Dynamic tensile behaviours of heterogeneous rocks: The grain scale fracturing characteristics on strength and fragmentation

•Grain scale discrete element model is proposed to study dynamic properties of rocks.•Heterogeneous rocks are reproduced and micro fracturing characteristics are investigated.•Rocks behave fragmentation transition from sparse fracture to pervasive pulverization as the strain rate increased.•Strain r...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 118; pp. 98 - 118
Main Authors Li, X.F., Li, X., Li, H.B., Zhang, Q.B., Zhao, J.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Grain scale discrete element model is proposed to study dynamic properties of rocks.•Heterogeneous rocks are reproduced and micro fracturing characteristics are investigated.•Rocks behave fragmentation transition from sparse fracture to pervasive pulverization as the strain rate increased.•Strain rate mechanism is related to micro fracturing transition from intergranular to transgranular. The dynamic tension behaviours of granites are tested with the split Hopkinson pressure bar and the quasi-static responses including the compression and Brazilian splitting are carried out with a material testing system. The experimental results show the tensile strengths behave significant strain rate effect. In order to characterize the realistic fracturing process from the viewpoint of grain scale failure, a multiple scale discrete element model considering the micro heterogeneity is proposed using the digital image processing of mineral scanning for rocks. Comparison of the experimental and numerical tension stress as well as the ultimate fragment state indicates the grain-based model is reasonable in simulation of dynamic tension test on granites. Then the three-wave superposition, crack propagation sequences, end forces and the stress distribution are discussed to confirm the stress equilibrium in the specimen. Using the microheterogeneous model, the micro fracturing process and fragmentation in association with energy dissipation at different strain rates are discussed. It is found that the failure sequence can be divided into five stages as crack initiation, propagation, coalesce, branching and indentation crush on the stress curve in dynamic loading. The intrinsic mechanism of the strain rate effect is believed to be the transitions of the micro fracturing type, orientation and the damage degree in the specimen and in turn exhibiting more energy dissipation as well as fragmentation transition from sparse fracture to pervasive pulverization. Finally, the scaling model of the dynamic increase factor for granite is derived and the characteristic strain rate, increase rate factor values are discussed.
AbstractList The dynamic tension behaviours of granites are tested with the split Hopkinson pressure bar and the quasi-static responses including the compression and Brazilian splitting are carried out with a material testing system. The experimental results show the tensile strengths behave significant strain rate effect. In order to characterize the realistic fracturing process from the viewpoint of grain scale failure, a multiple scale discrete element model considering the micro heterogeneity is proposed using the digital image processing of mineral scanning for rocks. Comparison of the experimental and numerical tension stress as well as the ultimate fragment state indicates the grain-based model is reasonable in simulation of dynamic tension test on granites. Then the three-wave superposition, crack propagation sequences, end forces and the stress distribution are discussed to confirm the stress equilibrium in the specimen. Using the microheterogeneous model, the micro fracturing process and fragmentation in association with energy dissipation at different strain rates are discussed. It is found that the failure sequence can be divided into five stages as crack initiation, propagation, coalesce, branching and indentation crush on the stress curve in dynamic loading. The intrinsic mechanism of the strain rate effect is believed to be the transitions of the micro fracturing type, orientation and the damage degree in the specimen and in turn exhibiting more energy dissipation as well as fragmentation transition from sparse fracture to pervasive pulverization. Finally, the scaling model of the dynamic increase factor for granite is derived and the characteristic strain rate, increase rate factor values are discussed.
•Grain scale discrete element model is proposed to study dynamic properties of rocks.•Heterogeneous rocks are reproduced and micro fracturing characteristics are investigated.•Rocks behave fragmentation transition from sparse fracture to pervasive pulverization as the strain rate increased.•Strain rate mechanism is related to micro fracturing transition from intergranular to transgranular. The dynamic tension behaviours of granites are tested with the split Hopkinson pressure bar and the quasi-static responses including the compression and Brazilian splitting are carried out with a material testing system. The experimental results show the tensile strengths behave significant strain rate effect. In order to characterize the realistic fracturing process from the viewpoint of grain scale failure, a multiple scale discrete element model considering the micro heterogeneity is proposed using the digital image processing of mineral scanning for rocks. Comparison of the experimental and numerical tension stress as well as the ultimate fragment state indicates the grain-based model is reasonable in simulation of dynamic tension test on granites. Then the three-wave superposition, crack propagation sequences, end forces and the stress distribution are discussed to confirm the stress equilibrium in the specimen. Using the microheterogeneous model, the micro fracturing process and fragmentation in association with energy dissipation at different strain rates are discussed. It is found that the failure sequence can be divided into five stages as crack initiation, propagation, coalesce, branching and indentation crush on the stress curve in dynamic loading. The intrinsic mechanism of the strain rate effect is believed to be the transitions of the micro fracturing type, orientation and the damage degree in the specimen and in turn exhibiting more energy dissipation as well as fragmentation transition from sparse fracture to pervasive pulverization. Finally, the scaling model of the dynamic increase factor for granite is derived and the characteristic strain rate, increase rate factor values are discussed.
Author Li, H.B.
Zhang, Q.B.
Li, X.
Zhao, J.
Li, X.F.
Author_xml – sequence: 1
  givenname: X.F.
  surname: Li
  fullname: Li, X.F.
  email: xfli@whrsm.ac.cn
  organization: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
– sequence: 2
  givenname: X.
  surname: Li
  fullname: Li, X.
  email: li.xing@outlook.com
  organization: School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, China
– sequence: 3
  givenname: H.B.
  surname: Li
  fullname: Li, H.B.
  email: hbli@whrsm.ac.cn
  organization: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
– sequence: 4
  givenname: Q.B.
  surname: Zhang
  fullname: Zhang, Q.B.
  email: qianbing.zhang@monash.edu
  organization: Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
– sequence: 5
  givenname: J.
  surname: Zhao
  fullname: Zhao, J.
  email: jian.zhao@monash.edu
  organization: Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
BookMark eNqFkE1r3DAQhkVJoZs0f6EIerYzsi3JLj20pB8pBHpJITchyyNb7q60lbSB0D8fLdtecslJDLzPO5rnnJz54JGQdwxqBkxcrbVb3W6Pfq4bYH0NXQ0gXpEN6-VQtRyGM7IB2XaV7Nr7N-Q8pRWASeCwIX-_PHq9c4Zm9MltkY646AcXDjHRYOmCGWOY0WM4JBqD-Z0-0LsF6Ry18zQZXRAbtcmH6PxMzaKPA0aXsjOlomRyLF_LC9V-OkbnHfqsswv-LXlt9Tbh5b_3gvz69vXu-qa6_fn9x_Xn28q0HeRKiFFa5JZpbi2ghNHy3oxD28tRd3YYGI7YCKP5JCYOLZdT003jMDLOpJiG9oK8P_XuY_hzwJTVWu7zZaVqQAo2NL0UJSVOKRNDShGt2ke30_FRMVBH0WpV_0Wro2gFnSqiC_jxGWjc6cBcJG1fxj-dcCwKHhxGlYxDb3ByEU1WU3AvVTwBXASkcQ
CitedBy_id crossref_primary_10_1007_s12205_023_0296_5
crossref_primary_10_1016_j_engfracmech_2021_108086
crossref_primary_10_1007_s10064_024_03905_5
crossref_primary_10_1016_j_enganabound_2025_106115
crossref_primary_10_1016_j_engfracmech_2023_109299
crossref_primary_10_1016_j_jrmge_2023_11_018
crossref_primary_10_1007_s13369_022_07533_7
crossref_primary_10_1615_JPorMedia_2022042288
crossref_primary_10_1007_s00603_023_03381_5
crossref_primary_10_1007_s40571_023_00595_w
crossref_primary_10_1016_j_geoen_2024_213415
crossref_primary_10_1109_LGRS_2024_3360466
crossref_primary_10_1016_j_engfracmech_2022_108801
crossref_primary_10_1016_j_ijrmms_2023_105577
crossref_primary_10_1016_j_ijrmms_2024_105912
crossref_primary_10_1515_htmp_2020_0040
crossref_primary_10_1061__ASCE_GM_1943_5622_0001737
crossref_primary_10_1155_2020_1073608
crossref_primary_10_3390_su13148036
crossref_primary_10_1007_s40571_025_00915_2
crossref_primary_10_1016_j_ijrmms_2023_105573
crossref_primary_10_1002_nag_3488
crossref_primary_10_1007_s00603_023_03291_6
crossref_primary_10_1002_nag_3246
crossref_primary_10_1007_s10064_024_03732_8
crossref_primary_10_3390_lubricants8120106
crossref_primary_10_1155_2021_8199095
crossref_primary_10_3390_app112311230
crossref_primary_10_1007_s00603_018_1566_2
crossref_primary_10_1016_j_tafmec_2022_103544
crossref_primary_10_1007_s00603_023_03653_0
crossref_primary_10_1016_j_jsg_2020_104148
crossref_primary_10_1007_s10064_020_01764_4
crossref_primary_10_1016_j_engfracmech_2020_107297
crossref_primary_10_1007_s00603_023_03752_y
crossref_primary_10_1016_j_jrmge_2022_07_012
crossref_primary_10_1155_2023_3382996
crossref_primary_10_1016_j_tecto_2022_229471
crossref_primary_10_3390_ma15041443
crossref_primary_10_1016_j_ijimpeng_2021_103855
crossref_primary_10_1061__ASCE_MT_1943_5533_0003962
crossref_primary_10_1016_j_jrmge_2021_08_014
crossref_primary_10_1016_j_tafmec_2022_103259
crossref_primary_10_1016_j_engfracmech_2024_110616
crossref_primary_10_1038_s41598_023_46444_x
crossref_primary_10_1007_s00603_020_02191_3
crossref_primary_10_1007_s00603_021_02594_w
crossref_primary_10_1007_s13369_021_06038_z
crossref_primary_10_1007_s40948_022_00495_y
crossref_primary_10_1016_j_compgeo_2019_02_018
crossref_primary_10_1002_nag_3860
crossref_primary_10_1016_j_ijimpeng_2019_103363
crossref_primary_10_1016_j_jrmge_2019_07_014
crossref_primary_10_1061_IJGNAI_GMENG_9653
crossref_primary_10_1007_s00603_024_04108_w
crossref_primary_10_1016_j_mtcomm_2023_107098
crossref_primary_10_1016_j_ijimpeng_2020_103686
crossref_primary_10_1007_s40571_024_00889_7
crossref_primary_10_1007_s10064_022_02856_z
crossref_primary_10_1061_IJGNAI_GMENG_7756
crossref_primary_10_1016_j_ijimpeng_2020_103790
crossref_primary_10_1016_j_engfracmech_2023_109530
crossref_primary_10_3390_app15052387
crossref_primary_10_1016_j_commatsci_2019_109164
crossref_primary_10_1016_j_cma_2020_113462
crossref_primary_10_1007_s00603_025_04479_8
crossref_primary_10_1016_j_engfracmech_2021_108161
crossref_primary_10_1007_s00603_020_02085_4
crossref_primary_10_1007_s00603_025_04389_9
crossref_primary_10_3390_min10020129
crossref_primary_10_1016_j_ijmecsci_2022_107405
crossref_primary_10_1007_s40571_023_00645_3
crossref_primary_10_1016_j_enggeo_2024_107649
crossref_primary_10_1016_j_ijrmms_2020_104448
crossref_primary_10_1016_j_soildyn_2024_109043
crossref_primary_10_1007_s12517_020_05755_3
crossref_primary_10_1007_s40571_024_00851_7
crossref_primary_10_1016_j_jrmge_2019_02_003
crossref_primary_10_1007_s00603_022_03075_4
crossref_primary_10_1007_s40571_023_00665_z
crossref_primary_10_1007_s00603_024_04231_8
crossref_primary_10_1680_jgere_23_00041
crossref_primary_10_1007_s00603_024_03852_3
crossref_primary_10_1016_j_engfracmech_2019_106537
crossref_primary_10_1016_j_ijrmms_2024_106004
crossref_primary_10_1016_j_ijmst_2020_06_007
crossref_primary_10_1007_s40870_022_00350_x
crossref_primary_10_1016_j_tafmec_2022_103431
crossref_primary_10_1016_j_jrmge_2019_10_002
crossref_primary_10_1007_s10064_023_03307_z
crossref_primary_10_1007_s00603_021_02543_7
crossref_primary_10_1016_j_ijrmms_2020_104219
crossref_primary_10_1007_s40948_022_00387_1
crossref_primary_10_1007_s00603_023_03537_3
crossref_primary_10_1016_j_conbuildmat_2024_134995
crossref_primary_10_1021_acsomega_4c09188
crossref_primary_10_1155_2020_8841796
crossref_primary_10_1007_s00603_023_03300_8
crossref_primary_10_1016_j_ees_2024_07_003
crossref_primary_10_1007_s00603_020_02286_x
crossref_primary_10_1007_s10064_022_02665_4
crossref_primary_10_1016_j_ijimpeng_2024_104915
crossref_primary_10_3390_w16131883
crossref_primary_10_1016_j_ijimpeng_2024_105159
crossref_primary_10_1016_j_ijmst_2024_07_001
crossref_primary_10_1108_EC_03_2019_0123
crossref_primary_10_1016_j_est_2024_110631
crossref_primary_10_1088_1755_1315_1124_1_012078
crossref_primary_10_1007_s10338_020_00176_x
crossref_primary_10_3390_ma14010094
crossref_primary_10_1016_j_enganabound_2024_105924
crossref_primary_10_1016_j_enggeo_2020_105760
crossref_primary_10_1007_s00603_021_02368_4
crossref_primary_10_1016_j_compgeo_2021_104144
crossref_primary_10_1016_j_engfracmech_2021_108227
crossref_primary_10_1016_j_geoen_2023_211810
crossref_primary_10_1016_j_compgeo_2022_104838
crossref_primary_10_1680_jgele_20_00083
crossref_primary_10_1016_j_engfracmech_2018_06_024
crossref_primary_10_3390_ma15051681
crossref_primary_10_1016_j_engfracmech_2020_107365
crossref_primary_10_1007_s00603_022_02944_2
crossref_primary_10_1029_2022JB024348
crossref_primary_10_1142_S0218348X21500894
crossref_primary_10_54097_hset_v18i_2654
crossref_primary_10_1002_nag_3549
crossref_primary_10_1016_j_tafmec_2024_104345
crossref_primary_10_1016_j_undsp_2024_06_003
crossref_primary_10_1016_j_ijimpeng_2021_103946
Cites_doi 10.1002/nme.4814
10.1016/j.ijrmms.2014.03.011
10.1016/j.ijrmms.2008.09.010
10.1016/j.tust.2015.12.010
10.1007/s00603-013-0463-y
10.1016/0148-9062(76)91829-5
10.1002/2015JB012542
10.1115/1.4005897
10.1016/j.ijrmms.2007.07.003
10.1016/j.ijrmms.2014.07.005
10.1007/s00603-010-0101-x
10.1007/s00603-016-1030-0
10.1007/s00603-016-0946-8
10.1007/s00024-010-0103-3
10.1007/s00603-016-0945-9
10.1007/s00603-011-0177-y
10.1016/j.ijsolstr.2014.01.012
10.1007/s00024-006-0056-8
10.1063/1.4902836
10.1007/s11340-013-9733-6
10.1063/1.329934
10.1007/s00603-010-0091-8
10.1007/s00603-010-0083-8
10.1016/S0266-352X(03)00015-6
10.1016/j.mechmat.2008.10.004
10.1016/j.icarus.2007.06.031
10.1016/j.icarus.2015.07.027
10.1016/j.mechmat.2013.08.002
10.1007/s00603-016-1110-1
10.1016/j.compgeo.2017.10.002
10.1016/0167-6636(87)90027-5
10.1016/j.ijrmms.2012.12.018
10.1016/j.ijrmms.2013.01.005
10.1016/S1365-1609(03)00072-8
10.1007/s00603-013-0503-7
10.1016/j.pce.2006.03.007
10.1680/geot.1979.29.1.47
10.1007/s00603-015-0787-x
10.1190/1.1439947
10.1063/1.3043420
10.1029/2009JB006496
10.1016/j.actamat.2013.02.045
10.1016/S0167-8442(01)00054-4
10.1002/nme.1151
10.1016/j.ijrmms.2009.05.001
10.1061/(ASCE)1532-3641(2003)3:1(84)
10.1016/j.ijimpeng.2015.04.010
10.1007/s00603-013-0465-9
10.1007/s00603-010-0092-7
10.1016/0148-9062(80)91361-3
10.1007/BF02323559
10.1029/2010JB007721
10.1007/s11771-009-0112-5
10.1016/j.enggeo.2017.05.001
10.1016/j.ijrmms.2008.04.008
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Aug 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2018
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijimpeng.2018.04.006
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3509
EndPage 118
ExternalDocumentID 10_1016_j_ijimpeng_2018_04_006
S0734743X17310552
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c340t-66b7fe5f1a5ff0e70bf58cb9387ba4f991ebe26ca5d6d50357d24db9b15176d93
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Fri Jul 25 08:42:40 EDT 2025
Tue Jul 01 03:54:26 EDT 2025
Thu Apr 24 23:02:18 EDT 2025
Fri Feb 23 02:46:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic tensile strength
Granular rocks
Micro fracturing
DEM simulation
Strain rate effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-66b7fe5f1a5ff0e70bf58cb9387ba4f991ebe26ca5d6d50357d24db9b15176d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2076192876
PQPubID 2045463
PageCount 21
ParticipantIDs proquest_journals_2076192876
crossref_primary_10_1016_j_ijimpeng_2018_04_006
crossref_citationtrail_10_1016_j_ijimpeng_2018_04_006
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2018_04_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of impact engineering
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Schindler L. Design and evaluation of a device for determining the one dimensional compression characteristics of soils subjected to impulse-type loads [Ph.D. dissertation]. Urbana, IL: University of Illinois; 1968. p. 380.
Cadoni (bib0006) 2010; 43
Grady (bib0023) 1982; 53
Kumar (bib0035) 1968; 33
Bahrani, Kaiser, Valley (bib0003) 2014; 71
Yuan, Prakash, Tullis (bib0056) 2011; 116
Tan, Konietzky, Chen (bib0048) 2016; 49
Bhat, Rosakis, Sammis (bib0005) 2012; 79
Farahmand, Diederichs (bib0017) 2016
Mahabadi, Cottrell, Grasselli (bib0040) 2010; 43
Rabczuk, Belytschko (bib0041) 2004; 61
Dai, Xia (bib0014) 2010; 167
Bahrani, Kaiser (bib0004) 2017; 50
Cundall, Strack (bib0010) 1979; 29
Hong, Zhou, Yin (bib0026) 2009; 16
Howe, Goldsmith, Sackman (bib0027) 1974; 14
Wang, Li, Xie (bib0050) 2009; 41
Zhao, Russell, Zhao (bib0060) 2014; 51
Cho, Ogata, Kaneko (bib0009) 2003; 40
Zhang, Zhao (bib0059) 2013; 60
Wu, Yao, Xia (bib0052) 2016; 49
Dai, Xia, Luo (bib0012) 2008; 79
Grady, Kipp (bib0022) 1980; 17
Gui, Bui, Kodikara, Zhang, Zhao, Rabczuk (bib0024) 2016; 87
Zhang, Zhao (bib0058) 2014; 47
Li, Li, Zhao (bib0038) 2018
Dutta, Kim (bib0015) 1993
Gong, Zhao (bib0021) 2014; 47
Xu, Dai, Xu (bib0053) 2016; 49
Cai, Kaiser, Suorineni (bib0007) 2007; 32
Farahmand, Vazaios, Diederichs (bib0018) 2018; 95
Dai, Huang, Xia (bib0011) 2010; 43
Hogan, Kimberley, Hazeli (bib0025) 2015; 260
Li, Li, Liu (bib0039) 2016; 53
Fang, Xu (bib0016) 2016; 49
Chen, Dai, Qin (bib0008) 2013; 53
Saksala, Brancherie, Harari (bib0044) 2015; 101
Yan, Feng, Chen (bib0054) 2012; 45
Kimberley, Ramesh, Daphalapurkar (bib0033) 2013; 61
Lan, Martin, Hu (bib0036) 2010; 115
Aben, Doan, Mitchell (bib0001) 2016; 121
Wong, Zou, Cheng (bib0051) 2014; 47
Yue, Chen, Tham (bib0057) 2003; 30
Huang, Xu, Hu (bib0028) 2014; 68
Rabczuk, Ren (bib0042) 2017; 225
Johnson (bib0031) 2010
Wang, Li, Song (bib0049) 2006; 163
Li, Lee, Tsui (bib0037) 2003; 3
Huang, Xia, Yan (bib0030) 2010; 43
Yu, Zhang, Zhang (bib0055) 2009; 46
Schultz, Eberhardy, Ernst (bib0047) 2007; 191
Asprone, Cadoni, Prota (bib0002) 2009; 46
Saksala, Hokka, Kuokkala (bib0045) 2013; 59
Gomez, Shukla, Sharma (bib0020) 2001; 36
Kubota, Ogata, Wada (bib0034) 2008; 45
Dai, Xia, Tang (bib0013) 2010; 47
Goldsmith, Sackman, Ewerts (bib0019) 1976; 13
Huang, Liu, Xia (bib0029) 2014; 85
Rougier, Knight, Broome (bib0043) 2014; 70
Khan, Irani (bib0032) 1987; 6
Cai (10.1016/j.ijimpeng.2018.04.006_bib0007) 2007; 32
Zhao (10.1016/j.ijimpeng.2018.04.006_bib0060) 2014; 51
Schultz (10.1016/j.ijimpeng.2018.04.006_bib0047) 2007; 191
Huang (10.1016/j.ijimpeng.2018.04.006_bib0028) 2014; 68
Li (10.1016/j.ijimpeng.2018.04.006_bib0037) 2003; 3
Li (10.1016/j.ijimpeng.2018.04.006_bib0039) 2016; 53
Fang (10.1016/j.ijimpeng.2018.04.006_bib0016) 2016; 49
Farahmand (10.1016/j.ijimpeng.2018.04.006_bib0017) 2016
Wu (10.1016/j.ijimpeng.2018.04.006_bib0052) 2016; 49
Chen (10.1016/j.ijimpeng.2018.04.006_bib0008) 2013; 53
Dai (10.1016/j.ijimpeng.2018.04.006_bib0013) 2010; 47
Dutta (10.1016/j.ijimpeng.2018.04.006_bib0015) 1993
Li (10.1016/j.ijimpeng.2018.04.006_bib0038) 2018
Cho (10.1016/j.ijimpeng.2018.04.006_bib0009) 2003; 40
Gomez (10.1016/j.ijimpeng.2018.04.006_bib0020) 2001; 36
Yu (10.1016/j.ijimpeng.2018.04.006_bib0055) 2009; 46
Bahrani (10.1016/j.ijimpeng.2018.04.006_bib0003) 2014; 71
Lan (10.1016/j.ijimpeng.2018.04.006_bib0036) 2010; 115
Cundall (10.1016/j.ijimpeng.2018.04.006_bib0010) 1979; 29
Bahrani (10.1016/j.ijimpeng.2018.04.006_bib0004) 2017; 50
Dai (10.1016/j.ijimpeng.2018.04.006_bib0014) 2010; 167
Goldsmith (10.1016/j.ijimpeng.2018.04.006_bib0019) 1976; 13
Yuan (10.1016/j.ijimpeng.2018.04.006_bib0056) 2011; 116
Zhang (10.1016/j.ijimpeng.2018.04.006_bib0059) 2013; 60
Huang (10.1016/j.ijimpeng.2018.04.006_bib0029) 2014; 85
Kimberley (10.1016/j.ijimpeng.2018.04.006_bib0033) 2013; 61
Yan (10.1016/j.ijimpeng.2018.04.006_bib0054) 2012; 45
Xu (10.1016/j.ijimpeng.2018.04.006_bib0053) 2016; 49
Dai (10.1016/j.ijimpeng.2018.04.006_bib0012) 2008; 79
Wang (10.1016/j.ijimpeng.2018.04.006_bib0050) 2009; 41
Wong (10.1016/j.ijimpeng.2018.04.006_bib0051) 2014; 47
Aben (10.1016/j.ijimpeng.2018.04.006_bib0001) 2016; 121
Grady (10.1016/j.ijimpeng.2018.04.006_bib0023) 1982; 53
Wang (10.1016/j.ijimpeng.2018.04.006_bib0049) 2006; 163
Huang (10.1016/j.ijimpeng.2018.04.006_bib0030) 2010; 43
Mahabadi (10.1016/j.ijimpeng.2018.04.006_bib0040) 2010; 43
Kumar (10.1016/j.ijimpeng.2018.04.006_bib0035) 1968; 33
Farahmand (10.1016/j.ijimpeng.2018.04.006_bib0018) 2018; 95
Asprone (10.1016/j.ijimpeng.2018.04.006_bib0002) 2009; 46
Dai (10.1016/j.ijimpeng.2018.04.006_bib0011) 2010; 43
Zhang (10.1016/j.ijimpeng.2018.04.006_bib0058) 2014; 47
Bhat (10.1016/j.ijimpeng.2018.04.006_bib0005) 2012; 79
Rabczuk (10.1016/j.ijimpeng.2018.04.006_bib0042) 2017; 225
Rougier (10.1016/j.ijimpeng.2018.04.006_bib0043) 2014; 70
Johnson (10.1016/j.ijimpeng.2018.04.006_bib0031) 2010
Gong (10.1016/j.ijimpeng.2018.04.006_bib0021) 2014; 47
10.1016/j.ijimpeng.2018.04.006_bib0046
Cadoni (10.1016/j.ijimpeng.2018.04.006_bib0006) 2010; 43
Hong (10.1016/j.ijimpeng.2018.04.006_bib0026) 2009; 16
Tan (10.1016/j.ijimpeng.2018.04.006_bib0048) 2016; 49
Howe (10.1016/j.ijimpeng.2018.04.006_bib0027) 1974; 14
Khan (10.1016/j.ijimpeng.2018.04.006_bib0032) 1987; 6
Rabczuk (10.1016/j.ijimpeng.2018.04.006_bib0041) 2004; 61
Saksala (10.1016/j.ijimpeng.2018.04.006_bib0045) 2013; 59
Kubota (10.1016/j.ijimpeng.2018.04.006_bib0034) 2008; 45
Saksala (10.1016/j.ijimpeng.2018.04.006_bib0044) 2015; 101
Hogan (10.1016/j.ijimpeng.2018.04.006_bib0025) 2015; 260
Grady (10.1016/j.ijimpeng.2018.04.006_bib0022) 1980; 17
Gui (10.1016/j.ijimpeng.2018.04.006_bib0024) 2016; 87
Yue (10.1016/j.ijimpeng.2018.04.006_bib0057) 2003; 30
References_xml – volume: 47
  start-page: 469
  year: 2010
  end-page: 475
  ident: bib0013
  article-title: Rate dependence of the flexural tensile strength of Laurentian granite
  publication-title: Int J Rock Mech Min Sci
– volume: 43
  start-page: 677
  year: 2010
  end-page: 683
  ident: bib0030
  article-title: An experimental study of the rate dependence of tensile strength softening of Longyou sandstone
  publication-title: Rock Mech Rock Eng
– year: 2018
  ident: bib0038
  article-title: Reasonability of grain-based discrete element method (GBDEM) on SHPB simulation and its application for granular rocks
  publication-title: Rock Mech Rock Eng
– volume: 32
  start-page: 907
  year: 2007
  end-page: 916
  ident: bib0007
  article-title: A study on the dynamic behavior of the Meuse/Haute-Marne argillite
  publication-title: Phys Chem Earth Parts A/B/C
– volume: 53
  start-page: 96
  year: 2016
  end-page: 108
  ident: bib0039
  article-title: Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs
  publication-title: Tunnel Undergr Space Technol
– volume: 14
  start-page: 337
  year: 1974
  end-page: 346
  ident: bib0027
  article-title: Macroscopic static and dynamic mechanical properties of Yule marble
  publication-title: Exp Mech
– volume: 43
  start-page: 657
  year: 2010
  end-page: 666
  ident: bib0011
  article-title: Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar
  publication-title: Rock Mech Rock Eng
– volume: 87
  start-page: 146
  year: 2016
  end-page: 155
  ident: bib0024
  article-title: Modelling the dynamic failure of brittle rocks using a hybrid continuum-discrete element method with a mixed-mode cohesive fracture model
  publication-title: Int J Impact Eng
– year: 2016
  ident: bib0017
  article-title: Hydro-mechanical effects of pore pressure on deformability and fracture strength of rock: A numerical modeling study
  publication-title: Proceedings of the fiftieth US rock mechanics/geomechanics symposium
– volume: 49
  start-page: 4957
  year: 2016
  end-page: 4964
  ident: bib0048
  article-title: Numerical Simulation of heterogeneous rock using discrete element model based on digital image processing
  publication-title: Rock Mech Rock Eng
– volume: 47
  start-page: 1117
  year: 2014
  end-page: 1133
  ident: bib0051
  article-title: Fracturing and failure behavior of Carrara marble in quasistatic and dynamic Brazilian disc tests
  publication-title: Rock Mech Rock Eng
– volume: 68
  start-page: 15
  year: 2014
  end-page: 28
  ident: bib0028
  article-title: Influence of particle breakage on the dynamic compression responses of brittle granular materials
  publication-title: Mech Mater
– year: 2010
  ident: bib0031
  article-title: The hustrulid bar – A dynamic strength test and its application to the cautious blasting of rock
– volume: 51
  start-page: 1587
  year: 2014
  end-page: 1600
  ident: bib0060
  article-title: Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the distinct lattice spring model with X-ray micro CT
  publication-title: Int J Solids Struct
– volume: 45
  start-page: 341
  year: 2012
  end-page: 348
  ident: bib0054
  article-title: Dynamic tensile failure of the rock interface between tuff and basalt
  publication-title: Rock Mech Rock Eng
– volume: 60
  start-page: 423
  year: 2013
  end-page: 439
  ident: bib0059
  article-title: Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads
  publication-title: Int J Rock Mech Min Sci
– volume: 16
  start-page: 677
  year: 2009
  end-page: 682
  ident: bib0026
  article-title: Energy consumption in rock fragmentation at intermediate strain rate
  publication-title: J Central South Univ Technol
– volume: 49
  start-page: 3823
  year: 2016
  end-page: 3828
  ident: bib0016
  article-title: A modified overstress model to simulate dynamic split tensile tests and its experimental validation
  publication-title: Rock Mech Rock Eng
– volume: 33
  start-page: 501
  year: 1968
  end-page: 510
  ident: bib0035
  article-title: The effect of stress rate and temperature on the strength of basalt and granite
  publication-title: Geophysics
– volume: 115
  year: 2010
  ident: bib0036
  article-title: Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading
  publication-title: J Geophys Res Solid Earth
– volume: 13
  start-page: 303
  year: 1976
  end-page: 309
  ident: bib0019
  article-title: Static and dynamic fracture strength of Barre granite
  publication-title: Int J Rock Mech Min Sci Geomech Abst
– volume: 163
  start-page: 1091
  year: 2006
  end-page: 1100
  ident: bib0049
  article-title: A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB
  publication-title: Pure Appl Geophys
– volume: 40
  start-page: 763
  year: 2003
  end-page: 777
  ident: bib0009
  article-title: Strain-rate dependency of the dynamic tensile strength of rock
  publication-title: Int J Rock Mech Min Sci
– volume: 36
  start-page: 37
  year: 2001
  end-page: 49
  ident: bib0020
  article-title: Static and dynamic behavior of concrete and granite in tension with damage
  publication-title: Theor Appl Fract Mech
– volume: 3
  start-page: 84
  year: 2003
  end-page: 98
  ident: bib0037
  article-title: Failure process of granite
  publication-title: Int J Geomech
– volume: 85
  year: 2014
  ident: bib0029
  article-title: A dynamic ball compression test for understanding rock crushing
  publication-title: Rev Sci Instrum
– volume: 79
  year: 2008
  ident: bib0012
  article-title: Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids
  publication-title: Rev Sci Instrum
– volume: 50
  start-page: 309
  year: 2017
  end-page: 326
  ident: bib0004
  article-title: Estimation of confined peak strength of crack-damaged rocks
  publication-title: Rock Mech Rock Eng
– volume: 17
  start-page: 147
  year: 1980
  end-page: 157
  ident: bib0022
  article-title: Continuum modelling of explosive fracture in oil shale
  publication-title: Int J Rock Mech Min Sci Geomech Abst
– volume: 53
  start-page: 322
  year: 1982
  end-page: 325
  ident: bib0023
  article-title: Local inertial effects in dynamic fragmentation
  publication-title: J Appl Phys
– volume: 70
  start-page: 101
  year: 2014
  end-page: 108
  ident: bib0043
  article-title: Validation of a three-dimensional finite-discrete element method using experimental results of the split Hopkinson pressure bar test
  publication-title: Int J Rock Mech Min Sci
– volume: 71
  start-page: 117
  year: 2014
  end-page: 130
  ident: bib0003
  article-title: Distinct element method simulation of an analogue for a highly interlocked, non-persistently jointed rockmass
  publication-title: Int J Rock Mech Min Sci
– volume: 191
  start-page: 84
  year: 2007
  end-page: 122
  ident: bib0047
  article-title: The Deep Impact oblique impact cratering experiment
  publication-title: Icarus
– volume: 46
  start-page: 421
  year: 2009
  end-page: 425
  ident: bib0055
  article-title: A modified Brazilian disk tension test
  publication-title: Int J Rock Mech Min Sci
– volume: 46
  start-page: 514
  year: 2009
  end-page: 520
  ident: bib0002
  article-title: Dynamic behavior of a Mediterranean natural stone under tensile loading
  publication-title: Int J Rock Mech Min Sci
– reference: Schindler L. Design and evaluation of a device for determining the one dimensional compression characteristics of soils subjected to impulse-type loads [Ph.D. dissertation]. Urbana, IL: University of Illinois; 1968. p. 380.
– volume: 225
  start-page: 42
  year: 2017
  end-page: 48
  ident: bib0042
  article-title: A peridynamics formulation for quasi-static fracture and contact in rock
  publication-title: Eng Geol
– volume: 79
  year: 2012
  ident: bib0005
  article-title: A micromechanics based constitutive model for brittle failure at high strain rates
  publication-title: J Appl Mech
– volume: 61
  start-page: 3509
  year: 2013
  end-page: 3521
  ident: bib0033
  article-title: A scaling law for the dynamic strength of brittle solids
  publication-title: Acta Mater
– volume: 101
  start-page: 230
  year: 2015
  end-page: 250
  ident: bib0044
  article-title: Combined continuum damage‐embedded discontinuity model for explicit dynamic fracture analyses of quasi‐brittle materials
  publication-title: Int J Numer Methods Eng
– volume: 29
  start-page: 47
  year: 1979
  end-page: 65
  ident: bib0010
  article-title: A discrete numerical model for granular assemblies
  publication-title: Geotechnique
– volume: 6
  start-page: 285
  year: 1987
  end-page: 292
  ident: bib0032
  article-title: An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite
  publication-title: Mech Mater
– volume: 53
  start-page: 1153
  year: 2013
  end-page: 1159
  ident: bib0008
  article-title: Flattened Brazilian disc method for determining the dynamic tensile stress–strain curve of low strength brittle solids
  publication-title: Exp Mech
– year: 1993
  ident: bib0015
  article-title: High-strain-rate tensile behavior of sedimentary and igneous rocks at low temperatures
  publication-title: Cold regions research and engineering lab
– volume: 167
  start-page: 1419
  year: 2010
  end-page: 1432
  ident: bib0014
  article-title: Loading rate dependence of tensile strength anisotropy of Barre granite
  publication-title: Pure Appl Geophys
– volume: 260
  start-page: 308
  year: 2015
  end-page: 319
  ident: bib0025
  article-title: Dynamic behavior of an ordinary chondrite: the effects of microstructure on strength, failure and fragmentation
  publication-title: Icarus
– volume: 116
  year: 2011
  ident: bib0056
  article-title: Origin of pulverized rocks during earthquake fault rupture
  publication-title: J Geophys Res Solid Earth
– volume: 47
  start-page: 1411
  year: 2014
  end-page: 1478
  ident: bib0058
  article-title: A review of dynamic experimental techniques and mechanical behaviour of rock materials
  publication-title: Rock Mech Rock Eng
– volume: 43
  start-page: 667
  year: 2010
  end-page: 676
  ident: bib0006
  article-title: Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension
  publication-title: Rock Mech Rock Eng
– volume: 45
  start-page: 397
  year: 2008
  end-page: 406
  ident: bib0034
  article-title: Estimation of dynamic tensile strength of sandstone
  publication-title: Int J Rock Mech Min Sci
– volume: 43
  start-page: 707
  year: 2010
  end-page: 716
  ident: bib0040
  article-title: An example of realistic modelling of rock dynamics problems: FEM/DEM simulation of dynamic Brazilian test on Barre granite
  publication-title: Rock Mech Rock Eng
– volume: 59
  start-page: 128
  year: 2013
  end-page: 138
  ident: bib0045
  article-title: Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite
  publication-title: Int J Rock Mech Min Sci
– volume: 121
  start-page: 2338
  year: 2016
  end-page: 2360
  ident: bib0001
  article-title: Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones
  publication-title: J Geophys Res Solid Earth
– volume: 49
  start-page: 3855
  year: 2016
  end-page: 3864
  ident: bib0052
  article-title: An experimental study of dynamic tensile failure of rocks subjected to hydrostatic confinement
  publication-title: Rock Mech Rock Eng
– volume: 41
  start-page: 252
  year: 2009
  end-page: 260
  ident: bib0050
  article-title: Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup
  publication-title: Mech Mater
– volume: 47
  start-page: 2271
  year: 2014
  end-page: 2278
  ident: bib0021
  article-title: Dynamic indirect tensile strength of sandstone under different loading rates
  publication-title: Rock Mech Rock Eng
– volume: 95
  start-page: 162
  year: 2018
  end-page: 179
  ident: bib0018
  article-title: Investigating the scale-dependency of the geometrical and mechanical properties of a moderately jointed rock using a synthetic rock mass (SRM) approach
  publication-title: Comput Geotech
– volume: 49
  start-page: 731
  year: 2016
  end-page: 745
  ident: bib0053
  article-title: Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing
  publication-title: Rock Mech Rock Eng
– volume: 61
  start-page: 2316
  year: 2004
  end-page: 2343
  ident: bib0041
  article-title: Cracking particles: a simplified meshfree method for arbitrary evolving cracks
  publication-title: Int J Numer Methods Eng
– volume: 30
  start-page: 375
  year: 2003
  end-page: 397
  ident: bib0057
  article-title: Finite element modeling of geomaterials using digital image processing
  publication-title: Comput Geotech
– ident: 10.1016/j.ijimpeng.2018.04.006_bib0046
– volume: 101
  start-page: 230
  issue: 3
  year: 2015
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0044
  article-title: Combined continuum damage‐embedded discontinuity model for explicit dynamic fracture analyses of quasi‐brittle materials
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4814
– volume: 70
  start-page: 101
  year: 2014
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0043
  article-title: Validation of a three-dimensional finite-discrete element method using experimental results of the split Hopkinson pressure bar test
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.03.011
– volume: 46
  start-page: 514
  issue: 3
  year: 2009
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0002
  article-title: Dynamic behavior of a Mediterranean natural stone under tensile loading
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2008.09.010
– volume: 53
  start-page: 96
  year: 2016
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0039
  article-title: Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs
  publication-title: Tunnel Undergr Space Technol
  doi: 10.1016/j.tust.2015.12.010
– volume: 47
  start-page: 1411
  issue: 4
  year: 2014
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0058
  article-title: A review of dynamic experimental techniques and mechanical behaviour of rock materials
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0463-y
– volume: 13
  start-page: 303
  issue: 11
  year: 1976
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0019
  article-title: Static and dynamic fracture strength of Barre granite
  publication-title: Int J Rock Mech Min Sci Geomech Abst
  doi: 10.1016/0148-9062(76)91829-5
– volume: 121
  start-page: 2338
  issue: 4
  year: 2016
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0001
  article-title: Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2015JB012542
– volume: 79
  issue: 3
  year: 2012
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0005
  article-title: A micromechanics based constitutive model for brittle failure at high strain rates
  publication-title: J Appl Mech
  doi: 10.1115/1.4005897
– volume: 45
  start-page: 397
  issue: 3
  year: 2008
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0034
  article-title: Estimation of dynamic tensile strength of sandstone
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2007.07.003
– year: 1993
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0015
  article-title: High-strain-rate tensile behavior of sedimentary and igneous rocks at low temperatures
– volume: 71
  start-page: 117
  year: 2014
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0003
  article-title: Distinct element method simulation of an analogue for a highly interlocked, non-persistently jointed rockmass
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.07.005
– volume: 43
  start-page: 667
  issue: 6
  year: 2010
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0006
  article-title: Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-010-0101-x
– volume: 49
  start-page: 4957
  issue: 12
  year: 2016
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0048
  article-title: Numerical Simulation of heterogeneous rock using discrete element model based on digital image processing
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1030-0
– volume: 49
  start-page: 3855
  issue: 10
  year: 2016
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0052
  article-title: An experimental study of dynamic tensile failure of rocks subjected to hydrostatic confinement
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-0946-8
– volume: 167
  start-page: 1419
  issue: 11
  year: 2010
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0014
  article-title: Loading rate dependence of tensile strength anisotropy of Barre granite
  publication-title: Pure Appl Geophys
  doi: 10.1007/s00024-010-0103-3
– volume: 49
  start-page: 3823
  issue: 9
  year: 2016
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0016
  article-title: A modified overstress model to simulate dynamic split tensile tests and its experimental validation
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-0945-9
– volume: 45
  start-page: 341
  issue: 3
  year: 2012
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0054
  article-title: Dynamic tensile failure of the rock interface between tuff and basalt
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-011-0177-y
– volume: 51
  start-page: 1587
  issue: 7–8
  year: 2014
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0060
  article-title: Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the distinct lattice spring model with X-ray micro CT
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2014.01.012
– volume: 163
  start-page: 1091
  issue: 5–6
  year: 2006
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0049
  article-title: A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB
  publication-title: Pure Appl Geophys
  doi: 10.1007/s00024-006-0056-8
– volume: 85
  issue: 12
  year: 2014
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0029
  article-title: A dynamic ball compression test for understanding rock crushing
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.4902836
– volume: 53
  start-page: 1153
  issue: 7
  year: 2013
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0008
  article-title: Flattened Brazilian disc method for determining the dynamic tensile stress–strain curve of low strength brittle solids
  publication-title: Exp Mech
  doi: 10.1007/s11340-013-9733-6
– year: 2016
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0017
  article-title: Hydro-mechanical effects of pore pressure on deformability and fracture strength of rock: A numerical modeling study
– volume: 53
  start-page: 322
  issue: 1
  year: 1982
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0023
  article-title: Local inertial effects in dynamic fragmentation
  publication-title: J Appl Phys
  doi: 10.1063/1.329934
– volume: 43
  start-page: 657
  issue: 6
  year: 2010
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0011
  article-title: Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-010-0091-8
– volume: 43
  start-page: 677
  issue: 6
  year: 2010
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0030
  article-title: An experimental study of the rate dependence of tensile strength softening of Longyou sandstone
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-010-0083-8
– volume: 30
  start-page: 375
  issue: 5
  year: 2003
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0057
  article-title: Finite element modeling of geomaterials using digital image processing
  publication-title: Comput Geotech
  doi: 10.1016/S0266-352X(03)00015-6
– volume: 41
  start-page: 252
  issue: 3
  year: 2009
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0050
  article-title: Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2008.10.004
– volume: 191
  start-page: 84
  issue: 2
  year: 2007
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0047
  article-title: The Deep Impact oblique impact cratering experiment
  publication-title: Icarus
  doi: 10.1016/j.icarus.2007.06.031
– volume: 260
  start-page: 308
  year: 2015
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0025
  article-title: Dynamic behavior of an ordinary chondrite: the effects of microstructure on strength, failure and fragmentation
  publication-title: Icarus
  doi: 10.1016/j.icarus.2015.07.027
– volume: 68
  start-page: 15
  year: 2014
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0028
  article-title: Influence of particle breakage on the dynamic compression responses of brittle granular materials
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2013.08.002
– volume: 50
  start-page: 309
  issue: 2
  year: 2017
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0004
  article-title: Estimation of confined peak strength of crack-damaged rocks
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1110-1
– year: 2010
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0031
– volume: 95
  start-page: 162
  year: 2018
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0018
  article-title: Investigating the scale-dependency of the geometrical and mechanical properties of a moderately jointed rock using a synthetic rock mass (SRM) approach
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2017.10.002
– volume: 6
  start-page: 285
  issue: 4
  year: 1987
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0032
  article-title: An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite
  publication-title: Mech Mater
  doi: 10.1016/0167-6636(87)90027-5
– volume: 59
  start-page: 128
  year: 2013
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0045
  article-title: Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2012.12.018
– volume: 60
  start-page: 423
  year: 2013
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0059
  article-title: Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2013.01.005
– volume: 40
  start-page: 763
  issue: 5
  year: 2003
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0009
  article-title: Strain-rate dependency of the dynamic tensile strength of rock
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/S1365-1609(03)00072-8
– volume: 47
  start-page: 2271
  issue: 6
  year: 2014
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0021
  article-title: Dynamic indirect tensile strength of sandstone under different loading rates
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0503-7
– volume: 32
  start-page: 907
  issue: 8
  year: 2007
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0007
  article-title: A study on the dynamic behavior of the Meuse/Haute-Marne argillite
  publication-title: Phys Chem Earth Parts A/B/C
  doi: 10.1016/j.pce.2006.03.007
– volume: 29
  start-page: 47
  issue: 1
  year: 1979
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0010
  article-title: A discrete numerical model for granular assemblies
  publication-title: Geotechnique
  doi: 10.1680/geot.1979.29.1.47
– volume: 49
  start-page: 731
  issue: 3
  year: 2016
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0053
  article-title: Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-015-0787-x
– volume: 33
  start-page: 501
  issue: 3
  year: 1968
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0035
  article-title: The effect of stress rate and temperature on the strength of basalt and granite
  publication-title: Geophysics
  doi: 10.1190/1.1439947
– volume: 79
  issue: 12
  year: 2008
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0012
  article-title: Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.3043420
– volume: 115
  issue: B1
  year: 2010
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0036
  article-title: Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2009JB006496
– volume: 61
  start-page: 3509
  issue: 9
  year: 2013
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0033
  article-title: A scaling law for the dynamic strength of brittle solids
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2013.02.045
– year: 2018
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0038
  article-title: Reasonability of grain-based discrete element method (GBDEM) on SHPB simulation and its application for granular rocks
  publication-title: Rock Mech Rock Eng
– volume: 36
  start-page: 37
  issue: 1
  year: 2001
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0020
  article-title: Static and dynamic behavior of concrete and granite in tension with damage
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/S0167-8442(01)00054-4
– volume: 61
  start-page: 2316
  issue: 13
  year: 2004
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0041
  article-title: Cracking particles: a simplified meshfree method for arbitrary evolving cracks
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1151
– volume: 47
  start-page: 469
  issue: 3
  year: 2010
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0013
  article-title: Rate dependence of the flexural tensile strength of Laurentian granite
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2009.05.001
– volume: 3
  start-page: 84
  issue: 1
  year: 2003
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0037
  article-title: Failure process of granite
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)1532-3641(2003)3:1(84)
– volume: 87
  start-page: 146
  year: 2016
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0024
  article-title: Modelling the dynamic failure of brittle rocks using a hybrid continuum-discrete element method with a mixed-mode cohesive fracture model
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2015.04.010
– volume: 47
  start-page: 1117
  issue: 4
  year: 2014
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0051
  article-title: Fracturing and failure behavior of Carrara marble in quasistatic and dynamic Brazilian disc tests
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0465-9
– volume: 43
  start-page: 707
  issue: 6
  year: 2010
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0040
  article-title: An example of realistic modelling of rock dynamics problems: FEM/DEM simulation of dynamic Brazilian test on Barre granite
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-010-0092-7
– volume: 17
  start-page: 147
  issue: 3
  year: 1980
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0022
  article-title: Continuum modelling of explosive fracture in oil shale
  publication-title: Int J Rock Mech Min Sci Geomech Abst
  doi: 10.1016/0148-9062(80)91361-3
– volume: 14
  start-page: 337
  issue: 9
  year: 1974
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0027
  article-title: Macroscopic static and dynamic mechanical properties of Yule marble
  publication-title: Exp Mech
  doi: 10.1007/BF02323559
– volume: 116
  issue: B6
  year: 2011
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0056
  article-title: Origin of pulverized rocks during earthquake fault rupture
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2010JB007721
– volume: 16
  start-page: 677
  issue: 4
  year: 2009
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0026
  article-title: Energy consumption in rock fragmentation at intermediate strain rate
  publication-title: J Central South Univ Technol
  doi: 10.1007/s11771-009-0112-5
– volume: 225
  start-page: 42
  year: 2017
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0042
  article-title: A peridynamics formulation for quasi-static fracture and contact in rock
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2017.05.001
– volume: 46
  start-page: 421
  issue: 2
  year: 2009
  ident: 10.1016/j.ijimpeng.2018.04.006_bib0055
  article-title: A modified Brazilian disk tension test
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2008.04.008
SSID ssj0017050
Score 2.560648
Snippet •Grain scale discrete element model is proposed to study dynamic properties of rocks.•Heterogeneous rocks are reproduced and micro fracturing characteristics...
The dynamic tension behaviours of granites are tested with the split Hopkinson pressure bar and the quasi-static responses including the compression and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 98
SubjectTerms Coalescing
Compression tests
Computer simulation
Crack initiation
Crack propagation
DEM simulation
Digital imaging
Discrete element method
Dynamic tensile strength
Energy dissipation
Fracturing
Fragmentation
Granular rocks
Image processing
Indentation
Mathematical models
Micro fracturing
Rocks
Split Hopkinson pressure bars
Strain rate
Strain rate effect
Stress concentration
Stress distribution
Stress propagation
Superposition (mathematics)
Tensile strength
Tension tests
Wave propagation
Title Dynamic tensile behaviours of heterogeneous rocks: The grain scale fracturing characteristics on strength and fragmentation
URI https://dx.doi.org/10.1016/j.ijimpeng.2018.04.006
https://www.proquest.com/docview/2076192876
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDAgnuJRKg-saZPYzoOtKlQFBAtU6mbFiV1aSlq16YTEb-cucSpASAyMSc5Rku9yD-u7O0IuQ6NV6hpIS1QECYrvcUd5SeAkicFmIL7QJZvw4THoD_jdUAw3SLeuhUFapbX9lU0vrbU907Zfsz0fj9tPoJwc_N_QCxlOeUQ7zHmIWt76WNM8sFtMuc8Cwg5Kf6kSnrTGkzEEp_kIKV5R2fIUJx_97qB-mOrS__T2yK4NHGmnerZ9sqHzA7LzpZ3gIXm_rsbL05KVPtXU1uCvFks6M_QFmS8zUBgN2T4Fx_W6vKKgJnSEYyLoEtDS1GDVVFm6SNPvvZzpDGSKBbxH8UKTPEPR0ZstXcqPyKB389ztO3a4gpMy7hZOECjASRgvEca4OnSVEVGqYhaFKuEGwkaA1w_SRGRBJlwmwsznmYoVhAhhkMXsmGzms1yfEJpFnCnmxxH3sNscoK5FYlgKkRITxuWnRNRfVKa28zgOwJjKmmI2kTUSEpGQLpeAxClpr9fNq94bf66Ia8DkNy2S4CD-XNuoEZb2P17CddzmgawyOPvHrc_JNh5VvMEG2SwWK30BsUyhmqWyNslW5_a-__gJMdD3hw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgAD4ikeBTywhiaxnQdbxUOFPhZA6mbFiV1aSoraMPHnuUscBAiJgTXxRYm_yz2Su-8IOQuNVqlrIC1RESQovscd5SWBkyQGyUB8octqwsEw6D7yu5EYNchl3QuDZZXW9lc2vbTW9kjb7mb7dTJp34NycvB_Iy9kOOUR7PAKslOJJlnp3Pa6w8-fCaFbDmrF9Q4KfGkUnp5PphOIT_MxVnlFJespDj_63Uf9sNalC7rZJBs2dqSd6va2SEPn22T9C6PgDnm_qibM07IwfaapbcN_Wyzp3NAnLH6Zg85oSPgp-K7n5QUFTaFjnBRBlwCYpgYbp8ruRZp-p3Omc1hTLOA5iiea5BkuHb_Y7qV8lzzeXD9cdh07X8FJGXcLJwgUQCWMlwhjXB26yogoVTGLQpVwA5EjIOwHaSKyIBMuE2Hm80zFCqKEMMhitkea-TzX-4RmEWeK-XHEPSScA-C1SAxLIVhiwrj8gIh6R2VqycdxBsZM1lVmU1kjIREJ6XIJSByQ9qfca0W_8adEXAMmvymSBB_xp2yrRljaV3kJ5_FLDySWweE_Ln1KVrsPg77s3w57R2QNz1RlhC3SLBZv-hhCm0KdWNX9AKK4-jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+tensile+behaviours+of+heterogeneous+rocks%3A+The+grain+scale+fracturing+characteristics+on+strength+and+fragmentation&rft.jtitle=International+journal+of+impact+engineering&rft.au=Li%2C+X.F.&rft.au=Li%2C+X.&rft.au=Li%2C+H.B.&rft.au=Zhang%2C+Q.B.&rft.date=2018-08-01&rft.issn=0734-743X&rft.volume=118&rft.spage=98&rft.epage=118&rft_id=info:doi/10.1016%2Fj.ijimpeng.2018.04.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2018_04_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon