Dynamic tensile behaviours of heterogeneous rocks: The grain scale fracturing characteristics on strength and fragmentation
•Grain scale discrete element model is proposed to study dynamic properties of rocks.•Heterogeneous rocks are reproduced and micro fracturing characteristics are investigated.•Rocks behave fragmentation transition from sparse fracture to pervasive pulverization as the strain rate increased.•Strain r...
Saved in:
Published in | International journal of impact engineering Vol. 118; pp. 98 - 118 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.08.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Grain scale discrete element model is proposed to study dynamic properties of rocks.•Heterogeneous rocks are reproduced and micro fracturing characteristics are investigated.•Rocks behave fragmentation transition from sparse fracture to pervasive pulverization as the strain rate increased.•Strain rate mechanism is related to micro fracturing transition from intergranular to transgranular.
The dynamic tension behaviours of granites are tested with the split Hopkinson pressure bar and the quasi-static responses including the compression and Brazilian splitting are carried out with a material testing system. The experimental results show the tensile strengths behave significant strain rate effect. In order to characterize the realistic fracturing process from the viewpoint of grain scale failure, a multiple scale discrete element model considering the micro heterogeneity is proposed using the digital image processing of mineral scanning for rocks. Comparison of the experimental and numerical tension stress as well as the ultimate fragment state indicates the grain-based model is reasonable in simulation of dynamic tension test on granites. Then the three-wave superposition, crack propagation sequences, end forces and the stress distribution are discussed to confirm the stress equilibrium in the specimen. Using the microheterogeneous model, the micro fracturing process and fragmentation in association with energy dissipation at different strain rates are discussed. It is found that the failure sequence can be divided into five stages as crack initiation, propagation, coalesce, branching and indentation crush on the stress curve in dynamic loading. The intrinsic mechanism of the strain rate effect is believed to be the transitions of the micro fracturing type, orientation and the damage degree in the specimen and in turn exhibiting more energy dissipation as well as fragmentation transition from sparse fracture to pervasive pulverization. Finally, the scaling model of the dynamic increase factor for granite is derived and the characteristic strain rate, increase rate factor values are discussed. |
---|---|
AbstractList | The dynamic tension behaviours of granites are tested with the split Hopkinson pressure bar and the quasi-static responses including the compression and Brazilian splitting are carried out with a material testing system. The experimental results show the tensile strengths behave significant strain rate effect. In order to characterize the realistic fracturing process from the viewpoint of grain scale failure, a multiple scale discrete element model considering the micro heterogeneity is proposed using the digital image processing of mineral scanning for rocks. Comparison of the experimental and numerical tension stress as well as the ultimate fragment state indicates the grain-based model is reasonable in simulation of dynamic tension test on granites. Then the three-wave superposition, crack propagation sequences, end forces and the stress distribution are discussed to confirm the stress equilibrium in the specimen. Using the microheterogeneous model, the micro fracturing process and fragmentation in association with energy dissipation at different strain rates are discussed. It is found that the failure sequence can be divided into five stages as crack initiation, propagation, coalesce, branching and indentation crush on the stress curve in dynamic loading. The intrinsic mechanism of the strain rate effect is believed to be the transitions of the micro fracturing type, orientation and the damage degree in the specimen and in turn exhibiting more energy dissipation as well as fragmentation transition from sparse fracture to pervasive pulverization. Finally, the scaling model of the dynamic increase factor for granite is derived and the characteristic strain rate, increase rate factor values are discussed. •Grain scale discrete element model is proposed to study dynamic properties of rocks.•Heterogeneous rocks are reproduced and micro fracturing characteristics are investigated.•Rocks behave fragmentation transition from sparse fracture to pervasive pulverization as the strain rate increased.•Strain rate mechanism is related to micro fracturing transition from intergranular to transgranular. The dynamic tension behaviours of granites are tested with the split Hopkinson pressure bar and the quasi-static responses including the compression and Brazilian splitting are carried out with a material testing system. The experimental results show the tensile strengths behave significant strain rate effect. In order to characterize the realistic fracturing process from the viewpoint of grain scale failure, a multiple scale discrete element model considering the micro heterogeneity is proposed using the digital image processing of mineral scanning for rocks. Comparison of the experimental and numerical tension stress as well as the ultimate fragment state indicates the grain-based model is reasonable in simulation of dynamic tension test on granites. Then the three-wave superposition, crack propagation sequences, end forces and the stress distribution are discussed to confirm the stress equilibrium in the specimen. Using the microheterogeneous model, the micro fracturing process and fragmentation in association with energy dissipation at different strain rates are discussed. It is found that the failure sequence can be divided into five stages as crack initiation, propagation, coalesce, branching and indentation crush on the stress curve in dynamic loading. The intrinsic mechanism of the strain rate effect is believed to be the transitions of the micro fracturing type, orientation and the damage degree in the specimen and in turn exhibiting more energy dissipation as well as fragmentation transition from sparse fracture to pervasive pulverization. Finally, the scaling model of the dynamic increase factor for granite is derived and the characteristic strain rate, increase rate factor values are discussed. |
Author | Li, H.B. Zhang, Q.B. Li, X. Zhao, J. Li, X.F. |
Author_xml | – sequence: 1 givenname: X.F. surname: Li fullname: Li, X.F. email: xfli@whrsm.ac.cn organization: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China – sequence: 2 givenname: X. surname: Li fullname: Li, X. email: li.xing@outlook.com organization: School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, China – sequence: 3 givenname: H.B. surname: Li fullname: Li, H.B. email: hbli@whrsm.ac.cn organization: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China – sequence: 4 givenname: Q.B. surname: Zhang fullname: Zhang, Q.B. email: qianbing.zhang@monash.edu organization: Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia – sequence: 5 givenname: J. surname: Zhao fullname: Zhao, J. email: jian.zhao@monash.edu organization: Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia |
BookMark | eNqFkE1r3DAQhkVJoZs0f6EIerYzsi3JLj20pB8pBHpJITchyyNb7q60lbSB0D8fLdtecslJDLzPO5rnnJz54JGQdwxqBkxcrbVb3W6Pfq4bYH0NXQ0gXpEN6-VQtRyGM7IB2XaV7Nr7N-Q8pRWASeCwIX-_PHq9c4Zm9MltkY646AcXDjHRYOmCGWOY0WM4JBqD-Z0-0LsF6Ry18zQZXRAbtcmH6PxMzaKPA0aXsjOlomRyLF_LC9V-OkbnHfqsswv-LXlt9Tbh5b_3gvz69vXu-qa6_fn9x_Xn28q0HeRKiFFa5JZpbi2ghNHy3oxD28tRd3YYGI7YCKP5JCYOLZdT003jMDLOpJiG9oK8P_XuY_hzwJTVWu7zZaVqQAo2NL0UJSVOKRNDShGt2ke30_FRMVBH0WpV_0Wro2gFnSqiC_jxGWjc6cBcJG1fxj-dcCwKHhxGlYxDb3ByEU1WU3AvVTwBXASkcQ |
CitedBy_id | crossref_primary_10_1007_s12205_023_0296_5 crossref_primary_10_1016_j_engfracmech_2021_108086 crossref_primary_10_1007_s10064_024_03905_5 crossref_primary_10_1016_j_enganabound_2025_106115 crossref_primary_10_1016_j_engfracmech_2023_109299 crossref_primary_10_1016_j_jrmge_2023_11_018 crossref_primary_10_1007_s13369_022_07533_7 crossref_primary_10_1615_JPorMedia_2022042288 crossref_primary_10_1007_s00603_023_03381_5 crossref_primary_10_1007_s40571_023_00595_w crossref_primary_10_1016_j_geoen_2024_213415 crossref_primary_10_1109_LGRS_2024_3360466 crossref_primary_10_1016_j_engfracmech_2022_108801 crossref_primary_10_1016_j_ijrmms_2023_105577 crossref_primary_10_1016_j_ijrmms_2024_105912 crossref_primary_10_1515_htmp_2020_0040 crossref_primary_10_1061__ASCE_GM_1943_5622_0001737 crossref_primary_10_1155_2020_1073608 crossref_primary_10_3390_su13148036 crossref_primary_10_1007_s40571_025_00915_2 crossref_primary_10_1016_j_ijrmms_2023_105573 crossref_primary_10_1002_nag_3488 crossref_primary_10_1007_s00603_023_03291_6 crossref_primary_10_1002_nag_3246 crossref_primary_10_1007_s10064_024_03732_8 crossref_primary_10_3390_lubricants8120106 crossref_primary_10_1155_2021_8199095 crossref_primary_10_3390_app112311230 crossref_primary_10_1007_s00603_018_1566_2 crossref_primary_10_1016_j_tafmec_2022_103544 crossref_primary_10_1007_s00603_023_03653_0 crossref_primary_10_1016_j_jsg_2020_104148 crossref_primary_10_1007_s10064_020_01764_4 crossref_primary_10_1016_j_engfracmech_2020_107297 crossref_primary_10_1007_s00603_023_03752_y crossref_primary_10_1016_j_jrmge_2022_07_012 crossref_primary_10_1155_2023_3382996 crossref_primary_10_1016_j_tecto_2022_229471 crossref_primary_10_3390_ma15041443 crossref_primary_10_1016_j_ijimpeng_2021_103855 crossref_primary_10_1061__ASCE_MT_1943_5533_0003962 crossref_primary_10_1016_j_jrmge_2021_08_014 crossref_primary_10_1016_j_tafmec_2022_103259 crossref_primary_10_1016_j_engfracmech_2024_110616 crossref_primary_10_1038_s41598_023_46444_x crossref_primary_10_1007_s00603_020_02191_3 crossref_primary_10_1007_s00603_021_02594_w crossref_primary_10_1007_s13369_021_06038_z crossref_primary_10_1007_s40948_022_00495_y crossref_primary_10_1016_j_compgeo_2019_02_018 crossref_primary_10_1002_nag_3860 crossref_primary_10_1016_j_ijimpeng_2019_103363 crossref_primary_10_1016_j_jrmge_2019_07_014 crossref_primary_10_1061_IJGNAI_GMENG_9653 crossref_primary_10_1007_s00603_024_04108_w crossref_primary_10_1016_j_mtcomm_2023_107098 crossref_primary_10_1016_j_ijimpeng_2020_103686 crossref_primary_10_1007_s40571_024_00889_7 crossref_primary_10_1007_s10064_022_02856_z crossref_primary_10_1061_IJGNAI_GMENG_7756 crossref_primary_10_1016_j_ijimpeng_2020_103790 crossref_primary_10_1016_j_engfracmech_2023_109530 crossref_primary_10_3390_app15052387 crossref_primary_10_1016_j_commatsci_2019_109164 crossref_primary_10_1016_j_cma_2020_113462 crossref_primary_10_1007_s00603_025_04479_8 crossref_primary_10_1016_j_engfracmech_2021_108161 crossref_primary_10_1007_s00603_020_02085_4 crossref_primary_10_1007_s00603_025_04389_9 crossref_primary_10_3390_min10020129 crossref_primary_10_1016_j_ijmecsci_2022_107405 crossref_primary_10_1007_s40571_023_00645_3 crossref_primary_10_1016_j_enggeo_2024_107649 crossref_primary_10_1016_j_ijrmms_2020_104448 crossref_primary_10_1016_j_soildyn_2024_109043 crossref_primary_10_1007_s12517_020_05755_3 crossref_primary_10_1007_s40571_024_00851_7 crossref_primary_10_1016_j_jrmge_2019_02_003 crossref_primary_10_1007_s00603_022_03075_4 crossref_primary_10_1007_s40571_023_00665_z crossref_primary_10_1007_s00603_024_04231_8 crossref_primary_10_1680_jgere_23_00041 crossref_primary_10_1007_s00603_024_03852_3 crossref_primary_10_1016_j_engfracmech_2019_106537 crossref_primary_10_1016_j_ijrmms_2024_106004 crossref_primary_10_1016_j_ijmst_2020_06_007 crossref_primary_10_1007_s40870_022_00350_x crossref_primary_10_1016_j_tafmec_2022_103431 crossref_primary_10_1016_j_jrmge_2019_10_002 crossref_primary_10_1007_s10064_023_03307_z crossref_primary_10_1007_s00603_021_02543_7 crossref_primary_10_1016_j_ijrmms_2020_104219 crossref_primary_10_1007_s40948_022_00387_1 crossref_primary_10_1007_s00603_023_03537_3 crossref_primary_10_1016_j_conbuildmat_2024_134995 crossref_primary_10_1021_acsomega_4c09188 crossref_primary_10_1155_2020_8841796 crossref_primary_10_1007_s00603_023_03300_8 crossref_primary_10_1016_j_ees_2024_07_003 crossref_primary_10_1007_s00603_020_02286_x crossref_primary_10_1007_s10064_022_02665_4 crossref_primary_10_1016_j_ijimpeng_2024_104915 crossref_primary_10_3390_w16131883 crossref_primary_10_1016_j_ijimpeng_2024_105159 crossref_primary_10_1016_j_ijmst_2024_07_001 crossref_primary_10_1108_EC_03_2019_0123 crossref_primary_10_1016_j_est_2024_110631 crossref_primary_10_1088_1755_1315_1124_1_012078 crossref_primary_10_1007_s10338_020_00176_x crossref_primary_10_3390_ma14010094 crossref_primary_10_1016_j_enganabound_2024_105924 crossref_primary_10_1016_j_enggeo_2020_105760 crossref_primary_10_1007_s00603_021_02368_4 crossref_primary_10_1016_j_compgeo_2021_104144 crossref_primary_10_1016_j_engfracmech_2021_108227 crossref_primary_10_1016_j_geoen_2023_211810 crossref_primary_10_1016_j_compgeo_2022_104838 crossref_primary_10_1680_jgele_20_00083 crossref_primary_10_1016_j_engfracmech_2018_06_024 crossref_primary_10_3390_ma15051681 crossref_primary_10_1016_j_engfracmech_2020_107365 crossref_primary_10_1007_s00603_022_02944_2 crossref_primary_10_1029_2022JB024348 crossref_primary_10_1142_S0218348X21500894 crossref_primary_10_54097_hset_v18i_2654 crossref_primary_10_1002_nag_3549 crossref_primary_10_1016_j_tafmec_2024_104345 crossref_primary_10_1016_j_undsp_2024_06_003 crossref_primary_10_1016_j_ijimpeng_2021_103946 |
Cites_doi | 10.1002/nme.4814 10.1016/j.ijrmms.2014.03.011 10.1016/j.ijrmms.2008.09.010 10.1016/j.tust.2015.12.010 10.1007/s00603-013-0463-y 10.1016/0148-9062(76)91829-5 10.1002/2015JB012542 10.1115/1.4005897 10.1016/j.ijrmms.2007.07.003 10.1016/j.ijrmms.2014.07.005 10.1007/s00603-010-0101-x 10.1007/s00603-016-1030-0 10.1007/s00603-016-0946-8 10.1007/s00024-010-0103-3 10.1007/s00603-016-0945-9 10.1007/s00603-011-0177-y 10.1016/j.ijsolstr.2014.01.012 10.1007/s00024-006-0056-8 10.1063/1.4902836 10.1007/s11340-013-9733-6 10.1063/1.329934 10.1007/s00603-010-0091-8 10.1007/s00603-010-0083-8 10.1016/S0266-352X(03)00015-6 10.1016/j.mechmat.2008.10.004 10.1016/j.icarus.2007.06.031 10.1016/j.icarus.2015.07.027 10.1016/j.mechmat.2013.08.002 10.1007/s00603-016-1110-1 10.1016/j.compgeo.2017.10.002 10.1016/0167-6636(87)90027-5 10.1016/j.ijrmms.2012.12.018 10.1016/j.ijrmms.2013.01.005 10.1016/S1365-1609(03)00072-8 10.1007/s00603-013-0503-7 10.1016/j.pce.2006.03.007 10.1680/geot.1979.29.1.47 10.1007/s00603-015-0787-x 10.1190/1.1439947 10.1063/1.3043420 10.1029/2009JB006496 10.1016/j.actamat.2013.02.045 10.1016/S0167-8442(01)00054-4 10.1002/nme.1151 10.1016/j.ijrmms.2009.05.001 10.1061/(ASCE)1532-3641(2003)3:1(84) 10.1016/j.ijimpeng.2015.04.010 10.1007/s00603-013-0465-9 10.1007/s00603-010-0092-7 10.1016/0148-9062(80)91361-3 10.1007/BF02323559 10.1029/2010JB007721 10.1007/s11771-009-0112-5 10.1016/j.enggeo.2017.05.001 10.1016/j.ijrmms.2008.04.008 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Aug 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2018 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2018.04.006 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
EndPage | 118 |
ExternalDocumentID | 10_1016_j_ijimpeng_2018_04_006 S0734743X17310552 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c340t-66b7fe5f1a5ff0e70bf58cb9387ba4f991ebe26ca5d6d50357d24db9b15176d93 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Fri Jul 25 08:42:40 EDT 2025 Tue Jul 01 03:54:26 EDT 2025 Thu Apr 24 23:02:18 EDT 2025 Fri Feb 23 02:46:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dynamic tensile strength Granular rocks Micro fracturing DEM simulation Strain rate effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-66b7fe5f1a5ff0e70bf58cb9387ba4f991ebe26ca5d6d50357d24db9b15176d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2076192876 |
PQPubID | 2045463 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2076192876 crossref_primary_10_1016_j_ijimpeng_2018_04_006 crossref_citationtrail_10_1016_j_ijimpeng_2018_04_006 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2018_04_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Schindler L. Design and evaluation of a device for determining the one dimensional compression characteristics of soils subjected to impulse-type loads [Ph.D. dissertation]. Urbana, IL: University of Illinois; 1968. p. 380. Cadoni (bib0006) 2010; 43 Grady (bib0023) 1982; 53 Kumar (bib0035) 1968; 33 Bahrani, Kaiser, Valley (bib0003) 2014; 71 Yuan, Prakash, Tullis (bib0056) 2011; 116 Tan, Konietzky, Chen (bib0048) 2016; 49 Bhat, Rosakis, Sammis (bib0005) 2012; 79 Farahmand, Diederichs (bib0017) 2016 Mahabadi, Cottrell, Grasselli (bib0040) 2010; 43 Rabczuk, Belytschko (bib0041) 2004; 61 Dai, Xia (bib0014) 2010; 167 Bahrani, Kaiser (bib0004) 2017; 50 Cundall, Strack (bib0010) 1979; 29 Hong, Zhou, Yin (bib0026) 2009; 16 Howe, Goldsmith, Sackman (bib0027) 1974; 14 Wang, Li, Xie (bib0050) 2009; 41 Zhao, Russell, Zhao (bib0060) 2014; 51 Cho, Ogata, Kaneko (bib0009) 2003; 40 Zhang, Zhao (bib0059) 2013; 60 Wu, Yao, Xia (bib0052) 2016; 49 Dai, Xia, Luo (bib0012) 2008; 79 Grady, Kipp (bib0022) 1980; 17 Gui, Bui, Kodikara, Zhang, Zhao, Rabczuk (bib0024) 2016; 87 Zhang, Zhao (bib0058) 2014; 47 Li, Li, Zhao (bib0038) 2018 Dutta, Kim (bib0015) 1993 Gong, Zhao (bib0021) 2014; 47 Xu, Dai, Xu (bib0053) 2016; 49 Cai, Kaiser, Suorineni (bib0007) 2007; 32 Farahmand, Vazaios, Diederichs (bib0018) 2018; 95 Dai, Huang, Xia (bib0011) 2010; 43 Hogan, Kimberley, Hazeli (bib0025) 2015; 260 Li, Li, Liu (bib0039) 2016; 53 Fang, Xu (bib0016) 2016; 49 Chen, Dai, Qin (bib0008) 2013; 53 Saksala, Brancherie, Harari (bib0044) 2015; 101 Yan, Feng, Chen (bib0054) 2012; 45 Kimberley, Ramesh, Daphalapurkar (bib0033) 2013; 61 Lan, Martin, Hu (bib0036) 2010; 115 Aben, Doan, Mitchell (bib0001) 2016; 121 Wong, Zou, Cheng (bib0051) 2014; 47 Yue, Chen, Tham (bib0057) 2003; 30 Huang, Xu, Hu (bib0028) 2014; 68 Rabczuk, Ren (bib0042) 2017; 225 Johnson (bib0031) 2010 Wang, Li, Song (bib0049) 2006; 163 Li, Lee, Tsui (bib0037) 2003; 3 Huang, Xia, Yan (bib0030) 2010; 43 Yu, Zhang, Zhang (bib0055) 2009; 46 Schultz, Eberhardy, Ernst (bib0047) 2007; 191 Asprone, Cadoni, Prota (bib0002) 2009; 46 Saksala, Hokka, Kuokkala (bib0045) 2013; 59 Gomez, Shukla, Sharma (bib0020) 2001; 36 Kubota, Ogata, Wada (bib0034) 2008; 45 Dai, Xia, Tang (bib0013) 2010; 47 Goldsmith, Sackman, Ewerts (bib0019) 1976; 13 Huang, Liu, Xia (bib0029) 2014; 85 Rougier, Knight, Broome (bib0043) 2014; 70 Khan, Irani (bib0032) 1987; 6 Cai (10.1016/j.ijimpeng.2018.04.006_bib0007) 2007; 32 Zhao (10.1016/j.ijimpeng.2018.04.006_bib0060) 2014; 51 Schultz (10.1016/j.ijimpeng.2018.04.006_bib0047) 2007; 191 Huang (10.1016/j.ijimpeng.2018.04.006_bib0028) 2014; 68 Li (10.1016/j.ijimpeng.2018.04.006_bib0037) 2003; 3 Li (10.1016/j.ijimpeng.2018.04.006_bib0039) 2016; 53 Fang (10.1016/j.ijimpeng.2018.04.006_bib0016) 2016; 49 Farahmand (10.1016/j.ijimpeng.2018.04.006_bib0017) 2016 Wu (10.1016/j.ijimpeng.2018.04.006_bib0052) 2016; 49 Chen (10.1016/j.ijimpeng.2018.04.006_bib0008) 2013; 53 Dai (10.1016/j.ijimpeng.2018.04.006_bib0013) 2010; 47 Dutta (10.1016/j.ijimpeng.2018.04.006_bib0015) 1993 Li (10.1016/j.ijimpeng.2018.04.006_bib0038) 2018 Cho (10.1016/j.ijimpeng.2018.04.006_bib0009) 2003; 40 Gomez (10.1016/j.ijimpeng.2018.04.006_bib0020) 2001; 36 Yu (10.1016/j.ijimpeng.2018.04.006_bib0055) 2009; 46 Bahrani (10.1016/j.ijimpeng.2018.04.006_bib0003) 2014; 71 Lan (10.1016/j.ijimpeng.2018.04.006_bib0036) 2010; 115 Cundall (10.1016/j.ijimpeng.2018.04.006_bib0010) 1979; 29 Bahrani (10.1016/j.ijimpeng.2018.04.006_bib0004) 2017; 50 Dai (10.1016/j.ijimpeng.2018.04.006_bib0014) 2010; 167 Goldsmith (10.1016/j.ijimpeng.2018.04.006_bib0019) 1976; 13 Yuan (10.1016/j.ijimpeng.2018.04.006_bib0056) 2011; 116 Zhang (10.1016/j.ijimpeng.2018.04.006_bib0059) 2013; 60 Huang (10.1016/j.ijimpeng.2018.04.006_bib0029) 2014; 85 Kimberley (10.1016/j.ijimpeng.2018.04.006_bib0033) 2013; 61 Yan (10.1016/j.ijimpeng.2018.04.006_bib0054) 2012; 45 Xu (10.1016/j.ijimpeng.2018.04.006_bib0053) 2016; 49 Dai (10.1016/j.ijimpeng.2018.04.006_bib0012) 2008; 79 Wang (10.1016/j.ijimpeng.2018.04.006_bib0050) 2009; 41 Wong (10.1016/j.ijimpeng.2018.04.006_bib0051) 2014; 47 Aben (10.1016/j.ijimpeng.2018.04.006_bib0001) 2016; 121 Grady (10.1016/j.ijimpeng.2018.04.006_bib0023) 1982; 53 Wang (10.1016/j.ijimpeng.2018.04.006_bib0049) 2006; 163 Huang (10.1016/j.ijimpeng.2018.04.006_bib0030) 2010; 43 Mahabadi (10.1016/j.ijimpeng.2018.04.006_bib0040) 2010; 43 Kumar (10.1016/j.ijimpeng.2018.04.006_bib0035) 1968; 33 Farahmand (10.1016/j.ijimpeng.2018.04.006_bib0018) 2018; 95 Asprone (10.1016/j.ijimpeng.2018.04.006_bib0002) 2009; 46 Dai (10.1016/j.ijimpeng.2018.04.006_bib0011) 2010; 43 Zhang (10.1016/j.ijimpeng.2018.04.006_bib0058) 2014; 47 Bhat (10.1016/j.ijimpeng.2018.04.006_bib0005) 2012; 79 Rabczuk (10.1016/j.ijimpeng.2018.04.006_bib0042) 2017; 225 Rougier (10.1016/j.ijimpeng.2018.04.006_bib0043) 2014; 70 Johnson (10.1016/j.ijimpeng.2018.04.006_bib0031) 2010 Gong (10.1016/j.ijimpeng.2018.04.006_bib0021) 2014; 47 10.1016/j.ijimpeng.2018.04.006_bib0046 Cadoni (10.1016/j.ijimpeng.2018.04.006_bib0006) 2010; 43 Hong (10.1016/j.ijimpeng.2018.04.006_bib0026) 2009; 16 Tan (10.1016/j.ijimpeng.2018.04.006_bib0048) 2016; 49 Howe (10.1016/j.ijimpeng.2018.04.006_bib0027) 1974; 14 Khan (10.1016/j.ijimpeng.2018.04.006_bib0032) 1987; 6 Rabczuk (10.1016/j.ijimpeng.2018.04.006_bib0041) 2004; 61 Saksala (10.1016/j.ijimpeng.2018.04.006_bib0045) 2013; 59 Kubota (10.1016/j.ijimpeng.2018.04.006_bib0034) 2008; 45 Saksala (10.1016/j.ijimpeng.2018.04.006_bib0044) 2015; 101 Hogan (10.1016/j.ijimpeng.2018.04.006_bib0025) 2015; 260 Grady (10.1016/j.ijimpeng.2018.04.006_bib0022) 1980; 17 Gui (10.1016/j.ijimpeng.2018.04.006_bib0024) 2016; 87 Yue (10.1016/j.ijimpeng.2018.04.006_bib0057) 2003; 30 |
References_xml | – volume: 47 start-page: 469 year: 2010 end-page: 475 ident: bib0013 article-title: Rate dependence of the flexural tensile strength of Laurentian granite publication-title: Int J Rock Mech Min Sci – volume: 43 start-page: 677 year: 2010 end-page: 683 ident: bib0030 article-title: An experimental study of the rate dependence of tensile strength softening of Longyou sandstone publication-title: Rock Mech Rock Eng – year: 2018 ident: bib0038 article-title: Reasonability of grain-based discrete element method (GBDEM) on SHPB simulation and its application for granular rocks publication-title: Rock Mech Rock Eng – volume: 32 start-page: 907 year: 2007 end-page: 916 ident: bib0007 article-title: A study on the dynamic behavior of the Meuse/Haute-Marne argillite publication-title: Phys Chem Earth Parts A/B/C – volume: 53 start-page: 96 year: 2016 end-page: 108 ident: bib0039 article-title: Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs publication-title: Tunnel Undergr Space Technol – volume: 14 start-page: 337 year: 1974 end-page: 346 ident: bib0027 article-title: Macroscopic static and dynamic mechanical properties of Yule marble publication-title: Exp Mech – volume: 43 start-page: 657 year: 2010 end-page: 666 ident: bib0011 article-title: Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar publication-title: Rock Mech Rock Eng – volume: 87 start-page: 146 year: 2016 end-page: 155 ident: bib0024 article-title: Modelling the dynamic failure of brittle rocks using a hybrid continuum-discrete element method with a mixed-mode cohesive fracture model publication-title: Int J Impact Eng – year: 2016 ident: bib0017 article-title: Hydro-mechanical effects of pore pressure on deformability and fracture strength of rock: A numerical modeling study publication-title: Proceedings of the fiftieth US rock mechanics/geomechanics symposium – volume: 49 start-page: 4957 year: 2016 end-page: 4964 ident: bib0048 article-title: Numerical Simulation of heterogeneous rock using discrete element model based on digital image processing publication-title: Rock Mech Rock Eng – volume: 47 start-page: 1117 year: 2014 end-page: 1133 ident: bib0051 article-title: Fracturing and failure behavior of Carrara marble in quasistatic and dynamic Brazilian disc tests publication-title: Rock Mech Rock Eng – volume: 68 start-page: 15 year: 2014 end-page: 28 ident: bib0028 article-title: Influence of particle breakage on the dynamic compression responses of brittle granular materials publication-title: Mech Mater – year: 2010 ident: bib0031 article-title: The hustrulid bar – A dynamic strength test and its application to the cautious blasting of rock – volume: 51 start-page: 1587 year: 2014 end-page: 1600 ident: bib0060 article-title: Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the distinct lattice spring model with X-ray micro CT publication-title: Int J Solids Struct – volume: 45 start-page: 341 year: 2012 end-page: 348 ident: bib0054 article-title: Dynamic tensile failure of the rock interface between tuff and basalt publication-title: Rock Mech Rock Eng – volume: 60 start-page: 423 year: 2013 end-page: 439 ident: bib0059 article-title: Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads publication-title: Int J Rock Mech Min Sci – volume: 16 start-page: 677 year: 2009 end-page: 682 ident: bib0026 article-title: Energy consumption in rock fragmentation at intermediate strain rate publication-title: J Central South Univ Technol – volume: 49 start-page: 3823 year: 2016 end-page: 3828 ident: bib0016 article-title: A modified overstress model to simulate dynamic split tensile tests and its experimental validation publication-title: Rock Mech Rock Eng – volume: 33 start-page: 501 year: 1968 end-page: 510 ident: bib0035 article-title: The effect of stress rate and temperature on the strength of basalt and granite publication-title: Geophysics – volume: 115 year: 2010 ident: bib0036 article-title: Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading publication-title: J Geophys Res Solid Earth – volume: 13 start-page: 303 year: 1976 end-page: 309 ident: bib0019 article-title: Static and dynamic fracture strength of Barre granite publication-title: Int J Rock Mech Min Sci Geomech Abst – volume: 163 start-page: 1091 year: 2006 end-page: 1100 ident: bib0049 article-title: A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB publication-title: Pure Appl Geophys – volume: 40 start-page: 763 year: 2003 end-page: 777 ident: bib0009 article-title: Strain-rate dependency of the dynamic tensile strength of rock publication-title: Int J Rock Mech Min Sci – volume: 36 start-page: 37 year: 2001 end-page: 49 ident: bib0020 article-title: Static and dynamic behavior of concrete and granite in tension with damage publication-title: Theor Appl Fract Mech – volume: 3 start-page: 84 year: 2003 end-page: 98 ident: bib0037 article-title: Failure process of granite publication-title: Int J Geomech – volume: 85 year: 2014 ident: bib0029 article-title: A dynamic ball compression test for understanding rock crushing publication-title: Rev Sci Instrum – volume: 79 year: 2008 ident: bib0012 article-title: Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids publication-title: Rev Sci Instrum – volume: 50 start-page: 309 year: 2017 end-page: 326 ident: bib0004 article-title: Estimation of confined peak strength of crack-damaged rocks publication-title: Rock Mech Rock Eng – volume: 17 start-page: 147 year: 1980 end-page: 157 ident: bib0022 article-title: Continuum modelling of explosive fracture in oil shale publication-title: Int J Rock Mech Min Sci Geomech Abst – volume: 53 start-page: 322 year: 1982 end-page: 325 ident: bib0023 article-title: Local inertial effects in dynamic fragmentation publication-title: J Appl Phys – volume: 70 start-page: 101 year: 2014 end-page: 108 ident: bib0043 article-title: Validation of a three-dimensional finite-discrete element method using experimental results of the split Hopkinson pressure bar test publication-title: Int J Rock Mech Min Sci – volume: 71 start-page: 117 year: 2014 end-page: 130 ident: bib0003 article-title: Distinct element method simulation of an analogue for a highly interlocked, non-persistently jointed rockmass publication-title: Int J Rock Mech Min Sci – volume: 191 start-page: 84 year: 2007 end-page: 122 ident: bib0047 article-title: The Deep Impact oblique impact cratering experiment publication-title: Icarus – volume: 46 start-page: 421 year: 2009 end-page: 425 ident: bib0055 article-title: A modified Brazilian disk tension test publication-title: Int J Rock Mech Min Sci – volume: 46 start-page: 514 year: 2009 end-page: 520 ident: bib0002 article-title: Dynamic behavior of a Mediterranean natural stone under tensile loading publication-title: Int J Rock Mech Min Sci – reference: Schindler L. Design and evaluation of a device for determining the one dimensional compression characteristics of soils subjected to impulse-type loads [Ph.D. dissertation]. Urbana, IL: University of Illinois; 1968. p. 380. – volume: 225 start-page: 42 year: 2017 end-page: 48 ident: bib0042 article-title: A peridynamics formulation for quasi-static fracture and contact in rock publication-title: Eng Geol – volume: 79 year: 2012 ident: bib0005 article-title: A micromechanics based constitutive model for brittle failure at high strain rates publication-title: J Appl Mech – volume: 61 start-page: 3509 year: 2013 end-page: 3521 ident: bib0033 article-title: A scaling law for the dynamic strength of brittle solids publication-title: Acta Mater – volume: 101 start-page: 230 year: 2015 end-page: 250 ident: bib0044 article-title: Combined continuum damage‐embedded discontinuity model for explicit dynamic fracture analyses of quasi‐brittle materials publication-title: Int J Numer Methods Eng – volume: 29 start-page: 47 year: 1979 end-page: 65 ident: bib0010 article-title: A discrete numerical model for granular assemblies publication-title: Geotechnique – volume: 6 start-page: 285 year: 1987 end-page: 292 ident: bib0032 article-title: An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite publication-title: Mech Mater – volume: 53 start-page: 1153 year: 2013 end-page: 1159 ident: bib0008 article-title: Flattened Brazilian disc method for determining the dynamic tensile stress–strain curve of low strength brittle solids publication-title: Exp Mech – year: 1993 ident: bib0015 article-title: High-strain-rate tensile behavior of sedimentary and igneous rocks at low temperatures publication-title: Cold regions research and engineering lab – volume: 167 start-page: 1419 year: 2010 end-page: 1432 ident: bib0014 article-title: Loading rate dependence of tensile strength anisotropy of Barre granite publication-title: Pure Appl Geophys – volume: 260 start-page: 308 year: 2015 end-page: 319 ident: bib0025 article-title: Dynamic behavior of an ordinary chondrite: the effects of microstructure on strength, failure and fragmentation publication-title: Icarus – volume: 116 year: 2011 ident: bib0056 article-title: Origin of pulverized rocks during earthquake fault rupture publication-title: J Geophys Res Solid Earth – volume: 47 start-page: 1411 year: 2014 end-page: 1478 ident: bib0058 article-title: A review of dynamic experimental techniques and mechanical behaviour of rock materials publication-title: Rock Mech Rock Eng – volume: 43 start-page: 667 year: 2010 end-page: 676 ident: bib0006 article-title: Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension publication-title: Rock Mech Rock Eng – volume: 45 start-page: 397 year: 2008 end-page: 406 ident: bib0034 article-title: Estimation of dynamic tensile strength of sandstone publication-title: Int J Rock Mech Min Sci – volume: 43 start-page: 707 year: 2010 end-page: 716 ident: bib0040 article-title: An example of realistic modelling of rock dynamics problems: FEM/DEM simulation of dynamic Brazilian test on Barre granite publication-title: Rock Mech Rock Eng – volume: 59 start-page: 128 year: 2013 end-page: 138 ident: bib0045 article-title: Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite publication-title: Int J Rock Mech Min Sci – volume: 121 start-page: 2338 year: 2016 end-page: 2360 ident: bib0001 article-title: Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones publication-title: J Geophys Res Solid Earth – volume: 49 start-page: 3855 year: 2016 end-page: 3864 ident: bib0052 article-title: An experimental study of dynamic tensile failure of rocks subjected to hydrostatic confinement publication-title: Rock Mech Rock Eng – volume: 41 start-page: 252 year: 2009 end-page: 260 ident: bib0050 article-title: Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup publication-title: Mech Mater – volume: 47 start-page: 2271 year: 2014 end-page: 2278 ident: bib0021 article-title: Dynamic indirect tensile strength of sandstone under different loading rates publication-title: Rock Mech Rock Eng – volume: 95 start-page: 162 year: 2018 end-page: 179 ident: bib0018 article-title: Investigating the scale-dependency of the geometrical and mechanical properties of a moderately jointed rock using a synthetic rock mass (SRM) approach publication-title: Comput Geotech – volume: 49 start-page: 731 year: 2016 end-page: 745 ident: bib0053 article-title: Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing publication-title: Rock Mech Rock Eng – volume: 61 start-page: 2316 year: 2004 end-page: 2343 ident: bib0041 article-title: Cracking particles: a simplified meshfree method for arbitrary evolving cracks publication-title: Int J Numer Methods Eng – volume: 30 start-page: 375 year: 2003 end-page: 397 ident: bib0057 article-title: Finite element modeling of geomaterials using digital image processing publication-title: Comput Geotech – ident: 10.1016/j.ijimpeng.2018.04.006_bib0046 – volume: 101 start-page: 230 issue: 3 year: 2015 ident: 10.1016/j.ijimpeng.2018.04.006_bib0044 article-title: Combined continuum damage‐embedded discontinuity model for explicit dynamic fracture analyses of quasi‐brittle materials publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4814 – volume: 70 start-page: 101 year: 2014 ident: 10.1016/j.ijimpeng.2018.04.006_bib0043 article-title: Validation of a three-dimensional finite-discrete element method using experimental results of the split Hopkinson pressure bar test publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.03.011 – volume: 46 start-page: 514 issue: 3 year: 2009 ident: 10.1016/j.ijimpeng.2018.04.006_bib0002 article-title: Dynamic behavior of a Mediterranean natural stone under tensile loading publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2008.09.010 – volume: 53 start-page: 96 year: 2016 ident: 10.1016/j.ijimpeng.2018.04.006_bib0039 article-title: Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs publication-title: Tunnel Undergr Space Technol doi: 10.1016/j.tust.2015.12.010 – volume: 47 start-page: 1411 issue: 4 year: 2014 ident: 10.1016/j.ijimpeng.2018.04.006_bib0058 article-title: A review of dynamic experimental techniques and mechanical behaviour of rock materials publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0463-y – volume: 13 start-page: 303 issue: 11 year: 1976 ident: 10.1016/j.ijimpeng.2018.04.006_bib0019 article-title: Static and dynamic fracture strength of Barre granite publication-title: Int J Rock Mech Min Sci Geomech Abst doi: 10.1016/0148-9062(76)91829-5 – volume: 121 start-page: 2338 issue: 4 year: 2016 ident: 10.1016/j.ijimpeng.2018.04.006_bib0001 article-title: Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones publication-title: J Geophys Res Solid Earth doi: 10.1002/2015JB012542 – volume: 79 issue: 3 year: 2012 ident: 10.1016/j.ijimpeng.2018.04.006_bib0005 article-title: A micromechanics based constitutive model for brittle failure at high strain rates publication-title: J Appl Mech doi: 10.1115/1.4005897 – volume: 45 start-page: 397 issue: 3 year: 2008 ident: 10.1016/j.ijimpeng.2018.04.006_bib0034 article-title: Estimation of dynamic tensile strength of sandstone publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2007.07.003 – year: 1993 ident: 10.1016/j.ijimpeng.2018.04.006_bib0015 article-title: High-strain-rate tensile behavior of sedimentary and igneous rocks at low temperatures – volume: 71 start-page: 117 year: 2014 ident: 10.1016/j.ijimpeng.2018.04.006_bib0003 article-title: Distinct element method simulation of an analogue for a highly interlocked, non-persistently jointed rockmass publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.07.005 – volume: 43 start-page: 667 issue: 6 year: 2010 ident: 10.1016/j.ijimpeng.2018.04.006_bib0006 article-title: Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-010-0101-x – volume: 49 start-page: 4957 issue: 12 year: 2016 ident: 10.1016/j.ijimpeng.2018.04.006_bib0048 article-title: Numerical Simulation of heterogeneous rock using discrete element model based on digital image processing publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-1030-0 – volume: 49 start-page: 3855 issue: 10 year: 2016 ident: 10.1016/j.ijimpeng.2018.04.006_bib0052 article-title: An experimental study of dynamic tensile failure of rocks subjected to hydrostatic confinement publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-0946-8 – volume: 167 start-page: 1419 issue: 11 year: 2010 ident: 10.1016/j.ijimpeng.2018.04.006_bib0014 article-title: Loading rate dependence of tensile strength anisotropy of Barre granite publication-title: Pure Appl Geophys doi: 10.1007/s00024-010-0103-3 – volume: 49 start-page: 3823 issue: 9 year: 2016 ident: 10.1016/j.ijimpeng.2018.04.006_bib0016 article-title: A modified overstress model to simulate dynamic split tensile tests and its experimental validation publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-0945-9 – volume: 45 start-page: 341 issue: 3 year: 2012 ident: 10.1016/j.ijimpeng.2018.04.006_bib0054 article-title: Dynamic tensile failure of the rock interface between tuff and basalt publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-011-0177-y – volume: 51 start-page: 1587 issue: 7–8 year: 2014 ident: 10.1016/j.ijimpeng.2018.04.006_bib0060 article-title: Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the distinct lattice spring model with X-ray micro CT publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2014.01.012 – volume: 163 start-page: 1091 issue: 5–6 year: 2006 ident: 10.1016/j.ijimpeng.2018.04.006_bib0049 article-title: A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB publication-title: Pure Appl Geophys doi: 10.1007/s00024-006-0056-8 – volume: 85 issue: 12 year: 2014 ident: 10.1016/j.ijimpeng.2018.04.006_bib0029 article-title: A dynamic ball compression test for understanding rock crushing publication-title: Rev Sci Instrum doi: 10.1063/1.4902836 – volume: 53 start-page: 1153 issue: 7 year: 2013 ident: 10.1016/j.ijimpeng.2018.04.006_bib0008 article-title: Flattened Brazilian disc method for determining the dynamic tensile stress–strain curve of low strength brittle solids publication-title: Exp Mech doi: 10.1007/s11340-013-9733-6 – year: 2016 ident: 10.1016/j.ijimpeng.2018.04.006_bib0017 article-title: Hydro-mechanical effects of pore pressure on deformability and fracture strength of rock: A numerical modeling study – volume: 53 start-page: 322 issue: 1 year: 1982 ident: 10.1016/j.ijimpeng.2018.04.006_bib0023 article-title: Local inertial effects in dynamic fragmentation publication-title: J Appl Phys doi: 10.1063/1.329934 – volume: 43 start-page: 657 issue: 6 year: 2010 ident: 10.1016/j.ijimpeng.2018.04.006_bib0011 article-title: Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-010-0091-8 – volume: 43 start-page: 677 issue: 6 year: 2010 ident: 10.1016/j.ijimpeng.2018.04.006_bib0030 article-title: An experimental study of the rate dependence of tensile strength softening of Longyou sandstone publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-010-0083-8 – volume: 30 start-page: 375 issue: 5 year: 2003 ident: 10.1016/j.ijimpeng.2018.04.006_bib0057 article-title: Finite element modeling of geomaterials using digital image processing publication-title: Comput Geotech doi: 10.1016/S0266-352X(03)00015-6 – volume: 41 start-page: 252 issue: 3 year: 2009 ident: 10.1016/j.ijimpeng.2018.04.006_bib0050 article-title: Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup publication-title: Mech Mater doi: 10.1016/j.mechmat.2008.10.004 – volume: 191 start-page: 84 issue: 2 year: 2007 ident: 10.1016/j.ijimpeng.2018.04.006_bib0047 article-title: The Deep Impact oblique impact cratering experiment publication-title: Icarus doi: 10.1016/j.icarus.2007.06.031 – volume: 260 start-page: 308 year: 2015 ident: 10.1016/j.ijimpeng.2018.04.006_bib0025 article-title: Dynamic behavior of an ordinary chondrite: the effects of microstructure on strength, failure and fragmentation publication-title: Icarus doi: 10.1016/j.icarus.2015.07.027 – volume: 68 start-page: 15 year: 2014 ident: 10.1016/j.ijimpeng.2018.04.006_bib0028 article-title: Influence of particle breakage on the dynamic compression responses of brittle granular materials publication-title: Mech Mater doi: 10.1016/j.mechmat.2013.08.002 – volume: 50 start-page: 309 issue: 2 year: 2017 ident: 10.1016/j.ijimpeng.2018.04.006_bib0004 article-title: Estimation of confined peak strength of crack-damaged rocks publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-1110-1 – year: 2010 ident: 10.1016/j.ijimpeng.2018.04.006_bib0031 – volume: 95 start-page: 162 year: 2018 ident: 10.1016/j.ijimpeng.2018.04.006_bib0018 article-title: Investigating the scale-dependency of the geometrical and mechanical properties of a moderately jointed rock using a synthetic rock mass (SRM) approach publication-title: Comput Geotech doi: 10.1016/j.compgeo.2017.10.002 – volume: 6 start-page: 285 issue: 4 year: 1987 ident: 10.1016/j.ijimpeng.2018.04.006_bib0032 article-title: An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite publication-title: Mech Mater doi: 10.1016/0167-6636(87)90027-5 – volume: 59 start-page: 128 year: 2013 ident: 10.1016/j.ijimpeng.2018.04.006_bib0045 article-title: Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2012.12.018 – volume: 60 start-page: 423 year: 2013 ident: 10.1016/j.ijimpeng.2018.04.006_bib0059 article-title: Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2013.01.005 – volume: 40 start-page: 763 issue: 5 year: 2003 ident: 10.1016/j.ijimpeng.2018.04.006_bib0009 article-title: Strain-rate dependency of the dynamic tensile strength of rock publication-title: Int J Rock Mech Min Sci doi: 10.1016/S1365-1609(03)00072-8 – volume: 47 start-page: 2271 issue: 6 year: 2014 ident: 10.1016/j.ijimpeng.2018.04.006_bib0021 article-title: Dynamic indirect tensile strength of sandstone under different loading rates publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0503-7 – volume: 32 start-page: 907 issue: 8 year: 2007 ident: 10.1016/j.ijimpeng.2018.04.006_bib0007 article-title: A study on the dynamic behavior of the Meuse/Haute-Marne argillite publication-title: Phys Chem Earth Parts A/B/C doi: 10.1016/j.pce.2006.03.007 – volume: 29 start-page: 47 issue: 1 year: 1979 ident: 10.1016/j.ijimpeng.2018.04.006_bib0010 article-title: A discrete numerical model for granular assemblies publication-title: Geotechnique doi: 10.1680/geot.1979.29.1.47 – volume: 49 start-page: 731 issue: 3 year: 2016 ident: 10.1016/j.ijimpeng.2018.04.006_bib0053 article-title: Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-015-0787-x – volume: 33 start-page: 501 issue: 3 year: 1968 ident: 10.1016/j.ijimpeng.2018.04.006_bib0035 article-title: The effect of stress rate and temperature on the strength of basalt and granite publication-title: Geophysics doi: 10.1190/1.1439947 – volume: 79 issue: 12 year: 2008 ident: 10.1016/j.ijimpeng.2018.04.006_bib0012 article-title: Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids publication-title: Rev Sci Instrum doi: 10.1063/1.3043420 – volume: 115 issue: B1 year: 2010 ident: 10.1016/j.ijimpeng.2018.04.006_bib0036 article-title: Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading publication-title: J Geophys Res Solid Earth doi: 10.1029/2009JB006496 – volume: 61 start-page: 3509 issue: 9 year: 2013 ident: 10.1016/j.ijimpeng.2018.04.006_bib0033 article-title: A scaling law for the dynamic strength of brittle solids publication-title: Acta Mater doi: 10.1016/j.actamat.2013.02.045 – year: 2018 ident: 10.1016/j.ijimpeng.2018.04.006_bib0038 article-title: Reasonability of grain-based discrete element method (GBDEM) on SHPB simulation and its application for granular rocks publication-title: Rock Mech Rock Eng – volume: 36 start-page: 37 issue: 1 year: 2001 ident: 10.1016/j.ijimpeng.2018.04.006_bib0020 article-title: Static and dynamic behavior of concrete and granite in tension with damage publication-title: Theor Appl Fract Mech doi: 10.1016/S0167-8442(01)00054-4 – volume: 61 start-page: 2316 issue: 13 year: 2004 ident: 10.1016/j.ijimpeng.2018.04.006_bib0041 article-title: Cracking particles: a simplified meshfree method for arbitrary evolving cracks publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1151 – volume: 47 start-page: 469 issue: 3 year: 2010 ident: 10.1016/j.ijimpeng.2018.04.006_bib0013 article-title: Rate dependence of the flexural tensile strength of Laurentian granite publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2009.05.001 – volume: 3 start-page: 84 issue: 1 year: 2003 ident: 10.1016/j.ijimpeng.2018.04.006_bib0037 article-title: Failure process of granite publication-title: Int J Geomech doi: 10.1061/(ASCE)1532-3641(2003)3:1(84) – volume: 87 start-page: 146 year: 2016 ident: 10.1016/j.ijimpeng.2018.04.006_bib0024 article-title: Modelling the dynamic failure of brittle rocks using a hybrid continuum-discrete element method with a mixed-mode cohesive fracture model publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2015.04.010 – volume: 47 start-page: 1117 issue: 4 year: 2014 ident: 10.1016/j.ijimpeng.2018.04.006_bib0051 article-title: Fracturing and failure behavior of Carrara marble in quasistatic and dynamic Brazilian disc tests publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0465-9 – volume: 43 start-page: 707 issue: 6 year: 2010 ident: 10.1016/j.ijimpeng.2018.04.006_bib0040 article-title: An example of realistic modelling of rock dynamics problems: FEM/DEM simulation of dynamic Brazilian test on Barre granite publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-010-0092-7 – volume: 17 start-page: 147 issue: 3 year: 1980 ident: 10.1016/j.ijimpeng.2018.04.006_bib0022 article-title: Continuum modelling of explosive fracture in oil shale publication-title: Int J Rock Mech Min Sci Geomech Abst doi: 10.1016/0148-9062(80)91361-3 – volume: 14 start-page: 337 issue: 9 year: 1974 ident: 10.1016/j.ijimpeng.2018.04.006_bib0027 article-title: Macroscopic static and dynamic mechanical properties of Yule marble publication-title: Exp Mech doi: 10.1007/BF02323559 – volume: 116 issue: B6 year: 2011 ident: 10.1016/j.ijimpeng.2018.04.006_bib0056 article-title: Origin of pulverized rocks during earthquake fault rupture publication-title: J Geophys Res Solid Earth doi: 10.1029/2010JB007721 – volume: 16 start-page: 677 issue: 4 year: 2009 ident: 10.1016/j.ijimpeng.2018.04.006_bib0026 article-title: Energy consumption in rock fragmentation at intermediate strain rate publication-title: J Central South Univ Technol doi: 10.1007/s11771-009-0112-5 – volume: 225 start-page: 42 year: 2017 ident: 10.1016/j.ijimpeng.2018.04.006_bib0042 article-title: A peridynamics formulation for quasi-static fracture and contact in rock publication-title: Eng Geol doi: 10.1016/j.enggeo.2017.05.001 – volume: 46 start-page: 421 issue: 2 year: 2009 ident: 10.1016/j.ijimpeng.2018.04.006_bib0055 article-title: A modified Brazilian disk tension test publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2008.04.008 |
SSID | ssj0017050 |
Score | 2.560648 |
Snippet | •Grain scale discrete element model is proposed to study dynamic properties of rocks.•Heterogeneous rocks are reproduced and micro fracturing characteristics... The dynamic tension behaviours of granites are tested with the split Hopkinson pressure bar and the quasi-static responses including the compression and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 98 |
SubjectTerms | Coalescing Compression tests Computer simulation Crack initiation Crack propagation DEM simulation Digital imaging Discrete element method Dynamic tensile strength Energy dissipation Fracturing Fragmentation Granular rocks Image processing Indentation Mathematical models Micro fracturing Rocks Split Hopkinson pressure bars Strain rate Strain rate effect Stress concentration Stress distribution Stress propagation Superposition (mathematics) Tensile strength Tension tests Wave propagation |
Title | Dynamic tensile behaviours of heterogeneous rocks: The grain scale fracturing characteristics on strength and fragmentation |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2018.04.006 https://www.proquest.com/docview/2076192876 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDAgnuJRKg-saZPYzoOtKlQFBAtU6mbFiV1aSlq16YTEb-cucSpASAyMSc5Rku9yD-u7O0IuQ6NV6hpIS1QECYrvcUd5SeAkicFmIL7QJZvw4THoD_jdUAw3SLeuhUFapbX9lU0vrbU907Zfsz0fj9tPoJwc_N_QCxlOeUQ7zHmIWt76WNM8sFtMuc8Cwg5Kf6kSnrTGkzEEp_kIKV5R2fIUJx_97qB-mOrS__T2yK4NHGmnerZ9sqHzA7LzpZ3gIXm_rsbL05KVPtXU1uCvFks6M_QFmS8zUBgN2T4Fx_W6vKKgJnSEYyLoEtDS1GDVVFm6SNPvvZzpDGSKBbxH8UKTPEPR0ZstXcqPyKB389ztO3a4gpMy7hZOECjASRgvEca4OnSVEVGqYhaFKuEGwkaA1w_SRGRBJlwmwsznmYoVhAhhkMXsmGzms1yfEJpFnCnmxxH3sNscoK5FYlgKkRITxuWnRNRfVKa28zgOwJjKmmI2kTUSEpGQLpeAxClpr9fNq94bf66Ia8DkNy2S4CD-XNuoEZb2P17CddzmgawyOPvHrc_JNh5VvMEG2SwWK30BsUyhmqWyNslW5_a-__gJMdD3hw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgAD4ikeBTywhiaxnQdbxUOFPhZA6mbFiV1aSoraMPHnuUscBAiJgTXxRYm_yz2Su-8IOQuNVqlrIC1RESQovscd5SWBkyQGyUB8octqwsEw6D7yu5EYNchl3QuDZZXW9lc2vbTW9kjb7mb7dTJp34NycvB_Iy9kOOUR7PAKslOJJlnp3Pa6w8-fCaFbDmrF9Q4KfGkUnp5PphOIT_MxVnlFJespDj_63Uf9sNalC7rZJBs2dqSd6va2SEPn22T9C6PgDnm_qibM07IwfaapbcN_Wyzp3NAnLH6Zg85oSPgp-K7n5QUFTaFjnBRBlwCYpgYbp8ruRZp-p3Omc1hTLOA5iiea5BkuHb_Y7qV8lzzeXD9cdh07X8FJGXcLJwgUQCWMlwhjXB26yogoVTGLQpVwA5EjIOwHaSKyIBMuE2Hm80zFCqKEMMhitkea-TzX-4RmEWeK-XHEPSScA-C1SAxLIVhiwrj8gIh6R2VqycdxBsZM1lVmU1kjIREJ6XIJSByQ9qfca0W_8adEXAMmvymSBB_xp2yrRljaV3kJ5_FLDySWweE_Ln1KVrsPg77s3w57R2QNz1RlhC3SLBZv-hhCm0KdWNX9AKK4-jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+tensile+behaviours+of+heterogeneous+rocks%3A+The+grain+scale+fracturing+characteristics+on+strength+and+fragmentation&rft.jtitle=International+journal+of+impact+engineering&rft.au=Li%2C+X.F.&rft.au=Li%2C+X.&rft.au=Li%2C+H.B.&rft.au=Zhang%2C+Q.B.&rft.date=2018-08-01&rft.issn=0734-743X&rft.volume=118&rft.spage=98&rft.epage=118&rft_id=info:doi/10.1016%2Fj.ijimpeng.2018.04.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2018_04_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |