Developing ORC engineering simulator (ORCES) to investigate the working fluid mass flow rate control strategy and simulate long-time operation

•Organic Rankine cycle engineering simulator is presented.•Two control strategies are proposed and compared.•Long-time operation test is examined under varying heat source and sink temperature.•Maximum electrical power and efficiency are 1.78 kW and 5.14%, respectively. Based on the experimental dat...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 203; p. 112206
Main Authors Pang, Kuo-Cheng, Hung, Tzu-Chen, He, Ya-Ling, Feng, Yong-Qiang, Lin, Chih-Hung, Wong, Kin-Wah
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Organic Rankine cycle engineering simulator is presented.•Two control strategies are proposed and compared.•Long-time operation test is examined under varying heat source and sink temperature.•Maximum electrical power and efficiency are 1.78 kW and 5.14%, respectively. Based on the experimental data of R245fa, R123 and their mixtures, the engineering simulator for a 3 kW organic Rankine cycle (ORC) test rig by 3KeyMASTER (3KM) simulation platform is constructed. The simulation behaviors of the pump and expander are examined and validated with the experimental results, while the effect of mass flow rate is addressed. Meanwhile, human machine interface (HMI) monitor system and superheat control system are developed. The system behaviors at three different control strategies are discussed, while a further investigation of long-time operation test under varying heat source temperature and environmental temperature is explored. Results demonstrated that an optimum operation condition could be obtained for the proposed superheat control strategy. The VFD control strategy is preferred for small-scale ORC. The superheat control methodology is a good approach to adjust the working mass flow rate to reflect the heat source and sink temperature variation. The best operation is 0.67R245fa/0.33R123 at environmental temperature of 293 K with the net power of 1.78 kW and system efficiency of 5.14%. It indicates that the organic Rankine cycle engineering simulator (ORCES) is a good tool to predict the ORC operation characteristic, which could further guide advanced evaluation and the long time-varying cases.
AbstractList Based on the experimental data of R245fa, R123 and their mixtures, the engineering simulator for a 3 kW organic Rankine cycle (ORC) test rig by 3KeyMASTER (3KM) simulation platform is constructed. The simulation behaviors of the pump and expander are examined and validated with the experimental results, while the effect of mass flow rate is addressed. Meanwhile, human machine interface (HMI) monitor system and superheat control system are developed. The system behaviors at three different control strategies are discussed, while a further investigation of long-time operation test under varying heat source temperature and environmental temperature is explored. Results demonstrated that an optimum operation condition could be obtained for the proposed superheat control strategy. The VFD control strategy is preferred for small-scale ORC. The superheat control methodology is a good approach to adjust the working mass flow rate to reflect the heat source and sink temperature variation. The best operation is 0.67R245fa/0.33R123 at environmental temperature of 293 K with the net power of 1.78 kW and system efficiency of 5.14%. It indicates that the organic Rankine cycle engineering simulator (ORCES) is a good tool to predict the ORC operation characteristic, which could further guide advanced evaluation and the long time-varying cases.
•Organic Rankine cycle engineering simulator is presented.•Two control strategies are proposed and compared.•Long-time operation test is examined under varying heat source and sink temperature.•Maximum electrical power and efficiency are 1.78 kW and 5.14%, respectively. Based on the experimental data of R245fa, R123 and their mixtures, the engineering simulator for a 3 kW organic Rankine cycle (ORC) test rig by 3KeyMASTER (3KM) simulation platform is constructed. The simulation behaviors of the pump and expander are examined and validated with the experimental results, while the effect of mass flow rate is addressed. Meanwhile, human machine interface (HMI) monitor system and superheat control system are developed. The system behaviors at three different control strategies are discussed, while a further investigation of long-time operation test under varying heat source temperature and environmental temperature is explored. Results demonstrated that an optimum operation condition could be obtained for the proposed superheat control strategy. The VFD control strategy is preferred for small-scale ORC. The superheat control methodology is a good approach to adjust the working mass flow rate to reflect the heat source and sink temperature variation. The best operation is 0.67R245fa/0.33R123 at environmental temperature of 293 K with the net power of 1.78 kW and system efficiency of 5.14%. It indicates that the organic Rankine cycle engineering simulator (ORCES) is a good tool to predict the ORC operation characteristic, which could further guide advanced evaluation and the long time-varying cases.
ArticleNumber 112206
Author Wong, Kin-Wah
Pang, Kuo-Cheng
He, Ya-Ling
Hung, Tzu-Chen
Feng, Yong-Qiang
Lin, Chih-Hung
Author_xml – sequence: 1
  givenname: Kuo-Cheng
  surname: Pang
  fullname: Pang, Kuo-Cheng
  organization: Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC
– sequence: 2
  givenname: Tzu-Chen
  surname: Hung
  fullname: Hung, Tzu-Chen
  email: tchung@ntut.edu.tw
  organization: Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC
– sequence: 3
  givenname: Ya-Ling
  surname: He
  fullname: He, Ya-Ling
  organization: School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
– sequence: 4
  givenname: Yong-Qiang
  surname: Feng
  fullname: Feng, Yong-Qiang
  email: hitfengyq@gmail.com
  organization: School of Energy and Power Engineering, Jiangsu University, Zhenjiang, China
– sequence: 5
  givenname: Chih-Hung
  surname: Lin
  fullname: Lin, Chih-Hung
  organization: Department of Refrigeration, Air Conditioning and Energy Engineering, National Chin-Yi University of Technology, Taipei, Taiwan, ROC
– sequence: 6
  givenname: Kin-Wah
  surname: Wong
  fullname: Wong, Kin-Wah
  organization: A-D Technology Inc., New Taipei, Taiwan, ROC
BookMark eNqFkMFOHDEMhiNEpS6UV6gicaGHWZxkNtm5tVqgICEhtXCOwsQzZJlJliS7iJfgmZvRljMn2_Ln3_Z_RA598EjIdwZzBkyer-fo2-BH4-ccWDNnjHOQB2TGlqqpOOfqkMxKQ1bLBuqv5CilNQCIBcgZeb_AHQ5h43xP7_6sKPreecQ41cmN28HkEOlZaV3-_UFzoM7vMGXXm4w0PyF9DfF5grth6ywdTUolDa80TkA5K8cw0JSnsn-jxtsPWaRD8H2V3Yg0bLAALvhv5EtnhoQn_-Mxebi6vF9dV7d3v29Wv26rVtSQK9k9Il8AF5wL2XRKCSsXXChoG8kXprONfZSsrdEYxRh0VigprGGgFJcGlDgmp3vdTQwv2_KQXodt9GWl5kKIpl7WHAol91QbQ0oRO72JbjTxTTPQk_d6rT-815P3eu99Gfy5H8Tyw85h1Kl1hUTrIrZZ2-A-k_gHggWTww
CitedBy_id crossref_primary_10_1016_j_enconman_2024_118573
crossref_primary_10_1007_s10973_023_12435_3
crossref_primary_10_1016_j_heliyon_2021_e07947
crossref_primary_10_1080_01430750_2021_1995489
crossref_primary_10_1016_j_energy_2021_119753
crossref_primary_10_1016_j_renene_2023_04_029
crossref_primary_10_1016_j_enconman_2020_113307
crossref_primary_10_1016_j_energy_2023_128652
crossref_primary_10_3390_mi12020218
crossref_primary_10_1016_j_enconman_2022_116169
crossref_primary_10_1016_j_rser_2021_111410
crossref_primary_10_1088_1742_6596_1909_1_012064
crossref_primary_10_1109_ACCESS_2021_3103067
crossref_primary_10_1016_j_enconman_2020_112773
crossref_primary_10_1016_j_energy_2021_122740
crossref_primary_10_1016_j_applthermaleng_2024_123236
crossref_primary_10_1016_j_energy_2020_118196
crossref_primary_10_1109_ACCESS_2022_3201653
Cites_doi 10.1016/j.energy.2009.11.025
10.1016/j.energy.2017.02.024
10.1016/j.applthermaleng.2007.07.019
10.1016/j.enconman.2019.02.055
10.1016/j.apenergy.2015.05.046
10.1016/j.apenergy.2015.05.118
10.1016/j.camwa.2012.01.054
10.1016/j.apenergy.2016.03.024
10.1016/j.applthermaleng.2012.08.013
10.1016/j.apenergy.2014.01.089
10.1016/j.enconman.2015.09.042
10.1016/j.applthermaleng.2016.01.158
10.1016/j.applthermaleng.2015.05.039
10.1016/j.apenergy.2011.01.015
10.1016/j.applthermaleng.2015.09.082
10.1016/j.applthermaleng.2014.10.044
10.1016/j.enconman.2014.04.026
10.1016/j.energy.2016.03.034
10.1016/S0360-5442(96)00165-X
10.1016/j.enconman.2016.12.042
10.1016/j.apenergy.2016.01.037
10.1016/j.enconman.2014.10.020
10.1016/j.energy.2018.02.047
10.1016/j.energy.2014.05.014
10.1016/j.enconman.2015.07.045
10.1016/j.apenergy.2015.04.095
10.1016/j.energy.2014.07.038
10.1016/j.energy.2017.05.128
10.1016/j.applthermaleng.2016.11.032
10.1016/j.applthermaleng.2014.10.065
10.1016/j.enconman.2017.04.026
10.1016/j.applthermaleng.2017.01.024
10.1016/j.applthermaleng.2016.01.167
10.1016/j.enconman.2016.11.004
10.1016/j.enconman.2017.04.048
10.1016/j.energy.2012.12.016
10.1115/1.4023120
10.1016/j.energy.2017.06.001
10.1016/j.energy.2015.01.075
10.1016/j.energy.2009.04.031
10.1016/S0196-8904(00)00081-9
10.1016/j.energy.2015.10.004
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier Science Ltd. Jan 1, 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jan 1, 2020
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
DOI 10.1016/j.enconman.2019.112206
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2019_112206
S0196890419312129
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFFNX
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
H~9
R2-
RIG
SAC
SEW
WUQ
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
ID FETCH-LOGICAL-c340t-6fbe2502322369f773d652370c9625afd9db61c4eaa7110fd3763da107726a073
IEDL.DBID AIKHN
ISSN 0196-8904
IngestDate Thu Oct 10 19:29:35 EDT 2024
Thu Sep 26 16:54:37 EDT 2024
Fri Feb 23 02:47:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Control strategy
Long-time operation test
Organic Rankine cycle (ORC)
VFD
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-6fbe2502322369f773d652370c9625afd9db61c4eaa7110fd3763da107726a073
PQID 2333948420
PQPubID 2047472
ParticipantIDs proquest_journals_2333948420
crossref_primary_10_1016_j_enconman_2019_112206
elsevier_sciencedirect_doi_10_1016_j_enconman_2019_112206
PublicationCentury 2000
PublicationDate 2020-01-01
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Eyerer, Wieland, Vandersickel, Spliethoff (b0110) 2016; 103
Habka, Ajib (b0065) 2015; 154
Hung, Shai, Wang (b0005) 1997; 22
Hung, Wang, Kuo, Pei, Tsai (b0015) 2010; 35
Dong, Xu, Cai, Li (b0055) 2014; 84
Mondejar, Ahlgren, Thern, Genrup (b0155) 2017; 185
Feng, Hung, Wu, Lin, Li, Huang (b0090) 2017; 131
Toffolo, Lazzaretto, Manente, Paci (b0030) 2014; 121
Li, Ge, Luo, Tassou (b0115) 2017; 115
Barse, Mann (b0140) 2016; 100
Zhang, Zhang, Hou (b0200) 2012; 64
Yang, Hung, Feng, Wu, Wong, Huang (b0095) 2017; 113
Kosmadakis, Manolakos, Papadakis (b0105) 2016; 92
Feng, Zhang, Li, Yang, Shi (b0040) 2015; 82
Miao, Xu, Yang, Zou (b0125) 2015; 75
Zhang, Deng, Zhao (b0210) 2019; 186
Jinliang, Yu (b0025) 2014; 74
Bracco, Clemente, Micheli, Reini (b0170) 2013; 58
NIST reference fluid thermodynamic and transport properties – REFPROP 8.0: NIST Standard Reference Database.
Han, Kang, Wang, Liu, Tian, Wang (b0180) 2015; 87
Chang, Hung, He, Zhang (b0120) 2015; 155
Badami, Mura (b0160) 2009; 34
Gao, Jiang, Wang, Wang, Song (b0145) 2015; 75
Song, Li, Gu, Zhang (b0045) 2014; 71
Wei, Lu, Lu (b0195) 2008; 28
GRUNDFOS multistage centrifugal pump data sheet-
Feng, Hung, Greg, Zhang, Li, Yang (b0035) 2015; 106
Lee, Park, Kim (b0050) 2016; 100
Wang, Tang, Wang, Feng (b0080) 2017; 143
Quoilin, Aumann, Grill, Schuster, Lemort, Spliethoff (b0150) 2011; 88
Ajimotokan, Sher (b0165) 2015; 154
Miao, Xu, Zhang (b0175) 2017; 134
Wang, Wang, Zhao, Zhao, Dai (b0070) 2013; 50
Pang, Chen, Hung, Feng, Yang, Wong (b0085) 2017; 133
.
Zhang, Shu, Tian, Wei, Liang (b0060) 2015; 89
Sun, Qin, Hung, Lin, Lin (b0130) 2018; 149
Yang, Xu, Miao, Zou, Qi (b0135) 2016; 167
Casella, Mathijssen, Colonna (b0205) 2013; 135
Hung (b0010) 2001; 42
Feng, Hung, He, Wang, Wang, Li (b0100) 2017; 144
Satanphol, Pridasawas, Suphanit (b0020) 2017; 123
Sun, Yue, Wang (b0075) 2017; 135
Glover, Douglas, Rosa, Zhang, Glover (b0190) 2015; 93
Muhammad, Imran, Lee, Park (b0185) 2015; 103
KeyMASTER simulation platform-
Sun (10.1016/j.enconman.2019.112206_b0075) 2017; 135
Jinliang (10.1016/j.enconman.2019.112206_b0025) 2014; 74
Han (10.1016/j.enconman.2019.112206_b0180) 2015; 87
10.1016/j.enconman.2019.112206_b0225
Miao (10.1016/j.enconman.2019.112206_b0125) 2015; 75
Satanphol (10.1016/j.enconman.2019.112206_b0020) 2017; 123
Wang (10.1016/j.enconman.2019.112206_b0080) 2017; 143
Chang (10.1016/j.enconman.2019.112206_b0120) 2015; 155
Hung (10.1016/j.enconman.2019.112206_b0010) 2001; 42
10.1016/j.enconman.2019.112206_b0220
Zhang (10.1016/j.enconman.2019.112206_b0060) 2015; 89
Song (10.1016/j.enconman.2019.112206_b0045) 2014; 71
Feng (10.1016/j.enconman.2019.112206_b0100) 2017; 144
Hung (10.1016/j.enconman.2019.112206_b0015) 2010; 35
Ajimotokan (10.1016/j.enconman.2019.112206_b0165) 2015; 154
Dong (10.1016/j.enconman.2019.112206_b0055) 2014; 84
Muhammad (10.1016/j.enconman.2019.112206_b0185) 2015; 103
Casella (10.1016/j.enconman.2019.112206_b0205) 2013; 135
Hung (10.1016/j.enconman.2019.112206_b0005) 1997; 22
Feng (10.1016/j.enconman.2019.112206_b0090) 2017; 131
Zhang (10.1016/j.enconman.2019.112206_b0210) 2019; 186
Eyerer (10.1016/j.enconman.2019.112206_b0110) 2016; 103
Quoilin (10.1016/j.enconman.2019.112206_b0150) 2011; 88
Mondejar (10.1016/j.enconman.2019.112206_b0155) 2017; 185
Zhang (10.1016/j.enconman.2019.112206_b0200) 2012; 64
Badami (10.1016/j.enconman.2019.112206_b0160) 2009; 34
Barse (10.1016/j.enconman.2019.112206_b0140) 2016; 100
Wei (10.1016/j.enconman.2019.112206_b0195) 2008; 28
Pang (10.1016/j.enconman.2019.112206_b0085) 2017; 133
Habka (10.1016/j.enconman.2019.112206_b0065) 2015; 154
Yang (10.1016/j.enconman.2019.112206_b0135) 2016; 167
10.1016/j.enconman.2019.112206_b0215
Feng (10.1016/j.enconman.2019.112206_b0040) 2015; 82
Glover (10.1016/j.enconman.2019.112206_b0190) 2015; 93
Lee (10.1016/j.enconman.2019.112206_b0050) 2016; 100
Feng (10.1016/j.enconman.2019.112206_b0035) 2015; 106
Wang (10.1016/j.enconman.2019.112206_b0070) 2013; 50
Li (10.1016/j.enconman.2019.112206_b0115) 2017; 115
Kosmadakis (10.1016/j.enconman.2019.112206_b0105) 2016; 92
Miao (10.1016/j.enconman.2019.112206_b0175) 2017; 134
Sun (10.1016/j.enconman.2019.112206_b0130) 2018; 149
Toffolo (10.1016/j.enconman.2019.112206_b0030) 2014; 121
Bracco (10.1016/j.enconman.2019.112206_b0170) 2013; 58
Yang (10.1016/j.enconman.2019.112206_b0095) 2017; 113
Gao (10.1016/j.enconman.2019.112206_b0145) 2015; 75
References_xml – volume: 71
  start-page: 673
  year: 2014
  end-page: 680
  ident: b0045
  article-title: Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry
  publication-title: Energy
  contributor:
    fullname: Zhang
– volume: 121
  start-page: 219
  year: 2014
  end-page: 232
  ident: b0030
  article-title: A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems
  publication-title: Appl Energy
  contributor:
    fullname: Paci
– volume: 58
  start-page: 107
  year: 2013
  end-page: 116
  ident: b0170
  article-title: Experimental tests and modelization of a domestic-scale ORC (Organic Rankine Cycle)
  publication-title: Energy
  contributor:
    fullname: Reini
– volume: 113
  start-page: 756
  year: 2017
  end-page: 764
  ident: b0095
  article-title: Experimental investigation on a 3 kW organic Rankine cycle for low grade waste heat under different operation parameters
  publication-title: Appl Therm Eng
  contributor:
    fullname: Huang
– volume: 133
  start-page: 636
  year: 2017
  end-page: 651
  ident: b0085
  article-title: Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat
  publication-title: Energy
  contributor:
    fullname: Wong
– volume: 93
  start-page: 1568
  year: 2015
  end-page: 1580
  ident: b0190
  article-title: Simulation of a multiple heat source supercritical ORC (Organic Rankine Cycle) for vehicle waste heat recovery
  publication-title: Energy
  contributor:
    fullname: Glover
– volume: 123
  start-page: 326
  year: 2017
  end-page: 339
  ident: b0020
  article-title: A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery
  publication-title: Energy
  contributor:
    fullname: Suphanit
– volume: 50
  start-page: 816
  year: 2013
  end-page: 825
  ident: b0070
  article-title: Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors
  publication-title: Appl Therm Eng
  contributor:
    fullname: Dai
– volume: 28
  start-page: 1216
  year: 2008
  end-page: 1224
  ident: b0195
  article-title: Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery
  publication-title: Appl Therm Eng
  contributor:
    fullname: Lu
– volume: 144
  start-page: 153
  year: 2017
  end-page: 163
  ident: b0100
  article-title: Operation characteristic and performance comparison of organic Rankine cycle (ORC) for low-grade waste heat using R245fa, R123 and their mixtures
  publication-title: Energy Convers Manage
  contributor:
    fullname: Li
– volume: 115
  start-page: 815
  year: 2017
  end-page: 824
  ident: b0115
  article-title: Experimental investigations into power generation with low grade waste heat and R245fa Organic Rankine Cycles (ORCs)
  publication-title: Applied Therm Eng
  contributor:
    fullname: Tassou
– volume: 100
  start-page: 680
  year: 2016
  end-page: 690
  ident: b0050
  article-title: Comparative analysis of thermodynamic performance and optimization of organic flash cycle (OFC) and organic Rankine cycle (ORC)
  publication-title: Appl Therm Eng
  contributor:
    fullname: Kim
– volume: 103
  start-page: 660
  year: 2016
  end-page: 671
  ident: b0110
  article-title: Experimental study of an ORC (Organic Rankine Cycle) and analysis of R1233zd-E as a drop-in replacement for R245fa for low temperature heat utilization
  publication-title: Energy
  contributor:
    fullname: Spliethoff
– volume: 135
  year: 2013
  ident: b0205
  article-title: Dynamic modeling of organic rankine cycle power systems
  publication-title: J Eng Gas Turbines Power
  contributor:
    fullname: Colonna
– volume: 155
  start-page: 150
  year: 2015
  end-page: 159
  ident: b0120
  article-title: Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander
  publication-title: Appl Energy
  contributor:
    fullname: Zhang
– volume: 84
  start-page: 253
  year: 2014
  end-page: 260
  ident: b0055
  article-title: Analysis of zeotropic mixtures used in high-temperature Organic Rankine cycle
  publication-title: Energy Convers Manage
  contributor:
    fullname: Li
– volume: 167
  start-page: 17
  year: 2016
  end-page: 33
  ident: b0135
  article-title: The definition of non-dimensional integration temperature difference and its effect on organic Rankine cycle
  publication-title: Appl Energy
  contributor:
    fullname: Qi
– volume: 74
  start-page: 719
  year: 2014
  end-page: 733
  ident: b0025
  article-title: Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles
  publication-title: Energy
  contributor:
    fullname: Yu
– volume: 89
  start-page: 541
  year: 2015
  end-page: 554
  ident: b0060
  article-title: Comparative study of alternative ORC-based combined power systems to exploit high temperature waste heat
  publication-title: Energy Convers Manage
  contributor:
    fullname: Liang
– volume: 64
  start-page: 908
  year: 2012
  end-page: 921
  ident: b0200
  article-title: Dynamic modeling and multivariable control of organic Rankine cycles in waste heat utilizing processes
  publication-title: Comput Math Appl
  contributor:
    fullname: Hou
– volume: 87
  start-page: 481
  year: 2015
  end-page: 490
  ident: b0180
  article-title: Modelling and simulation analysis of an ORC-FPC waste heat recovery system for the stationary CNG-fuelled compressor
  publication-title: Appl Therm Eng
  contributor:
    fullname: Wang
– volume: 131
  start-page: 55
  year: 2017
  end-page: 68
  ident: b0090
  article-title: Operation characteristic of a R123-based organic Rankine cycle depending on working fluid mass flow rates and heat source temperatures
  publication-title: Energy Convers Manage
  contributor:
    fullname: Huang
– volume: 75
  start-page: 880
  year: 2015
  end-page: 888
  ident: b0145
  article-title: Simulation and experiments on an ORC system with different scroll expanders based on energy and exergy analysis
  publication-title: Appl Therm Eng
  contributor:
    fullname: Song
– volume: 35
  start-page: 1403
  year: 2010
  end-page: 1411
  ident: b0015
  article-title: A study of organic working fluids on system efficiency of an ORC using low-grade energy sources
  publication-title: Energy
  contributor:
    fullname: Tsai
– volume: 88
  start-page: 2183
  year: 2011
  end-page: 2190
  ident: b0150
  article-title: Dynamic modeling and optimal control strategy of waste heat recovery organic rankine cycles
  publication-title: Appl Energy
  contributor:
    fullname: Spliethoff
– volume: 143
  start-page: 482
  year: 2017
  end-page: 492
  ident: b0080
  article-title: Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery
  publication-title: Energy Convers Manage
  contributor:
    fullname: Feng
– volume: 149
  start-page: 566
  year: 2018
  end-page: 576
  ident: b0130
  article-title: Performance comparison of organic Rankine cycle with expansion from superheated zone or two-phase zone based on temperature utilization rate of heat source
  publication-title: Energy
  contributor:
    fullname: Lin
– volume: 134
  start-page: 35
  year: 2017
  end-page: 49
  ident: b0175
  article-title: Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander
  publication-title: Energy
  contributor:
    fullname: Zhang
– volume: 103
  start-page: 1089
  year: 2015
  end-page: 1100
  ident: b0185
  article-title: Design and experimental investigation of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam
  publication-title: Energy Convers Manage
  contributor:
    fullname: Park
– volume: 92
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0105
  article-title: Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions
  publication-title: Appl Therm Eng
  contributor:
    fullname: Papadakis
– volume: 42
  start-page: 539
  year: 2001
  end-page: 543
  ident: b0010
  article-title: Waste heat recovery of organic Rankine cycle using dry fluids
  publication-title: Energy Convers Manage
  contributor:
    fullname: Hung
– volume: 82
  start-page: 664
  year: 2015
  end-page: 667
  ident: b0040
  article-title: Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery
  publication-title: Energy
  contributor:
    fullname: Shi
– volume: 186
  start-page: 349
  year: 2019
  end-page: 367
  ident: b0210
  article-title: Dynamic test and verification of model-guided ORC system
  publication-title: Energy Convers Manage
  contributor:
    fullname: Zhao
– volume: 106
  start-page: 859
  year: 2015
  end-page: 872
  ident: b0035
  article-title: Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery
  publication-title: Energy Convers Manage
  contributor:
    fullname: Yang
– volume: 154
  start-page: 567
  year: 2015
  end-page: 576
  ident: b0065
  article-title: Evaluation of mixtures performances in Organic Rankine Cycle when utilizing the geothermal water with and without cogeneration
  publication-title: Appl Energy
  contributor:
    fullname: Ajib
– volume: 135
  start-page: 63
  year: 2017
  end-page: 73
  ident: b0075
  article-title: Exergy efficiency analysis of ORC (Organic Rankine Cycle) and ORC based combined cycles driven by low-temperature waste heat
  publication-title: Energy Convers Manage
  contributor:
    fullname: Wang
– volume: 75
  start-page: 1065
  year: 2015
  end-page: 1075
  ident: b0125
  article-title: Operation and performance of a low temperature organic Rankine cycle
  publication-title: Appl Therm Eng
  contributor:
    fullname: Zou
– volume: 185
  start-page: 1324
  year: 2017
  end-page: 1335
  ident: b0155
  article-title: Quasi-steady state simulation of an organic Rankine cycle for waste heat recovery in a passenger vessel
  publication-title: Appl Energy
  contributor:
    fullname: Genrup
– volume: 154
  start-page: 26
  year: 2015
  end-page: 34
  ident: b0165
  article-title: Thermodynamic performance simulation and design optimisation of trilateral-cycle engines for waste heat recovery-to-power generation
  publication-title: Appl Energy
  contributor:
    fullname: Sher
– volume: 100
  start-page: 11
  year: 2016
  end-page: 19
  ident: b0140
  article-title: Maximizing ORC performance with optimal match of working fluid with system design
  publication-title: Appl Therm Eng
  contributor:
    fullname: Mann
– volume: 22
  start-page: 661
  year: 1997
  end-page: 667
  ident: b0005
  article-title: A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat
  publication-title: Energy
  contributor:
    fullname: Wang
– volume: 34
  start-page: 1315
  year: 2009
  end-page: 1324
  ident: b0160
  article-title: Preliminary design and controlling strategies of a small-scale wood waste Rankine Cycle (RC) with a reciprocating steam engine (SE)
  publication-title: Energy
  contributor:
    fullname: Mura
– volume: 35
  start-page: 1403
  year: 2010
  ident: 10.1016/j.enconman.2019.112206_b0015
  article-title: A study of organic working fluids on system efficiency of an ORC using low-grade energy sources
  publication-title: Energy
  doi: 10.1016/j.energy.2009.11.025
  contributor:
    fullname: Hung
– volume: 123
  start-page: 326
  year: 2017
  ident: 10.1016/j.enconman.2019.112206_b0020
  article-title: A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.024
  contributor:
    fullname: Satanphol
– volume: 28
  start-page: 1216
  issue: 10
  year: 2008
  ident: 10.1016/j.enconman.2019.112206_b0195
  article-title: Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2007.07.019
  contributor:
    fullname: Wei
– volume: 186
  start-page: 349
  year: 2019
  ident: 10.1016/j.enconman.2019.112206_b0210
  article-title: Dynamic test and verification of model-guided ORC system
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.02.055
  contributor:
    fullname: Zhang
– volume: 154
  start-page: 567
  year: 2015
  ident: 10.1016/j.enconman.2019.112206_b0065
  article-title: Evaluation of mixtures performances in Organic Rankine Cycle when utilizing the geothermal water with and without cogeneration
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.05.046
  contributor:
    fullname: Habka
– volume: 155
  start-page: 150
  year: 2015
  ident: 10.1016/j.enconman.2019.112206_b0120
  article-title: Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.05.118
  contributor:
    fullname: Chang
– volume: 64
  start-page: 908
  issue: 5
  year: 2012
  ident: 10.1016/j.enconman.2019.112206_b0200
  article-title: Dynamic modeling and multivariable control of organic Rankine cycles in waste heat utilizing processes
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2012.01.054
  contributor:
    fullname: Zhang
– volume: 185
  start-page: 1324
  year: 2017
  ident: 10.1016/j.enconman.2019.112206_b0155
  article-title: Quasi-steady state simulation of an organic Rankine cycle for waste heat recovery in a passenger vessel
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.024
  contributor:
    fullname: Mondejar
– volume: 50
  start-page: 816
  year: 2013
  ident: 10.1016/j.enconman.2019.112206_b0070
  article-title: Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2012.08.013
  contributor:
    fullname: Wang
– volume: 121
  start-page: 219
  year: 2014
  ident: 10.1016/j.enconman.2019.112206_b0030
  article-title: A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.01.089
  contributor:
    fullname: Toffolo
– volume: 106
  start-page: 859
  year: 2015
  ident: 10.1016/j.enconman.2019.112206_b0035
  article-title: Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.09.042
  contributor:
    fullname: Feng
– volume: 100
  start-page: 680
  year: 2016
  ident: 10.1016/j.enconman.2019.112206_b0050
  article-title: Comparative analysis of thermodynamic performance and optimization of organic flash cycle (OFC) and organic Rankine cycle (ORC)
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.01.158
  contributor:
    fullname: Lee
– volume: 87
  start-page: 481
  year: 2015
  ident: 10.1016/j.enconman.2019.112206_b0180
  article-title: Modelling and simulation analysis of an ORC-FPC waste heat recovery system for the stationary CNG-fuelled compressor
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.05.039
  contributor:
    fullname: Han
– volume: 88
  start-page: 2183
  year: 2011
  ident: 10.1016/j.enconman.2019.112206_b0150
  article-title: Dynamic modeling and optimal control strategy of waste heat recovery organic rankine cycles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.01.015
  contributor:
    fullname: Quoilin
– volume: 92
  start-page: 1
  year: 2016
  ident: 10.1016/j.enconman.2019.112206_b0105
  article-title: Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.09.082
  contributor:
    fullname: Kosmadakis
– volume: 75
  start-page: 880
  year: 2015
  ident: 10.1016/j.enconman.2019.112206_b0145
  article-title: Simulation and experiments on an ORC system with different scroll expanders based on energy and exergy analysis
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2014.10.044
  contributor:
    fullname: Gao
– volume: 84
  start-page: 253
  year: 2014
  ident: 10.1016/j.enconman.2019.112206_b0055
  article-title: Analysis of zeotropic mixtures used in high-temperature Organic Rankine cycle
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.04.026
  contributor:
    fullname: Dong
– volume: 103
  start-page: 660
  year: 2016
  ident: 10.1016/j.enconman.2019.112206_b0110
  article-title: Experimental study of an ORC (Organic Rankine Cycle) and analysis of R1233zd-E as a drop-in replacement for R245fa for low temperature heat utilization
  publication-title: Energy
  doi: 10.1016/j.energy.2016.03.034
  contributor:
    fullname: Eyerer
– ident: 10.1016/j.enconman.2019.112206_b0220
– volume: 22
  start-page: 661
  year: 1997
  ident: 10.1016/j.enconman.2019.112206_b0005
  article-title: A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat
  publication-title: Energy
  doi: 10.1016/S0360-5442(96)00165-X
  contributor:
    fullname: Hung
– volume: 135
  start-page: 63
  year: 2017
  ident: 10.1016/j.enconman.2019.112206_b0075
  article-title: Exergy efficiency analysis of ORC (Organic Rankine Cycle) and ORC based combined cycles driven by low-temperature waste heat
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.12.042
  contributor:
    fullname: Sun
– volume: 167
  start-page: 17
  year: 2016
  ident: 10.1016/j.enconman.2019.112206_b0135
  article-title: The definition of non-dimensional integration temperature difference and its effect on organic Rankine cycle
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.01.037
  contributor:
    fullname: Yang
– volume: 89
  start-page: 541
  year: 2015
  ident: 10.1016/j.enconman.2019.112206_b0060
  article-title: Comparative study of alternative ORC-based combined power systems to exploit high temperature waste heat
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.10.020
  contributor:
    fullname: Zhang
– volume: 149
  start-page: 566
  year: 2018
  ident: 10.1016/j.enconman.2019.112206_b0130
  article-title: Performance comparison of organic Rankine cycle with expansion from superheated zone or two-phase zone based on temperature utilization rate of heat source
  publication-title: Energy
  doi: 10.1016/j.energy.2018.02.047
  contributor:
    fullname: Sun
– volume: 71
  start-page: 673
  year: 2014
  ident: 10.1016/j.enconman.2019.112206_b0045
  article-title: Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.014
  contributor:
    fullname: Song
– volume: 103
  start-page: 1089
  year: 2015
  ident: 10.1016/j.enconman.2019.112206_b0185
  article-title: Design and experimental investigation of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.07.045
  contributor:
    fullname: Muhammad
– volume: 154
  start-page: 26
  year: 2015
  ident: 10.1016/j.enconman.2019.112206_b0165
  article-title: Thermodynamic performance simulation and design optimisation of trilateral-cycle engines for waste heat recovery-to-power generation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.04.095
  contributor:
    fullname: Ajimotokan
– ident: 10.1016/j.enconman.2019.112206_b0215
– volume: 74
  start-page: 719
  year: 2014
  ident: 10.1016/j.enconman.2019.112206_b0025
  article-title: Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.038
  contributor:
    fullname: Jinliang
– volume: 133
  start-page: 636
  year: 2017
  ident: 10.1016/j.enconman.2019.112206_b0085
  article-title: Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.128
  contributor:
    fullname: Pang
– volume: 113
  start-page: 756
  year: 2017
  ident: 10.1016/j.enconman.2019.112206_b0095
  article-title: Experimental investigation on a 3 kW organic Rankine cycle for low grade waste heat under different operation parameters
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.11.032
  contributor:
    fullname: Yang
– volume: 75
  start-page: 1065
  year: 2015
  ident: 10.1016/j.enconman.2019.112206_b0125
  article-title: Operation and performance of a low temperature organic Rankine cycle
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2014.10.065
  contributor:
    fullname: Miao
– volume: 143
  start-page: 482
  year: 2017
  ident: 10.1016/j.enconman.2019.112206_b0080
  article-title: Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.04.026
  contributor:
    fullname: Wang
– volume: 115
  start-page: 815
  year: 2017
  ident: 10.1016/j.enconman.2019.112206_b0115
  article-title: Experimental investigations into power generation with low grade waste heat and R245fa Organic Rankine Cycles (ORCs)
  publication-title: Applied Therm Eng
  doi: 10.1016/j.applthermaleng.2017.01.024
  contributor:
    fullname: Li
– volume: 100
  start-page: 11
  year: 2016
  ident: 10.1016/j.enconman.2019.112206_b0140
  article-title: Maximizing ORC performance with optimal match of working fluid with system design
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.01.167
  contributor:
    fullname: Barse
– ident: 10.1016/j.enconman.2019.112206_b0225
– volume: 131
  start-page: 55
  year: 2017
  ident: 10.1016/j.enconman.2019.112206_b0090
  article-title: Operation characteristic of a R123-based organic Rankine cycle depending on working fluid mass flow rates and heat source temperatures
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.11.004
  contributor:
    fullname: Feng
– volume: 144
  start-page: 153
  year: 2017
  ident: 10.1016/j.enconman.2019.112206_b0100
  article-title: Operation characteristic and performance comparison of organic Rankine cycle (ORC) for low-grade waste heat using R245fa, R123 and their mixtures
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.04.048
  contributor:
    fullname: Feng
– volume: 58
  start-page: 107
  year: 2013
  ident: 10.1016/j.enconman.2019.112206_b0170
  article-title: Experimental tests and modelization of a domestic-scale ORC (Organic Rankine Cycle)
  publication-title: Energy
  doi: 10.1016/j.energy.2012.12.016
  contributor:
    fullname: Bracco
– volume: 135
  issue: 4
  year: 2013
  ident: 10.1016/j.enconman.2019.112206_b0205
  article-title: Dynamic modeling of organic rankine cycle power systems
  publication-title: J Eng Gas Turbines Power
  doi: 10.1115/1.4023120
  contributor:
    fullname: Casella
– volume: 134
  start-page: 35
  year: 2017
  ident: 10.1016/j.enconman.2019.112206_b0175
  article-title: Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.001
  contributor:
    fullname: Miao
– volume: 82
  start-page: 664
  year: 2015
  ident: 10.1016/j.enconman.2019.112206_b0040
  article-title: Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.075
  contributor:
    fullname: Feng
– volume: 34
  start-page: 1315
  year: 2009
  ident: 10.1016/j.enconman.2019.112206_b0160
  article-title: Preliminary design and controlling strategies of a small-scale wood waste Rankine Cycle (RC) with a reciprocating steam engine (SE)
  publication-title: Energy
  doi: 10.1016/j.energy.2009.04.031
  contributor:
    fullname: Badami
– volume: 42
  start-page: 539
  year: 2001
  ident: 10.1016/j.enconman.2019.112206_b0010
  article-title: Waste heat recovery of organic Rankine cycle using dry fluids
  publication-title: Energy Convers Manage
  doi: 10.1016/S0196-8904(00)00081-9
  contributor:
    fullname: Hung
– volume: 93
  start-page: 1568
  year: 2015
  ident: 10.1016/j.enconman.2019.112206_b0190
  article-title: Simulation of a multiple heat source supercritical ORC (Organic Rankine Cycle) for vehicle waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.004
  contributor:
    fullname: Glover
SSID ssj0003506
Score 2.4455724
Snippet •Organic Rankine cycle engineering simulator is presented.•Two control strategies are proposed and compared.•Long-time operation test is examined under varying...
Based on the experimental data of R245fa, R123 and their mixtures, the engineering simulator for a 3 kW organic Rankine cycle (ORC) test rig by 3KeyMASTER...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 112206
SubjectTerms Control strategy
Control systems
Engineering
Flow control
Flow rates
Fluid flow
Heat recovery
Long-time operation test
Man-machine interfaces
Mass flow rate
Organic Rankine cycle (ORC)
Rankine cycle
Simulation
Strategy
Temperature
VFD
Working fluids
Title Developing ORC engineering simulator (ORCES) to investigate the working fluid mass flow rate control strategy and simulate long-time operation
URI https://dx.doi.org/10.1016/j.enconman.2019.112206
https://www.proquest.com/docview/2333948420
Volume 203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BcqEH1PJQgS2aAwc4hE1i5-Ej2oK2IEDiIXGznNhGQWyyYheteulP6G_uOI8tRZU4cIvi2Io89udvbM83APu5n-k4yoUnLNce1wnNOcZTz9icaUtTMzbOUby4jEd3_Ow-ul-CYRcL465VttjfYHqN1u2bQdubg0lRDG6csksqfE4UJCAAFsuwUh8S9WDl-Mf56HIByCyqU2y67z1X4VWg8OORk4ssx8pJoQbCBdSELvnR_9eoN2hdL0Gnn2Gt5Y543PzeF1gy5Tp8eqUouAG_vy-CoPDqeojmbyFOi7HL1VU94wEVndwc4qzCYqGzYZC4IM6bzXO0Ty-FxjFRa3qs5ugUJbC9147TRtL2J6pSd80afKrKB8_lqsdqYpqBtQl3pye3w5HXplzwcsb9mRfbzBApIpoVsljYJGFkyZAlfi7IUVJWC53FQc6NUgkRB6sdPmlFPmQSxorgYgt6ZVWar4CRYkpZMkikIq7yJFUiYIoxmxiT2jTbhkHXyXLSKGvI7srZo-zMIp1ZZGOWbRCdLeQ_Y0QS_L9bt98ZT7azdCpDxpjgKQ_9nQ80vQuroXPC632ZPvRmzy_mGzGVWbYHy0e_gr12PP4BO5fqVw
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgHIADYhVLgTlwgENoGjuLj6i0KrvEInGznNhGQTSpaBHiwifwzYyzsAmJA7codqzIM35-tmbeELKTuLEK_IQ73DDlMBXimqMscrRJqDK4NANtD4pn50H_hh3f-rcTpFPnwtiwygr7S0wv0Lp606pmszVM09aVVXaJuMuQgrQRgPkkmWJWPwudev_1M86D-kWBTdvbsd2_pAnf71uxyGwgrRBqm9t0Gs-WPvp9h_qB1cUG1JsncxVzhIPy5xbIhM4WyewXPcEl8nb4kQIFF5cd0J-NMEoHtlJX_gi72NS92oNxDumHyoYGZILwXF6dg3l4ShUMkFjjY_4MVk8Cqqh2GJWCti8gM1UPq-Ehz-4cW6ke8qEu3WqZ3PS6152-UxVccBLK3LETmFgjJUKS5dGAmzCkaEePhm7C8ZgkjeIqDtoJ01KGSBuMsuikJJ4gQy-QCBYrpJHlmV4l4EsqpcEd0pc-k0kYSd6mklITah2ZKF4jrXqSxbDU1RB1wNm9qM0irFlEaZY1wmtbiG8eIhD8__y2WRtPVGt0JDxKKWcR89z1fwy9Tab712en4vTo_GSDzHj2OF7c0DRJY_z4pDeRs4zjrcIn3wF1p-s5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+ORC+engineering+simulator+%28ORCES%29+to+investigate+the+working+fluid+mass+flow+rate+control+strategy+and+simulate+long-time+operation&rft.jtitle=Energy+conversion+and+management&rft.au=Pang%2C+Kuo-Cheng&rft.au=Hung%2C+Tzu-Chen&rft.au=He%2C+Ya-Ling&rft.au=Feng%2C+Yong-Qiang&rft.date=2020-01-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=203&rft.spage=1&rft_id=info:doi/10.1016%2Fj.enconman.2019.112206&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon