc.2021.103116_bib16) 2018; 94
Blanchard (10.1016/j.marstruc.2021.103116_bib22) 2020; 99
Chen (10.1016/j.marstruc.2021.103116_bib20) 2018; 91
Sarmeili (10.1016/j.marstruc.2021.103116_bib26) 2021; 97
Hong (10.1016/j.marstruc.2021.103116_bib12) 2018; 152
Wang (10.1016/j.marstruc.2021.103116_bib19) 2018; 173
Ramadasan (10.1016/j.marstruc.2021.103116_bib4) 2019; 67
Fallah (10.1016/j.marstruc.2021.103116_bib9) 2021; 53
Chen (10.1016/j.marstruc.2021.103116_bib21) 2021; 77
Liu (10.1016/j.marstruc.2021.103116_bib7) 2020; 195
Stappenbelt (10.1016/j.marstruc.2021.103116_bib35) 2007
Chen (10.1016/j.marstruc.2021.103116_bib10) 2020; 199
Wang (10.1016/j.marstruc.2021.103116_bib23) 2017; 7
Bi (10.1016/j.marstruc.2021.103116_bib25) 2016; 109
Qu (10.1016/j.marstruc.2021.103116_bib29) 2020; 469
Georgiades (10.1016/j.marstruc.2021.103116_bib34) 2007; 12
Blevins (10.1016/j.marstruc.2021.103116_bib31) 1977
Verma (10.1016/j.marstruc.2021.103116_bib3) 2020; 72
Wang (10.1016/j.marstruc.2021.103116_bib13) 2020; 32
Ma (10.1016/j.marstruc.2021.103116_bib15) 2010; 23
References_xml – volume: 32
  start-page: 415
  year: 2020
  end-page: 440
  ident: bib13
  article-title: A review on flow-induced vibration of offshore circular cylinders
  publication-title: J Hydrodyn
– volume: 23
  start-page: 434
  year: 2010
  end-page: 443
  ident: bib15
  article-title: Study on the anti-vibration devices for a model jacket platform
  publication-title: Mar Struct
– volume: 95
  start-page: 59
  year: 2017
  end-page: 72
  ident: bib33
  article-title: Nonlinear vibration of a rotating cantilever beam in a surrounding magnetic field
  publication-title: Int J Non Lin Mech
– volume: 49
  start-page: 722
  year: 2007
  end-page: 732
  ident: bib27
  article-title: Non-linear free vibrations of Kelvin–Voigt visco-elastic beams
  publication-title: Int J Mech Sci
– volume: 77
  start-page: 13
  year: 2021
  end-page: 26
  ident: bib2
  article-title: Experimental study on seismic vibration control of an offshore wind turbine with TMD considering soil liquefaction effect
  publication-title: Mar Struct
– volume: 469
  start-page: 115
  year: 2020
  end-page: 129
  ident: bib29
  article-title: A wake oscillator model with nonlinear coupling for the vortex-induced vibration of a rigid cylinder constrained to vibrate in the cross-flow direction
  publication-title: J Sound Vib
– year: 1977
  ident: bib31
  article-title: Flow-induced vibration
– volume: 53
  start-page: 9
  year: 2021
  end-page: 28
  ident: bib9
  article-title: Renewable Energy Harvesting by Vortex-Induced Vibration of Bimorph Porous Beam with Piezoelectric Layer
  publication-title: Amirkabir J Mech Eng
– volume: 19
  start-page: 123
  year: 2004
  end-page: 140
  ident: bib30
  article-title: Coupling of structure and wake oscillators in vortex-induced vibrations
  publication-title: J Fluid Struct
– year: 2007
  ident: bib35
  article-title: Low mass ratio vortex-induced motion
  publication-title: 16th Australasian fluid mechanics conference
– volume: 142
  start-page: 34
  year: 2016
  end-page: 54
  ident: bib24
  article-title: Vibration control of a pipeline structure using pounding tuned mass damper
  publication-title: J Eng Mech
– volume: 67
  start-page: 45
  year: 2019
  end-page: 65
  ident: bib4
  article-title: Vortex-Induced-Vibration of jack-ups with cylindrical legs in multiple modes
  publication-title: Mar Struct
– volume: 195
  start-page: 106
  year: 2020
  end-page: 124
  ident: bib7
  article-title: A mini review of recent progress on vortex-induced vibrations of marine risers
  publication-title: Ocean Eng
– volume: 199
  start-page: 1041
  year: 2020
  end-page: 1059
  ident: bib10
  article-title: Suppression of vortex-induced vibration of a circular cylinder by a passive-jet flow control
  publication-title: J Wind Eng Ind Aerod
– year: 1985
  ident: bib32
  article-title: Flow-induced vibration of circular cylindrical structures
– volume: 97
  start-page: 121
  year: 2021
  end-page: 139
  ident: bib26
  article-title: Nonlinear energy sinks with nonlinear control strategies in fluid-structure simulations framework for passive and active FIV control of sprung cylinders
  publication-title: Commun Nonlinear Sci Numer Simulat
– volume: 75
  start-page: 102
  year: 2021
  end-page: 132
  ident: bib5
  article-title: Vortex-induced vibrations of piggyback pipelines near the horizontal plane wall in the upper transition regime
  publication-title: Mar Struct
– volume: 109
  start-page: 75
  year: 2016
  end-page: 84
  ident: bib25
  article-title: Using pipe-in-pipe systems for subsea pipeline vibration control
  publication-title: Eng Struct
– volume: 42
  start-page: 22
  year: 2017
  end-page: 36
  ident: bib17
  article-title: Vortex-induced vibrations mitigation through a nonlinear energy sink
  publication-title: Commun Nonlinear Sci Numer Simulat
– volume: 141
  start-page: 249
  year: 2017
  end-page: 264
  ident: bib18
  article-title: Developments of tuned mass damper for yacht structures
  publication-title: Ocean Eng
– volume: 39
  start-page: 117
  year: 2015
  end-page: 127
  ident: bib28
  article-title: Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory
  publication-title: Appl Math Model
– volume: 94
  start-page: 925
  year: 2018
  end-page: 957
  ident: bib16
  article-title: Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs)
  publication-title: Nonlinear Dynam
– volume: 72
  start-page: 102
  year: 2020
  end-page: 128
  ident: bib3
  article-title: Effects of a passive tuned mass damper on blade root impacts during the offshore mating process
  publication-title: Mar Struct
– volume: 8
  start-page: 570
  year: 2020
  end-page: 580
  ident: bib14
  article-title: Mitigating vortex-induced vibration by acceleration feedback control
  publication-title: Int J Dyn Control
– volume: 77
  start-page: 78
  year: 2021
  end-page: 95
  ident: bib21
  article-title: Passive control of jacket–type offshore wind turbine vibrations by single and multiple tuned mass dampers
  publication-title: Mar Struct
– volume: 152
  start-page: 300
  year: 2018
  end-page: 315
  ident: bib12
  article-title: Vortex-induced vibrations and control of marine risers: a review
  publication-title: Ocean Eng
– volume: 7
  start-page: 987
  year: 2017
  end-page: 996
  ident: bib23
  article-title: Experimental study on vibration control of a submerged pipeline model by eddy current tuned mass damper
  publication-title: Appl Sci
– volume: 12
  start-page: 643
  year: 2007
  end-page: 651
  ident: bib34
  article-title: Dynamics of a linear beam with an attached local nonlinear energy sink
  publication-title: Commun Nonlinear Sci Numer Simulat
– volume: 26
  start-page: 23
  year: 2021
  end-page: 41
  ident: bib6
  article-title: Fatigue assessments of a jacket-type offshore structure based on static and dynamic analyses
  publication-title: Pract Period Struct Des Construct
– volume: 13
  start-page: 223
  year: 2021
  end-page: 235
  ident: bib8
  article-title: Experimental and numerical simulation investigation on vortex-induced vibration test system based on bare fiber Bragg grating sensor technology for vertical riser
  publication-title: Int J Nav Archit Ocean Eng
– volume: 99
  start-page: 593
  year: 2020
  end-page: 609
  ident: bib22
  article-title: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow
  publication-title: Nonlinear Dynam
– volume: vol. 58
  year: 2006
  ident: bib36
  publication-title: New methods for chaotic dynamics
– volume: 173
  start-page: 61
  year: 2018
  end-page: 75
  ident: bib19
  article-title: Vibration control of vortex-induced vibrations of a bridge deck by a single-side pounding tuned mass damper
  publication-title: Eng Struct
– volume: 22
  start-page: 730
  year: 2009
  end-page: 743
  ident: bib1
  article-title: A study of vibration and vibration control of ship structures
  publication-title: Mar Struct
– volume: 95
  start-page: 54
  year: 2020
  end-page: 67
  ident: bib11
  article-title: Textured pipe-in-pipe system: a compound passive technique for vortex-induced vibration control
  publication-title: Appl Ocean Res
– volume: 91
  start-page: 885
  year: 2018
  end-page: 904
  ident: bib20
  article-title: Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks
  publication-title: Nonlinear Dynam
– volume: 67
  start-page: 45
  year: 2019
  ident: 10.1016/j.marstruc.2021.103116_bib4
  article-title: Vortex-Induced-Vibration of jack-ups with cylindrical legs in multiple modes
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2019.102637
– volume: 26
  start-page: 23
  issue: 1
  year: 2021
  ident: 10.1016/j.marstruc.2021.103116_bib6
  article-title: Fatigue assessments of a jacket-type offshore structure based on static and dynamic analyses
  publication-title: Pract Period Struct Des Construct
– year: 1977
  ident: 10.1016/j.marstruc.2021.103116_bib31
– volume: 195
  start-page: 106
  year: 2020
  ident: 10.1016/j.marstruc.2021.103116_bib7
  article-title: A mini review of recent progress on vortex-induced vibrations of marine risers
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2019.106704
– volume: vol. 58
  year: 2006
  ident: 10.1016/j.marstruc.2021.103116_bib36
– volume: 91
  start-page: 885
  issue: 2
  year: 2018
  ident: 10.1016/j.marstruc.2021.103116_bib20
  article-title: Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-017-3917-z
– volume: 77
  start-page: 13
  year: 2021
  ident: 10.1016/j.marstruc.2021.103116_bib2
  article-title: Experimental study on seismic vibration control of an offshore wind turbine with TMD considering soil liquefaction effect
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2021.102961
– volume: 75
  start-page: 102
  year: 2021
  ident: 10.1016/j.marstruc.2021.103116_bib5
  article-title: Vortex-induced vibrations of piggyback pipelines near the horizontal plane wall in the upper transition regime
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2020.102872
– volume: 77
  start-page: 78
  year: 2021
  ident: 10.1016/j.marstruc.2021.103116_bib21
  article-title: Passive control of jacket–type offshore wind turbine vibrations by single and multiple tuned mass dampers
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2021.102938
– volume: 97
  start-page: 121
  year: 2021
  ident: 10.1016/j.marstruc.2021.103116_bib26
  article-title: Nonlinear energy sinks with nonlinear control strategies in fluid-structure simulations framework for passive and active FIV control of sprung cylinders
  publication-title: Commun Nonlinear Sci Numer Simulat
  doi: 10.1016/j.cnsns.2021.105725
– volume: 94
  start-page: 925
  issue: 2
  year: 2018
  ident: 10.1016/j.marstruc.2021.103116_bib16
  article-title: Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs)
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-018-4402-z
– volume: 22
  start-page: 730
  issue: 4
  year: 2009
  ident: 10.1016/j.marstruc.2021.103116_bib1
  article-title: A study of vibration and vibration control of ship structures
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2009.06.004
– volume: 7
  start-page: 987
  issue: 10
  year: 2017
  ident: 10.1016/j.marstruc.2021.103116_bib23
  article-title: Experimental study on vibration control of a submerged pipeline model by eddy current tuned mass damper
  publication-title: Appl Sci
  doi: 10.3390/app7100987
– year: 2007
  ident: 10.1016/j.marstruc.2021.103116_bib35
  article-title: Low mass ratio vortex-induced motion
– volume: 39
  start-page: 117
  issue: 1
  year: 2015
  ident: 10.1016/j.marstruc.2021.103116_bib28
  article-title: Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2014.05.007
– volume: 141
  start-page: 249
  year: 2017
  ident: 10.1016/j.marstruc.2021.103116_bib18
  article-title: Developments of tuned mass damper for yacht structures
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2017.06.046
– volume: 53
  start-page: 9
  year: 2021
  ident: 10.1016/j.marstruc.2021.103116_bib9
  article-title: Renewable Energy Harvesting by Vortex-Induced Vibration of Bimorph Porous Beam with Piezoelectric Layer
  publication-title: Amirkabir J Mech Eng
– volume: 19
  start-page: 123
  issue: 2
  year: 2004
  ident: 10.1016/j.marstruc.2021.103116_bib30
  article-title: Coupling of structure and wake oscillators in vortex-induced vibrations
  publication-title: J Fluid Struct
  doi: 10.1016/j.jfluidstructs.2003.12.004
– volume: 72
  start-page: 102
  year: 2020
  ident: 10.1016/j.marstruc.2021.103116_bib3
  article-title: Effects of a passive tuned mass damper on blade root impacts during the offshore mating process
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2020.102778
– volume: 99
  start-page: 593
  issue: 1
  year: 2020
  ident: 10.1016/j.marstruc.2021.103116_bib22
  article-title: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-019-04775-3
– volume: 152
  start-page: 300
  year: 2018
  ident: 10.1016/j.marstruc.2021.103116_bib12
  article-title: Vortex-induced vibrations and control of marine risers: a review
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2018.01.086
– year: 1985
  ident: 10.1016/j.marstruc.2021.103116_bib32
– volume: 173
  start-page: 61
  year: 2018
  ident: 10.1016/j.marstruc.2021.103116_bib19
  article-title: Vibration control of vortex-induced vibrations of a bridge deck by a single-side pounding tuned mass damper
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.06.099
– volume: 23
  start-page: 434
  issue: 4
  year: 2010
  ident: 10.1016/j.marstruc.2021.103116_bib15
  article-title: Study on the anti-vibration devices for a model jacket platform
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2010.10.002
– volume: 8
  start-page: 570
  issue: 2
  year: 2020
  ident: 10.1016/j.marstruc.2021.103116_bib14
  article-title: Mitigating vortex-induced vibration by acceleration feedback control
  publication-title: Int J Dyn Control
  doi: 10.1007/s40435-019-00594-x
– volume: 49
  start-page: 722
  issue: 6
  year: 2007
  ident: 10.1016/j.marstruc.2021.103116_bib27
  article-title: Non-linear free vibrations of Kelvin–Voigt visco-elastic beams
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2006.10.005
– volume: 142
  start-page: 34
  issue: 6
  year: 2016
  ident: 10.1016/j.marstruc.2021.103116_bib24
  article-title: Vibration control of a pipeline structure using pounding tuned mass damper
  publication-title: J Eng Mech
– volume: 95
  start-page: 59
  year: 2017
  ident: 10.1016/j.marstruc.2021.103116_bib33
  article-title: Nonlinear vibration of a rotating cantilever beam in a surrounding magnetic field
  publication-title: Int J Non Lin Mech
  doi: 10.1016/j.ijnonlinmec.2017.05.014
– volume: 13
  start-page: 223
  year: 2021
  ident: 10.1016/j.marstruc.2021.103116_bib8
  article-title: Experimental and numerical simulation investigation on vortex-induced vibration test system based on bare fiber Bragg grating sensor technology for vertical riser
  publication-title: Int J Nav Archit Ocean Eng
  doi: 10.1016/j.ijnaoe.2021.02.002
– volume: 95
  start-page: 54
  year: 2020
  ident: 10.1016/j.marstruc.2021.103116_bib11
  article-title: Textured pipe-in-pipe system: a compound passive technique for vortex-induced vibration control
  publication-title: Appl Ocean Res
– volume: 469
  start-page: 115
  year: 2020
  ident: 10.1016/j.marstruc.2021.103116_bib29
  article-title: A wake oscillator model with nonlinear coupling for the vortex-induced vibration of a rigid cylinder constrained to vibrate in the cross-flow direction
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2019.115161
– volume: 32
  start-page: 415
  issue: 3
  year: 2020
  ident: 10.1016/j.marstruc.2021.103116_bib13
  article-title: A review on flow-induced vibration of offshore circular cylinders
  publication-title: J Hydrodyn
  doi: 10.1007/s42241-020-0032-2
– volume: 42
  start-page: 22
  year: 2017
  ident: 10.1016/j.marstruc.2021.103116_bib17
  article-title: Vortex-induced vibrations mitigation through a nonlinear energy sink
  publication-title: Commun Nonlinear Sci Numer Simulat
  doi: 10.1016/j.cnsns.2016.05.014
– volume: 12
  start-page: 643
  issue: 5
  year: 2007
  ident: 10.1016/j.marstruc.2021.103116_bib34
  article-title: Dynamics of a linear beam with an attached local nonlinear energy sink
  publication-title: Commun Nonlinear Sci Numer Simulat
  doi: 10.1016/j.cnsns.2005.07.003
– volume: 109
  start-page: 75
  year: 2016
  ident: 10.1016/j.marstruc.2021.103116_bib25
  article-title: Using pipe-in-pipe systems for subsea pipeline vibration control
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2015.11.018
– volume: 199
  start-page: 1041
  year: 2020
  ident: 10.1016/j.marstruc.2021.103116_bib10
  article-title: Suppression of vortex-induced vibration of a circular cylinder by a passive-jet flow control
  publication-title: J Wind Eng Ind Aerod
  doi: 10.1016/j.jweia.2020.104119
SSID ssj0017111
Score 2.4917068
Snippet This study focuses on the performance of the nonlinear energy sink (NES) in passive controlling the cantilever cylinder vibrations subjected to the external...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103116
SubjectTerms Acceleration
Aquatic reptiles
Beam theory (structures)
Cantilevers
Cross flow
Cylinders
Damping
Differential equations
Displacement
Equations of motion
Euler-Bernoulli beams
Flow velocity
Fluid dynamics
Fluid flow
Fluid-induced vibrations
Fluid-structure interaction
Galerkin method
Mathematical models
Mitigation
Nonlinear differential equations
Nonlinear energy sink
Semi-analytical method
Stiffness
Strain
Vibration
Vibration control
Vibration response
Vibrations
Viscoelastic
Viscoelastic cylinders
Viscoelasticity
Title Passive fluid-induced vibration control of viscoelastic cylinder using nonlinear energy sink
URI https://dx.doi.org/10.1016/j.marstruc.2021.103116
https://www.proquest.com/docview/2621595636
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yXryIT3yTg3irfSRp2qOIsiougi7sQQjNS3Zdd2V9gBd_uzNtKiqCB695tcxM5hFmviFkP5Ngpgupo8LoHF-rBLZ5YZFmNvWlrHglsTj5spd3-_x8IAZz5LithcG0yqD7G51ea-swEgdqxo_DYXyNzkHBwL4jjFBeICYo5xKl_PD9M80jlWndg7duJ4-rv1QJjw4fIHhEmFaIE7MU689T7Hv-u4H6oapr-3O6RBaD40iPmn9bJnNuskI2LmuQ7dkbPaC9CoSGhru6Sm6vwC0GVUb9-GVoIwi9gYmWvmJ4jMygIUmdTj0MPpmpAz8azqbmbYwQijOKKfF3dNJgaVQz6uoyQQqj92ukf3pyc9yNQiuFyDCePEcydc5JrU3KjAXFAmGYNMZqYUtRWuG5KDzcZsddybVg3pbcJ87byoG_xCRj66QD33MbhLIigUW-0omVvDJZ5bQtEpMYJ7LcsnSTiJZ-ygSccWx3MVZtQtlItXRXSHfV0H2TxJ_7HhukjT93lC171DeZUWAO_ty70_JThVv7pLIcHCAIGFm-9Y-jt8lChjUS9TvNDunAvNsFz-VZ79WiuUfmj84uur0PzEfwRA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5dBeUFuKgELxoeKWbhLbcXJEqGh57KpSQeKAZMUvtMvCrhaKxL9nJnEQVEgcuFoeJ5qx52HPfAPwM1dopktlktKagm6rJLV54YnhLguVqkWtqDh5OCoGZ-LoXJ4vwX5XC0NplVH3tzq90dZxpB-52Z-Px_2_5ByUHO07wQgVpfgAy4ROJXuwvHd4PBg9PSaorGnD23SUJ4JnhcKTX9cYPxJSK4aKeUYl6Bm1Pn_dRv2nrRsTdPAZVqLvyPba3_sCS_7mK6wPG5ztxQPbZaMa9w2Lx3UVLv6gZ4zajIXpv7FLMPpGOTp2TxEyyYPFPHU2Czh4a2ceXWlcm9mHKaEoLhhlxV-ymxZOo14w31QKMhy9-gZnB79P9wdJ7KaQWC7Su0Rl3ntljM24dahbMBJT1jojXSUrJ4OQZcAD7YWvhJE8uEqE1AdXe3SZuOJ8DXr4Pb8OjJcpTgq1SZ0Stc1rb1yZ2tR6mReOZxsgO_5pG6HGqePFVHc5ZRPd8V0T33XL9w3oP9HNW7CNNymqTjz6xbbRaBHepN3q5Knjwb3VeYE-EMaMvNh8x9I78HFwOjzRJ4ej4-_wKaeSiebaZgt6ONdvoyNzZ37EjfoIAuvy9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passive+fluid-induced+vibration+control+of+viscoelastic+cylinder+using+nonlinear+energy+sink&rft.jtitle=Marine+structures&rft.au=Nasrabadi%2C+Mohammadali&rft.au=Sevbitov%2C+Andrei+Vladimirovich&rft.au=Maleki%2C+Vahid+Arab&rft.au=Akbar%2C+Narges&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8339&rft.volume=81&rft_id=info:doi/10.1016%2Fj.marstruc.2021.103116&rft.externalDocID=S0951833921001684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8339&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8339&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8339&client=summon