Passive fluid-induced vibration control of viscoelastic cylinder using nonlinear energy sink
This study focuses on the performance of the nonlinear energy sink (NES) in passive controlling the cantilever cylinder vibrations subjected to the external fluid flow. The nonlinear differential equations of motion are obtained by considering the large strain-displacement relation and viscoelastic...
Saved in:
Published in | Marine structures Vol. 81; p. 103116 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.01.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study focuses on the performance of the nonlinear energy sink (NES) in passive controlling the cantilever cylinder vibrations subjected to the external fluid flow. The nonlinear differential equations of motion are obtained by considering the large strain-displacement relation and viscoelastic behavior. Wake oscillation in fluid-structure interaction is modeled based on the Van der Pol wake oscillator model with is the classic acceleration coupling between the cross-flow motion and wake. Based on the Von Karman strain-displacement relation, and Euler-Bernoulli beam theory, the nonlinear vibration equations which are coupled with attached NES motion are obtained using Newton's second law, and discretized by applying the Galerkin method. The fluid flow velocity and nonlinear stiffness, damping, and mass of the NES are studied to determine their effects on the vibration response of the system. The present study comprehensively evaluates the effects of adding a NES on the lock-in phenomenon and maximum oscillating amplitudes of a cantilever cylinder, and guides to determine the best design of NES for significant fluid-induced vibration mitigation.
•NES is proposed for passive control of fluid-induced vibrations of viscoelastic beam.•Fluctuating nature of the vortex street is simulated by a nonlinear van der Pol oscillator.•Parametric study of the coupled nonlinear differential equations performed using Galerkin approach.•Results show the proper ability of using passive NES to control fluid-induced vibrations in structures. |
---|---|
AbstractList | This study focuses on the performance of the nonlinear energy sink (NES) in passive controlling the cantilever cylinder vibrations subjected to the external fluid flow. The nonlinear differential equations of motion are obtained by considering the large strain-displacement relation and viscoelastic behavior. Wake oscillation in fluid-structure interaction is modeled based on the Van der Pol wake oscillator model with is the classic acceleration coupling between the cross-flow motion and wake. Based on the Von Karman strain-displacement relation, and Euler-Bernoulli beam theory, the nonlinear vibration equations which are coupled with attached NES motion are obtained using Newton's second law, and discretized by applying the Galerkin method. The fluid flow velocity and nonlinear stiffness, damping, and mass of the NES are studied to determine their effects on the vibration response of the system. The present study comprehensively evaluates the effects of adding a NES on the lock-in phenomenon and maximum oscillating amplitudes of a cantilever cylinder, and guides to determine the best design of NES for significant fluid-induced vibration mitigation. This study focuses on the performance of the nonlinear energy sink (NES) in passive controlling the cantilever cylinder vibrations subjected to the external fluid flow. The nonlinear differential equations of motion are obtained by considering the large strain-displacement relation and viscoelastic behavior. Wake oscillation in fluid-structure interaction is modeled based on the Van der Pol wake oscillator model with is the classic acceleration coupling between the cross-flow motion and wake. Based on the Von Karman strain-displacement relation, and Euler-Bernoulli beam theory, the nonlinear vibration equations which are coupled with attached NES motion are obtained using Newton's second law, and discretized by applying the Galerkin method. The fluid flow velocity and nonlinear stiffness, damping, and mass of the NES are studied to determine their effects on the vibration response of the system. The present study comprehensively evaluates the effects of adding a NES on the lock-in phenomenon and maximum oscillating amplitudes of a cantilever cylinder, and guides to determine the best design of NES for significant fluid-induced vibration mitigation. •NES is proposed for passive control of fluid-induced vibrations of viscoelastic beam.•Fluctuating nature of the vortex street is simulated by a nonlinear van der Pol oscillator.•Parametric study of the coupled nonlinear differential equations performed using Galerkin approach.•Results show the proper ability of using passive NES to control fluid-induced vibrations in structures. |
ArticleNumber | 103116 |
Author | Maleki, Vahid Arab Akbar, Narges Javanshir, Ilghar Sevbitov, Andrei Vladimirovich Nasrabadi, Mohammadali |
Author_xml | – sequence: 1 givenname: Mohammadali surname: Nasrabadi fullname: Nasrabadi, Mohammadali organization: Department of Mechanical Engineering, Islamic Azad University, Karaj Branch, Karaj, Iran – sequence: 2 givenname: Andrei Vladimirovich surname: Sevbitov fullname: Sevbitov, Andrei Vladimirovich organization: Department of Propaedeutics of Dental Diseases, Sechenov First Moscow State Medical University, Moscow, Russia – sequence: 3 givenname: Vahid Arab orcidid: 0000-0001-8989-970X surname: Maleki fullname: Maleki, Vahid Arab organization: Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran – sequence: 4 givenname: Narges surname: Akbar fullname: Akbar, Narges organization: Department of Mechanical Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran – sequence: 5 givenname: Ilghar surname: Javanshir fullname: Javanshir, Ilghar email: il.javanshir@gmail.com organization: Department of Mechanical Engineering, Guilan University, Rasht, Iran |
BookMark | eNqFkEtLAzEUhYMo2Kp_QQKup-Y2mRe4UIovKOhCd0KYSW4kdUxqkin03xutbty4utzDOffxTcm-8w4JOQU2AwbV-Wr23oWYwqhmczaHLHKAao9MoKl5IaBm-2TC2hKKhvP2kExjXDEGNQBMyMtjF6PdIDXDaHVhnR4VarqxfeiS9Y4q71LwA_Umi1F5HLqYrKJqO2QzBjpG615pvin32AWKDsPrlmb17ZgcmG6IePJTj8jzzfXT4q5YPtzeL66WheKCpaIGRKz7XgFXmjVNlY9TSvelbstWl0aUjRGMocBW9CU3uhWGodEdVkLwmvMjcrabuw7-Y8SY5MqPweWVcl7NoWzLilfZdbFzqeBjDGiksun7yRQ6O0hg8ounXMlfnvKLp9zxzPHqT3wdbHZu_w9e7oKYEWwsBhmVRZcx24AqSe3tfyM-AVPhmG8 |
CitedBy_id | crossref_primary_10_1007_s40430_024_04690_8 crossref_primary_10_1016_j_ymssp_2022_109180 crossref_primary_10_1007_s11071_024_10557_3 crossref_primary_10_1016_j_marstruc_2024_103629 crossref_primary_10_1615_ComputThermalScien_2023047572 crossref_primary_10_1007_s41939_023_00227_z crossref_primary_10_1007_s43538_025_00392_4 crossref_primary_10_1016_j_apor_2024_104404 crossref_primary_10_1016_j_oceaneng_2024_119352 crossref_primary_10_1007_s00707_023_03818_6 crossref_primary_10_1007_s41939_024_00660_8 crossref_primary_10_1177_10775463221135679 crossref_primary_10_1007_s13296_024_00923_7 crossref_primary_10_1016_j_istruc_2024_107892 crossref_primary_10_1186_s44147_024_00420_y crossref_primary_10_1007_s11071_022_08094_y crossref_primary_10_1007_s42417_023_00913_9 crossref_primary_10_1016_j_ymssp_2024_111159 crossref_primary_10_32604_fdmp_2022_019534 crossref_primary_10_1007_s00419_024_02710_6 crossref_primary_10_1016_j_ymssp_2024_112123 crossref_primary_10_1007_s43538_023_00177_7 crossref_primary_10_1080_15502287_2023_2265377 crossref_primary_10_1016_j_ymssp_2022_109172 crossref_primary_10_1186_s44147_024_00564_x crossref_primary_10_1186_s44147_024_00565_w crossref_primary_10_1016_j_apor_2024_104113 crossref_primary_10_1016_j_ast_2024_109409 crossref_primary_10_1016_j_soildyn_2024_108536 crossref_primary_10_1155_2023_4060591 crossref_primary_10_1063_5_0121829 crossref_primary_10_1007_s10483_023_2984_9 crossref_primary_10_1140_epjp_s13360_022_02670_2 crossref_primary_10_1007_s11071_022_08145_4 crossref_primary_10_1007_s41939_023_00197_2 crossref_primary_10_1615_ComputThermalScien_2022044534 crossref_primary_10_1007_s41939_023_00232_2 crossref_primary_10_1007_s12008_024_02184_4 crossref_primary_10_1080_15397734_2023_2277725 crossref_primary_10_1007_s43538_023_00217_2 crossref_primary_10_1063_5_0258061 crossref_primary_10_1016_j_ijnonlinmec_2023_104623 crossref_primary_10_1007_s41939_024_00535_y crossref_primary_10_1016_j_oceaneng_2023_115506 crossref_primary_10_1088_2631_8695_ac8914 |
Cites_doi | 10.1016/j.marstruc.2019.102637 10.1016/j.oceaneng.2019.106704 10.1007/s11071-017-3917-z 10.1016/j.marstruc.2021.102961 10.1016/j.marstruc.2020.102872 10.1016/j.marstruc.2021.102938 10.1016/j.cnsns.2021.105725 10.1007/s11071-018-4402-z 10.1016/j.marstruc.2009.06.004 10.3390/app7100987 10.1016/j.apm.2014.05.007 10.1016/j.oceaneng.2017.06.046 10.1016/j.jfluidstructs.2003.12.004 10.1016/j.marstruc.2020.102778 10.1007/s11071-019-04775-3 10.1016/j.oceaneng.2018.01.086 10.1016/j.engstruct.2018.06.099 10.1016/j.marstruc.2010.10.002 10.1007/s40435-019-00594-x 10.1016/j.ijmecsci.2006.10.005 10.1016/j.ijnonlinmec.2017.05.014 10.1016/j.ijnaoe.2021.02.002 10.1016/j.jsv.2019.115161 10.1007/s42241-020-0032-2 10.1016/j.cnsns.2016.05.014 10.1016/j.cnsns.2005.07.003 10.1016/j.engstruct.2015.11.018 10.1016/j.jweia.2020.104119 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jan 2022 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2022 |
DBID | AAYXX CITATION 7ST 7TB 7TN 8FD C1K F1W FR3 KR7 SOI |
DOI | 10.1016/j.marstruc.2021.103116 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Oceanic Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Military & Naval Science |
EISSN | 1873-4170 |
ExternalDocumentID | 10_1016_j_marstruc_2021_103116 S0951833921001684 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TB 7TN 8FD C1K EFKBS F1W FR3 KR7 SOI |
ID | FETCH-LOGICAL-c340t-71eee7bbc13cd0886017ccdb5d959d5f458f400e4e94b53fd94f0efdae6443733 |
IEDL.DBID | .~1 |
ISSN | 0951-8339 |
IngestDate | Wed Aug 13 04:22:33 EDT 2025 Tue Jul 01 02:36:55 EDT 2025 Thu Apr 24 23:09:46 EDT 2025 Sat Feb 01 16:08:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nonlinear energy sink Fluid-induced vibrations Viscoelastic Semi-analytical method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-71eee7bbc13cd0886017ccdb5d959d5f458f400e4e94b53fd94f0efdae6443733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8989-970X |
PQID | 2621595636 |
PQPubID | 2045436 |
ParticipantIDs | proquest_journals_2621595636 crossref_citationtrail_10_1016_j_marstruc_2021_103116 crossref_primary_10_1016_j_marstruc_2021_103116 elsevier_sciencedirect_doi_10_1016_j_marstruc_2021_103116 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Marine structures |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Nikoo, Bi, Hao (bib11) 2020; 95 Blanchard, Bergman, Vakakis (bib22) 2020; 99 Lin, Pan, O'Shea, Mechefske (bib1) 2009; 22 Wang, Fan, Lin (bib13) 2020; 32 Wang, Dalton, Hua, Wang, Chen, Song (bib23) 2017; 7 Liu, Li, Qiu, Leng, Li, Li (bib7) 2020; 195 Dai, Abdelkefi, Wang (bib17) 2017; 42 Fallah, Maleki (bib9) 2021; 53 Wang, Wang, Hua, Song, Chen (bib19) 2018; 173 Ma, Zhang, Zhao (bib15) 2010; 23 Stappenbelt, Lalji, Tan (bib35) 2007 Lin, Lu, Lei, Liu, Ko, Ju (bib2) 2021; 77 Wang, Wang, Liu, Li, Zhang, Wang (bib8) 2021; 13 Chen (bib32) 1985 Pais, Boote (bib18) 2017; 141 Wang, Lin, Liu (bib28) 2015; 39 Georgiades, Vakakis (bib34) 2007; 12 Facchinetti, De Langre, Biolley (bib30) 2004; 19 Chen, He, Zhang, Yao, Liu, Sun (bib20) 2018; 91 Mahmoodi, Khadem, Kokabi (bib27) 2007; 49 Song, Zhang, Li, Singla, Patil, Li, Mo (bib24) 2016; 142 Hong, Shah (bib12) 2018; 152 Xu, Han, Chu (bib33) 2017; 95 Verma, Jiang, Gao, Vedvik (bib3) 2020; 72 Blevins (bib31) 1977 Chen, Chen, Xu, Huang, Gao, Li (bib10) 2020; 199 Qu, Metrikine (bib29) 2020; 469 Sarmeili, Rezaei Ashtiani, Rabiee (bib26) 2021; 97 Janocha, Ong (bib5) 2021; 75 Chen, Huang, Huang, Liu, Ouyang (bib21) 2021; 77 Ramadasan, Tao, Dev (bib4) 2019; 67 Mondal, Chatterjee (bib14) 2020; 8 Dongyang, Abbas, Guoping, Xiaoting, Marzocca (bib16) 2018; 94 Bi, Hao (bib25) 2016; 109 Magnitskii, Sidorov (bib36) 2006; vol. 58 Mendes, Correia, Mourão, Pereira, Fantuzzi, De Jesus, Calçada (bib6) 2021; 26 Lin (10.1016/j.marstruc.2021.103116_bib2) 2021; 77 Song (10.1016/j.marstruc.2021.103116_bib24) 2016; 142 Facchinetti (10.1016/j.marstruc.2021.103116_bib30) 2004; 19 Magnitskii (10.1016/j.marstruc.2021.103116_bib36) 2006; vol. 58 Lin (10.1016/j.marstruc.2021.103116_bib1) 2009; 22 Dai (10.1016/j.marstruc.2021.103116_bib17) 2017; 42 Xu (10.1016/j.marstruc.2021.103116_bib33) 2017; 95 Mendes (10.1016/j.marstruc.2021.103116_bib6) 2021; 26 Chen (10.1016/j.marstruc.2021.103116_bib32) 1985 Mahmoodi (10.1016/j.marstruc.2021.103116_bib27) 2007; 49 Pais (10.1016/j.marstruc.2021.103116_bib18) 2017; 141 Nikoo (10.1016/j.marstruc.2021.103116_bib11) 2020; 95 Mondal (10.1016/j.marstruc.2021.103116_bib14) 2020; 8 Wang (10.1016/j.marstruc.2021.103116_bib8) 2021; 13 Janocha (10.1016/j.marstruc.2021.103116_bib5) 2021; 75 Wang (10.1016/j.marstruc.2021.103116_bib28) 2015; 39 Dongyang (10.1016/j.marstruc.2021.103116_bib16) 2018; 94 Blanchard (10.1016/j.marstruc.2021.103116_bib22) 2020; 99 Chen (10.1016/j.marstruc.2021.103116_bib20) 2018; 91 Sarmeili (10.1016/j.marstruc.2021.103116_bib26) 2021; 97 Hong (10.1016/j.marstruc.2021.103116_bib12) 2018; 152 Wang (10.1016/j.marstruc.2021.103116_bib19) 2018; 173 Ramadasan (10.1016/j.marstruc.2021.103116_bib4) 2019; 67 Fallah (10.1016/j.marstruc.2021.103116_bib9) 2021; 53 Chen (10.1016/j.marstruc.2021.103116_bib21) 2021; 77 Liu (10.1016/j.marstruc.2021.103116_bib7) 2020; 195 Stappenbelt (10.1016/j.marstruc.2021.103116_bib35) 2007 Chen (10.1016/j.marstruc.2021.103116_bib10) 2020; 199 Wang (10.1016/j.marstruc.2021.103116_bib23) 2017; 7 Bi (10.1016/j.marstruc.2021.103116_bib25) 2016; 109 Qu (10.1016/j.marstruc.2021.103116_bib29) 2020; 469 Georgiades (10.1016/j.marstruc.2021.103116_bib34) 2007; 12 Blevins (10.1016/j.marstruc.2021.103116_bib31) 1977 Verma (10.1016/j.marstruc.2021.103116_bib3) 2020; 72 Wang (10.1016/j.marstruc.2021.103116_bib13) 2020; 32 Ma (10.1016/j.marstruc.2021.103116_bib15) 2010; 23 |
References_xml | – volume: 32 start-page: 415 year: 2020 end-page: 440 ident: bib13 article-title: A review on flow-induced vibration of offshore circular cylinders publication-title: J Hydrodyn – volume: 23 start-page: 434 year: 2010 end-page: 443 ident: bib15 article-title: Study on the anti-vibration devices for a model jacket platform publication-title: Mar Struct – volume: 95 start-page: 59 year: 2017 end-page: 72 ident: bib33 article-title: Nonlinear vibration of a rotating cantilever beam in a surrounding magnetic field publication-title: Int J Non Lin Mech – volume: 49 start-page: 722 year: 2007 end-page: 732 ident: bib27 article-title: Non-linear free vibrations of Kelvin–Voigt visco-elastic beams publication-title: Int J Mech Sci – volume: 77 start-page: 13 year: 2021 end-page: 26 ident: bib2 article-title: Experimental study on seismic vibration control of an offshore wind turbine with TMD considering soil liquefaction effect publication-title: Mar Struct – volume: 469 start-page: 115 year: 2020 end-page: 129 ident: bib29 article-title: A wake oscillator model with nonlinear coupling for the vortex-induced vibration of a rigid cylinder constrained to vibrate in the cross-flow direction publication-title: J Sound Vib – year: 1977 ident: bib31 article-title: Flow-induced vibration – volume: 53 start-page: 9 year: 2021 end-page: 28 ident: bib9 article-title: Renewable Energy Harvesting by Vortex-Induced Vibration of Bimorph Porous Beam with Piezoelectric Layer publication-title: Amirkabir J Mech Eng – volume: 19 start-page: 123 year: 2004 end-page: 140 ident: bib30 article-title: Coupling of structure and wake oscillators in vortex-induced vibrations publication-title: J Fluid Struct – year: 2007 ident: bib35 article-title: Low mass ratio vortex-induced motion publication-title: 16th Australasian fluid mechanics conference – volume: 142 start-page: 34 year: 2016 end-page: 54 ident: bib24 article-title: Vibration control of a pipeline structure using pounding tuned mass damper publication-title: J Eng Mech – volume: 67 start-page: 45 year: 2019 end-page: 65 ident: bib4 article-title: Vortex-Induced-Vibration of jack-ups with cylindrical legs in multiple modes publication-title: Mar Struct – volume: 195 start-page: 106 year: 2020 end-page: 124 ident: bib7 article-title: A mini review of recent progress on vortex-induced vibrations of marine risers publication-title: Ocean Eng – volume: 199 start-page: 1041 year: 2020 end-page: 1059 ident: bib10 article-title: Suppression of vortex-induced vibration of a circular cylinder by a passive-jet flow control publication-title: J Wind Eng Ind Aerod – year: 1985 ident: bib32 article-title: Flow-induced vibration of circular cylindrical structures – volume: 97 start-page: 121 year: 2021 end-page: 139 ident: bib26 article-title: Nonlinear energy sinks with nonlinear control strategies in fluid-structure simulations framework for passive and active FIV control of sprung cylinders publication-title: Commun Nonlinear Sci Numer Simulat – volume: 75 start-page: 102 year: 2021 end-page: 132 ident: bib5 article-title: Vortex-induced vibrations of piggyback pipelines near the horizontal plane wall in the upper transition regime publication-title: Mar Struct – volume: 109 start-page: 75 year: 2016 end-page: 84 ident: bib25 article-title: Using pipe-in-pipe systems for subsea pipeline vibration control publication-title: Eng Struct – volume: 42 start-page: 22 year: 2017 end-page: 36 ident: bib17 article-title: Vortex-induced vibrations mitigation through a nonlinear energy sink publication-title: Commun Nonlinear Sci Numer Simulat – volume: 141 start-page: 249 year: 2017 end-page: 264 ident: bib18 article-title: Developments of tuned mass damper for yacht structures publication-title: Ocean Eng – volume: 39 start-page: 117 year: 2015 end-page: 127 ident: bib28 article-title: Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory publication-title: Appl Math Model – volume: 94 start-page: 925 year: 2018 end-page: 957 ident: bib16 article-title: Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs) publication-title: Nonlinear Dynam – volume: 72 start-page: 102 year: 2020 end-page: 128 ident: bib3 article-title: Effects of a passive tuned mass damper on blade root impacts during the offshore mating process publication-title: Mar Struct – volume: 8 start-page: 570 year: 2020 end-page: 580 ident: bib14 article-title: Mitigating vortex-induced vibration by acceleration feedback control publication-title: Int J Dyn Control – volume: 77 start-page: 78 year: 2021 end-page: 95 ident: bib21 article-title: Passive control of jacket–type offshore wind turbine vibrations by single and multiple tuned mass dampers publication-title: Mar Struct – volume: 152 start-page: 300 year: 2018 end-page: 315 ident: bib12 article-title: Vortex-induced vibrations and control of marine risers: a review publication-title: Ocean Eng – volume: 7 start-page: 987 year: 2017 end-page: 996 ident: bib23 article-title: Experimental study on vibration control of a submerged pipeline model by eddy current tuned mass damper publication-title: Appl Sci – volume: 12 start-page: 643 year: 2007 end-page: 651 ident: bib34 article-title: Dynamics of a linear beam with an attached local nonlinear energy sink publication-title: Commun Nonlinear Sci Numer Simulat – volume: 26 start-page: 23 year: 2021 end-page: 41 ident: bib6 article-title: Fatigue assessments of a jacket-type offshore structure based on static and dynamic analyses publication-title: Pract Period Struct Des Construct – volume: 13 start-page: 223 year: 2021 end-page: 235 ident: bib8 article-title: Experimental and numerical simulation investigation on vortex-induced vibration test system based on bare fiber Bragg grating sensor technology for vertical riser publication-title: Int J Nav Archit Ocean Eng – volume: 99 start-page: 593 year: 2020 end-page: 609 ident: bib22 article-title: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow publication-title: Nonlinear Dynam – volume: vol. 58 year: 2006 ident: bib36 publication-title: New methods for chaotic dynamics – volume: 173 start-page: 61 year: 2018 end-page: 75 ident: bib19 article-title: Vibration control of vortex-induced vibrations of a bridge deck by a single-side pounding tuned mass damper publication-title: Eng Struct – volume: 22 start-page: 730 year: 2009 end-page: 743 ident: bib1 article-title: A study of vibration and vibration control of ship structures publication-title: Mar Struct – volume: 95 start-page: 54 year: 2020 end-page: 67 ident: bib11 article-title: Textured pipe-in-pipe system: a compound passive technique for vortex-induced vibration control publication-title: Appl Ocean Res – volume: 91 start-page: 885 year: 2018 end-page: 904 ident: bib20 article-title: Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks publication-title: Nonlinear Dynam – volume: 67 start-page: 45 year: 2019 ident: 10.1016/j.marstruc.2021.103116_bib4 article-title: Vortex-Induced-Vibration of jack-ups with cylindrical legs in multiple modes publication-title: Mar Struct doi: 10.1016/j.marstruc.2019.102637 – volume: 26 start-page: 23 issue: 1 year: 2021 ident: 10.1016/j.marstruc.2021.103116_bib6 article-title: Fatigue assessments of a jacket-type offshore structure based on static and dynamic analyses publication-title: Pract Period Struct Des Construct – year: 1977 ident: 10.1016/j.marstruc.2021.103116_bib31 – volume: 195 start-page: 106 year: 2020 ident: 10.1016/j.marstruc.2021.103116_bib7 article-title: A mini review of recent progress on vortex-induced vibrations of marine risers publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2019.106704 – volume: vol. 58 year: 2006 ident: 10.1016/j.marstruc.2021.103116_bib36 – volume: 91 start-page: 885 issue: 2 year: 2018 ident: 10.1016/j.marstruc.2021.103116_bib20 article-title: Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks publication-title: Nonlinear Dynam doi: 10.1007/s11071-017-3917-z – volume: 77 start-page: 13 year: 2021 ident: 10.1016/j.marstruc.2021.103116_bib2 article-title: Experimental study on seismic vibration control of an offshore wind turbine with TMD considering soil liquefaction effect publication-title: Mar Struct doi: 10.1016/j.marstruc.2021.102961 – volume: 75 start-page: 102 year: 2021 ident: 10.1016/j.marstruc.2021.103116_bib5 article-title: Vortex-induced vibrations of piggyback pipelines near the horizontal plane wall in the upper transition regime publication-title: Mar Struct doi: 10.1016/j.marstruc.2020.102872 – volume: 77 start-page: 78 year: 2021 ident: 10.1016/j.marstruc.2021.103116_bib21 article-title: Passive control of jacket–type offshore wind turbine vibrations by single and multiple tuned mass dampers publication-title: Mar Struct doi: 10.1016/j.marstruc.2021.102938 – volume: 97 start-page: 121 year: 2021 ident: 10.1016/j.marstruc.2021.103116_bib26 article-title: Nonlinear energy sinks with nonlinear control strategies in fluid-structure simulations framework for passive and active FIV control of sprung cylinders publication-title: Commun Nonlinear Sci Numer Simulat doi: 10.1016/j.cnsns.2021.105725 – volume: 94 start-page: 925 issue: 2 year: 2018 ident: 10.1016/j.marstruc.2021.103116_bib16 article-title: Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs) publication-title: Nonlinear Dynam doi: 10.1007/s11071-018-4402-z – volume: 22 start-page: 730 issue: 4 year: 2009 ident: 10.1016/j.marstruc.2021.103116_bib1 article-title: A study of vibration and vibration control of ship structures publication-title: Mar Struct doi: 10.1016/j.marstruc.2009.06.004 – volume: 7 start-page: 987 issue: 10 year: 2017 ident: 10.1016/j.marstruc.2021.103116_bib23 article-title: Experimental study on vibration control of a submerged pipeline model by eddy current tuned mass damper publication-title: Appl Sci doi: 10.3390/app7100987 – year: 2007 ident: 10.1016/j.marstruc.2021.103116_bib35 article-title: Low mass ratio vortex-induced motion – volume: 39 start-page: 117 issue: 1 year: 2015 ident: 10.1016/j.marstruc.2021.103116_bib28 article-title: Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory publication-title: Appl Math Model doi: 10.1016/j.apm.2014.05.007 – volume: 141 start-page: 249 year: 2017 ident: 10.1016/j.marstruc.2021.103116_bib18 article-title: Developments of tuned mass damper for yacht structures publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2017.06.046 – volume: 53 start-page: 9 year: 2021 ident: 10.1016/j.marstruc.2021.103116_bib9 article-title: Renewable Energy Harvesting by Vortex-Induced Vibration of Bimorph Porous Beam with Piezoelectric Layer publication-title: Amirkabir J Mech Eng – volume: 19 start-page: 123 issue: 2 year: 2004 ident: 10.1016/j.marstruc.2021.103116_bib30 article-title: Coupling of structure and wake oscillators in vortex-induced vibrations publication-title: J Fluid Struct doi: 10.1016/j.jfluidstructs.2003.12.004 – volume: 72 start-page: 102 year: 2020 ident: 10.1016/j.marstruc.2021.103116_bib3 article-title: Effects of a passive tuned mass damper on blade root impacts during the offshore mating process publication-title: Mar Struct doi: 10.1016/j.marstruc.2020.102778 – volume: 99 start-page: 593 issue: 1 year: 2020 ident: 10.1016/j.marstruc.2021.103116_bib22 article-title: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow publication-title: Nonlinear Dynam doi: 10.1007/s11071-019-04775-3 – volume: 152 start-page: 300 year: 2018 ident: 10.1016/j.marstruc.2021.103116_bib12 article-title: Vortex-induced vibrations and control of marine risers: a review publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2018.01.086 – year: 1985 ident: 10.1016/j.marstruc.2021.103116_bib32 – volume: 173 start-page: 61 year: 2018 ident: 10.1016/j.marstruc.2021.103116_bib19 article-title: Vibration control of vortex-induced vibrations of a bridge deck by a single-side pounding tuned mass damper publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.06.099 – volume: 23 start-page: 434 issue: 4 year: 2010 ident: 10.1016/j.marstruc.2021.103116_bib15 article-title: Study on the anti-vibration devices for a model jacket platform publication-title: Mar Struct doi: 10.1016/j.marstruc.2010.10.002 – volume: 8 start-page: 570 issue: 2 year: 2020 ident: 10.1016/j.marstruc.2021.103116_bib14 article-title: Mitigating vortex-induced vibration by acceleration feedback control publication-title: Int J Dyn Control doi: 10.1007/s40435-019-00594-x – volume: 49 start-page: 722 issue: 6 year: 2007 ident: 10.1016/j.marstruc.2021.103116_bib27 article-title: Non-linear free vibrations of Kelvin–Voigt visco-elastic beams publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2006.10.005 – volume: 142 start-page: 34 issue: 6 year: 2016 ident: 10.1016/j.marstruc.2021.103116_bib24 article-title: Vibration control of a pipeline structure using pounding tuned mass damper publication-title: J Eng Mech – volume: 95 start-page: 59 year: 2017 ident: 10.1016/j.marstruc.2021.103116_bib33 article-title: Nonlinear vibration of a rotating cantilever beam in a surrounding magnetic field publication-title: Int J Non Lin Mech doi: 10.1016/j.ijnonlinmec.2017.05.014 – volume: 13 start-page: 223 year: 2021 ident: 10.1016/j.marstruc.2021.103116_bib8 article-title: Experimental and numerical simulation investigation on vortex-induced vibration test system based on bare fiber Bragg grating sensor technology for vertical riser publication-title: Int J Nav Archit Ocean Eng doi: 10.1016/j.ijnaoe.2021.02.002 – volume: 95 start-page: 54 year: 2020 ident: 10.1016/j.marstruc.2021.103116_bib11 article-title: Textured pipe-in-pipe system: a compound passive technique for vortex-induced vibration control publication-title: Appl Ocean Res – volume: 469 start-page: 115 year: 2020 ident: 10.1016/j.marstruc.2021.103116_bib29 article-title: A wake oscillator model with nonlinear coupling for the vortex-induced vibration of a rigid cylinder constrained to vibrate in the cross-flow direction publication-title: J Sound Vib doi: 10.1016/j.jsv.2019.115161 – volume: 32 start-page: 415 issue: 3 year: 2020 ident: 10.1016/j.marstruc.2021.103116_bib13 article-title: A review on flow-induced vibration of offshore circular cylinders publication-title: J Hydrodyn doi: 10.1007/s42241-020-0032-2 – volume: 42 start-page: 22 year: 2017 ident: 10.1016/j.marstruc.2021.103116_bib17 article-title: Vortex-induced vibrations mitigation through a nonlinear energy sink publication-title: Commun Nonlinear Sci Numer Simulat doi: 10.1016/j.cnsns.2016.05.014 – volume: 12 start-page: 643 issue: 5 year: 2007 ident: 10.1016/j.marstruc.2021.103116_bib34 article-title: Dynamics of a linear beam with an attached local nonlinear energy sink publication-title: Commun Nonlinear Sci Numer Simulat doi: 10.1016/j.cnsns.2005.07.003 – volume: 109 start-page: 75 year: 2016 ident: 10.1016/j.marstruc.2021.103116_bib25 article-title: Using pipe-in-pipe systems for subsea pipeline vibration control publication-title: Eng Struct doi: 10.1016/j.engstruct.2015.11.018 – volume: 199 start-page: 1041 year: 2020 ident: 10.1016/j.marstruc.2021.103116_bib10 article-title: Suppression of vortex-induced vibration of a circular cylinder by a passive-jet flow control publication-title: J Wind Eng Ind Aerod doi: 10.1016/j.jweia.2020.104119 |
SSID | ssj0017111 |
Score | 2.4917068 |
Snippet | This study focuses on the performance of the nonlinear energy sink (NES) in passive controlling the cantilever cylinder vibrations subjected to the external... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103116 |
SubjectTerms | Acceleration Aquatic reptiles Beam theory (structures) Cantilevers Cross flow Cylinders Damping Differential equations Displacement Equations of motion Euler-Bernoulli beams Flow velocity Fluid dynamics Fluid flow Fluid-induced vibrations Fluid-structure interaction Galerkin method Mathematical models Mitigation Nonlinear differential equations Nonlinear energy sink Semi-analytical method Stiffness Strain Vibration Vibration control Vibration response Vibrations Viscoelastic Viscoelastic cylinders Viscoelasticity |
Title | Passive fluid-induced vibration control of viscoelastic cylinder using nonlinear energy sink |
URI | https://dx.doi.org/10.1016/j.marstruc.2021.103116 https://www.proquest.com/docview/2621595636 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yXryIT3yTg3irfSRp2qOIsiougi7sQQjNS3Zdd2V9gBd_uzNtKiqCB695tcxM5hFmviFkP5Ngpgupo8LoHF-rBLZ5YZFmNvWlrHglsTj5spd3-_x8IAZz5LithcG0yqD7G51ea-swEgdqxo_DYXyNzkHBwL4jjFBeICYo5xKl_PD9M80jlWndg7duJ4-rv1QJjw4fIHhEmFaIE7MU689T7Hv-u4H6oapr-3O6RBaD40iPmn9bJnNuskI2LmuQ7dkbPaC9CoSGhru6Sm6vwC0GVUb9-GVoIwi9gYmWvmJ4jMygIUmdTj0MPpmpAz8azqbmbYwQijOKKfF3dNJgaVQz6uoyQQqj92ukf3pyc9yNQiuFyDCePEcydc5JrU3KjAXFAmGYNMZqYUtRWuG5KDzcZsddybVg3pbcJ87byoG_xCRj66QD33MbhLIigUW-0omVvDJZ5bQtEpMYJ7LcsnSTiJZ-ygSccWx3MVZtQtlItXRXSHfV0H2TxJ_7HhukjT93lC171DeZUWAO_ty70_JThVv7pLIcHCAIGFm-9Y-jt8lChjUS9TvNDunAvNsFz-VZ79WiuUfmj84uur0PzEfwRA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5dBeUFuKgELxoeKWbhLbcXJEqGh57KpSQeKAZMUvtMvCrhaKxL9nJnEQVEgcuFoeJ5qx52HPfAPwM1dopktlktKagm6rJLV54YnhLguVqkWtqDh5OCoGZ-LoXJ4vwX5XC0NplVH3tzq90dZxpB-52Z-Px_2_5ByUHO07wQgVpfgAy4ROJXuwvHd4PBg9PSaorGnD23SUJ4JnhcKTX9cYPxJSK4aKeUYl6Bm1Pn_dRv2nrRsTdPAZVqLvyPba3_sCS_7mK6wPG5ztxQPbZaMa9w2Lx3UVLv6gZ4zajIXpv7FLMPpGOTp2TxEyyYPFPHU2Czh4a2ceXWlcm9mHKaEoLhhlxV-ymxZOo14w31QKMhy9-gZnB79P9wdJ7KaQWC7Su0Rl3ntljM24dahbMBJT1jojXSUrJ4OQZcAD7YWvhJE8uEqE1AdXe3SZuOJ8DXr4Pb8OjJcpTgq1SZ0Stc1rb1yZ2tR6mReOZxsgO_5pG6HGqePFVHc5ZRPd8V0T33XL9w3oP9HNW7CNNymqTjz6xbbRaBHepN3q5Knjwb3VeYE-EMaMvNh8x9I78HFwOjzRJ4ej4-_wKaeSiebaZgt6ONdvoyNzZ37EjfoIAuvy9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passive+fluid-induced+vibration+control+of+viscoelastic+cylinder+using+nonlinear+energy+sink&rft.jtitle=Marine+structures&rft.au=Nasrabadi%2C+Mohammadali&rft.au=Sevbitov%2C+Andrei+Vladimirovich&rft.au=Maleki%2C+Vahid+Arab&rft.au=Akbar%2C+Narges&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8339&rft.volume=81&rft_id=info:doi/10.1016%2Fj.marstruc.2021.103116&rft.externalDocID=S0951833921001684 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8339&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8339&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8339&client=summon |