Developing ORC engineering simulator (ORCES) to investigate the working fluid mass flow rate control strategy and simulate long-time operation
•Organic Rankine cycle engineering simulator is presented.•Two control strategies are proposed and compared.•Long-time operation test is examined under varying heat source and sink temperature.•Maximum electrical power and efficiency are 1.78 kW and 5.14%, respectively. Based on the experimental dat...
Saved in:
Published in | Energy conversion and management Vol. 203; p. 112206 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.01.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Organic Rankine cycle engineering simulator is presented.•Two control strategies are proposed and compared.•Long-time operation test is examined under varying heat source and sink temperature.•Maximum electrical power and efficiency are 1.78 kW and 5.14%, respectively.
Based on the experimental data of R245fa, R123 and their mixtures, the engineering simulator for a 3 kW organic Rankine cycle (ORC) test rig by 3KeyMASTER (3KM) simulation platform is constructed. The simulation behaviors of the pump and expander are examined and validated with the experimental results, while the effect of mass flow rate is addressed. Meanwhile, human machine interface (HMI) monitor system and superheat control system are developed. The system behaviors at three different control strategies are discussed, while a further investigation of long-time operation test under varying heat source temperature and environmental temperature is explored. Results demonstrated that an optimum operation condition could be obtained for the proposed superheat control strategy. The VFD control strategy is preferred for small-scale ORC. The superheat control methodology is a good approach to adjust the working mass flow rate to reflect the heat source and sink temperature variation. The best operation is 0.67R245fa/0.33R123 at environmental temperature of 293 K with the net power of 1.78 kW and system efficiency of 5.14%. It indicates that the organic Rankine cycle engineering simulator (ORCES) is a good tool to predict the ORC operation characteristic, which could further guide advanced evaluation and the long time-varying cases. |
---|---|
AbstractList | Based on the experimental data of R245fa, R123 and their mixtures, the engineering simulator for a 3 kW organic Rankine cycle (ORC) test rig by 3KeyMASTER (3KM) simulation platform is constructed. The simulation behaviors of the pump and expander are examined and validated with the experimental results, while the effect of mass flow rate is addressed. Meanwhile, human machine interface (HMI) monitor system and superheat control system are developed. The system behaviors at three different control strategies are discussed, while a further investigation of long-time operation test under varying heat source temperature and environmental temperature is explored. Results demonstrated that an optimum operation condition could be obtained for the proposed superheat control strategy. The VFD control strategy is preferred for small-scale ORC. The superheat control methodology is a good approach to adjust the working mass flow rate to reflect the heat source and sink temperature variation. The best operation is 0.67R245fa/0.33R123 at environmental temperature of 293 K with the net power of 1.78 kW and system efficiency of 5.14%. It indicates that the organic Rankine cycle engineering simulator (ORCES) is a good tool to predict the ORC operation characteristic, which could further guide advanced evaluation and the long time-varying cases. •Organic Rankine cycle engineering simulator is presented.•Two control strategies are proposed and compared.•Long-time operation test is examined under varying heat source and sink temperature.•Maximum electrical power and efficiency are 1.78 kW and 5.14%, respectively. Based on the experimental data of R245fa, R123 and their mixtures, the engineering simulator for a 3 kW organic Rankine cycle (ORC) test rig by 3KeyMASTER (3KM) simulation platform is constructed. The simulation behaviors of the pump and expander are examined and validated with the experimental results, while the effect of mass flow rate is addressed. Meanwhile, human machine interface (HMI) monitor system and superheat control system are developed. The system behaviors at three different control strategies are discussed, while a further investigation of long-time operation test under varying heat source temperature and environmental temperature is explored. Results demonstrated that an optimum operation condition could be obtained for the proposed superheat control strategy. The VFD control strategy is preferred for small-scale ORC. The superheat control methodology is a good approach to adjust the working mass flow rate to reflect the heat source and sink temperature variation. The best operation is 0.67R245fa/0.33R123 at environmental temperature of 293 K with the net power of 1.78 kW and system efficiency of 5.14%. It indicates that the organic Rankine cycle engineering simulator (ORCES) is a good tool to predict the ORC operation characteristic, which could further guide advanced evaluation and the long time-varying cases. |
ArticleNumber | 112206 |
Author | Wong, Kin-Wah Pang, Kuo-Cheng He, Ya-Ling Hung, Tzu-Chen Feng, Yong-Qiang Lin, Chih-Hung |
Author_xml | – sequence: 1 givenname: Kuo-Cheng surname: Pang fullname: Pang, Kuo-Cheng organization: Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC – sequence: 2 givenname: Tzu-Chen surname: Hung fullname: Hung, Tzu-Chen email: tchung@ntut.edu.tw organization: Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC – sequence: 3 givenname: Ya-Ling surname: He fullname: He, Ya-Ling organization: School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China – sequence: 4 givenname: Yong-Qiang surname: Feng fullname: Feng, Yong-Qiang email: hitfengyq@gmail.com organization: School of Energy and Power Engineering, Jiangsu University, Zhenjiang, China – sequence: 5 givenname: Chih-Hung surname: Lin fullname: Lin, Chih-Hung organization: Department of Refrigeration, Air Conditioning and Energy Engineering, National Chin-Yi University of Technology, Taipei, Taiwan, ROC – sequence: 6 givenname: Kin-Wah surname: Wong fullname: Wong, Kin-Wah organization: A-D Technology Inc., New Taipei, Taiwan, ROC |
BookMark | eNqFkMFOHDEMhiNEpS6UV6gicaGHWZxkNtm5tVqgICEhtXCOwsQzZJlJliS7iJfgmZvRljMn2_Ln3_Z_RA598EjIdwZzBkyer-fo2-BH4-ccWDNnjHOQB2TGlqqpOOfqkMxKQ1bLBuqv5CilNQCIBcgZeb_AHQ5h43xP7_6sKPreecQ41cmN28HkEOlZaV3-_UFzoM7vMGXXm4w0PyF9DfF5grth6ywdTUolDa80TkA5K8cw0JSnsn-jxtsPWaRD8H2V3Yg0bLAALvhv5EtnhoQn_-Mxebi6vF9dV7d3v29Wv26rVtSQK9k9Il8AF5wL2XRKCSsXXChoG8kXprONfZSsrdEYxRh0VigprGGgFJcGlDgmp3vdTQwv2_KQXodt9GWl5kKIpl7WHAol91QbQ0oRO72JbjTxTTPQk_d6rT-815P3eu99Gfy5H8Tyw85h1Kl1hUTrIrZZ2-A-k_gHggWTww |
CitedBy_id | crossref_primary_10_1016_j_enconman_2024_118573 crossref_primary_10_1007_s10973_023_12435_3 crossref_primary_10_1016_j_heliyon_2021_e07947 crossref_primary_10_1080_01430750_2021_1995489 crossref_primary_10_1016_j_energy_2021_119753 crossref_primary_10_1016_j_renene_2023_04_029 crossref_primary_10_1016_j_enconman_2020_113307 crossref_primary_10_1016_j_energy_2023_128652 crossref_primary_10_3390_mi12020218 crossref_primary_10_1016_j_enconman_2022_116169 crossref_primary_10_1016_j_rser_2021_111410 crossref_primary_10_1088_1742_6596_1909_1_012064 crossref_primary_10_1109_ACCESS_2021_3103067 crossref_primary_10_1016_j_enconman_2020_112773 crossref_primary_10_1016_j_energy_2021_122740 crossref_primary_10_1016_j_applthermaleng_2024_123236 crossref_primary_10_1016_j_energy_2020_118196 crossref_primary_10_1109_ACCESS_2022_3201653 |
Cites_doi | 10.1016/j.energy.2009.11.025 10.1016/j.energy.2017.02.024 10.1016/j.applthermaleng.2007.07.019 10.1016/j.enconman.2019.02.055 10.1016/j.apenergy.2015.05.046 10.1016/j.apenergy.2015.05.118 10.1016/j.camwa.2012.01.054 10.1016/j.apenergy.2016.03.024 10.1016/j.applthermaleng.2012.08.013 10.1016/j.apenergy.2014.01.089 10.1016/j.enconman.2015.09.042 10.1016/j.applthermaleng.2016.01.158 10.1016/j.applthermaleng.2015.05.039 10.1016/j.apenergy.2011.01.015 10.1016/j.applthermaleng.2015.09.082 10.1016/j.applthermaleng.2014.10.044 10.1016/j.enconman.2014.04.026 10.1016/j.energy.2016.03.034 10.1016/S0360-5442(96)00165-X 10.1016/j.enconman.2016.12.042 10.1016/j.apenergy.2016.01.037 10.1016/j.enconman.2014.10.020 10.1016/j.energy.2018.02.047 10.1016/j.energy.2014.05.014 10.1016/j.enconman.2015.07.045 10.1016/j.apenergy.2015.04.095 10.1016/j.energy.2014.07.038 10.1016/j.energy.2017.05.128 10.1016/j.applthermaleng.2016.11.032 10.1016/j.applthermaleng.2014.10.065 10.1016/j.enconman.2017.04.026 10.1016/j.applthermaleng.2017.01.024 10.1016/j.applthermaleng.2016.01.167 10.1016/j.enconman.2016.11.004 10.1016/j.enconman.2017.04.048 10.1016/j.energy.2012.12.016 10.1115/1.4023120 10.1016/j.energy.2017.06.001 10.1016/j.energy.2015.01.075 10.1016/j.energy.2009.04.031 10.1016/S0196-8904(00)00081-9 10.1016/j.energy.2015.10.004 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier Science Ltd. Jan 1, 2020 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jan 1, 2020 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI |
DOI | 10.1016/j.enconman.2019.112206 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2227 |
ExternalDocumentID | 10_1016_j_enconman_2019_112206 S0196890419312129 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFFNX AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 G8K HVGLF HZ~ H~9 R2- RIG SAC SEW WUQ 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI |
ID | FETCH-LOGICAL-c340t-6fbe2502322369f773d652370c9625afd9db61c4eaa7110fd3763da107726a073 |
IEDL.DBID | AIKHN |
ISSN | 0196-8904 |
IngestDate | Thu Oct 10 19:29:35 EDT 2024 Thu Sep 26 16:54:37 EDT 2024 Fri Feb 23 02:47:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Control strategy Long-time operation test Organic Rankine cycle (ORC) VFD |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-6fbe2502322369f773d652370c9625afd9db61c4eaa7110fd3763da107726a073 |
PQID | 2333948420 |
PQPubID | 2047472 |
ParticipantIDs | proquest_journals_2333948420 crossref_primary_10_1016_j_enconman_2019_112206 elsevier_sciencedirect_doi_10_1016_j_enconman_2019_112206 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy conversion and management |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Eyerer, Wieland, Vandersickel, Spliethoff (b0110) 2016; 103 Habka, Ajib (b0065) 2015; 154 Hung, Shai, Wang (b0005) 1997; 22 Hung, Wang, Kuo, Pei, Tsai (b0015) 2010; 35 Dong, Xu, Cai, Li (b0055) 2014; 84 Mondejar, Ahlgren, Thern, Genrup (b0155) 2017; 185 Feng, Hung, Wu, Lin, Li, Huang (b0090) 2017; 131 Toffolo, Lazzaretto, Manente, Paci (b0030) 2014; 121 Li, Ge, Luo, Tassou (b0115) 2017; 115 Barse, Mann (b0140) 2016; 100 Zhang, Zhang, Hou (b0200) 2012; 64 Yang, Hung, Feng, Wu, Wong, Huang (b0095) 2017; 113 Kosmadakis, Manolakos, Papadakis (b0105) 2016; 92 Feng, Zhang, Li, Yang, Shi (b0040) 2015; 82 Miao, Xu, Yang, Zou (b0125) 2015; 75 Zhang, Deng, Zhao (b0210) 2019; 186 Jinliang, Yu (b0025) 2014; 74 Bracco, Clemente, Micheli, Reini (b0170) 2013; 58 NIST reference fluid thermodynamic and transport properties – REFPROP 8.0: NIST Standard Reference Database. Han, Kang, Wang, Liu, Tian, Wang (b0180) 2015; 87 Chang, Hung, He, Zhang (b0120) 2015; 155 Badami, Mura (b0160) 2009; 34 Gao, Jiang, Wang, Wang, Song (b0145) 2015; 75 Song, Li, Gu, Zhang (b0045) 2014; 71 Wei, Lu, Lu (b0195) 2008; 28 GRUNDFOS multistage centrifugal pump data sheet- Feng, Hung, Greg, Zhang, Li, Yang (b0035) 2015; 106 Lee, Park, Kim (b0050) 2016; 100 Wang, Tang, Wang, Feng (b0080) 2017; 143 Quoilin, Aumann, Grill, Schuster, Lemort, Spliethoff (b0150) 2011; 88 Ajimotokan, Sher (b0165) 2015; 154 Miao, Xu, Zhang (b0175) 2017; 134 Wang, Wang, Zhao, Zhao, Dai (b0070) 2013; 50 Pang, Chen, Hung, Feng, Yang, Wong (b0085) 2017; 133 . Zhang, Shu, Tian, Wei, Liang (b0060) 2015; 89 Sun, Qin, Hung, Lin, Lin (b0130) 2018; 149 Yang, Xu, Miao, Zou, Qi (b0135) 2016; 167 Casella, Mathijssen, Colonna (b0205) 2013; 135 Hung (b0010) 2001; 42 Feng, Hung, He, Wang, Wang, Li (b0100) 2017; 144 Satanphol, Pridasawas, Suphanit (b0020) 2017; 123 Sun, Yue, Wang (b0075) 2017; 135 Glover, Douglas, Rosa, Zhang, Glover (b0190) 2015; 93 Muhammad, Imran, Lee, Park (b0185) 2015; 103 KeyMASTER simulation platform- Sun (10.1016/j.enconman.2019.112206_b0075) 2017; 135 Jinliang (10.1016/j.enconman.2019.112206_b0025) 2014; 74 Han (10.1016/j.enconman.2019.112206_b0180) 2015; 87 10.1016/j.enconman.2019.112206_b0225 Miao (10.1016/j.enconman.2019.112206_b0125) 2015; 75 Satanphol (10.1016/j.enconman.2019.112206_b0020) 2017; 123 Wang (10.1016/j.enconman.2019.112206_b0080) 2017; 143 Chang (10.1016/j.enconman.2019.112206_b0120) 2015; 155 Hung (10.1016/j.enconman.2019.112206_b0010) 2001; 42 10.1016/j.enconman.2019.112206_b0220 Zhang (10.1016/j.enconman.2019.112206_b0060) 2015; 89 Song (10.1016/j.enconman.2019.112206_b0045) 2014; 71 Feng (10.1016/j.enconman.2019.112206_b0100) 2017; 144 Hung (10.1016/j.enconman.2019.112206_b0015) 2010; 35 Ajimotokan (10.1016/j.enconman.2019.112206_b0165) 2015; 154 Dong (10.1016/j.enconman.2019.112206_b0055) 2014; 84 Muhammad (10.1016/j.enconman.2019.112206_b0185) 2015; 103 Casella (10.1016/j.enconman.2019.112206_b0205) 2013; 135 Hung (10.1016/j.enconman.2019.112206_b0005) 1997; 22 Feng (10.1016/j.enconman.2019.112206_b0090) 2017; 131 Zhang (10.1016/j.enconman.2019.112206_b0210) 2019; 186 Eyerer (10.1016/j.enconman.2019.112206_b0110) 2016; 103 Quoilin (10.1016/j.enconman.2019.112206_b0150) 2011; 88 Mondejar (10.1016/j.enconman.2019.112206_b0155) 2017; 185 Zhang (10.1016/j.enconman.2019.112206_b0200) 2012; 64 Badami (10.1016/j.enconman.2019.112206_b0160) 2009; 34 Barse (10.1016/j.enconman.2019.112206_b0140) 2016; 100 Wei (10.1016/j.enconman.2019.112206_b0195) 2008; 28 Pang (10.1016/j.enconman.2019.112206_b0085) 2017; 133 Habka (10.1016/j.enconman.2019.112206_b0065) 2015; 154 Yang (10.1016/j.enconman.2019.112206_b0135) 2016; 167 10.1016/j.enconman.2019.112206_b0215 Feng (10.1016/j.enconman.2019.112206_b0040) 2015; 82 Glover (10.1016/j.enconman.2019.112206_b0190) 2015; 93 Lee (10.1016/j.enconman.2019.112206_b0050) 2016; 100 Feng (10.1016/j.enconman.2019.112206_b0035) 2015; 106 Wang (10.1016/j.enconman.2019.112206_b0070) 2013; 50 Li (10.1016/j.enconman.2019.112206_b0115) 2017; 115 Kosmadakis (10.1016/j.enconman.2019.112206_b0105) 2016; 92 Miao (10.1016/j.enconman.2019.112206_b0175) 2017; 134 Sun (10.1016/j.enconman.2019.112206_b0130) 2018; 149 Toffolo (10.1016/j.enconman.2019.112206_b0030) 2014; 121 Bracco (10.1016/j.enconman.2019.112206_b0170) 2013; 58 Yang (10.1016/j.enconman.2019.112206_b0095) 2017; 113 Gao (10.1016/j.enconman.2019.112206_b0145) 2015; 75 |
References_xml | – volume: 71 start-page: 673 year: 2014 end-page: 680 ident: b0045 article-title: Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry publication-title: Energy contributor: fullname: Zhang – volume: 121 start-page: 219 year: 2014 end-page: 232 ident: b0030 article-title: A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems publication-title: Appl Energy contributor: fullname: Paci – volume: 58 start-page: 107 year: 2013 end-page: 116 ident: b0170 article-title: Experimental tests and modelization of a domestic-scale ORC (Organic Rankine Cycle) publication-title: Energy contributor: fullname: Reini – volume: 113 start-page: 756 year: 2017 end-page: 764 ident: b0095 article-title: Experimental investigation on a 3 kW organic Rankine cycle for low grade waste heat under different operation parameters publication-title: Appl Therm Eng contributor: fullname: Huang – volume: 133 start-page: 636 year: 2017 end-page: 651 ident: b0085 article-title: Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat publication-title: Energy contributor: fullname: Wong – volume: 93 start-page: 1568 year: 2015 end-page: 1580 ident: b0190 article-title: Simulation of a multiple heat source supercritical ORC (Organic Rankine Cycle) for vehicle waste heat recovery publication-title: Energy contributor: fullname: Glover – volume: 123 start-page: 326 year: 2017 end-page: 339 ident: b0020 article-title: A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery publication-title: Energy contributor: fullname: Suphanit – volume: 50 start-page: 816 year: 2013 end-page: 825 ident: b0070 article-title: Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors publication-title: Appl Therm Eng contributor: fullname: Dai – volume: 28 start-page: 1216 year: 2008 end-page: 1224 ident: b0195 article-title: Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery publication-title: Appl Therm Eng contributor: fullname: Lu – volume: 144 start-page: 153 year: 2017 end-page: 163 ident: b0100 article-title: Operation characteristic and performance comparison of organic Rankine cycle (ORC) for low-grade waste heat using R245fa, R123 and their mixtures publication-title: Energy Convers Manage contributor: fullname: Li – volume: 115 start-page: 815 year: 2017 end-page: 824 ident: b0115 article-title: Experimental investigations into power generation with low grade waste heat and R245fa Organic Rankine Cycles (ORCs) publication-title: Applied Therm Eng contributor: fullname: Tassou – volume: 100 start-page: 680 year: 2016 end-page: 690 ident: b0050 article-title: Comparative analysis of thermodynamic performance and optimization of organic flash cycle (OFC) and organic Rankine cycle (ORC) publication-title: Appl Therm Eng contributor: fullname: Kim – volume: 103 start-page: 660 year: 2016 end-page: 671 ident: b0110 article-title: Experimental study of an ORC (Organic Rankine Cycle) and analysis of R1233zd-E as a drop-in replacement for R245fa for low temperature heat utilization publication-title: Energy contributor: fullname: Spliethoff – volume: 135 year: 2013 ident: b0205 article-title: Dynamic modeling of organic rankine cycle power systems publication-title: J Eng Gas Turbines Power contributor: fullname: Colonna – volume: 155 start-page: 150 year: 2015 end-page: 159 ident: b0120 article-title: Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander publication-title: Appl Energy contributor: fullname: Zhang – volume: 84 start-page: 253 year: 2014 end-page: 260 ident: b0055 article-title: Analysis of zeotropic mixtures used in high-temperature Organic Rankine cycle publication-title: Energy Convers Manage contributor: fullname: Li – volume: 167 start-page: 17 year: 2016 end-page: 33 ident: b0135 article-title: The definition of non-dimensional integration temperature difference and its effect on organic Rankine cycle publication-title: Appl Energy contributor: fullname: Qi – volume: 74 start-page: 719 year: 2014 end-page: 733 ident: b0025 article-title: Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles publication-title: Energy contributor: fullname: Yu – volume: 89 start-page: 541 year: 2015 end-page: 554 ident: b0060 article-title: Comparative study of alternative ORC-based combined power systems to exploit high temperature waste heat publication-title: Energy Convers Manage contributor: fullname: Liang – volume: 64 start-page: 908 year: 2012 end-page: 921 ident: b0200 article-title: Dynamic modeling and multivariable control of organic Rankine cycles in waste heat utilizing processes publication-title: Comput Math Appl contributor: fullname: Hou – volume: 87 start-page: 481 year: 2015 end-page: 490 ident: b0180 article-title: Modelling and simulation analysis of an ORC-FPC waste heat recovery system for the stationary CNG-fuelled compressor publication-title: Appl Therm Eng contributor: fullname: Wang – volume: 131 start-page: 55 year: 2017 end-page: 68 ident: b0090 article-title: Operation characteristic of a R123-based organic Rankine cycle depending on working fluid mass flow rates and heat source temperatures publication-title: Energy Convers Manage contributor: fullname: Huang – volume: 75 start-page: 880 year: 2015 end-page: 888 ident: b0145 article-title: Simulation and experiments on an ORC system with different scroll expanders based on energy and exergy analysis publication-title: Appl Therm Eng contributor: fullname: Song – volume: 35 start-page: 1403 year: 2010 end-page: 1411 ident: b0015 article-title: A study of organic working fluids on system efficiency of an ORC using low-grade energy sources publication-title: Energy contributor: fullname: Tsai – volume: 88 start-page: 2183 year: 2011 end-page: 2190 ident: b0150 article-title: Dynamic modeling and optimal control strategy of waste heat recovery organic rankine cycles publication-title: Appl Energy contributor: fullname: Spliethoff – volume: 143 start-page: 482 year: 2017 end-page: 492 ident: b0080 article-title: Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery publication-title: Energy Convers Manage contributor: fullname: Feng – volume: 149 start-page: 566 year: 2018 end-page: 576 ident: b0130 article-title: Performance comparison of organic Rankine cycle with expansion from superheated zone or two-phase zone based on temperature utilization rate of heat source publication-title: Energy contributor: fullname: Lin – volume: 134 start-page: 35 year: 2017 end-page: 49 ident: b0175 article-title: Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander publication-title: Energy contributor: fullname: Zhang – volume: 103 start-page: 1089 year: 2015 end-page: 1100 ident: b0185 article-title: Design and experimental investigation of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam publication-title: Energy Convers Manage contributor: fullname: Park – volume: 92 start-page: 1 year: 2016 end-page: 7 ident: b0105 article-title: Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions publication-title: Appl Therm Eng contributor: fullname: Papadakis – volume: 42 start-page: 539 year: 2001 end-page: 543 ident: b0010 article-title: Waste heat recovery of organic Rankine cycle using dry fluids publication-title: Energy Convers Manage contributor: fullname: Hung – volume: 82 start-page: 664 year: 2015 end-page: 667 ident: b0040 article-title: Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery publication-title: Energy contributor: fullname: Shi – volume: 186 start-page: 349 year: 2019 end-page: 367 ident: b0210 article-title: Dynamic test and verification of model-guided ORC system publication-title: Energy Convers Manage contributor: fullname: Zhao – volume: 106 start-page: 859 year: 2015 end-page: 872 ident: b0035 article-title: Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery publication-title: Energy Convers Manage contributor: fullname: Yang – volume: 154 start-page: 567 year: 2015 end-page: 576 ident: b0065 article-title: Evaluation of mixtures performances in Organic Rankine Cycle when utilizing the geothermal water with and without cogeneration publication-title: Appl Energy contributor: fullname: Ajib – volume: 135 start-page: 63 year: 2017 end-page: 73 ident: b0075 article-title: Exergy efficiency analysis of ORC (Organic Rankine Cycle) and ORC based combined cycles driven by low-temperature waste heat publication-title: Energy Convers Manage contributor: fullname: Wang – volume: 75 start-page: 1065 year: 2015 end-page: 1075 ident: b0125 article-title: Operation and performance of a low temperature organic Rankine cycle publication-title: Appl Therm Eng contributor: fullname: Zou – volume: 185 start-page: 1324 year: 2017 end-page: 1335 ident: b0155 article-title: Quasi-steady state simulation of an organic Rankine cycle for waste heat recovery in a passenger vessel publication-title: Appl Energy contributor: fullname: Genrup – volume: 154 start-page: 26 year: 2015 end-page: 34 ident: b0165 article-title: Thermodynamic performance simulation and design optimisation of trilateral-cycle engines for waste heat recovery-to-power generation publication-title: Appl Energy contributor: fullname: Sher – volume: 100 start-page: 11 year: 2016 end-page: 19 ident: b0140 article-title: Maximizing ORC performance with optimal match of working fluid with system design publication-title: Appl Therm Eng contributor: fullname: Mann – volume: 22 start-page: 661 year: 1997 end-page: 667 ident: b0005 article-title: A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat publication-title: Energy contributor: fullname: Wang – volume: 34 start-page: 1315 year: 2009 end-page: 1324 ident: b0160 article-title: Preliminary design and controlling strategies of a small-scale wood waste Rankine Cycle (RC) with a reciprocating steam engine (SE) publication-title: Energy contributor: fullname: Mura – volume: 35 start-page: 1403 year: 2010 ident: 10.1016/j.enconman.2019.112206_b0015 article-title: A study of organic working fluids on system efficiency of an ORC using low-grade energy sources publication-title: Energy doi: 10.1016/j.energy.2009.11.025 contributor: fullname: Hung – volume: 123 start-page: 326 year: 2017 ident: 10.1016/j.enconman.2019.112206_b0020 article-title: A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery publication-title: Energy doi: 10.1016/j.energy.2017.02.024 contributor: fullname: Satanphol – volume: 28 start-page: 1216 issue: 10 year: 2008 ident: 10.1016/j.enconman.2019.112206_b0195 article-title: Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2007.07.019 contributor: fullname: Wei – volume: 186 start-page: 349 year: 2019 ident: 10.1016/j.enconman.2019.112206_b0210 article-title: Dynamic test and verification of model-guided ORC system publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.02.055 contributor: fullname: Zhang – volume: 154 start-page: 567 year: 2015 ident: 10.1016/j.enconman.2019.112206_b0065 article-title: Evaluation of mixtures performances in Organic Rankine Cycle when utilizing the geothermal water with and without cogeneration publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.05.046 contributor: fullname: Habka – volume: 155 start-page: 150 year: 2015 ident: 10.1016/j.enconman.2019.112206_b0120 article-title: Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.05.118 contributor: fullname: Chang – volume: 64 start-page: 908 issue: 5 year: 2012 ident: 10.1016/j.enconman.2019.112206_b0200 article-title: Dynamic modeling and multivariable control of organic Rankine cycles in waste heat utilizing processes publication-title: Comput Math Appl doi: 10.1016/j.camwa.2012.01.054 contributor: fullname: Zhang – volume: 185 start-page: 1324 year: 2017 ident: 10.1016/j.enconman.2019.112206_b0155 article-title: Quasi-steady state simulation of an organic Rankine cycle for waste heat recovery in a passenger vessel publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.024 contributor: fullname: Mondejar – volume: 50 start-page: 816 year: 2013 ident: 10.1016/j.enconman.2019.112206_b0070 article-title: Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2012.08.013 contributor: fullname: Wang – volume: 121 start-page: 219 year: 2014 ident: 10.1016/j.enconman.2019.112206_b0030 article-title: A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.01.089 contributor: fullname: Toffolo – volume: 106 start-page: 859 year: 2015 ident: 10.1016/j.enconman.2019.112206_b0035 article-title: Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.09.042 contributor: fullname: Feng – volume: 100 start-page: 680 year: 2016 ident: 10.1016/j.enconman.2019.112206_b0050 article-title: Comparative analysis of thermodynamic performance and optimization of organic flash cycle (OFC) and organic Rankine cycle (ORC) publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.01.158 contributor: fullname: Lee – volume: 87 start-page: 481 year: 2015 ident: 10.1016/j.enconman.2019.112206_b0180 article-title: Modelling and simulation analysis of an ORC-FPC waste heat recovery system for the stationary CNG-fuelled compressor publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.05.039 contributor: fullname: Han – volume: 88 start-page: 2183 year: 2011 ident: 10.1016/j.enconman.2019.112206_b0150 article-title: Dynamic modeling and optimal control strategy of waste heat recovery organic rankine cycles publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.01.015 contributor: fullname: Quoilin – volume: 92 start-page: 1 year: 2016 ident: 10.1016/j.enconman.2019.112206_b0105 article-title: Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.09.082 contributor: fullname: Kosmadakis – volume: 75 start-page: 880 year: 2015 ident: 10.1016/j.enconman.2019.112206_b0145 article-title: Simulation and experiments on an ORC system with different scroll expanders based on energy and exergy analysis publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2014.10.044 contributor: fullname: Gao – volume: 84 start-page: 253 year: 2014 ident: 10.1016/j.enconman.2019.112206_b0055 article-title: Analysis of zeotropic mixtures used in high-temperature Organic Rankine cycle publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.04.026 contributor: fullname: Dong – volume: 103 start-page: 660 year: 2016 ident: 10.1016/j.enconman.2019.112206_b0110 article-title: Experimental study of an ORC (Organic Rankine Cycle) and analysis of R1233zd-E as a drop-in replacement for R245fa for low temperature heat utilization publication-title: Energy doi: 10.1016/j.energy.2016.03.034 contributor: fullname: Eyerer – ident: 10.1016/j.enconman.2019.112206_b0220 – volume: 22 start-page: 661 year: 1997 ident: 10.1016/j.enconman.2019.112206_b0005 article-title: A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat publication-title: Energy doi: 10.1016/S0360-5442(96)00165-X contributor: fullname: Hung – volume: 135 start-page: 63 year: 2017 ident: 10.1016/j.enconman.2019.112206_b0075 article-title: Exergy efficiency analysis of ORC (Organic Rankine Cycle) and ORC based combined cycles driven by low-temperature waste heat publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.12.042 contributor: fullname: Sun – volume: 167 start-page: 17 year: 2016 ident: 10.1016/j.enconman.2019.112206_b0135 article-title: The definition of non-dimensional integration temperature difference and its effect on organic Rankine cycle publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.01.037 contributor: fullname: Yang – volume: 89 start-page: 541 year: 2015 ident: 10.1016/j.enconman.2019.112206_b0060 article-title: Comparative study of alternative ORC-based combined power systems to exploit high temperature waste heat publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.10.020 contributor: fullname: Zhang – volume: 149 start-page: 566 year: 2018 ident: 10.1016/j.enconman.2019.112206_b0130 article-title: Performance comparison of organic Rankine cycle with expansion from superheated zone or two-phase zone based on temperature utilization rate of heat source publication-title: Energy doi: 10.1016/j.energy.2018.02.047 contributor: fullname: Sun – volume: 71 start-page: 673 year: 2014 ident: 10.1016/j.enconman.2019.112206_b0045 article-title: Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry publication-title: Energy doi: 10.1016/j.energy.2014.05.014 contributor: fullname: Song – volume: 103 start-page: 1089 year: 2015 ident: 10.1016/j.enconman.2019.112206_b0185 article-title: Design and experimental investigation of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.07.045 contributor: fullname: Muhammad – volume: 154 start-page: 26 year: 2015 ident: 10.1016/j.enconman.2019.112206_b0165 article-title: Thermodynamic performance simulation and design optimisation of trilateral-cycle engines for waste heat recovery-to-power generation publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.04.095 contributor: fullname: Ajimotokan – ident: 10.1016/j.enconman.2019.112206_b0215 – volume: 74 start-page: 719 year: 2014 ident: 10.1016/j.enconman.2019.112206_b0025 article-title: Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles publication-title: Energy doi: 10.1016/j.energy.2014.07.038 contributor: fullname: Jinliang – volume: 133 start-page: 636 year: 2017 ident: 10.1016/j.enconman.2019.112206_b0085 article-title: Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat publication-title: Energy doi: 10.1016/j.energy.2017.05.128 contributor: fullname: Pang – volume: 113 start-page: 756 year: 2017 ident: 10.1016/j.enconman.2019.112206_b0095 article-title: Experimental investigation on a 3 kW organic Rankine cycle for low grade waste heat under different operation parameters publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.11.032 contributor: fullname: Yang – volume: 75 start-page: 1065 year: 2015 ident: 10.1016/j.enconman.2019.112206_b0125 article-title: Operation and performance of a low temperature organic Rankine cycle publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2014.10.065 contributor: fullname: Miao – volume: 143 start-page: 482 year: 2017 ident: 10.1016/j.enconman.2019.112206_b0080 article-title: Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.04.026 contributor: fullname: Wang – volume: 115 start-page: 815 year: 2017 ident: 10.1016/j.enconman.2019.112206_b0115 article-title: Experimental investigations into power generation with low grade waste heat and R245fa Organic Rankine Cycles (ORCs) publication-title: Applied Therm Eng doi: 10.1016/j.applthermaleng.2017.01.024 contributor: fullname: Li – volume: 100 start-page: 11 year: 2016 ident: 10.1016/j.enconman.2019.112206_b0140 article-title: Maximizing ORC performance with optimal match of working fluid with system design publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.01.167 contributor: fullname: Barse – ident: 10.1016/j.enconman.2019.112206_b0225 – volume: 131 start-page: 55 year: 2017 ident: 10.1016/j.enconman.2019.112206_b0090 article-title: Operation characteristic of a R123-based organic Rankine cycle depending on working fluid mass flow rates and heat source temperatures publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.11.004 contributor: fullname: Feng – volume: 144 start-page: 153 year: 2017 ident: 10.1016/j.enconman.2019.112206_b0100 article-title: Operation characteristic and performance comparison of organic Rankine cycle (ORC) for low-grade waste heat using R245fa, R123 and their mixtures publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.04.048 contributor: fullname: Feng – volume: 58 start-page: 107 year: 2013 ident: 10.1016/j.enconman.2019.112206_b0170 article-title: Experimental tests and modelization of a domestic-scale ORC (Organic Rankine Cycle) publication-title: Energy doi: 10.1016/j.energy.2012.12.016 contributor: fullname: Bracco – volume: 135 issue: 4 year: 2013 ident: 10.1016/j.enconman.2019.112206_b0205 article-title: Dynamic modeling of organic rankine cycle power systems publication-title: J Eng Gas Turbines Power doi: 10.1115/1.4023120 contributor: fullname: Casella – volume: 134 start-page: 35 year: 2017 ident: 10.1016/j.enconman.2019.112206_b0175 article-title: Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander publication-title: Energy doi: 10.1016/j.energy.2017.06.001 contributor: fullname: Miao – volume: 82 start-page: 664 year: 2015 ident: 10.1016/j.enconman.2019.112206_b0040 article-title: Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2015.01.075 contributor: fullname: Feng – volume: 34 start-page: 1315 year: 2009 ident: 10.1016/j.enconman.2019.112206_b0160 article-title: Preliminary design and controlling strategies of a small-scale wood waste Rankine Cycle (RC) with a reciprocating steam engine (SE) publication-title: Energy doi: 10.1016/j.energy.2009.04.031 contributor: fullname: Badami – volume: 42 start-page: 539 year: 2001 ident: 10.1016/j.enconman.2019.112206_b0010 article-title: Waste heat recovery of organic Rankine cycle using dry fluids publication-title: Energy Convers Manage doi: 10.1016/S0196-8904(00)00081-9 contributor: fullname: Hung – volume: 93 start-page: 1568 year: 2015 ident: 10.1016/j.enconman.2019.112206_b0190 article-title: Simulation of a multiple heat source supercritical ORC (Organic Rankine Cycle) for vehicle waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2015.10.004 contributor: fullname: Glover |
SSID | ssj0003506 |
Score | 2.4455724 |
Snippet | •Organic Rankine cycle engineering simulator is presented.•Two control strategies are proposed and compared.•Long-time operation test is examined under varying... Based on the experimental data of R245fa, R123 and their mixtures, the engineering simulator for a 3 kW organic Rankine cycle (ORC) test rig by 3KeyMASTER... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 112206 |
SubjectTerms | Control strategy Control systems Engineering Flow control Flow rates Fluid flow Heat recovery Long-time operation test Man-machine interfaces Mass flow rate Organic Rankine cycle (ORC) Rankine cycle Simulation Strategy Temperature VFD Working fluids |
Title | Developing ORC engineering simulator (ORCES) to investigate the working fluid mass flow rate control strategy and simulate long-time operation |
URI | https://dx.doi.org/10.1016/j.enconman.2019.112206 https://www.proquest.com/docview/2333948420 |
Volume | 203 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BcqEH1PJQgS2aAwc4hE1i5-Ej2oK2IEDiIXGznNhGQWyyYheteulP6G_uOI8tRZU4cIvi2Io89udvbM83APu5n-k4yoUnLNce1wnNOcZTz9icaUtTMzbOUby4jEd3_Ow-ul-CYRcL465VttjfYHqN1u2bQdubg0lRDG6csksqfE4UJCAAFsuwUh8S9WDl-Mf56HIByCyqU2y67z1X4VWg8OORk4ssx8pJoQbCBdSELvnR_9eoN2hdL0Gnn2Gt5Y543PzeF1gy5Tp8eqUouAG_vy-CoPDqeojmbyFOi7HL1VU94wEVndwc4qzCYqGzYZC4IM6bzXO0Ty-FxjFRa3qs5ugUJbC9147TRtL2J6pSd80afKrKB8_lqsdqYpqBtQl3pye3w5HXplzwcsb9mRfbzBApIpoVsljYJGFkyZAlfi7IUVJWC53FQc6NUgkRB6sdPmlFPmQSxorgYgt6ZVWar4CRYkpZMkikIq7yJFUiYIoxmxiT2jTbhkHXyXLSKGvI7srZo-zMIp1ZZGOWbRCdLeQ_Y0QS_L9bt98ZT7azdCpDxpjgKQ_9nQ80vQuroXPC632ZPvRmzy_mGzGVWbYHy0e_gr12PP4BO5fqVw |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgHIADYhVLgTlwgENoGjuLj6i0KrvEInGznNhGQTSpaBHiwifwzYyzsAmJA7codqzIM35-tmbeELKTuLEK_IQ73DDlMBXimqMscrRJqDK4NANtD4pn50H_hh3f-rcTpFPnwtiwygr7S0wv0Lp606pmszVM09aVVXaJuMuQgrQRgPkkmWJWPwudev_1M86D-kWBTdvbsd2_pAnf71uxyGwgrRBqm9t0Gs-WPvp9h_qB1cUG1JsncxVzhIPy5xbIhM4WyewXPcEl8nb4kQIFF5cd0J-NMEoHtlJX_gi72NS92oNxDumHyoYGZILwXF6dg3l4ShUMkFjjY_4MVk8Cqqh2GJWCti8gM1UPq-Ehz-4cW6ke8qEu3WqZ3PS6152-UxVccBLK3LETmFgjJUKS5dGAmzCkaEePhm7C8ZgkjeIqDtoJ01KGSBuMsuikJJ4gQy-QCBYrpJHlmV4l4EsqpcEd0pc-k0kYSd6mklITah2ZKF4jrXqSxbDU1RB1wNm9qM0irFlEaZY1wmtbiG8eIhD8__y2WRtPVGt0JDxKKWcR89z1fwy9Tab712en4vTo_GSDzHj2OF7c0DRJY_z4pDeRs4zjrcIn3wF1p-s5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+ORC+engineering+simulator+%28ORCES%29+to+investigate+the+working+fluid+mass+flow+rate+control+strategy+and+simulate+long-time+operation&rft.jtitle=Energy+conversion+and+management&rft.au=Pang%2C+Kuo-Cheng&rft.au=Hung%2C+Tzu-Chen&rft.au=He%2C+Ya-Ling&rft.au=Feng%2C+Yong-Qiang&rft.date=2020-01-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=203&rft.spage=1&rft_id=info:doi/10.1016%2Fj.enconman.2019.112206&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |