Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: Experiments

•Graded Ti-6Al-4V lattice structures with different gradients are fabricated by SLM.•Dynamic behavior of SLM printed graded Ti-6Al-4V lattice structure is studied.•The strength of tested graded lattice structures shows strain rate sensitivity.•Deformation mode of specimens keeps unchanged within the...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 111; pp. 255 - 272
Main Authors Xiao, Lijun, Song, Weidong
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN0734-743X
1879-3509
DOI10.1016/j.ijimpeng.2017.09.018

Cover

Loading…
Abstract •Graded Ti-6Al-4V lattice structures with different gradients are fabricated by SLM.•Dynamic behavior of SLM printed graded Ti-6Al-4V lattice structure is studied.•The strength of tested graded lattice structures shows strain rate sensitivity.•Deformation mode of specimens keeps unchanged within the strain rate of 10−3–103/s.•FE analysis is conducted which captures the dynamic response of graded specimens. Functionally graded Ti-6Al-4V lattice structures with a step-wise gradient and a continuous gradient were designed and fabricated by selective laser melting (SLM) method respectively. Compression experiments were conducted by electronic universal machine and Split Hopkinson Pressure Bar (SHPB) system to determine the mechanical performance of the material for strain rates up to 1000/s. The potential influence of different loading directions on the material characteristics was explored. All the loading processes were recorded to capture the deformation mechanism of different specimens, and the strain distribution was analyzed using digital imaging correlation (DIC) method. The results indicate that the functionally graded Ti-6Al-4V lattice structures exhibit excellent mechanical properties, which appear to have a promising prospect for energy absorption applications. The strain rate effect is revealed to be resulted from the intrinsic strain rate sensitivity of the bulk material. Finite element (FE) analysis was conducted based on the 3D beam element to simulate the dynamic response of the graded lattice structures, which could be adopted for the prediction of the material strength and the initial collapse mode. Both the experimental and numerical results demonstrate that the designed gradient modes and loading directions exhibit no effect on the mechanical response of graded Ti-6Al-4V lattice structures within the tested strain rates.
AbstractList Functionally graded Ti-6Al-4V lattice structures with a step-wise gradient and a continuous gradient were designed and fabricated by selective laser melting (SLM) method respectively. Compression experiments were conducted by electronic universal machine and Split Hopkinson Pressure Bar (SHPB) system to determine the mechanical performance of the material for strain rates up to 1000/s. The potential influence of different loading directions on the material characteristics was explored. All the loading processes were recorded to capture the deformation mechanism of different specimens, and the strain distribution was analyzed using digital imaging correlation (DIC) method. The results indicate that the functionally graded Ti-6Al-4V lattice structures exhibit excellent mechanical properties, which appear to have a promising prospect for energy absorption applications. The strain rate effect is revealed to be resulted from the intrinsic strain rate sensitivity of the bulk material. Finite element (FE) analysis was conducted based on the 3D beam element to simulate the dynamic response of the graded lattice structures, which could be adopted for the prediction of the material strength and the initial collapse mode. Both the experimental and numerical results demonstrate that the designed gradient modes and loading directions exhibit no effect on the mechanical response of graded Ti-6Al-4V lattice structures within the tested strain rates.
•Graded Ti-6Al-4V lattice structures with different gradients are fabricated by SLM.•Dynamic behavior of SLM printed graded Ti-6Al-4V lattice structure is studied.•The strength of tested graded lattice structures shows strain rate sensitivity.•Deformation mode of specimens keeps unchanged within the strain rate of 10−3–103/s.•FE analysis is conducted which captures the dynamic response of graded specimens. Functionally graded Ti-6Al-4V lattice structures with a step-wise gradient and a continuous gradient were designed and fabricated by selective laser melting (SLM) method respectively. Compression experiments were conducted by electronic universal machine and Split Hopkinson Pressure Bar (SHPB) system to determine the mechanical performance of the material for strain rates up to 1000/s. The potential influence of different loading directions on the material characteristics was explored. All the loading processes were recorded to capture the deformation mechanism of different specimens, and the strain distribution was analyzed using digital imaging correlation (DIC) method. The results indicate that the functionally graded Ti-6Al-4V lattice structures exhibit excellent mechanical properties, which appear to have a promising prospect for energy absorption applications. The strain rate effect is revealed to be resulted from the intrinsic strain rate sensitivity of the bulk material. Finite element (FE) analysis was conducted based on the 3D beam element to simulate the dynamic response of the graded lattice structures, which could be adopted for the prediction of the material strength and the initial collapse mode. Both the experimental and numerical results demonstrate that the designed gradient modes and loading directions exhibit no effect on the mechanical response of graded Ti-6Al-4V lattice structures within the tested strain rates.
Author Song, Weidong
Xiao, Lijun
Author_xml – sequence: 1
  givenname: Lijun
  surname: Xiao
  fullname: Xiao, Lijun
– sequence: 2
  givenname: Weidong
  surname: Song
  fullname: Song, Weidong
  email: swdgh@bit.edu.cn
BookMark eNqFkE1v1DAQhi1UJLaFv4AscU6w8-HEiAOrqnxIlbgUxM3yeia7E2WdxXYK-xP6r-tl4cKlJ3tG7zOaeS7ZhZ89MvZailIKqd6OJY20P6DflpWQXSl0KWT_jK1k3-miboW-YCvR1U3RNfWPF-wyxlHkoGjFij2sASjRPU7HYm_9MliXloDAh8W7RLO303Tk22Ah9-6oUOupaL7zyaZEDnlMYfkDRP6L0o7vaLs7NfMyuVo8YMilzVluPXA4ervP_2m2QH77jt_8PmCgPfoUX7Lng50ivvr7XrFvH2_urj8Xt18_fble3xaubkQqFLYbAa5xDlrEWjcbrZUcQFpwoCrcYG-dGro2X6Kqvqr7VokOms6qvgbd1VfszXnuIcw_F4zJjPMS8p3RSN1XlVCqb3JKnVMuzDEGHMwh72nD0UhhTtrNaP5pNyftRmiTtWfw_X-go5OA2adgaXoa_3DGMSu4JwwmOkLvECigSwZmemrEIxozqVI
CitedBy_id crossref_primary_10_1142_S1758825118501077
crossref_primary_10_1007_s40436_024_00542_9
crossref_primary_10_1016_j_engfailanal_2019_104231
crossref_primary_10_1016_j_ijimpeng_2022_104320
crossref_primary_10_1016_j_msea_2019_138387
crossref_primary_10_1002_adem_202201850
crossref_primary_10_1177_14644207231188709
crossref_primary_10_3390_ma15238625
crossref_primary_10_1016_j_addma_2019_100890
crossref_primary_10_1111_ffe_12966
crossref_primary_10_1177_0954406219885959
crossref_primary_10_3390_polym13223882
crossref_primary_10_3390_met11101622
crossref_primary_10_1177_00219983241292785
crossref_primary_10_1016_j_ijmecsci_2019_04_051
crossref_primary_10_1016_j_msea_2022_143887
crossref_primary_10_1016_j_bioactmat_2021_12_027
crossref_primary_10_1016_j_tws_2019_01_039
crossref_primary_10_1016_j_msea_2019_138035
crossref_primary_10_1016_j_compstruct_2022_115315
crossref_primary_10_1016_j_tws_2024_111616
crossref_primary_10_1016_j_compositesa_2020_105934
crossref_primary_10_1016_j_compscitech_2020_108339
crossref_primary_10_1016_j_ijmecsci_2020_105893
crossref_primary_10_3390_met15030284
crossref_primary_10_1016_j_compstruct_2023_117323
crossref_primary_10_1016_j_matdes_2019_108443
crossref_primary_10_1007_s13369_024_09166_4
crossref_primary_10_1016_j_compositesb_2022_110086
crossref_primary_10_1007_s40430_022_03972_3
crossref_primary_10_1007_s11340_019_00506_2
crossref_primary_10_1088_2053_1591_aba147
crossref_primary_10_3390_ma11112129
crossref_primary_10_3390_ma16103670
crossref_primary_10_1016_j_engstruct_2025_120088
crossref_primary_10_46399_muhendismakina_870953
crossref_primary_10_1016_j_msea_2018_08_069
crossref_primary_10_1016_j_jmrt_2024_01_187
crossref_primary_10_1016_j_eml_2019_100577
crossref_primary_10_1007_s12540_024_01841_3
crossref_primary_10_1016_j_compositesb_2019_107410
crossref_primary_10_1088_1742_6596_1459_1_012004
crossref_primary_10_1016_j_compstruct_2019_04_031
crossref_primary_10_1007_s40964_024_00715_9
crossref_primary_10_3390_polym14010181
crossref_primary_10_1016_j_jsamd_2023_100663
crossref_primary_10_1016_j_tafmec_2023_103947
crossref_primary_10_1016_j_jallcom_2025_179600
crossref_primary_10_1088_1361_651X_aab975
crossref_primary_10_1115_1_4051691
crossref_primary_10_1016_j_ijmecsci_2023_108795
crossref_primary_10_1016_j_dt_2021_05_012
crossref_primary_10_1007_s00170_020_06112_0
crossref_primary_10_1016_j_ast_2022_107383
crossref_primary_10_1016_j_matdes_2021_110236
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123352
crossref_primary_10_1002_smll_201903834
crossref_primary_10_1016_j_jmrt_2022_04_051
crossref_primary_10_1016_j_compositesb_2023_110561
crossref_primary_10_1016_j_jmapro_2021_06_062
crossref_primary_10_3390_met11081266
crossref_primary_10_1016_j_tws_2023_111022
crossref_primary_10_1016_j_matdes_2022_110963
crossref_primary_10_1016_j_msea_2021_142340
crossref_primary_10_1016_j_matdes_2022_111257
crossref_primary_10_1007_s11665_022_07104_9
crossref_primary_10_1016_j_matdes_2020_109292
crossref_primary_10_1002_adem_202201130
crossref_primary_10_1016_j_jmatprotec_2021_117186
crossref_primary_10_1016_j_compositesb_2019_107630
crossref_primary_10_1016_j_compstruct_2021_114414
crossref_primary_10_1016_j_tws_2019_106586
crossref_primary_10_1016_j_ijsolstr_2023_112555
crossref_primary_10_1016_j_commatsci_2020_109610
crossref_primary_10_1016_j_actbio_2021_02_020
crossref_primary_10_1016_j_addma_2018_09_016
crossref_primary_10_1016_j_ijimpeng_2025_105294
crossref_primary_10_1177_14644207211011729
crossref_primary_10_1016_j_jmrt_2024_06_077
crossref_primary_10_1016_j_tws_2024_112763
crossref_primary_10_1007_s00170_019_04116_z
crossref_primary_10_1016_j_msea_2019_04_082
crossref_primary_10_1080_17452759_2022_2074698
crossref_primary_10_1016_j_addma_2020_101148
crossref_primary_10_3390_met10121576
crossref_primary_10_1016_j_surfcoat_2020_126419
crossref_primary_10_1016_j_dt_2025_01_003
crossref_primary_10_1016_j_ijmecsci_2020_105735
crossref_primary_10_1016_j_matdes_2023_112190
crossref_primary_10_3390_ma13184083
crossref_primary_10_1080_15376494_2021_1959685
crossref_primary_10_1002_adem_202301040
crossref_primary_10_1016_j_engfailanal_2024_108794
crossref_primary_10_1016_j_matpr_2024_02_008
crossref_primary_10_1088_1361_651X_ace63d
crossref_primary_10_1080_15376494_2020_1722871
crossref_primary_10_1080_15376494_2021_2009600
crossref_primary_10_3390_met14101165
crossref_primary_10_1016_j_compstruct_2025_118841
crossref_primary_10_1016_j_jmrt_2019_12_019
crossref_primary_10_1016_j_compstruct_2023_117703
crossref_primary_10_1002_adem_202001536
crossref_primary_10_1016_j_jmapro_2021_03_002
crossref_primary_10_1177_1687814020916951
crossref_primary_10_3390_ma17040822
crossref_primary_10_1016_j_promfg_2021_07_039
crossref_primary_10_1007_s10853_023_09086_y
crossref_primary_10_2139_ssrn_4191353
crossref_primary_10_1108_RPJ_06_2023_0191
crossref_primary_10_1016_j_matdes_2018_01_028
crossref_primary_10_3390_app10186374
crossref_primary_10_1016_j_tws_2023_111349
crossref_primary_10_1177_10996362241238272
crossref_primary_10_1016_j_matchar_2023_113506
crossref_primary_10_1177_1464420719841084
crossref_primary_10_1016_j_ijimpeng_2020_103768
crossref_primary_10_1016_j_addma_2019_05_033
crossref_primary_10_1016_j_jmrt_2024_07_190
crossref_primary_10_1016_j_optlastec_2023_110500
crossref_primary_10_1002_adem_202100879
crossref_primary_10_1016_j_engstruct_2023_115909
crossref_primary_10_1080_15376494_2023_2258523
crossref_primary_10_1016_j_compstruct_2021_113801
crossref_primary_10_3390_ma17143398
crossref_primary_10_57062_ijpem_st_2023_0059
crossref_primary_10_1016_j_actbio_2018_09_031
crossref_primary_10_1016_j_eng_2019_06_009
crossref_primary_10_1007_s40870_022_00359_2
crossref_primary_10_3390_polym14173553
crossref_primary_10_1016_j_addma_2021_102054
crossref_primary_10_1016_j_ijmecsci_2022_107202
crossref_primary_10_1016_j_ijmecsci_2018_03_027
crossref_primary_10_1016_j_ijmecsci_2018_07_029
crossref_primary_10_1177_14644207211047706
crossref_primary_10_1016_j_ijmecsci_2019_105262
crossref_primary_10_1016_j_jmbbm_2024_106796
crossref_primary_10_1016_j_euromechsol_2025_105657
crossref_primary_10_1016_j_jmps_2024_105882
crossref_primary_10_1016_j_optlastec_2023_109182
crossref_primary_10_1016_j_cja_2024_103373
crossref_primary_10_1016_j_jmrt_2025_01_151
crossref_primary_10_1002_adem_202401213
crossref_primary_10_1016_j_jmbbm_2020_103723
crossref_primary_10_1016_j_msea_2019_01_060
crossref_primary_10_1016_j_mtcomm_2024_109792
crossref_primary_10_1177_10996362211050914
crossref_primary_10_1016_j_jmrt_2023_05_167
crossref_primary_10_1016_j_msea_2019_138089
crossref_primary_10_1007_s11043_022_09567_8
crossref_primary_10_1016_j_jmrt_2025_03_116
crossref_primary_10_1007_s00170_024_14900_1
crossref_primary_10_1016_j_euromechsol_2021_104215
crossref_primary_10_3390_ma14133654
crossref_primary_10_3390_ma14092462
crossref_primary_10_1016_j_matdes_2019_107881
crossref_primary_10_1007_s00170_024_13570_3
crossref_primary_10_1016_j_ijmecsci_2023_108834
crossref_primary_10_1007_s11665_021_06096_2
crossref_primary_10_1007_s40684_021_00407_7
crossref_primary_10_1177_0954408918803194
crossref_primary_10_3390_bioengineering10060675
crossref_primary_10_3390_ma17102181
crossref_primary_10_1177_14644207221084611
crossref_primary_10_1007_s40964_025_00950_8
crossref_primary_10_1016_j_tws_2024_112655
crossref_primary_10_1007_s40964_024_00843_2
crossref_primary_10_3390_met10060753
crossref_primary_10_1007_s00170_021_06631_4
crossref_primary_10_1016_j_ijmecsci_2022_107093
crossref_primary_10_1016_j_ijimpeng_2022_104366
crossref_primary_10_1007_s12540_021_01046_y
crossref_primary_10_1016_j_tws_2023_110858
crossref_primary_10_1016_j_compscitech_2023_110197
crossref_primary_10_4028_p_NsQN4N
crossref_primary_10_1007_s11665_021_06475_9
crossref_primary_10_1007_s42235_023_00364_8
crossref_primary_10_1016_j_jmrt_2024_06_234
crossref_primary_10_1016_j_matdes_2022_110683
crossref_primary_10_1016_j_ijimpeng_2023_104528
crossref_primary_10_1016_j_addma_2021_102254
crossref_primary_10_1080_15376494_2023_2222125
crossref_primary_10_1007_s11771_020_4321_2
crossref_primary_10_1016_j_compstruct_2021_113958
crossref_primary_10_3390_ma13092204
crossref_primary_10_1016_j_ijimpeng_2024_104992
crossref_primary_10_1016_j_jmbbm_2024_106477
crossref_primary_10_1016_j_tws_2023_110988
crossref_primary_10_1007_s11661_020_05928_5
crossref_primary_10_1016_S1003_6326_20_65480_2
crossref_primary_10_1016_j_jallcom_2023_171874
crossref_primary_10_3390_ma12060886
crossref_primary_10_1016_j_addma_2019_100901
crossref_primary_10_1016_j_ijimpeng_2025_105223
crossref_primary_10_1016_j_ijimpeng_2019_04_002
crossref_primary_10_1016_j_applthermaleng_2023_121296
crossref_primary_10_1016_j_ijmecsci_2023_108102
crossref_primary_10_1016_j_msea_2023_144986
crossref_primary_10_1016_j_addma_2021_102466
crossref_primary_10_1016_j_msea_2019_138209
crossref_primary_10_1016_j_ijimpeng_2022_104263
crossref_primary_10_1177_09544089251326260
crossref_primary_10_1016_j_tws_2020_106970
crossref_primary_10_1016_j_msea_2019_138204
crossref_primary_10_1007_s12206_023_0733_x
crossref_primary_10_1080_15376494_2019_1665760
crossref_primary_10_3390_jfb14030125
crossref_primary_10_1016_j_tws_2020_106849
crossref_primary_10_1016_j_engfracmech_2021_107537
crossref_primary_10_1007_s11665_024_09714_x
crossref_primary_10_1016_j_ijimpeng_2023_104554
crossref_primary_10_1016_j_ijimpeng_2023_104553
crossref_primary_10_1007_s11837_023_06190_x
crossref_primary_10_1016_j_matdes_2021_109602
crossref_primary_10_1016_j_addma_2021_101947
crossref_primary_10_1016_j_coche_2020_03_001
crossref_primary_10_1177_14644207241238429
crossref_primary_10_1016_j_paerosci_2024_101021
crossref_primary_10_1016_j_tws_2021_108420
crossref_primary_10_1016_j_tws_2020_107153
crossref_primary_10_1063_5_0083888
crossref_primary_10_1016_j_mtcomm_2022_104842
crossref_primary_10_1016_j_ijimpeng_2025_105321
crossref_primary_10_1016_j_mtcomm_2022_103993
crossref_primary_10_1016_j_jmrt_2023_06_268
crossref_primary_10_1016_j_ijmecsci_2019_105118
crossref_primary_10_1007_s42493_024_00118_6
crossref_primary_10_2139_ssrn_4149570
Cites_doi 10.1016/j.msea.2013.07.070
10.1016/0022-5096(94)90085-X
10.1016/j.jmps.2014.10.009
10.1016/j.ijmecsci.2004.12.013
10.1016/j.msea.2005.05.096
10.1016/j.mechmat.2015.11.014
10.1016/j.ijimpeng.2012.06.012
10.1016/j.scriptamat.2005.10.050
10.1016/j.jmps.2005.05.007
10.1016/j.ijsolstr.2013.11.019
10.1016/j.matdes.2014.05.064
10.1016/j.ijimpeng.2015.10.007
10.1016/j.compstruct.2012.02.029
10.1016/S1359-6454(00)00379-7
10.1016/S0734-743X(99)00153-0
10.1016/S0734-743X(02)00016-7
10.1016/j.jmbbm.2012.10.005
10.1016/j.ijimpeng.2007.10.005
10.1016/S1359-6462(99)00038-X
10.1016/j.jmps.2005.05.003
10.1016/j.ijsolstr.2005.06.101
10.1016/j.ijimpeng.2004.02.007
10.1016/j.ijmecsci.2011.07.011
10.1016/j.ijsolstr.2013.11.020
10.1016/j.compstruct.2008.06.013
10.1016/j.ijimpeng.2011.09.009
10.1016/0020-7403(84)90021-3
10.1016/j.compstruct.2015.01.001
10.1016/j.ijplas.2006.02.006
10.1016/j.mechmat.2005.05.018
10.1016/S0734-743X(97)00016-X
10.1016/j.compositesb.2016.09.037
10.1016/j.actamat.2016.05.054
10.1016/j.ijimpeng.2013.04.007
10.1016/j.compstruct.2011.12.006
10.1016/j.msea.2008.08.040
10.1016/j.ijimpeng.2013.11.011
10.1016/j.ijmecsci.2009.11.012
10.1016/j.ijsolstr.2009.06.004
10.1177/0885328215617868
10.1016/S0263-8223(03)00039-4
10.1016/j.ijmecsci.2015.03.011
10.1016/S0734-743X(03)00066-6
10.1016/S0020-7403(99)00043-0
10.1016/j.ijimpeng.2016.10.006
10.1016/j.ijsolstr.2009.07.024
10.1115/1.4030007
10.1016/S0734-743X(02)00053-2
10.1016/j.msea.2014.10.026
10.1002/adem.201500086
10.1016/j.ijimpeng.2014.10.009
10.1016/j.msea.2007.11.076
10.1098/rsta.2005.1678
10.1016/j.ijimpeng.2016.11.016
10.1016/j.ijsolstr.2013.10.019
10.1016/j.ijimpeng.2005.12.004
10.1016/j.jmps.2014.07.013
10.1243/09544062C07505
10.1016/j.msea.2015.06.018
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Jan 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2018
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijimpeng.2017.09.018
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3509
EndPage 272
ExternalDocumentID 10_1016_j_ijimpeng_2017_09_018
S0734743X17304852
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c340t-6e5b0dc4ccd5ee394b9961fd1adcd62ebe8ac6f75fac6282385607d47a683d973
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Fri Jul 25 06:32:31 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Tue Jul 01 03:54:26 EDT 2025
Fri Feb 23 02:46:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ti-6Al-4V lattice structure
Selective laser melting
Functionally graded
Energy absorption
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-6e5b0dc4ccd5ee394b9961fd1adcd62ebe8ac6f75fac6282385607d47a683d973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1982206684
PQPubID 2045463
PageCount 18
ParticipantIDs proquest_journals_1982206684
crossref_primary_10_1016_j_ijimpeng_2017_09_018
crossref_citationtrail_10_1016_j_ijimpeng_2017_09_018
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2017_09_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of impact engineering
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Gibson, Ashby (bib0001) 1999
Pollien, Conde, Pambaguian, Mortensen (bib0042) 2005; 404
Yu, Li, Hu (bib0007) 2006; 38
Shafiq, Ayyagari, Ehaab (bib0008) 2015; 76
Yu, Wang, Wei (bib0011) 2003; 28
Tancogne-Dejean, Spierings, Mohr (bib0055) 2016; 116
Zheng, Yu, Wang (bib0030) 2013; 53
Li, Lu, Wang (bib0050) 2015; 96–97
Tan, Reid, Harrigan (bib0015) 2005; 53
Ashby (bib0002) 2000
Trautmann, Siviour, Walley (bib0058) 2005; 31
Etemadi, Afaghi Khatibi, Takaffoli (bib0045) 2009; 89
Mukai, Kanahashi, Miyoshi, Mabuchi, Nieh (bib0013) 1999; 40
Zhang, Hebert, Wright (bib0049) 2014; 65
Jin, Wang, Ning (bib0051) 2016; 106
Brothers, Dunand (bib0038) 2008; 489
Ozdemir, Tyas, Goodall (bib0061) 2017; 102
Xiao, Song, Wang (bib0052) 2015; 640
Gioux, McCormack, Gibson (bib0006) 2000; 42
Lopatnikov, Gama, Haque (bib0026) 2004; 30
Challis, Xu, Zhang (bib0062) 2014; 63
Deshpande, Ashby, Fleck (bib0004) 2001; 49
Barnes, Ravi-Chandar, Kyriakides (bib0016) 2014; 51
Li, Zhao, Hou (bib0056) 2016; 18
Lee, Barthelat, Moldovan (bib0012) 2006; 43
Gümrük, Mines, Karadeniz (bib0060) 2013; 586
Ashby (bib0003) 2006; 364
Lopatnikov, Gama, Haque (bib0025) 2003; 61
Tan, Reid, Harrigan (bib0014) 2005; 53
Ajdari, Canavan, Nayeb-Hashemi (bib0039) 2009; 499
Wang, Gardner, Shukla (bib0046) 2009; 46
Reid, Peng (bib0024) 1997; 19
Wang, Xu, Li (bib0017) 2015; 620
Gao, Yu (bib0023) 2006; 220
Zheng, Liu, Yu, Reid (bib0029) 2012; 42
Qiao, Chen (bib0035) 2015; 82
Conde, Pollien, Mortensen (bib0043) 2006; 54
Zeng, Pattofatto, Zhao (bib0040) 2010; 52
Zheng, Wang, Yu (bib0031) 2014; 72
Ozdemir, Hernandez-Nava, Tyas (bib0054) 2015; 89
Nune, Kumar, Misra (bib0057) 2016; 30
Liao, Zheng, Yu (bib0021) 2014; 51
Gaitanaros, Kyriakides (bib0018) 2014; 51
Liu, Yu, Zheng (bib0019) 2009; 46
Xiao, Song, Wang (bib0037) 2016; 100
Woodward, Kashtalyan (bib0044) 2011; 53
Zheng, Qin, Wang (bib0041) 2016; 94
Fang, Zhang, Zhang (bib0009) 2015; 124
Liu, Tian, Lu (bib0048) 2012; 94
Gardner, Wang, Shukla (bib0047) 2012; 94
Deshpande, Fleck (bib0032) 2000; 24
McKown, Shen, Brookes (bib0036) 2008; 35
Lee, Barthelat (bib0033) 2006; 22
Cheng, Li, Murr (bib0059) 2012; 16
Mines, Tsopanos, Shen (bib0053) 2013; 60
Harrigan, Reid, Tan, Reddy (bib0028) 2005; 47
Papka, Kyriakides (bib0005) 1994; 42
Li, Meng (bib0022) 2002; 27
Fang, Zhang, Zhang (bib0020) 2015; 82
Deshpande, Fleck (bib0010) 2000; 24
Lopatnikov, Gama, Gillespie (bib0027) 2007; 34
Calladine, English (bib0034) 1984; 26
Conde (10.1016/j.ijimpeng.2017.09.018_bib0043) 2006; 54
Mines (10.1016/j.ijimpeng.2017.09.018_bib0053) 2013; 60
Lopatnikov (10.1016/j.ijimpeng.2017.09.018_bib0027) 2007; 34
Reid (10.1016/j.ijimpeng.2017.09.018_bib0024) 1997; 19
Yu (10.1016/j.ijimpeng.2017.09.018_bib0011) 2003; 28
McKown (10.1016/j.ijimpeng.2017.09.018_bib0036) 2008; 35
Gibson (10.1016/j.ijimpeng.2017.09.018_bib0001) 1999
Yu (10.1016/j.ijimpeng.2017.09.018_bib0007) 2006; 38
Xiao (10.1016/j.ijimpeng.2017.09.018_bib0037) 2016; 100
Tan (10.1016/j.ijimpeng.2017.09.018_bib0015) 2005; 53
Gaitanaros (10.1016/j.ijimpeng.2017.09.018_bib0018) 2014; 51
Deshpande (10.1016/j.ijimpeng.2017.09.018_bib0032) 2000; 24
Gao (10.1016/j.ijimpeng.2017.09.018_bib0023) 2006; 220
Challis (10.1016/j.ijimpeng.2017.09.018_bib0062) 2014; 63
Shafiq (10.1016/j.ijimpeng.2017.09.018_bib0008) 2015; 76
Fang (10.1016/j.ijimpeng.2017.09.018_bib0020) 2015; 82
Gioux (10.1016/j.ijimpeng.2017.09.018_bib0006) 2000; 42
Zeng (10.1016/j.ijimpeng.2017.09.018_bib0040) 2010; 52
Harrigan (10.1016/j.ijimpeng.2017.09.018_bib0028) 2005; 47
Xiao (10.1016/j.ijimpeng.2017.09.018_bib0052) 2015; 640
Wang (10.1016/j.ijimpeng.2017.09.018_bib0046) 2009; 46
Cheng (10.1016/j.ijimpeng.2017.09.018_bib0059) 2012; 16
Deshpande (10.1016/j.ijimpeng.2017.09.018_bib0010) 2000; 24
Liu (10.1016/j.ijimpeng.2017.09.018_bib0048) 2012; 94
Wang (10.1016/j.ijimpeng.2017.09.018_bib0017) 2015; 620
Zhang (10.1016/j.ijimpeng.2017.09.018_bib0049) 2014; 65
Etemadi (10.1016/j.ijimpeng.2017.09.018_bib0045) 2009; 89
Liu (10.1016/j.ijimpeng.2017.09.018_bib0019) 2009; 46
Li (10.1016/j.ijimpeng.2017.09.018_bib0050) 2015; 96–97
Ashby (10.1016/j.ijimpeng.2017.09.018_bib0003) 2006; 364
Zheng (10.1016/j.ijimpeng.2017.09.018_bib0029) 2012; 42
Ozdemir (10.1016/j.ijimpeng.2017.09.018_bib0054) 2015; 89
Ozdemir (10.1016/j.ijimpeng.2017.09.018_bib0061) 2017; 102
Gardner (10.1016/j.ijimpeng.2017.09.018_bib0047) 2012; 94
Tancogne-Dejean (10.1016/j.ijimpeng.2017.09.018_bib0055) 2016; 116
Lee (10.1016/j.ijimpeng.2017.09.018_bib0012) 2006; 43
Li (10.1016/j.ijimpeng.2017.09.018_bib0022) 2002; 27
Li (10.1016/j.ijimpeng.2017.09.018_bib0056) 2016; 18
Jin (10.1016/j.ijimpeng.2017.09.018_bib0051) 2016; 106
Barnes (10.1016/j.ijimpeng.2017.09.018_bib0016) 2014; 51
Lopatnikov (10.1016/j.ijimpeng.2017.09.018_bib0026) 2004; 30
Zheng (10.1016/j.ijimpeng.2017.09.018_bib0030) 2013; 53
Qiao (10.1016/j.ijimpeng.2017.09.018_bib0035) 2015; 82
Gümrük (10.1016/j.ijimpeng.2017.09.018_bib0060) 2013; 586
Liao (10.1016/j.ijimpeng.2017.09.018_bib0021) 2014; 51
Lopatnikov (10.1016/j.ijimpeng.2017.09.018_bib0025) 2003; 61
Zheng (10.1016/j.ijimpeng.2017.09.018_bib0031) 2014; 72
Fang (10.1016/j.ijimpeng.2017.09.018_bib0009) 2015; 124
Pollien (10.1016/j.ijimpeng.2017.09.018_bib0042) 2005; 404
Deshpande (10.1016/j.ijimpeng.2017.09.018_bib0004) 2001; 49
Papka (10.1016/j.ijimpeng.2017.09.018_bib0005) 1994; 42
Ashby (10.1016/j.ijimpeng.2017.09.018_bib0002) 2000
Brothers (10.1016/j.ijimpeng.2017.09.018_bib0038) 2008; 489
Trautmann (10.1016/j.ijimpeng.2017.09.018_bib0058) 2005; 31
Calladine (10.1016/j.ijimpeng.2017.09.018_bib0034) 1984; 26
Tan (10.1016/j.ijimpeng.2017.09.018_bib0014) 2005; 53
Lee (10.1016/j.ijimpeng.2017.09.018_bib0033) 2006; 22
Nune (10.1016/j.ijimpeng.2017.09.018_bib0057) 2016; 30
Zheng (10.1016/j.ijimpeng.2017.09.018_bib0041) 2016; 94
Woodward (10.1016/j.ijimpeng.2017.09.018_bib0044) 2011; 53
Mukai (10.1016/j.ijimpeng.2017.09.018_bib0013) 1999; 40
Ajdari (10.1016/j.ijimpeng.2017.09.018_bib0039) 2009; 499
References_xml – volume: 89
  start-page: 28
  year: 2009
  end-page: 34
  ident: bib0045
  article-title: 3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact
  publication-title: Compos Struct
– volume: 94
  start-page: 2485
  year: 2012
  end-page: 2493
  ident: bib0048
  article-title: Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores
  publication-title: Compos Struct
– volume: 26
  start-page: 689
  year: 1984
  end-page: 701
  ident: bib0034
  article-title: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure
  publication-title: Int J Mech Sci
– volume: 76
  start-page: 224
  year: 2015
  end-page: 236
  ident: bib0008
  article-title: Multiaxial yield surface of transversely isotropic foams: part II—experimental
  publication-title: J Mech Phys Solids
– volume: 94
  start-page: 1755
  year: 2012
  end-page: 1770
  ident: bib0047
  article-title: Performance of functionally graded sandwich composite beams under shock wave loading
  publication-title: Compos Struct
– volume: 82
  start-page: 103
  year: 2015
  end-page: 112
  ident: bib0020
  article-title: A 3D mesoscopic model for the closed-cell metallic foams subjected to static and dynamic loadings
  publication-title: Int J Impact Eng
– volume: 53
  start-page: 2206
  year: 2005
  end-page: 2230
  ident: bib0015
  article-title: Dynamic compressive strength properties of aluminium foams. Part II—‘shock’ theory and comparison with experimental data and numerical models
  publication-title: J Mech Phys Solids
– volume: 220
  start-page: 679
  year: 2006
  end-page: 689
  ident: bib0023
  article-title: One-dimensional analysis on the dynamic response of cellular chains to pulse loading
  publication-title: Proc Inst Mech Eng C J Mech Eng Sci
– volume: 404
  start-page: 9
  year: 2005
  end-page: 18
  ident: bib0042
  article-title: Graded open cell aluminum foam core sandwich beams
  publication-title: Mat Sci Eng A
– volume: 46
  start-page: 3492
  year: 2009
  end-page: 3502
  ident: bib0046
  article-title: The blast resistance of sandwich composites with stepwise graded cores
  publication-title: Int J Solids Struct
– volume: 96–97
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib0050
  article-title: Finite element simulation of metallic cylindrical sandwich shells with graded aluminum tubular cores subjected to internal blast loading
  publication-title: Int J Mech Sci
– volume: 364
  start-page: 15
  year: 2006
  end-page: 30
  ident: bib0003
  article-title: The properties of foams and lattices
  publication-title: Philos Trans R Soc A
– volume: 53
  start-page: 29
  year: 2013
  end-page: 43
  ident: bib0030
  article-title: Dynamic crushing of cellular materials: a unified framework of plastic shock wave models
  publication-title: Int J Impact Eng
– volume: 43
  start-page: 53
  year: 2006
  end-page: 73
  ident: bib0012
  article-title: Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials
  publication-title: Int J Solids Struct
– volume: 640
  start-page: 375
  year: 2015
  end-page: 384
  ident: bib0052
  article-title: Mechanical behavior of open-cell rhombic dodecahedron Ti–6Al–4V lattice structure
  publication-title: Mater Sci Eng A
– volume: 30
  start-page: 1182
  year: 2016
  end-page: 1204
  ident: bib0057
  article-title: Osteoblast functions in functionally graded Ti-6Al-4V mesh structures
  publication-title: J Biomater Appl
– volume: 46
  start-page: 3988
  year: 2009
  end-page: 3998
  ident: bib0019
  article-title: A numerical study on the rate sensitivity of cellular metals
  publication-title: Int J Solids Struct
– year: 1999
  ident: bib0001
  article-title: Cellular solids: structures and properties
– volume: 82
  year: 2015
  ident: bib0035
  article-title: Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs
  publication-title: J Appl Mech
– volume: 52
  start-page: 680
  year: 2010
  end-page: 688
  ident: bib0040
  article-title: Impact behaviour of hollow sphere agglomerates with density gradient
  publication-title: Int J Mech Sci
– volume: 24
  start-page: 277
  year: 2000
  end-page: 298
  ident: bib0032
  article-title: High strain rate compressive behaviour of aluminium alloy foams
  publication-title: Int J Impact Eng
– volume: 72
  start-page: 93
  year: 2014
  end-page: 114
  ident: bib0031
  article-title: Dynamic stress–strain states for metal foams using a 3D cellular model
  publication-title: J Mech Phys Solids
– volume: 40
  start-page: 921
  year: 1999
  end-page: 927
  ident: bib0013
  article-title: Higashi K.Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading
  publication-title: Scripta Mater
– volume: 586
  start-page: 392
  year: 2013
  end-page: 406
  ident: bib0060
  article-title: Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions
  publication-title: Mat Sci Eng A
– volume: 30
  start-page: 421
  year: 2004
  end-page: 445
  ident: bib0026
  article-title: High velocity plate impact of metal foams
  publication-title: Int J Impact Eng
– volume: 42
  start-page: 1097
  year: 2000
  end-page: 1117
  ident: bib0006
  article-title: Failure of aluminum foams under multiaxial loads
  publication-title: Int J Mech Sci
– volume: 89
  start-page: 49
  year: 2015
  end-page: 61
  ident: bib0054
  article-title: Energy absorption in lattice structures in dynamics: experiments
  publication-title: Int J Impact Eng
– volume: 24
  start-page: 277
  year: 2000
  end-page: 298
  ident: bib0010
  article-title: High strain rate compressive behaviour of aluminium alloy foams
  publication-title: Inter J Impact Eng
– volume: 499
  start-page: 434
  year: 2009
  end-page: 439
  ident: bib0039
  article-title: Mechanical properties of functionally graded 2-D cellular structures: a finite element simulation
  publication-title: Mat Sci Eng A
– volume: 22
  start-page: 2118
  year: 2006
  end-page: 2145
  ident: bib0033
  article-title: Dynamic failure of metallic pyramidal truss core materials – Experiments and modeling
  publication-title: Int J Plasticity
– volume: 100
  start-page: 75
  year: 2016
  end-page: 89
  ident: bib0037
  article-title: Mechanical properties of open-cell rhombic dodecahedron titanium alloy lattice structure manufactured using electron beam melting under dynamic loading
  publication-title: Int J Impact Eng
– volume: 60
  start-page: 120
  year: 2013
  end-page: 132
  ident: bib0053
  article-title: Drop weight impact behaviour of sandwich panels with metallic micro lattice cores
  publication-title: Int J Impact Eng
– volume: 16
  start-page: 153
  year: 2012
  end-page: 162
  ident: bib0059
  article-title: Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting
  publication-title: J Mech. Behav. Biomed
– volume: 51
  start-page: 1631
  year: 2014
  end-page: 1645
  ident: bib0016
  article-title: Dynamic crushing of aluminum foams: part I – experiments
  publication-title: Int J Solids Struct
– volume: 51
  start-page: 1646
  year: 2014
  end-page: 1661
  ident: bib0018
  article-title: Dynamic crushing of aluminum foams: part II – analysis
  publication-title: Int J Solids Struct
– volume: 94
  start-page: 66
  year: 2016
  end-page: 78
  ident: bib0041
  article-title: Impact plastic crushing and design of density-graded cellular materials
  publication-title: Mech Mater
– volume: 34
  start-page: 587
  year: 2007
  end-page: 595
  ident: bib0027
  article-title: Modeling the progressive collapse behavior of metal foams
  publication-title: Int J Impact Eng
– volume: 61
  start-page: 61
  year: 2003
  end-page: 71
  ident: bib0025
  article-title: Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment
  publication-title: Compos Struct
– volume: 31
  start-page: 523
  year: 2005
  end-page: 544
  ident: bib0058
  article-title: Lubrication of polycarbonate at cryogenic temperatures in the split Hopkinson pressure bar
  publication-title: Int J Impact Eng
– volume: 27
  start-page: 1049
  year: 2002
  end-page: 1065
  ident: bib0022
  article-title: Attenuation or enhancement—a one-dimensional analysis on shock transmission in the solid phase of a cellular material
  publication-title: Int J Impact Eng
– volume: 106
  start-page: 206
  year: 2016
  end-page: 217
  ident: bib0051
  article-title: Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading
  publication-title: Compo Part B-Eng
– volume: 102
  start-page: 1
  year: 2017
  end-page: 15
  ident: bib0061
  article-title: Energy absorption in lattice structures in dynamics: nonlinear FE simulations
  publication-title: Int J Impact Eng
– volume: 124
  start-page: 409
  year: 2015
  end-page: 420
  ident: bib0009
  article-title: Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact
  publication-title: Compo Struct
– volume: 63
  start-page: 783
  year: 2014
  end-page: 788
  ident: bib0062
  article-title: High specific strength and stiffness structures produced using selective laser melting
  publication-title: Mater Des
– volume: 65
  start-page: 185
  year: 2014
  end-page: 194
  ident: bib0049
  article-title: Dynamic response of corrugated sandwich steel plates with graded cores
  publication-title: Int J Impact Eng
– volume: 38
  start-page: 160
  year: 2006
  end-page: 170
  ident: bib0007
  article-title: Strain-rate effect and micro-structural optimization of cellular metals
  publication-title: Mech Mater
– volume: 53
  start-page: 872
  year: 2011
  end-page: 885
  ident: bib0044
  article-title: 3D elasticity analysis of sandwich panels with graded core under distributed and concentrated loadings
  publication-title: Int J Mech Sci
– volume: 18
  start-page: 34
  year: 2016
  end-page: 38
  ident: bib0056
  article-title: Functionally graded Ti-6Al-4V meshes with high strength and energy absorption
  publication-title: Adv Eng Mater
– volume: 620
  start-page: 253
  year: 2015
  end-page: 261
  ident: bib0017
  article-title: Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading
  publication-title: Mater Sci Eng A
– volume: 35
  start-page: 795
  year: 2008
  end-page: 810
  ident: bib0036
  article-title: The quasi-static and blast loading response of lattice structures
  publication-title: Int J Impact Eng
– volume: 19
  start-page: 531
  year: 1997
  end-page: 570
  ident: bib0024
  article-title: Dynamic uniaxial crushing of wood
  publication-title: Int J Impact Eng
– volume: 53
  start-page: 2174
  year: 2005
  end-page: 2205
  ident: bib0014
  article-title: Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations
  publication-title: J Mech Phys Solids
– volume: 116
  start-page: 14
  year: 2016
  end-page: 28
  ident: bib0055
  article-title: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading
  publication-title: Acta Mater
– volume: 489
  start-page: 439
  year: 2008
  end-page: 443
  ident: bib0038
  article-title: Mechanical properties of a density-graded replicated aluminum foam
  publication-title: Mat Sci Eng A
– volume: 54
  start-page: 539
  year: 2006
  end-page: 543
  ident: bib0043
  article-title: Functional grading of metal foam cores for yield-limited lightweight sandwich beams
  publication-title: Scripta Mater
– volume: 51
  start-page: 478
  year: 2014
  end-page: 490
  ident: bib0021
  article-title: On the local nature of the strain field calculation method for measuring heterogeneous deformation of cellular materials
  publication-title: Int J Solids Struct
– volume: 49
  start-page: 1035
  year: 2001
  end-page: 1040
  ident: bib0004
  article-title: Foam topology bending versus stretching dominated architectures
  publication-title: Acta Mater
– volume: 42
  start-page: 1499
  year: 1994
  end-page: 1532
  ident: bib0005
  article-title: In-plane compressive response and crushing of honeycomb
  publication-title: J Mech Phys Solids
– volume: 28
  start-page: 331
  year: 2003
  end-page: 347
  ident: bib0011
  article-title: Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core
  publication-title: Int J Impact Eng
– volume: 42
  start-page: 66
  year: 2012
  end-page: 79
  ident: bib0029
  article-title: Dynamic crushing of cellular materials: continuum-based wave models for the transitional and shock modes
  publication-title: Int J Impact Eng
– year: 2000
  ident: bib0002
  article-title: Metal foams: a design guide
– volume: 47
  start-page: 521
  year: 2005
  end-page: 544
  ident: bib0028
  article-title: High rate crushing of wood along the grain
  publication-title: Int J Mech Sci
– volume: 586
  start-page: 392
  issue: 8
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0060
  article-title: Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions
  publication-title: Mat Sci Eng A
  doi: 10.1016/j.msea.2013.07.070
– volume: 42
  start-page: 1499
  issue: 10
  year: 1994
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0005
  article-title: In-plane compressive response and crushing of honeycomb
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(94)90085-X
– volume: 76
  start-page: 224
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0008
  article-title: Multiaxial yield surface of transversely isotropic foams: part II—experimental
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2014.10.009
– volume: 47
  start-page: 521
  issue: 4-5
  year: 2005
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0028
  article-title: High rate crushing of wood along the grain
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2004.12.013
– volume: 404
  start-page: 9
  year: 2005
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0042
  article-title: Graded open cell aluminum foam core sandwich beams
  publication-title: Mat Sci Eng A
  doi: 10.1016/j.msea.2005.05.096
– volume: 94
  start-page: 66
  year: 2016
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0041
  article-title: Impact plastic crushing and design of density-graded cellular materials
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2015.11.014
– volume: 53
  start-page: 29
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0030
  article-title: Dynamic crushing of cellular materials: a unified framework of plastic shock wave models
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2012.06.012
– volume: 54
  start-page: 539
  year: 2006
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0043
  article-title: Functional grading of metal foam cores for yield-limited lightweight sandwich beams
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2005.10.050
– volume: 53
  start-page: 2174
  issue: 10
  year: 2005
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0014
  article-title: Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2005.05.007
– volume: 51
  start-page: 1631
  issue: 9
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0016
  article-title: Dynamic crushing of aluminum foams: part I – experiments
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2013.11.019
– volume: 63
  start-page: 783
  issue: 2
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0062
  article-title: High specific strength and stiffness structures produced using selective laser melting
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2014.05.064
– volume: 89
  start-page: 49
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0054
  article-title: Energy absorption in lattice structures in dynamics: experiments
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2015.10.007
– year: 1999
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0001
– volume: 94
  start-page: 2485
  year: 2012
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0048
  article-title: Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2012.02.029
– volume: 49
  start-page: 1035
  year: 2001
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0004
  article-title: Foam topology bending versus stretching dominated architectures
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(00)00379-7
– volume: 24
  start-page: 277
  issue: 3
  year: 2000
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0010
  article-title: High strain rate compressive behaviour of aluminium alloy foams
  publication-title: Inter J Impact Eng
  doi: 10.1016/S0734-743X(99)00153-0
– volume: 27
  start-page: 1049
  issue: 10
  year: 2002
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0022
  article-title: Attenuation or enhancement—a one-dimensional analysis on shock transmission in the solid phase of a cellular material
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(02)00016-7
– volume: 16
  start-page: 153
  year: 2012
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0059
  article-title: Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting
  publication-title: J Mech. Behav. Biomed
  doi: 10.1016/j.jmbbm.2012.10.005
– volume: 35
  start-page: 795
  issue: 8
  year: 2008
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0036
  article-title: The quasi-static and blast loading response of lattice structures
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2007.10.005
– volume: 24
  start-page: 277
  issue: 3
  year: 2000
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0032
  article-title: High strain rate compressive behaviour of aluminium alloy foams
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(99)00153-0
– volume: 40
  start-page: 921
  year: 1999
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0013
  article-title: Higashi K.Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading
  publication-title: Scripta Mater
  doi: 10.1016/S1359-6462(99)00038-X
– volume: 53
  start-page: 2206
  issue: 10
  year: 2005
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0015
  article-title: Dynamic compressive strength properties of aluminium foams. Part II—‘shock’ theory and comparison with experimental data and numerical models
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2005.05.003
– volume: 43
  start-page: 53
  year: 2006
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0012
  article-title: Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2005.06.101
– volume: 31
  start-page: 523
  issue: 5
  year: 2005
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0058
  article-title: Lubrication of polycarbonate at cryogenic temperatures in the split Hopkinson pressure bar
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2004.02.007
– volume: 53
  start-page: 872
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0044
  article-title: 3D elasticity analysis of sandwich panels with graded core under distributed and concentrated loadings
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2011.07.011
– volume: 51
  start-page: 1646
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0018
  article-title: Dynamic crushing of aluminum foams: part II – analysis
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2013.11.020
– volume: 89
  start-page: 28
  year: 2009
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0045
  article-title: 3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2008.06.013
– volume: 42
  start-page: 66
  year: 2012
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0029
  article-title: Dynamic crushing of cellular materials: continuum-based wave models for the transitional and shock modes
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2011.09.009
– year: 2000
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0002
– volume: 26
  start-page: 689
  issue: 11
  year: 1984
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0034
  article-title: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure
  publication-title: Int J Mech Sci
  doi: 10.1016/0020-7403(84)90021-3
– volume: 124
  start-page: 409
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0009
  article-title: Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact
  publication-title: Compo Struct
  doi: 10.1016/j.compstruct.2015.01.001
– volume: 22
  start-page: 2118
  year: 2006
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0033
  article-title: Dynamic failure of metallic pyramidal truss core materials – Experiments and modeling
  publication-title: Int J Plasticity
  doi: 10.1016/j.ijplas.2006.02.006
– volume: 38
  start-page: 160
  issue: 1
  year: 2006
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0007
  article-title: Strain-rate effect and micro-structural optimization of cellular metals
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2005.05.018
– volume: 19
  start-page: 531
  issue: 5-6
  year: 1997
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0024
  article-title: Dynamic uniaxial crushing of wood
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(97)00016-X
– volume: 106
  start-page: 206
  year: 2016
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0051
  article-title: Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading
  publication-title: Compo Part B-Eng
  doi: 10.1016/j.compositesb.2016.09.037
– volume: 116
  start-page: 14
  year: 2016
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0055
  article-title: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2016.05.054
– volume: 60
  start-page: 120
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0053
  article-title: Drop weight impact behaviour of sandwich panels with metallic micro lattice cores
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2013.04.007
– volume: 94
  start-page: 1755
  year: 2012
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0047
  article-title: Performance of functionally graded sandwich composite beams under shock wave loading
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2011.12.006
– volume: 499
  start-page: 434
  issue: 1
  year: 2009
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0039
  article-title: Mechanical properties of functionally graded 2-D cellular structures: a finite element simulation
  publication-title: Mat Sci Eng A
  doi: 10.1016/j.msea.2008.08.040
– volume: 65
  start-page: 185
  issue: 2
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0049
  article-title: Dynamic response of corrugated sandwich steel plates with graded cores
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2013.11.011
– volume: 52
  start-page: 680
  issue: 5
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0040
  article-title: Impact behaviour of hollow sphere agglomerates with density gradient
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2009.11.012
– volume: 46
  start-page: 3492
  year: 2009
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0046
  article-title: The blast resistance of sandwich composites with stepwise graded cores
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2009.06.004
– volume: 30
  start-page: 1182
  issue: 8
  year: 2016
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0057
  article-title: Osteoblast functions in functionally graded Ti-6Al-4V mesh structures
  publication-title: J Biomater Appl
  doi: 10.1177/0885328215617868
– volume: 61
  start-page: 61
  issue: 1–2
  year: 2003
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0025
  article-title: Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment
  publication-title: Compos Struct
  doi: 10.1016/S0263-8223(03)00039-4
– volume: 96–97
  start-page: 1
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0050
  article-title: Finite element simulation of metallic cylindrical sandwich shells with graded aluminum tubular cores subjected to internal blast loading
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2015.03.011
– volume: 30
  start-page: 421
  issue: 4
  year: 2004
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0026
  article-title: High velocity plate impact of metal foams
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(03)00066-6
– volume: 42
  start-page: 1097
  issue: 6
  year: 2000
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0006
  article-title: Failure of aluminum foams under multiaxial loads
  publication-title: Int J Mech Sci
  doi: 10.1016/S0020-7403(99)00043-0
– volume: 100
  start-page: 75
  year: 2016
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0037
  article-title: Mechanical properties of open-cell rhombic dodecahedron titanium alloy lattice structure manufactured using electron beam melting under dynamic loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2016.10.006
– volume: 46
  start-page: 3988
  issue: 22–23
  year: 2009
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0019
  article-title: A numerical study on the rate sensitivity of cellular metals
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2009.07.024
– volume: 82
  issue: 5
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0035
  article-title: Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs
  publication-title: J Appl Mech
  doi: 10.1115/1.4030007
– volume: 28
  start-page: 331
  issue: 3
  year: 2003
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0011
  article-title: Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(02)00053-2
– volume: 620
  start-page: 253
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0017
  article-title: Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2014.10.026
– volume: 18
  start-page: 34
  issue: 1
  year: 2016
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0056
  article-title: Functionally graded Ti-6Al-4V meshes with high strength and energy absorption
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.201500086
– volume: 82
  start-page: 103
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0020
  article-title: A 3D mesoscopic model for the closed-cell metallic foams subjected to static and dynamic loadings
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2014.10.009
– volume: 489
  start-page: 439
  year: 2008
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0038
  article-title: Mechanical properties of a density-graded replicated aluminum foam
  publication-title: Mat Sci Eng A
  doi: 10.1016/j.msea.2007.11.076
– volume: 364
  start-page: 15
  year: 2006
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0003
  article-title: The properties of foams and lattices
  publication-title: Philos Trans R Soc A
  doi: 10.1098/rsta.2005.1678
– volume: 102
  start-page: 1
  year: 2017
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0061
  article-title: Energy absorption in lattice structures in dynamics: nonlinear FE simulations
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2016.11.016
– volume: 51
  start-page: 478
  issue: 2
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0021
  article-title: On the local nature of the strain field calculation method for measuring heterogeneous deformation of cellular materials
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2013.10.019
– volume: 34
  start-page: 587
  issue: 3
  year: 2007
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0027
  article-title: Modeling the progressive collapse behavior of metal foams
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2005.12.004
– volume: 72
  start-page: 93
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0031
  article-title: Dynamic stress–strain states for metal foams using a 3D cellular model
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2014.07.013
– volume: 220
  start-page: 679
  issue: 5
  year: 2006
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0023
  article-title: One-dimensional analysis on the dynamic response of cellular chains to pulse loading
  publication-title: Proc Inst Mech Eng C J Mech Eng Sci
  doi: 10.1243/09544062C07505
– volume: 640
  start-page: 375
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.09.018_bib0052
  article-title: Mechanical behavior of open-cell rhombic dodecahedron Ti–6Al–4V lattice structure
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2015.06.018
SSID ssj0017050
Score 2.6150794
Snippet •Graded Ti-6Al-4V lattice structures with different gradients are fabricated by SLM.•Dynamic behavior of SLM printed graded Ti-6Al-4V lattice structure is...
Functionally graded Ti-6Al-4V lattice structures with a step-wise gradient and a continuous gradient were designed and fabricated by selective laser melting...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 255
SubjectTerms Additive manufacturing
Computer simulation
Correlation analysis
Deformation
Deformation mechanisms
Digital imaging
Dynamic response
Energy absorption
Finite element method
Functionally graded
Functionally gradient materials
Laser beam melting
Lattice vibration
Mechanical analysis
Mechanical properties
Melting
Selective laser melting
Sensitivity analysis
Split Hopkinson pressure bars
Strain distribution
Strain rate
Strain rate sensitivity
Ti-6Al-4V lattice structure
Titanium base alloys
Title Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: Experiments
URI https://dx.doi.org/10.1016/j.ijimpeng.2017.09.018
https://www.proquest.com/docview/1982206684
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwELYQNEeBjgPEY0EurjW7wY84dKsVaOF0NMBpO8vxA2UVAtpdCprr-dfM5LEChERBFdmyI8vfZGYymvmGkN8hz7PsxElmbSqZcDqyjIvIYuAxggcStMZq5L9XanwrLidyskJGXS0MplW2ur_R6bW2bmf67W32H4uifw3CKcD-TRIQUqEl6mFkrwOZPv6_TPNAtpg6zgKLGa5-UyU8PS6mBTin1R2meKU13yk2__jcQH1Q1bX9Of9JNlrHkQ6bs22SlVD9Iutv6AS3yMvQ-zoVqHxm97Z6wqKFp1nwFI1XE_Mrn-ndzHqYuymYGpZM_KOlXWAGHG2oZGHDnGJ0liKTMU7CyWGExWYzivVHhaO28tQ3vexp-VCn4Z_Ss2WzgPk2uT0_uxmNWdtqgTkuBgumgswH3gnnvAyBZwIQVEn0ifXOqxNAWlunYirh5Ar-0rgGTyn1IrVKc5-lfIesVg9V2CU04TlYvKh9EuEJtpBzmaepsglPQoxuj8jufo1recixHUZpuoSzqelwMYiLGWQGcNkj_eW-x4aJ48sdWQefeSdTBszFl3t7Hd6m_arnJkGyQ_DRtNj_xqsPyA8Y6SaO0yOrAG44BM9mkR_VontE1oYXf8ZXr5Sz_YI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF6hcGh7qEofKoXSPfS6Tcw-zS1CoFAgl4Yqt9V6H8iRMSgJB34C_5oZPyJaVeLQk-W1x1rtN54Zr2e-IeR7LIo8P_SSOaclE94klnORWIo8JYhAojFYjXw5VZMr8XMu51vkuK-FwbTKzva3Nr2x1t3IsFvN4V1ZDn-Bcgrwf_MMlFQYCXZ4G9mpxIBsj8_OJ9PNzwQ9ahq14v0MBZ4VCi9-lIsS4tP6GrO8dEN5iv0__u2j_rLWjQs6fUfedrEjHbfT2yFbsX5P3jxjFPxAHschNNlA1QO7cfU91i3cL2Og6L_abb_qgV4vXYCxWcnUuGLiN63cGpPgaMsmCwIrihu0FMmMcRBmDmdYb7akWIJUeurqQEPbzp5Wt00m_hE92fQLWH0kV6cns-MJ67otMM_FaM1UlMUoeOF9kDHyXACIKkshc8EHdQhgG-dV0hJmruBDjRsIlnQQ2inDQ675JzKob-v4mdCMF-D0kglZgiO4Q85lobVyGc9iSn6XyH59re-oyLEjRmX7nLOF7XGxiIsd5RZw2SXDjdxdS8bxokTew2f_UCsLHuNF2f0eb9u92CubId8hhGlGfPmPR38jryazywt7cTY93yOv4Yppt3X2yQCAjl8h0FkXB50iPwE2ugBC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additively-manufactured+functionally+graded+Ti-6Al-4V+lattice+structures+with+high+strength+under+static+and+dynamic+loading%3A+Experiments&rft.jtitle=International+journal+of+impact+engineering&rft.au=Xiao%2C+Lijun&rft.au=Song%2C+Weidong&rft.date=2018-01-01&rft.issn=0734-743X&rft.volume=111&rft.spage=255&rft.epage=272&rft_id=info:doi/10.1016%2Fj.ijimpeng.2017.09.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2017_09_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon