Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: Experiments
•Graded Ti-6Al-4V lattice structures with different gradients are fabricated by SLM.•Dynamic behavior of SLM printed graded Ti-6Al-4V lattice structure is studied.•The strength of tested graded lattice structures shows strain rate sensitivity.•Deformation mode of specimens keeps unchanged within the...
Saved in:
Published in | International journal of impact engineering Vol. 111; pp. 255 - 272 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.01.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0734-743X 1879-3509 |
DOI | 10.1016/j.ijimpeng.2017.09.018 |
Cover
Loading…
Abstract | •Graded Ti-6Al-4V lattice structures with different gradients are fabricated by SLM.•Dynamic behavior of SLM printed graded Ti-6Al-4V lattice structure is studied.•The strength of tested graded lattice structures shows strain rate sensitivity.•Deformation mode of specimens keeps unchanged within the strain rate of 10−3–103/s.•FE analysis is conducted which captures the dynamic response of graded specimens.
Functionally graded Ti-6Al-4V lattice structures with a step-wise gradient and a continuous gradient were designed and fabricated by selective laser melting (SLM) method respectively. Compression experiments were conducted by electronic universal machine and Split Hopkinson Pressure Bar (SHPB) system to determine the mechanical performance of the material for strain rates up to 1000/s. The potential influence of different loading directions on the material characteristics was explored. All the loading processes were recorded to capture the deformation mechanism of different specimens, and the strain distribution was analyzed using digital imaging correlation (DIC) method. The results indicate that the functionally graded Ti-6Al-4V lattice structures exhibit excellent mechanical properties, which appear to have a promising prospect for energy absorption applications. The strain rate effect is revealed to be resulted from the intrinsic strain rate sensitivity of the bulk material. Finite element (FE) analysis was conducted based on the 3D beam element to simulate the dynamic response of the graded lattice structures, which could be adopted for the prediction of the material strength and the initial collapse mode. Both the experimental and numerical results demonstrate that the designed gradient modes and loading directions exhibit no effect on the mechanical response of graded Ti-6Al-4V lattice structures within the tested strain rates. |
---|---|
AbstractList | Functionally graded Ti-6Al-4V lattice structures with a step-wise gradient and a continuous gradient were designed and fabricated by selective laser melting (SLM) method respectively. Compression experiments were conducted by electronic universal machine and Split Hopkinson Pressure Bar (SHPB) system to determine the mechanical performance of the material for strain rates up to 1000/s. The potential influence of different loading directions on the material characteristics was explored. All the loading processes were recorded to capture the deformation mechanism of different specimens, and the strain distribution was analyzed using digital imaging correlation (DIC) method. The results indicate that the functionally graded Ti-6Al-4V lattice structures exhibit excellent mechanical properties, which appear to have a promising prospect for energy absorption applications. The strain rate effect is revealed to be resulted from the intrinsic strain rate sensitivity of the bulk material. Finite element (FE) analysis was conducted based on the 3D beam element to simulate the dynamic response of the graded lattice structures, which could be adopted for the prediction of the material strength and the initial collapse mode. Both the experimental and numerical results demonstrate that the designed gradient modes and loading directions exhibit no effect on the mechanical response of graded Ti-6Al-4V lattice structures within the tested strain rates. •Graded Ti-6Al-4V lattice structures with different gradients are fabricated by SLM.•Dynamic behavior of SLM printed graded Ti-6Al-4V lattice structure is studied.•The strength of tested graded lattice structures shows strain rate sensitivity.•Deformation mode of specimens keeps unchanged within the strain rate of 10−3–103/s.•FE analysis is conducted which captures the dynamic response of graded specimens. Functionally graded Ti-6Al-4V lattice structures with a step-wise gradient and a continuous gradient were designed and fabricated by selective laser melting (SLM) method respectively. Compression experiments were conducted by electronic universal machine and Split Hopkinson Pressure Bar (SHPB) system to determine the mechanical performance of the material for strain rates up to 1000/s. The potential influence of different loading directions on the material characteristics was explored. All the loading processes were recorded to capture the deformation mechanism of different specimens, and the strain distribution was analyzed using digital imaging correlation (DIC) method. The results indicate that the functionally graded Ti-6Al-4V lattice structures exhibit excellent mechanical properties, which appear to have a promising prospect for energy absorption applications. The strain rate effect is revealed to be resulted from the intrinsic strain rate sensitivity of the bulk material. Finite element (FE) analysis was conducted based on the 3D beam element to simulate the dynamic response of the graded lattice structures, which could be adopted for the prediction of the material strength and the initial collapse mode. Both the experimental and numerical results demonstrate that the designed gradient modes and loading directions exhibit no effect on the mechanical response of graded Ti-6Al-4V lattice structures within the tested strain rates. |
Author | Song, Weidong Xiao, Lijun |
Author_xml | – sequence: 1 givenname: Lijun surname: Xiao fullname: Xiao, Lijun – sequence: 2 givenname: Weidong surname: Song fullname: Song, Weidong email: swdgh@bit.edu.cn |
BookMark | eNqFkE1v1DAQhi1UJLaFv4AscU6w8-HEiAOrqnxIlbgUxM3yeia7E2WdxXYK-xP6r-tl4cKlJ3tG7zOaeS7ZhZ89MvZailIKqd6OJY20P6DflpWQXSl0KWT_jK1k3-miboW-YCvR1U3RNfWPF-wyxlHkoGjFij2sASjRPU7HYm_9MliXloDAh8W7RLO303Tk22Ah9-6oUOupaL7zyaZEDnlMYfkDRP6L0o7vaLs7NfMyuVo8YMilzVluPXA4ervP_2m2QH77jt_8PmCgPfoUX7Lng50ivvr7XrFvH2_urj8Xt18_fble3xaubkQqFLYbAa5xDlrEWjcbrZUcQFpwoCrcYG-dGro2X6Kqvqr7VokOms6qvgbd1VfszXnuIcw_F4zJjPMS8p3RSN1XlVCqb3JKnVMuzDEGHMwh72nD0UhhTtrNaP5pNyftRmiTtWfw_X-go5OA2adgaXoa_3DGMSu4JwwmOkLvECigSwZmemrEIxozqVI |
CitedBy_id | crossref_primary_10_1142_S1758825118501077 crossref_primary_10_1007_s40436_024_00542_9 crossref_primary_10_1016_j_engfailanal_2019_104231 crossref_primary_10_1016_j_ijimpeng_2022_104320 crossref_primary_10_1016_j_msea_2019_138387 crossref_primary_10_1002_adem_202201850 crossref_primary_10_1177_14644207231188709 crossref_primary_10_3390_ma15238625 crossref_primary_10_1016_j_addma_2019_100890 crossref_primary_10_1111_ffe_12966 crossref_primary_10_1177_0954406219885959 crossref_primary_10_3390_polym13223882 crossref_primary_10_3390_met11101622 crossref_primary_10_1177_00219983241292785 crossref_primary_10_1016_j_ijmecsci_2019_04_051 crossref_primary_10_1016_j_msea_2022_143887 crossref_primary_10_1016_j_bioactmat_2021_12_027 crossref_primary_10_1016_j_tws_2019_01_039 crossref_primary_10_1016_j_msea_2019_138035 crossref_primary_10_1016_j_compstruct_2022_115315 crossref_primary_10_1016_j_tws_2024_111616 crossref_primary_10_1016_j_compositesa_2020_105934 crossref_primary_10_1016_j_compscitech_2020_108339 crossref_primary_10_1016_j_ijmecsci_2020_105893 crossref_primary_10_3390_met15030284 crossref_primary_10_1016_j_compstruct_2023_117323 crossref_primary_10_1016_j_matdes_2019_108443 crossref_primary_10_1007_s13369_024_09166_4 crossref_primary_10_1016_j_compositesb_2022_110086 crossref_primary_10_1007_s40430_022_03972_3 crossref_primary_10_1007_s11340_019_00506_2 crossref_primary_10_1088_2053_1591_aba147 crossref_primary_10_3390_ma11112129 crossref_primary_10_3390_ma16103670 crossref_primary_10_1016_j_engstruct_2025_120088 crossref_primary_10_46399_muhendismakina_870953 crossref_primary_10_1016_j_msea_2018_08_069 crossref_primary_10_1016_j_jmrt_2024_01_187 crossref_primary_10_1016_j_eml_2019_100577 crossref_primary_10_1007_s12540_024_01841_3 crossref_primary_10_1016_j_compositesb_2019_107410 crossref_primary_10_1088_1742_6596_1459_1_012004 crossref_primary_10_1016_j_compstruct_2019_04_031 crossref_primary_10_1007_s40964_024_00715_9 crossref_primary_10_3390_polym14010181 crossref_primary_10_1016_j_jsamd_2023_100663 crossref_primary_10_1016_j_tafmec_2023_103947 crossref_primary_10_1016_j_jallcom_2025_179600 crossref_primary_10_1088_1361_651X_aab975 crossref_primary_10_1115_1_4051691 crossref_primary_10_1016_j_ijmecsci_2023_108795 crossref_primary_10_1016_j_dt_2021_05_012 crossref_primary_10_1007_s00170_020_06112_0 crossref_primary_10_1016_j_ast_2022_107383 crossref_primary_10_1016_j_matdes_2021_110236 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123352 crossref_primary_10_1002_smll_201903834 crossref_primary_10_1016_j_jmrt_2022_04_051 crossref_primary_10_1016_j_compositesb_2023_110561 crossref_primary_10_1016_j_jmapro_2021_06_062 crossref_primary_10_3390_met11081266 crossref_primary_10_1016_j_tws_2023_111022 crossref_primary_10_1016_j_matdes_2022_110963 crossref_primary_10_1016_j_msea_2021_142340 crossref_primary_10_1016_j_matdes_2022_111257 crossref_primary_10_1007_s11665_022_07104_9 crossref_primary_10_1016_j_matdes_2020_109292 crossref_primary_10_1002_adem_202201130 crossref_primary_10_1016_j_jmatprotec_2021_117186 crossref_primary_10_1016_j_compositesb_2019_107630 crossref_primary_10_1016_j_compstruct_2021_114414 crossref_primary_10_1016_j_tws_2019_106586 crossref_primary_10_1016_j_ijsolstr_2023_112555 crossref_primary_10_1016_j_commatsci_2020_109610 crossref_primary_10_1016_j_actbio_2021_02_020 crossref_primary_10_1016_j_addma_2018_09_016 crossref_primary_10_1016_j_ijimpeng_2025_105294 crossref_primary_10_1177_14644207211011729 crossref_primary_10_1016_j_jmrt_2024_06_077 crossref_primary_10_1016_j_tws_2024_112763 crossref_primary_10_1007_s00170_019_04116_z crossref_primary_10_1016_j_msea_2019_04_082 crossref_primary_10_1080_17452759_2022_2074698 crossref_primary_10_1016_j_addma_2020_101148 crossref_primary_10_3390_met10121576 crossref_primary_10_1016_j_surfcoat_2020_126419 crossref_primary_10_1016_j_dt_2025_01_003 crossref_primary_10_1016_j_ijmecsci_2020_105735 crossref_primary_10_1016_j_matdes_2023_112190 crossref_primary_10_3390_ma13184083 crossref_primary_10_1080_15376494_2021_1959685 crossref_primary_10_1002_adem_202301040 crossref_primary_10_1016_j_engfailanal_2024_108794 crossref_primary_10_1016_j_matpr_2024_02_008 crossref_primary_10_1088_1361_651X_ace63d crossref_primary_10_1080_15376494_2020_1722871 crossref_primary_10_1080_15376494_2021_2009600 crossref_primary_10_3390_met14101165 crossref_primary_10_1016_j_compstruct_2025_118841 crossref_primary_10_1016_j_jmrt_2019_12_019 crossref_primary_10_1016_j_compstruct_2023_117703 crossref_primary_10_1002_adem_202001536 crossref_primary_10_1016_j_jmapro_2021_03_002 crossref_primary_10_1177_1687814020916951 crossref_primary_10_3390_ma17040822 crossref_primary_10_1016_j_promfg_2021_07_039 crossref_primary_10_1007_s10853_023_09086_y crossref_primary_10_2139_ssrn_4191353 crossref_primary_10_1108_RPJ_06_2023_0191 crossref_primary_10_1016_j_matdes_2018_01_028 crossref_primary_10_3390_app10186374 crossref_primary_10_1016_j_tws_2023_111349 crossref_primary_10_1177_10996362241238272 crossref_primary_10_1016_j_matchar_2023_113506 crossref_primary_10_1177_1464420719841084 crossref_primary_10_1016_j_ijimpeng_2020_103768 crossref_primary_10_1016_j_addma_2019_05_033 crossref_primary_10_1016_j_jmrt_2024_07_190 crossref_primary_10_1016_j_optlastec_2023_110500 crossref_primary_10_1002_adem_202100879 crossref_primary_10_1016_j_engstruct_2023_115909 crossref_primary_10_1080_15376494_2023_2258523 crossref_primary_10_1016_j_compstruct_2021_113801 crossref_primary_10_3390_ma17143398 crossref_primary_10_57062_ijpem_st_2023_0059 crossref_primary_10_1016_j_actbio_2018_09_031 crossref_primary_10_1016_j_eng_2019_06_009 crossref_primary_10_1007_s40870_022_00359_2 crossref_primary_10_3390_polym14173553 crossref_primary_10_1016_j_addma_2021_102054 crossref_primary_10_1016_j_ijmecsci_2022_107202 crossref_primary_10_1016_j_ijmecsci_2018_03_027 crossref_primary_10_1016_j_ijmecsci_2018_07_029 crossref_primary_10_1177_14644207211047706 crossref_primary_10_1016_j_ijmecsci_2019_105262 crossref_primary_10_1016_j_jmbbm_2024_106796 crossref_primary_10_1016_j_euromechsol_2025_105657 crossref_primary_10_1016_j_jmps_2024_105882 crossref_primary_10_1016_j_optlastec_2023_109182 crossref_primary_10_1016_j_cja_2024_103373 crossref_primary_10_1016_j_jmrt_2025_01_151 crossref_primary_10_1002_adem_202401213 crossref_primary_10_1016_j_jmbbm_2020_103723 crossref_primary_10_1016_j_msea_2019_01_060 crossref_primary_10_1016_j_mtcomm_2024_109792 crossref_primary_10_1177_10996362211050914 crossref_primary_10_1016_j_jmrt_2023_05_167 crossref_primary_10_1016_j_msea_2019_138089 crossref_primary_10_1007_s11043_022_09567_8 crossref_primary_10_1016_j_jmrt_2025_03_116 crossref_primary_10_1007_s00170_024_14900_1 crossref_primary_10_1016_j_euromechsol_2021_104215 crossref_primary_10_3390_ma14133654 crossref_primary_10_3390_ma14092462 crossref_primary_10_1016_j_matdes_2019_107881 crossref_primary_10_1007_s00170_024_13570_3 crossref_primary_10_1016_j_ijmecsci_2023_108834 crossref_primary_10_1007_s11665_021_06096_2 crossref_primary_10_1007_s40684_021_00407_7 crossref_primary_10_1177_0954408918803194 crossref_primary_10_3390_bioengineering10060675 crossref_primary_10_3390_ma17102181 crossref_primary_10_1177_14644207221084611 crossref_primary_10_1007_s40964_025_00950_8 crossref_primary_10_1016_j_tws_2024_112655 crossref_primary_10_1007_s40964_024_00843_2 crossref_primary_10_3390_met10060753 crossref_primary_10_1007_s00170_021_06631_4 crossref_primary_10_1016_j_ijmecsci_2022_107093 crossref_primary_10_1016_j_ijimpeng_2022_104366 crossref_primary_10_1007_s12540_021_01046_y crossref_primary_10_1016_j_tws_2023_110858 crossref_primary_10_1016_j_compscitech_2023_110197 crossref_primary_10_4028_p_NsQN4N crossref_primary_10_1007_s11665_021_06475_9 crossref_primary_10_1007_s42235_023_00364_8 crossref_primary_10_1016_j_jmrt_2024_06_234 crossref_primary_10_1016_j_matdes_2022_110683 crossref_primary_10_1016_j_ijimpeng_2023_104528 crossref_primary_10_1016_j_addma_2021_102254 crossref_primary_10_1080_15376494_2023_2222125 crossref_primary_10_1007_s11771_020_4321_2 crossref_primary_10_1016_j_compstruct_2021_113958 crossref_primary_10_3390_ma13092204 crossref_primary_10_1016_j_ijimpeng_2024_104992 crossref_primary_10_1016_j_jmbbm_2024_106477 crossref_primary_10_1016_j_tws_2023_110988 crossref_primary_10_1007_s11661_020_05928_5 crossref_primary_10_1016_S1003_6326_20_65480_2 crossref_primary_10_1016_j_jallcom_2023_171874 crossref_primary_10_3390_ma12060886 crossref_primary_10_1016_j_addma_2019_100901 crossref_primary_10_1016_j_ijimpeng_2025_105223 crossref_primary_10_1016_j_ijimpeng_2019_04_002 crossref_primary_10_1016_j_applthermaleng_2023_121296 crossref_primary_10_1016_j_ijmecsci_2023_108102 crossref_primary_10_1016_j_msea_2023_144986 crossref_primary_10_1016_j_addma_2021_102466 crossref_primary_10_1016_j_msea_2019_138209 crossref_primary_10_1016_j_ijimpeng_2022_104263 crossref_primary_10_1177_09544089251326260 crossref_primary_10_1016_j_tws_2020_106970 crossref_primary_10_1016_j_msea_2019_138204 crossref_primary_10_1007_s12206_023_0733_x crossref_primary_10_1080_15376494_2019_1665760 crossref_primary_10_3390_jfb14030125 crossref_primary_10_1016_j_tws_2020_106849 crossref_primary_10_1016_j_engfracmech_2021_107537 crossref_primary_10_1007_s11665_024_09714_x crossref_primary_10_1016_j_ijimpeng_2023_104554 crossref_primary_10_1016_j_ijimpeng_2023_104553 crossref_primary_10_1007_s11837_023_06190_x crossref_primary_10_1016_j_matdes_2021_109602 crossref_primary_10_1016_j_addma_2021_101947 crossref_primary_10_1016_j_coche_2020_03_001 crossref_primary_10_1177_14644207241238429 crossref_primary_10_1016_j_paerosci_2024_101021 crossref_primary_10_1016_j_tws_2021_108420 crossref_primary_10_1016_j_tws_2020_107153 crossref_primary_10_1063_5_0083888 crossref_primary_10_1016_j_mtcomm_2022_104842 crossref_primary_10_1016_j_ijimpeng_2025_105321 crossref_primary_10_1016_j_mtcomm_2022_103993 crossref_primary_10_1016_j_jmrt_2023_06_268 crossref_primary_10_1016_j_ijmecsci_2019_105118 crossref_primary_10_1007_s42493_024_00118_6 crossref_primary_10_2139_ssrn_4149570 |
Cites_doi | 10.1016/j.msea.2013.07.070 10.1016/0022-5096(94)90085-X 10.1016/j.jmps.2014.10.009 10.1016/j.ijmecsci.2004.12.013 10.1016/j.msea.2005.05.096 10.1016/j.mechmat.2015.11.014 10.1016/j.ijimpeng.2012.06.012 10.1016/j.scriptamat.2005.10.050 10.1016/j.jmps.2005.05.007 10.1016/j.ijsolstr.2013.11.019 10.1016/j.matdes.2014.05.064 10.1016/j.ijimpeng.2015.10.007 10.1016/j.compstruct.2012.02.029 10.1016/S1359-6454(00)00379-7 10.1016/S0734-743X(99)00153-0 10.1016/S0734-743X(02)00016-7 10.1016/j.jmbbm.2012.10.005 10.1016/j.ijimpeng.2007.10.005 10.1016/S1359-6462(99)00038-X 10.1016/j.jmps.2005.05.003 10.1016/j.ijsolstr.2005.06.101 10.1016/j.ijimpeng.2004.02.007 10.1016/j.ijmecsci.2011.07.011 10.1016/j.ijsolstr.2013.11.020 10.1016/j.compstruct.2008.06.013 10.1016/j.ijimpeng.2011.09.009 10.1016/0020-7403(84)90021-3 10.1016/j.compstruct.2015.01.001 10.1016/j.ijplas.2006.02.006 10.1016/j.mechmat.2005.05.018 10.1016/S0734-743X(97)00016-X 10.1016/j.compositesb.2016.09.037 10.1016/j.actamat.2016.05.054 10.1016/j.ijimpeng.2013.04.007 10.1016/j.compstruct.2011.12.006 10.1016/j.msea.2008.08.040 10.1016/j.ijimpeng.2013.11.011 10.1016/j.ijmecsci.2009.11.012 10.1016/j.ijsolstr.2009.06.004 10.1177/0885328215617868 10.1016/S0263-8223(03)00039-4 10.1016/j.ijmecsci.2015.03.011 10.1016/S0734-743X(03)00066-6 10.1016/S0020-7403(99)00043-0 10.1016/j.ijimpeng.2016.10.006 10.1016/j.ijsolstr.2009.07.024 10.1115/1.4030007 10.1016/S0734-743X(02)00053-2 10.1016/j.msea.2014.10.026 10.1002/adem.201500086 10.1016/j.ijimpeng.2014.10.009 10.1016/j.msea.2007.11.076 10.1098/rsta.2005.1678 10.1016/j.ijimpeng.2016.11.016 10.1016/j.ijsolstr.2013.10.019 10.1016/j.ijimpeng.2005.12.004 10.1016/j.jmps.2014.07.013 10.1243/09544062C07505 10.1016/j.msea.2015.06.018 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Jan 2018 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2018 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2017.09.018 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
EndPage | 272 |
ExternalDocumentID | 10_1016_j_ijimpeng_2017_09_018 S0734743X17304852 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c340t-6e5b0dc4ccd5ee394b9961fd1adcd62ebe8ac6f75fac6282385607d47a683d973 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Fri Jul 25 06:32:31 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Tue Jul 01 03:54:26 EDT 2025 Fri Feb 23 02:46:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ti-6Al-4V lattice structure Selective laser melting Functionally graded Energy absorption |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-6e5b0dc4ccd5ee394b9961fd1adcd62ebe8ac6f75fac6282385607d47a683d973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1982206684 |
PQPubID | 2045463 |
PageCount | 18 |
ParticipantIDs | proquest_journals_1982206684 crossref_primary_10_1016_j_ijimpeng_2017_09_018 crossref_citationtrail_10_1016_j_ijimpeng_2017_09_018 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2017_09_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Gibson, Ashby (bib0001) 1999 Pollien, Conde, Pambaguian, Mortensen (bib0042) 2005; 404 Yu, Li, Hu (bib0007) 2006; 38 Shafiq, Ayyagari, Ehaab (bib0008) 2015; 76 Yu, Wang, Wei (bib0011) 2003; 28 Tancogne-Dejean, Spierings, Mohr (bib0055) 2016; 116 Zheng, Yu, Wang (bib0030) 2013; 53 Li, Lu, Wang (bib0050) 2015; 96–97 Tan, Reid, Harrigan (bib0015) 2005; 53 Ashby (bib0002) 2000 Trautmann, Siviour, Walley (bib0058) 2005; 31 Etemadi, Afaghi Khatibi, Takaffoli (bib0045) 2009; 89 Mukai, Kanahashi, Miyoshi, Mabuchi, Nieh (bib0013) 1999; 40 Zhang, Hebert, Wright (bib0049) 2014; 65 Jin, Wang, Ning (bib0051) 2016; 106 Brothers, Dunand (bib0038) 2008; 489 Ozdemir, Tyas, Goodall (bib0061) 2017; 102 Xiao, Song, Wang (bib0052) 2015; 640 Gioux, McCormack, Gibson (bib0006) 2000; 42 Lopatnikov, Gama, Haque (bib0026) 2004; 30 Challis, Xu, Zhang (bib0062) 2014; 63 Deshpande, Ashby, Fleck (bib0004) 2001; 49 Barnes, Ravi-Chandar, Kyriakides (bib0016) 2014; 51 Li, Zhao, Hou (bib0056) 2016; 18 Lee, Barthelat, Moldovan (bib0012) 2006; 43 Gümrük, Mines, Karadeniz (bib0060) 2013; 586 Ashby (bib0003) 2006; 364 Lopatnikov, Gama, Haque (bib0025) 2003; 61 Tan, Reid, Harrigan (bib0014) 2005; 53 Ajdari, Canavan, Nayeb-Hashemi (bib0039) 2009; 499 Wang, Gardner, Shukla (bib0046) 2009; 46 Reid, Peng (bib0024) 1997; 19 Wang, Xu, Li (bib0017) 2015; 620 Gao, Yu (bib0023) 2006; 220 Zheng, Liu, Yu, Reid (bib0029) 2012; 42 Qiao, Chen (bib0035) 2015; 82 Conde, Pollien, Mortensen (bib0043) 2006; 54 Zeng, Pattofatto, Zhao (bib0040) 2010; 52 Zheng, Wang, Yu (bib0031) 2014; 72 Ozdemir, Hernandez-Nava, Tyas (bib0054) 2015; 89 Nune, Kumar, Misra (bib0057) 2016; 30 Liao, Zheng, Yu (bib0021) 2014; 51 Gaitanaros, Kyriakides (bib0018) 2014; 51 Liu, Yu, Zheng (bib0019) 2009; 46 Xiao, Song, Wang (bib0037) 2016; 100 Woodward, Kashtalyan (bib0044) 2011; 53 Zheng, Qin, Wang (bib0041) 2016; 94 Fang, Zhang, Zhang (bib0009) 2015; 124 Liu, Tian, Lu (bib0048) 2012; 94 Gardner, Wang, Shukla (bib0047) 2012; 94 Deshpande, Fleck (bib0032) 2000; 24 McKown, Shen, Brookes (bib0036) 2008; 35 Lee, Barthelat (bib0033) 2006; 22 Cheng, Li, Murr (bib0059) 2012; 16 Mines, Tsopanos, Shen (bib0053) 2013; 60 Harrigan, Reid, Tan, Reddy (bib0028) 2005; 47 Papka, Kyriakides (bib0005) 1994; 42 Li, Meng (bib0022) 2002; 27 Fang, Zhang, Zhang (bib0020) 2015; 82 Deshpande, Fleck (bib0010) 2000; 24 Lopatnikov, Gama, Gillespie (bib0027) 2007; 34 Calladine, English (bib0034) 1984; 26 Conde (10.1016/j.ijimpeng.2017.09.018_bib0043) 2006; 54 Mines (10.1016/j.ijimpeng.2017.09.018_bib0053) 2013; 60 Lopatnikov (10.1016/j.ijimpeng.2017.09.018_bib0027) 2007; 34 Reid (10.1016/j.ijimpeng.2017.09.018_bib0024) 1997; 19 Yu (10.1016/j.ijimpeng.2017.09.018_bib0011) 2003; 28 McKown (10.1016/j.ijimpeng.2017.09.018_bib0036) 2008; 35 Gibson (10.1016/j.ijimpeng.2017.09.018_bib0001) 1999 Yu (10.1016/j.ijimpeng.2017.09.018_bib0007) 2006; 38 Xiao (10.1016/j.ijimpeng.2017.09.018_bib0037) 2016; 100 Tan (10.1016/j.ijimpeng.2017.09.018_bib0015) 2005; 53 Gaitanaros (10.1016/j.ijimpeng.2017.09.018_bib0018) 2014; 51 Deshpande (10.1016/j.ijimpeng.2017.09.018_bib0032) 2000; 24 Gao (10.1016/j.ijimpeng.2017.09.018_bib0023) 2006; 220 Challis (10.1016/j.ijimpeng.2017.09.018_bib0062) 2014; 63 Shafiq (10.1016/j.ijimpeng.2017.09.018_bib0008) 2015; 76 Fang (10.1016/j.ijimpeng.2017.09.018_bib0020) 2015; 82 Gioux (10.1016/j.ijimpeng.2017.09.018_bib0006) 2000; 42 Zeng (10.1016/j.ijimpeng.2017.09.018_bib0040) 2010; 52 Harrigan (10.1016/j.ijimpeng.2017.09.018_bib0028) 2005; 47 Xiao (10.1016/j.ijimpeng.2017.09.018_bib0052) 2015; 640 Wang (10.1016/j.ijimpeng.2017.09.018_bib0046) 2009; 46 Cheng (10.1016/j.ijimpeng.2017.09.018_bib0059) 2012; 16 Deshpande (10.1016/j.ijimpeng.2017.09.018_bib0010) 2000; 24 Liu (10.1016/j.ijimpeng.2017.09.018_bib0048) 2012; 94 Wang (10.1016/j.ijimpeng.2017.09.018_bib0017) 2015; 620 Zhang (10.1016/j.ijimpeng.2017.09.018_bib0049) 2014; 65 Etemadi (10.1016/j.ijimpeng.2017.09.018_bib0045) 2009; 89 Liu (10.1016/j.ijimpeng.2017.09.018_bib0019) 2009; 46 Li (10.1016/j.ijimpeng.2017.09.018_bib0050) 2015; 96–97 Ashby (10.1016/j.ijimpeng.2017.09.018_bib0003) 2006; 364 Zheng (10.1016/j.ijimpeng.2017.09.018_bib0029) 2012; 42 Ozdemir (10.1016/j.ijimpeng.2017.09.018_bib0054) 2015; 89 Ozdemir (10.1016/j.ijimpeng.2017.09.018_bib0061) 2017; 102 Gardner (10.1016/j.ijimpeng.2017.09.018_bib0047) 2012; 94 Tancogne-Dejean (10.1016/j.ijimpeng.2017.09.018_bib0055) 2016; 116 Lee (10.1016/j.ijimpeng.2017.09.018_bib0012) 2006; 43 Li (10.1016/j.ijimpeng.2017.09.018_bib0022) 2002; 27 Li (10.1016/j.ijimpeng.2017.09.018_bib0056) 2016; 18 Jin (10.1016/j.ijimpeng.2017.09.018_bib0051) 2016; 106 Barnes (10.1016/j.ijimpeng.2017.09.018_bib0016) 2014; 51 Lopatnikov (10.1016/j.ijimpeng.2017.09.018_bib0026) 2004; 30 Zheng (10.1016/j.ijimpeng.2017.09.018_bib0030) 2013; 53 Qiao (10.1016/j.ijimpeng.2017.09.018_bib0035) 2015; 82 Gümrük (10.1016/j.ijimpeng.2017.09.018_bib0060) 2013; 586 Liao (10.1016/j.ijimpeng.2017.09.018_bib0021) 2014; 51 Lopatnikov (10.1016/j.ijimpeng.2017.09.018_bib0025) 2003; 61 Zheng (10.1016/j.ijimpeng.2017.09.018_bib0031) 2014; 72 Fang (10.1016/j.ijimpeng.2017.09.018_bib0009) 2015; 124 Pollien (10.1016/j.ijimpeng.2017.09.018_bib0042) 2005; 404 Deshpande (10.1016/j.ijimpeng.2017.09.018_bib0004) 2001; 49 Papka (10.1016/j.ijimpeng.2017.09.018_bib0005) 1994; 42 Ashby (10.1016/j.ijimpeng.2017.09.018_bib0002) 2000 Brothers (10.1016/j.ijimpeng.2017.09.018_bib0038) 2008; 489 Trautmann (10.1016/j.ijimpeng.2017.09.018_bib0058) 2005; 31 Calladine (10.1016/j.ijimpeng.2017.09.018_bib0034) 1984; 26 Tan (10.1016/j.ijimpeng.2017.09.018_bib0014) 2005; 53 Lee (10.1016/j.ijimpeng.2017.09.018_bib0033) 2006; 22 Nune (10.1016/j.ijimpeng.2017.09.018_bib0057) 2016; 30 Zheng (10.1016/j.ijimpeng.2017.09.018_bib0041) 2016; 94 Woodward (10.1016/j.ijimpeng.2017.09.018_bib0044) 2011; 53 Mukai (10.1016/j.ijimpeng.2017.09.018_bib0013) 1999; 40 Ajdari (10.1016/j.ijimpeng.2017.09.018_bib0039) 2009; 499 |
References_xml | – volume: 89 start-page: 28 year: 2009 end-page: 34 ident: bib0045 article-title: 3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact publication-title: Compos Struct – volume: 94 start-page: 2485 year: 2012 end-page: 2493 ident: bib0048 article-title: Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores publication-title: Compos Struct – volume: 26 start-page: 689 year: 1984 end-page: 701 ident: bib0034 article-title: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure publication-title: Int J Mech Sci – volume: 76 start-page: 224 year: 2015 end-page: 236 ident: bib0008 article-title: Multiaxial yield surface of transversely isotropic foams: part II—experimental publication-title: J Mech Phys Solids – volume: 94 start-page: 1755 year: 2012 end-page: 1770 ident: bib0047 article-title: Performance of functionally graded sandwich composite beams under shock wave loading publication-title: Compos Struct – volume: 82 start-page: 103 year: 2015 end-page: 112 ident: bib0020 article-title: A 3D mesoscopic model for the closed-cell metallic foams subjected to static and dynamic loadings publication-title: Int J Impact Eng – volume: 53 start-page: 2206 year: 2005 end-page: 2230 ident: bib0015 article-title: Dynamic compressive strength properties of aluminium foams. Part II—‘shock’ theory and comparison with experimental data and numerical models publication-title: J Mech Phys Solids – volume: 220 start-page: 679 year: 2006 end-page: 689 ident: bib0023 article-title: One-dimensional analysis on the dynamic response of cellular chains to pulse loading publication-title: Proc Inst Mech Eng C J Mech Eng Sci – volume: 404 start-page: 9 year: 2005 end-page: 18 ident: bib0042 article-title: Graded open cell aluminum foam core sandwich beams publication-title: Mat Sci Eng A – volume: 46 start-page: 3492 year: 2009 end-page: 3502 ident: bib0046 article-title: The blast resistance of sandwich composites with stepwise graded cores publication-title: Int J Solids Struct – volume: 96–97 start-page: 1 year: 2015 end-page: 12 ident: bib0050 article-title: Finite element simulation of metallic cylindrical sandwich shells with graded aluminum tubular cores subjected to internal blast loading publication-title: Int J Mech Sci – volume: 364 start-page: 15 year: 2006 end-page: 30 ident: bib0003 article-title: The properties of foams and lattices publication-title: Philos Trans R Soc A – volume: 53 start-page: 29 year: 2013 end-page: 43 ident: bib0030 article-title: Dynamic crushing of cellular materials: a unified framework of plastic shock wave models publication-title: Int J Impact Eng – volume: 43 start-page: 53 year: 2006 end-page: 73 ident: bib0012 article-title: Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials publication-title: Int J Solids Struct – volume: 640 start-page: 375 year: 2015 end-page: 384 ident: bib0052 article-title: Mechanical behavior of open-cell rhombic dodecahedron Ti–6Al–4V lattice structure publication-title: Mater Sci Eng A – volume: 30 start-page: 1182 year: 2016 end-page: 1204 ident: bib0057 article-title: Osteoblast functions in functionally graded Ti-6Al-4V mesh structures publication-title: J Biomater Appl – volume: 46 start-page: 3988 year: 2009 end-page: 3998 ident: bib0019 article-title: A numerical study on the rate sensitivity of cellular metals publication-title: Int J Solids Struct – year: 1999 ident: bib0001 article-title: Cellular solids: structures and properties – volume: 82 year: 2015 ident: bib0035 article-title: Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs publication-title: J Appl Mech – volume: 52 start-page: 680 year: 2010 end-page: 688 ident: bib0040 article-title: Impact behaviour of hollow sphere agglomerates with density gradient publication-title: Int J Mech Sci – volume: 24 start-page: 277 year: 2000 end-page: 298 ident: bib0032 article-title: High strain rate compressive behaviour of aluminium alloy foams publication-title: Int J Impact Eng – volume: 72 start-page: 93 year: 2014 end-page: 114 ident: bib0031 article-title: Dynamic stress–strain states for metal foams using a 3D cellular model publication-title: J Mech Phys Solids – volume: 40 start-page: 921 year: 1999 end-page: 927 ident: bib0013 article-title: Higashi K.Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading publication-title: Scripta Mater – volume: 586 start-page: 392 year: 2013 end-page: 406 ident: bib0060 article-title: Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions publication-title: Mat Sci Eng A – volume: 30 start-page: 421 year: 2004 end-page: 445 ident: bib0026 article-title: High velocity plate impact of metal foams publication-title: Int J Impact Eng – volume: 42 start-page: 1097 year: 2000 end-page: 1117 ident: bib0006 article-title: Failure of aluminum foams under multiaxial loads publication-title: Int J Mech Sci – volume: 89 start-page: 49 year: 2015 end-page: 61 ident: bib0054 article-title: Energy absorption in lattice structures in dynamics: experiments publication-title: Int J Impact Eng – volume: 24 start-page: 277 year: 2000 end-page: 298 ident: bib0010 article-title: High strain rate compressive behaviour of aluminium alloy foams publication-title: Inter J Impact Eng – volume: 499 start-page: 434 year: 2009 end-page: 439 ident: bib0039 article-title: Mechanical properties of functionally graded 2-D cellular structures: a finite element simulation publication-title: Mat Sci Eng A – volume: 22 start-page: 2118 year: 2006 end-page: 2145 ident: bib0033 article-title: Dynamic failure of metallic pyramidal truss core materials – Experiments and modeling publication-title: Int J Plasticity – volume: 100 start-page: 75 year: 2016 end-page: 89 ident: bib0037 article-title: Mechanical properties of open-cell rhombic dodecahedron titanium alloy lattice structure manufactured using electron beam melting under dynamic loading publication-title: Int J Impact Eng – volume: 60 start-page: 120 year: 2013 end-page: 132 ident: bib0053 article-title: Drop weight impact behaviour of sandwich panels with metallic micro lattice cores publication-title: Int J Impact Eng – volume: 16 start-page: 153 year: 2012 end-page: 162 ident: bib0059 article-title: Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting publication-title: J Mech. Behav. Biomed – volume: 51 start-page: 1631 year: 2014 end-page: 1645 ident: bib0016 article-title: Dynamic crushing of aluminum foams: part I – experiments publication-title: Int J Solids Struct – volume: 51 start-page: 1646 year: 2014 end-page: 1661 ident: bib0018 article-title: Dynamic crushing of aluminum foams: part II – analysis publication-title: Int J Solids Struct – volume: 94 start-page: 66 year: 2016 end-page: 78 ident: bib0041 article-title: Impact plastic crushing and design of density-graded cellular materials publication-title: Mech Mater – volume: 34 start-page: 587 year: 2007 end-page: 595 ident: bib0027 article-title: Modeling the progressive collapse behavior of metal foams publication-title: Int J Impact Eng – volume: 61 start-page: 61 year: 2003 end-page: 71 ident: bib0025 article-title: Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment publication-title: Compos Struct – volume: 31 start-page: 523 year: 2005 end-page: 544 ident: bib0058 article-title: Lubrication of polycarbonate at cryogenic temperatures in the split Hopkinson pressure bar publication-title: Int J Impact Eng – volume: 27 start-page: 1049 year: 2002 end-page: 1065 ident: bib0022 article-title: Attenuation or enhancement—a one-dimensional analysis on shock transmission in the solid phase of a cellular material publication-title: Int J Impact Eng – volume: 106 start-page: 206 year: 2016 end-page: 217 ident: bib0051 article-title: Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading publication-title: Compo Part B-Eng – volume: 102 start-page: 1 year: 2017 end-page: 15 ident: bib0061 article-title: Energy absorption in lattice structures in dynamics: nonlinear FE simulations publication-title: Int J Impact Eng – volume: 124 start-page: 409 year: 2015 end-page: 420 ident: bib0009 article-title: Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact publication-title: Compo Struct – volume: 63 start-page: 783 year: 2014 end-page: 788 ident: bib0062 article-title: High specific strength and stiffness structures produced using selective laser melting publication-title: Mater Des – volume: 65 start-page: 185 year: 2014 end-page: 194 ident: bib0049 article-title: Dynamic response of corrugated sandwich steel plates with graded cores publication-title: Int J Impact Eng – volume: 38 start-page: 160 year: 2006 end-page: 170 ident: bib0007 article-title: Strain-rate effect and micro-structural optimization of cellular metals publication-title: Mech Mater – volume: 53 start-page: 872 year: 2011 end-page: 885 ident: bib0044 article-title: 3D elasticity analysis of sandwich panels with graded core under distributed and concentrated loadings publication-title: Int J Mech Sci – volume: 18 start-page: 34 year: 2016 end-page: 38 ident: bib0056 article-title: Functionally graded Ti-6Al-4V meshes with high strength and energy absorption publication-title: Adv Eng Mater – volume: 620 start-page: 253 year: 2015 end-page: 261 ident: bib0017 article-title: Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading publication-title: Mater Sci Eng A – volume: 35 start-page: 795 year: 2008 end-page: 810 ident: bib0036 article-title: The quasi-static and blast loading response of lattice structures publication-title: Int J Impact Eng – volume: 19 start-page: 531 year: 1997 end-page: 570 ident: bib0024 article-title: Dynamic uniaxial crushing of wood publication-title: Int J Impact Eng – volume: 53 start-page: 2174 year: 2005 end-page: 2205 ident: bib0014 article-title: Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations publication-title: J Mech Phys Solids – volume: 116 start-page: 14 year: 2016 end-page: 28 ident: bib0055 article-title: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading publication-title: Acta Mater – volume: 489 start-page: 439 year: 2008 end-page: 443 ident: bib0038 article-title: Mechanical properties of a density-graded replicated aluminum foam publication-title: Mat Sci Eng A – volume: 54 start-page: 539 year: 2006 end-page: 543 ident: bib0043 article-title: Functional grading of metal foam cores for yield-limited lightweight sandwich beams publication-title: Scripta Mater – volume: 51 start-page: 478 year: 2014 end-page: 490 ident: bib0021 article-title: On the local nature of the strain field calculation method for measuring heterogeneous deformation of cellular materials publication-title: Int J Solids Struct – volume: 49 start-page: 1035 year: 2001 end-page: 1040 ident: bib0004 article-title: Foam topology bending versus stretching dominated architectures publication-title: Acta Mater – volume: 42 start-page: 1499 year: 1994 end-page: 1532 ident: bib0005 article-title: In-plane compressive response and crushing of honeycomb publication-title: J Mech Phys Solids – volume: 28 start-page: 331 year: 2003 end-page: 347 ident: bib0011 article-title: Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core publication-title: Int J Impact Eng – volume: 42 start-page: 66 year: 2012 end-page: 79 ident: bib0029 article-title: Dynamic crushing of cellular materials: continuum-based wave models for the transitional and shock modes publication-title: Int J Impact Eng – year: 2000 ident: bib0002 article-title: Metal foams: a design guide – volume: 47 start-page: 521 year: 2005 end-page: 544 ident: bib0028 article-title: High rate crushing of wood along the grain publication-title: Int J Mech Sci – volume: 586 start-page: 392 issue: 8 year: 2013 ident: 10.1016/j.ijimpeng.2017.09.018_bib0060 article-title: Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions publication-title: Mat Sci Eng A doi: 10.1016/j.msea.2013.07.070 – volume: 42 start-page: 1499 issue: 10 year: 1994 ident: 10.1016/j.ijimpeng.2017.09.018_bib0005 article-title: In-plane compressive response and crushing of honeycomb publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(94)90085-X – volume: 76 start-page: 224 year: 2015 ident: 10.1016/j.ijimpeng.2017.09.018_bib0008 article-title: Multiaxial yield surface of transversely isotropic foams: part II—experimental publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2014.10.009 – volume: 47 start-page: 521 issue: 4-5 year: 2005 ident: 10.1016/j.ijimpeng.2017.09.018_bib0028 article-title: High rate crushing of wood along the grain publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2004.12.013 – volume: 404 start-page: 9 year: 2005 ident: 10.1016/j.ijimpeng.2017.09.018_bib0042 article-title: Graded open cell aluminum foam core sandwich beams publication-title: Mat Sci Eng A doi: 10.1016/j.msea.2005.05.096 – volume: 94 start-page: 66 year: 2016 ident: 10.1016/j.ijimpeng.2017.09.018_bib0041 article-title: Impact plastic crushing and design of density-graded cellular materials publication-title: Mech Mater doi: 10.1016/j.mechmat.2015.11.014 – volume: 53 start-page: 29 year: 2013 ident: 10.1016/j.ijimpeng.2017.09.018_bib0030 article-title: Dynamic crushing of cellular materials: a unified framework of plastic shock wave models publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2012.06.012 – volume: 54 start-page: 539 year: 2006 ident: 10.1016/j.ijimpeng.2017.09.018_bib0043 article-title: Functional grading of metal foam cores for yield-limited lightweight sandwich beams publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2005.10.050 – volume: 53 start-page: 2174 issue: 10 year: 2005 ident: 10.1016/j.ijimpeng.2017.09.018_bib0014 article-title: Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2005.05.007 – volume: 51 start-page: 1631 issue: 9 year: 2014 ident: 10.1016/j.ijimpeng.2017.09.018_bib0016 article-title: Dynamic crushing of aluminum foams: part I – experiments publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2013.11.019 – volume: 63 start-page: 783 issue: 2 year: 2014 ident: 10.1016/j.ijimpeng.2017.09.018_bib0062 article-title: High specific strength and stiffness structures produced using selective laser melting publication-title: Mater Des doi: 10.1016/j.matdes.2014.05.064 – volume: 89 start-page: 49 year: 2015 ident: 10.1016/j.ijimpeng.2017.09.018_bib0054 article-title: Energy absorption in lattice structures in dynamics: experiments publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2015.10.007 – year: 1999 ident: 10.1016/j.ijimpeng.2017.09.018_bib0001 – volume: 94 start-page: 2485 year: 2012 ident: 10.1016/j.ijimpeng.2017.09.018_bib0048 article-title: Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores publication-title: Compos Struct doi: 10.1016/j.compstruct.2012.02.029 – volume: 49 start-page: 1035 year: 2001 ident: 10.1016/j.ijimpeng.2017.09.018_bib0004 article-title: Foam topology bending versus stretching dominated architectures publication-title: Acta Mater doi: 10.1016/S1359-6454(00)00379-7 – volume: 24 start-page: 277 issue: 3 year: 2000 ident: 10.1016/j.ijimpeng.2017.09.018_bib0010 article-title: High strain rate compressive behaviour of aluminium alloy foams publication-title: Inter J Impact Eng doi: 10.1016/S0734-743X(99)00153-0 – volume: 27 start-page: 1049 issue: 10 year: 2002 ident: 10.1016/j.ijimpeng.2017.09.018_bib0022 article-title: Attenuation or enhancement—a one-dimensional analysis on shock transmission in the solid phase of a cellular material publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(02)00016-7 – volume: 16 start-page: 153 year: 2012 ident: 10.1016/j.ijimpeng.2017.09.018_bib0059 article-title: Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting publication-title: J Mech. Behav. Biomed doi: 10.1016/j.jmbbm.2012.10.005 – volume: 35 start-page: 795 issue: 8 year: 2008 ident: 10.1016/j.ijimpeng.2017.09.018_bib0036 article-title: The quasi-static and blast loading response of lattice structures publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2007.10.005 – volume: 24 start-page: 277 issue: 3 year: 2000 ident: 10.1016/j.ijimpeng.2017.09.018_bib0032 article-title: High strain rate compressive behaviour of aluminium alloy foams publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(99)00153-0 – volume: 40 start-page: 921 year: 1999 ident: 10.1016/j.ijimpeng.2017.09.018_bib0013 article-title: Higashi K.Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading publication-title: Scripta Mater doi: 10.1016/S1359-6462(99)00038-X – volume: 53 start-page: 2206 issue: 10 year: 2005 ident: 10.1016/j.ijimpeng.2017.09.018_bib0015 article-title: Dynamic compressive strength properties of aluminium foams. Part II—‘shock’ theory and comparison with experimental data and numerical models publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2005.05.003 – volume: 43 start-page: 53 year: 2006 ident: 10.1016/j.ijimpeng.2017.09.018_bib0012 article-title: Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2005.06.101 – volume: 31 start-page: 523 issue: 5 year: 2005 ident: 10.1016/j.ijimpeng.2017.09.018_bib0058 article-title: Lubrication of polycarbonate at cryogenic temperatures in the split Hopkinson pressure bar publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2004.02.007 – volume: 53 start-page: 872 year: 2011 ident: 10.1016/j.ijimpeng.2017.09.018_bib0044 article-title: 3D elasticity analysis of sandwich panels with graded core under distributed and concentrated loadings publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2011.07.011 – volume: 51 start-page: 1646 year: 2014 ident: 10.1016/j.ijimpeng.2017.09.018_bib0018 article-title: Dynamic crushing of aluminum foams: part II – analysis publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2013.11.020 – volume: 89 start-page: 28 year: 2009 ident: 10.1016/j.ijimpeng.2017.09.018_bib0045 article-title: 3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact publication-title: Compos Struct doi: 10.1016/j.compstruct.2008.06.013 – volume: 42 start-page: 66 year: 2012 ident: 10.1016/j.ijimpeng.2017.09.018_bib0029 article-title: Dynamic crushing of cellular materials: continuum-based wave models for the transitional and shock modes publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2011.09.009 – year: 2000 ident: 10.1016/j.ijimpeng.2017.09.018_bib0002 – volume: 26 start-page: 689 issue: 11 year: 1984 ident: 10.1016/j.ijimpeng.2017.09.018_bib0034 article-title: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure publication-title: Int J Mech Sci doi: 10.1016/0020-7403(84)90021-3 – volume: 124 start-page: 409 year: 2015 ident: 10.1016/j.ijimpeng.2017.09.018_bib0009 article-title: Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact publication-title: Compo Struct doi: 10.1016/j.compstruct.2015.01.001 – volume: 22 start-page: 2118 year: 2006 ident: 10.1016/j.ijimpeng.2017.09.018_bib0033 article-title: Dynamic failure of metallic pyramidal truss core materials – Experiments and modeling publication-title: Int J Plasticity doi: 10.1016/j.ijplas.2006.02.006 – volume: 38 start-page: 160 issue: 1 year: 2006 ident: 10.1016/j.ijimpeng.2017.09.018_bib0007 article-title: Strain-rate effect and micro-structural optimization of cellular metals publication-title: Mech Mater doi: 10.1016/j.mechmat.2005.05.018 – volume: 19 start-page: 531 issue: 5-6 year: 1997 ident: 10.1016/j.ijimpeng.2017.09.018_bib0024 article-title: Dynamic uniaxial crushing of wood publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(97)00016-X – volume: 106 start-page: 206 year: 2016 ident: 10.1016/j.ijimpeng.2017.09.018_bib0051 article-title: Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading publication-title: Compo Part B-Eng doi: 10.1016/j.compositesb.2016.09.037 – volume: 116 start-page: 14 year: 2016 ident: 10.1016/j.ijimpeng.2017.09.018_bib0055 article-title: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading publication-title: Acta Mater doi: 10.1016/j.actamat.2016.05.054 – volume: 60 start-page: 120 year: 2013 ident: 10.1016/j.ijimpeng.2017.09.018_bib0053 article-title: Drop weight impact behaviour of sandwich panels with metallic micro lattice cores publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2013.04.007 – volume: 94 start-page: 1755 year: 2012 ident: 10.1016/j.ijimpeng.2017.09.018_bib0047 article-title: Performance of functionally graded sandwich composite beams under shock wave loading publication-title: Compos Struct doi: 10.1016/j.compstruct.2011.12.006 – volume: 499 start-page: 434 issue: 1 year: 2009 ident: 10.1016/j.ijimpeng.2017.09.018_bib0039 article-title: Mechanical properties of functionally graded 2-D cellular structures: a finite element simulation publication-title: Mat Sci Eng A doi: 10.1016/j.msea.2008.08.040 – volume: 65 start-page: 185 issue: 2 year: 2014 ident: 10.1016/j.ijimpeng.2017.09.018_bib0049 article-title: Dynamic response of corrugated sandwich steel plates with graded cores publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2013.11.011 – volume: 52 start-page: 680 issue: 5 year: 2010 ident: 10.1016/j.ijimpeng.2017.09.018_bib0040 article-title: Impact behaviour of hollow sphere agglomerates with density gradient publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2009.11.012 – volume: 46 start-page: 3492 year: 2009 ident: 10.1016/j.ijimpeng.2017.09.018_bib0046 article-title: The blast resistance of sandwich composites with stepwise graded cores publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2009.06.004 – volume: 30 start-page: 1182 issue: 8 year: 2016 ident: 10.1016/j.ijimpeng.2017.09.018_bib0057 article-title: Osteoblast functions in functionally graded Ti-6Al-4V mesh structures publication-title: J Biomater Appl doi: 10.1177/0885328215617868 – volume: 61 start-page: 61 issue: 1–2 year: 2003 ident: 10.1016/j.ijimpeng.2017.09.018_bib0025 article-title: Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment publication-title: Compos Struct doi: 10.1016/S0263-8223(03)00039-4 – volume: 96–97 start-page: 1 year: 2015 ident: 10.1016/j.ijimpeng.2017.09.018_bib0050 article-title: Finite element simulation of metallic cylindrical sandwich shells with graded aluminum tubular cores subjected to internal blast loading publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2015.03.011 – volume: 30 start-page: 421 issue: 4 year: 2004 ident: 10.1016/j.ijimpeng.2017.09.018_bib0026 article-title: High velocity plate impact of metal foams publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(03)00066-6 – volume: 42 start-page: 1097 issue: 6 year: 2000 ident: 10.1016/j.ijimpeng.2017.09.018_bib0006 article-title: Failure of aluminum foams under multiaxial loads publication-title: Int J Mech Sci doi: 10.1016/S0020-7403(99)00043-0 – volume: 100 start-page: 75 year: 2016 ident: 10.1016/j.ijimpeng.2017.09.018_bib0037 article-title: Mechanical properties of open-cell rhombic dodecahedron titanium alloy lattice structure manufactured using electron beam melting under dynamic loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2016.10.006 – volume: 46 start-page: 3988 issue: 22–23 year: 2009 ident: 10.1016/j.ijimpeng.2017.09.018_bib0019 article-title: A numerical study on the rate sensitivity of cellular metals publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2009.07.024 – volume: 82 issue: 5 year: 2015 ident: 10.1016/j.ijimpeng.2017.09.018_bib0035 article-title: Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs publication-title: J Appl Mech doi: 10.1115/1.4030007 – volume: 28 start-page: 331 issue: 3 year: 2003 ident: 10.1016/j.ijimpeng.2017.09.018_bib0011 article-title: Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(02)00053-2 – volume: 620 start-page: 253 year: 2015 ident: 10.1016/j.ijimpeng.2017.09.018_bib0017 article-title: Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2014.10.026 – volume: 18 start-page: 34 issue: 1 year: 2016 ident: 10.1016/j.ijimpeng.2017.09.018_bib0056 article-title: Functionally graded Ti-6Al-4V meshes with high strength and energy absorption publication-title: Adv Eng Mater doi: 10.1002/adem.201500086 – volume: 82 start-page: 103 year: 2015 ident: 10.1016/j.ijimpeng.2017.09.018_bib0020 article-title: A 3D mesoscopic model for the closed-cell metallic foams subjected to static and dynamic loadings publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.10.009 – volume: 489 start-page: 439 year: 2008 ident: 10.1016/j.ijimpeng.2017.09.018_bib0038 article-title: Mechanical properties of a density-graded replicated aluminum foam publication-title: Mat Sci Eng A doi: 10.1016/j.msea.2007.11.076 – volume: 364 start-page: 15 year: 2006 ident: 10.1016/j.ijimpeng.2017.09.018_bib0003 article-title: The properties of foams and lattices publication-title: Philos Trans R Soc A doi: 10.1098/rsta.2005.1678 – volume: 102 start-page: 1 year: 2017 ident: 10.1016/j.ijimpeng.2017.09.018_bib0061 article-title: Energy absorption in lattice structures in dynamics: nonlinear FE simulations publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2016.11.016 – volume: 51 start-page: 478 issue: 2 year: 2014 ident: 10.1016/j.ijimpeng.2017.09.018_bib0021 article-title: On the local nature of the strain field calculation method for measuring heterogeneous deformation of cellular materials publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2013.10.019 – volume: 34 start-page: 587 issue: 3 year: 2007 ident: 10.1016/j.ijimpeng.2017.09.018_bib0027 article-title: Modeling the progressive collapse behavior of metal foams publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2005.12.004 – volume: 72 start-page: 93 year: 2014 ident: 10.1016/j.ijimpeng.2017.09.018_bib0031 article-title: Dynamic stress–strain states for metal foams using a 3D cellular model publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2014.07.013 – volume: 220 start-page: 679 issue: 5 year: 2006 ident: 10.1016/j.ijimpeng.2017.09.018_bib0023 article-title: One-dimensional analysis on the dynamic response of cellular chains to pulse loading publication-title: Proc Inst Mech Eng C J Mech Eng Sci doi: 10.1243/09544062C07505 – volume: 640 start-page: 375 year: 2015 ident: 10.1016/j.ijimpeng.2017.09.018_bib0052 article-title: Mechanical behavior of open-cell rhombic dodecahedron Ti–6Al–4V lattice structure publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2015.06.018 |
SSID | ssj0017050 |
Score | 2.6150794 |
Snippet | •Graded Ti-6Al-4V lattice structures with different gradients are fabricated by SLM.•Dynamic behavior of SLM printed graded Ti-6Al-4V lattice structure is... Functionally graded Ti-6Al-4V lattice structures with a step-wise gradient and a continuous gradient were designed and fabricated by selective laser melting... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 255 |
SubjectTerms | Additive manufacturing Computer simulation Correlation analysis Deformation Deformation mechanisms Digital imaging Dynamic response Energy absorption Finite element method Functionally graded Functionally gradient materials Laser beam melting Lattice vibration Mechanical analysis Mechanical properties Melting Selective laser melting Sensitivity analysis Split Hopkinson pressure bars Strain distribution Strain rate Strain rate sensitivity Ti-6Al-4V lattice structure Titanium base alloys |
Title | Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: Experiments |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2017.09.018 https://www.proquest.com/docview/1982206684 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwELYQNEeBjgPEY0EurjW7wY84dKsVaOF0NMBpO8vxA2UVAtpdCprr-dfM5LEChERBFdmyI8vfZGYymvmGkN8hz7PsxElmbSqZcDqyjIvIYuAxggcStMZq5L9XanwrLidyskJGXS0MplW2ur_R6bW2bmf67W32H4uifw3CKcD-TRIQUqEl6mFkrwOZPv6_TPNAtpg6zgKLGa5-UyU8PS6mBTin1R2meKU13yk2__jcQH1Q1bX9Of9JNlrHkQ6bs22SlVD9Iutv6AS3yMvQ-zoVqHxm97Z6wqKFp1nwFI1XE_Mrn-ndzHqYuymYGpZM_KOlXWAGHG2oZGHDnGJ0liKTMU7CyWGExWYzivVHhaO28tQ3vexp-VCn4Z_Ss2WzgPk2uT0_uxmNWdtqgTkuBgumgswH3gnnvAyBZwIQVEn0ifXOqxNAWlunYirh5Ar-0rgGTyn1IrVKc5-lfIesVg9V2CU04TlYvKh9EuEJtpBzmaepsglPQoxuj8jufo1recixHUZpuoSzqelwMYiLGWQGcNkj_eW-x4aJ48sdWQefeSdTBszFl3t7Hd6m_arnJkGyQ_DRtNj_xqsPyA8Y6SaO0yOrAG44BM9mkR_VontE1oYXf8ZXr5Sz_YI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF6hcGh7qEofKoXSPfS6Tcw-zS1CoFAgl4Yqt9V6H8iRMSgJB34C_5oZPyJaVeLQk-W1x1rtN54Zr2e-IeR7LIo8P_SSOaclE94klnORWIo8JYhAojFYjXw5VZMr8XMu51vkuK-FwbTKzva3Nr2x1t3IsFvN4V1ZDn-Bcgrwf_MMlFQYCXZ4G9mpxIBsj8_OJ9PNzwQ9ahq14v0MBZ4VCi9-lIsS4tP6GrO8dEN5iv0__u2j_rLWjQs6fUfedrEjHbfT2yFbsX5P3jxjFPxAHschNNlA1QO7cfU91i3cL2Og6L_abb_qgV4vXYCxWcnUuGLiN63cGpPgaMsmCwIrihu0FMmMcRBmDmdYb7akWIJUeurqQEPbzp5Wt00m_hE92fQLWH0kV6cns-MJ67otMM_FaM1UlMUoeOF9kDHyXACIKkshc8EHdQhgG-dV0hJmruBDjRsIlnQQ2inDQ675JzKob-v4mdCMF-D0kglZgiO4Q85lobVyGc9iSn6XyH59re-oyLEjRmX7nLOF7XGxiIsd5RZw2SXDjdxdS8bxokTew2f_UCsLHuNF2f0eb9u92CubId8hhGlGfPmPR38jryazywt7cTY93yOv4Yppt3X2yQCAjl8h0FkXB50iPwE2ugBC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additively-manufactured+functionally+graded+Ti-6Al-4V+lattice+structures+with+high+strength+under+static+and+dynamic+loading%3A+Experiments&rft.jtitle=International+journal+of+impact+engineering&rft.au=Xiao%2C+Lijun&rft.au=Song%2C+Weidong&rft.date=2018-01-01&rft.issn=0734-743X&rft.volume=111&rft.spage=255&rft.epage=272&rft_id=info:doi/10.1016%2Fj.ijimpeng.2017.09.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2017_09_018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |