Risk and fragility assessment of residential wooden buildings subject to hurricane winds

Hurricanes are one of the major causes of damage and loss to residential wooden buildings in the United States. The study of hurricane-imposed risks to residential wooden buildings is, therefore, a fundamental step to mitigate these damages and losses. Within this context, a probabilistic methodolog...

Full description

Saved in:
Bibliographic Details
Published inStructural safety Vol. 94; p. 102137
Main Authors Abdelhady, Ahmed U., Spence, Seymour M.J., McCormick, Jason
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hurricanes are one of the major causes of damage and loss to residential wooden buildings in the United States. The study of hurricane-imposed risks to residential wooden buildings is, therefore, a fundamental step to mitigate these damages and losses. Within this context, a probabilistic methodology is provided for the fragility analysis of residential wooden buildings. Two damage mechanisms are considered in this methodology, excessive dynamic wind pressure and impact from windborne debris. Unlike existing frameworks, the methodology defines the geometric configuration as well as the required extension of the neighboring buildings to estimate the damage from both mechanisms. A case study illustrates the methodology on residential communities composed of archetype gable-roof buildings. Ten construction cases are defined to cover a range of resistances of building components for both considered damage mechanisms. Three floor-area ratios (FAR) are also considered. The resulting fragility curves highlight: (1) the effect of the FAR on enhancing the performance of residential buildings due to the effect of shielding; and (2) the significance of windborne debris in increasing the estimated hurricane risk. The estimated fragility curves can be used to directly model residential buildings in community resilience frameworks. •A methodology for the risk and fragility analysis of wooden buildings is presented.•Damage from windborne debris is considered in the developed methodology.•Fragility curves for archetype gable-roof buildings are presented.•The significance of windborne debris and floor-area ratio are highlighted.•The estimated fragility curves can be used in community resilience frameworks.
AbstractList Hurricanes are one of the major causes of damage and loss to residential wooden buildings in the United States. The study of hurricane-imposed risks to residential wooden buildings is, therefore, a fundamental step to mitigate these damages and losses. Within this context, a probabilistic methodology is provided for the fragility analysis of residential wooden buildings. Two damage mechanisms are considered in this methodology, excessive dynamic wind pressure and impact from windborne debris. Unlike existing frameworks, the methodology defines the geometric configuration as well as the required extension of the neighboring buildings to estimate the damage from both mechanisms. A case study illustrates the methodology on residential communities composed of archetype gable-roof buildings. Ten construction cases are defined to cover a range of resistances of building components for both considered damage mechanisms. Three floor-area ratios (FAR) are also considered. The resulting fragility curves highlight: (1) the effect of the FAR on enhancing the performance of residential buildings due to the effect of shielding; and (2) the significance of windborne debris in increasing the estimated hurricane risk. The estimated fragility curves can be used to directly model residential buildings in community resilience frameworks.
Hurricanes are one of the major causes of damage and loss to residential wooden buildings in the United States. The study of hurricane-imposed risks to residential wooden buildings is, therefore, a fundamental step to mitigate these damages and losses. Within this context, a probabilistic methodology is provided for the fragility analysis of residential wooden buildings. Two damage mechanisms are considered in this methodology, excessive dynamic wind pressure and impact from windborne debris. Unlike existing frameworks, the methodology defines the geometric configuration as well as the required extension of the neighboring buildings to estimate the damage from both mechanisms. A case study illustrates the methodology on residential communities composed of archetype gable-roof buildings. Ten construction cases are defined to cover a range of resistances of building components for both considered damage mechanisms. Three floor-area ratios (FAR) are also considered. The resulting fragility curves highlight: (1) the effect of the FAR on enhancing the performance of residential buildings due to the effect of shielding; and (2) the significance of windborne debris in increasing the estimated hurricane risk. The estimated fragility curves can be used to directly model residential buildings in community resilience frameworks. •A methodology for the risk and fragility analysis of wooden buildings is presented.•Damage from windborne debris is considered in the developed methodology.•Fragility curves for archetype gable-roof buildings are presented.•The significance of windborne debris and floor-area ratio are highlighted.•The estimated fragility curves can be used in community resilience frameworks.
ArticleNumber 102137
Author McCormick, Jason
Spence, Seymour M.J.
Abdelhady, Ahmed U.
Author_xml – sequence: 1
  givenname: Ahmed U.
  orcidid: 0000-0002-5274-0129
  surname: Abdelhady
  fullname: Abdelhady, Ahmed U.
  email: auhady@umich.edu
– sequence: 2
  givenname: Seymour M.J.
  surname: Spence
  fullname: Spence, Seymour M.J.
  email: smjs@umich.edu
– sequence: 3
  givenname: Jason
  orcidid: 0000-0002-7379-4660
  surname: McCormick
  fullname: McCormick, Jason
  email: jpmccorm@umich.edu
BookMark eNqFkF1rFTEQhoNU8PToX5BAr_c0H7vJHuiFUmwtFARR8C5k81Fnu01qJmvpvzfl2Jve9GpehveZgeeYHKWcAiEfOdtxxtXpvMNaVrQx7AQTvC0Fl_oN2fBR7zsph-GIbFpRd72W7B05RpwZY8Moxg359R3wltrkaSz2Bhaoj9QiBsS7kCrNkZaA4FsGu9CHnFuk0wqLh3SDFNdpDq7SmunvtRRwNgX6AMnje_I22gXDh_9zS35efPlx_rW7_nZ5df75unOyZ7VTivNB7LUftBz3mvVeOMmllf2k_CAnzr2alIhajE4rqd3Qh6inGPlkBzZyuSUnh7v3Jf9ZA1Yz57Wk9tIIJdheSdGz1jo7tFzJiCVE46DaCjnVYmExnJknl2Y2zy7Nk0tzcNlw9QK_L3Bny-Pr4KcDGJqCvxCKQQchueChNG_GZ3jtxD-IQpUX
CitedBy_id crossref_primary_10_1016_j_jweia_2021_104891
crossref_primary_10_1061_AJRUA6_RUENG_956
crossref_primary_10_1016_j_jobe_2023_106256
crossref_primary_10_1016_j_strusafe_2022_102268
crossref_primary_10_1016_j_engstruct_2024_117873
crossref_primary_10_1016_j_ijdrr_2024_104955
crossref_primary_10_1016_j_jweia_2024_105806
crossref_primary_10_3390_cli11120237
crossref_primary_10_1016_j_istruc_2023_01_130
crossref_primary_10_1016_j_ijdrr_2024_104371
crossref_primary_10_1111_mice_13445
crossref_primary_10_1016_j_ijdrr_2022_102839
crossref_primary_10_1016_j_rcns_2024_05_001
crossref_primary_10_3389_fbuil_2022_1018207
crossref_primary_10_1016_j_enbuild_2022_112385
crossref_primary_10_3389_fbuil_2022_915209
crossref_primary_10_1061_NHREFO_NHENG_2058
crossref_primary_10_1016_j_ijdrr_2023_104222
crossref_primary_10_1016_j_ijdrr_2024_104663
crossref_primary_10_3390_rs16203792
crossref_primary_10_1016_j_ijdrr_2023_103951
crossref_primary_10_1177_87552930231171177
crossref_primary_10_1016_j_dibe_2023_100178
crossref_primary_10_1016_j_engstruct_2021_113798
crossref_primary_10_3390_buildings11110523
crossref_primary_10_1016_j_pes_2024_100019
crossref_primary_10_3389_fbuil_2024_1273311
crossref_primary_10_1007_s12040_024_02255_w
crossref_primary_10_1080_19475705_2022_2086830
Cites_doi 10.1016/j.jweia.2020.104376
10.1061/(ASCE)0733-9445(2002)128:1(32)
10.1061/(ASCE)0733-9445(2004)130:12(1921)
10.1139/cjce-2013-0549
10.1016/0167-6105(94)90027-2
10.1061/(ASCE)0733-9445(1999)125:7(734)
10.1061/(ASCE)AE.1943-5568.0000034
10.1061/(ASCE)0733-9445(1995)121:11(1700)
10.1016/j.jweia.2013.11.004
10.12989/was.2010.13.2.207
10.1016/j.jweia.2012.12.011
10.1016/S0141-0296(01)00057-8
10.12989/was.2006.9.3.217
10.1061/(ASCE)0733-9445(1999)125:7(725)
10.1016/0167-6105(95)00016-K
10.1061/(ASCE)0733-9445(2000)126:10(1222)
10.1016/j.engstruct.2009.12.016
10.12989/was.2010.13.2.191
10.1016/j.engstruct.2013.01.027
10.1016/j.engstruct.2018.05.125
10.1016/j.jweia.2012.01.002
10.1061/(ASCE)0733-9445(1995)121:11(1691)
10.1061/(ASCE)0733-9445(1984)110:12(2843)
10.1061/(ASCE)CF.1943-5509.0001172
10.1016/j.engstruct.2005.11.005
10.1186/s43065-020-00002-1
10.1016/j.ress.2019.106777
10.1016/j.engstruct.2004.12.017
10.1061/(ASCE)0733-9445(2009)135:2(169)
10.1080/23789689.2016.1179051
10.1016/j.jweia.2021.104622
10.1016/j.strusafe.2019.03.005
10.1061/(ASCE)ST.1943-541X.0002047
10.1061/(ASCE)1527-6988(2006)7:2(94)
10.1061/(ASCE)NH.1527-6996.0000035
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV 2022
DBID AAYXX
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.strusafe.2021.102137
DatabaseName CrossRef
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Health and Safety Science Abstracts (Full archive)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Health & Safety Science Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3355
ExternalDocumentID 10_1016_j_strusafe_2021_102137
S0167473021000606
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c340t-66115297d57389704d2c313a34b6d53b11d6b62f728c7637c54ef7bff1ba50813
IEDL.DBID .~1
ISSN 0167-4730
IngestDate Wed Aug 13 11:14:59 EDT 2025
Thu Apr 24 22:58:29 EDT 2025
Tue Jul 01 00:59:31 EDT 2025
Fri Feb 23 02:46:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Windborne debris damage
Vulnerability models
Residential-wooden buildings
Fragility analysis
Performance assessment
Risk assessment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-66115297d57389704d2c313a34b6d53b11d6b62f728c7637c54ef7bff1ba50813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5274-0129
0000-0002-7379-4660
PQID 2620963240
PQPubID 2045395
ParticipantIDs proquest_journals_2620963240
crossref_citationtrail_10_1016_j_strusafe_2021_102137
crossref_primary_10_1016_j_strusafe_2021_102137
elsevier_sciencedirect_doi_10_1016_j_strusafe_2021_102137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Structural safety
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Lin, Vanmarcke, Yau (b22) 2010; 13
Holmes (b40) 2017
Grayson, Pang, Schiff (b31) 2012; 102
Grayson, Pang, Schiff (b24) 2013; 51
Qin, Stewart (b9) 2020; 197
Abdelhady, Spence, McCormick (b29) 2020; 206
Abdelhady, Spence, McCormick (b30) 2021; 214
Tokyo Polytechnic University (b38) 2007
Congressional Budget Office (b4) 2019
Lee, Rosowsky (b6) 2005; 27
Beason, Meyers, James (b1) 1984; 110
Qin, Stewart (b8) 2019; 79
Yau, Lin, Vanmarcke (b23) 2011; 12
Abdelhady, Spence, McCormick (b39) 2021
Masters, Gurley, Shah, Fernandez (b3) 2010; 32
Vickery, Twisdale (b34) 1995; 121
Vickery, Skerlj, Lin, Jr., Young, Lavelle (b20) 2006; 7
Rosowsky, Cheng (b12) 1999; 125
Gavanski, Kopp, Hong (b15) 2014; 41
Masoomi, Ameri, Van De Lindt (b16) 2018; 32
Memari, Attary, Masoomi, Mahmoud, van de Lindt, Pilkington (b17) 2018; 144
Abdelhady, Spence, McCormick (b27) 2019
Minor (b2) 1994; 53
Gurley, Pinelli, Subramanian, Cope, Zhang, Murphree (b19) 2005
Qin, Stewart (b10) 2020; 1
Stewart, Ginger, Henderson, Ryan (b14) 2018; 171
Ellingwood, Rosowsky, Li, Kim (b5) 2004; 130
ASCE/SEI 7-16 (b36) 2017
van de Lindt, Dao (b7) 2009; 135
Vickery, Twisdale (b33) 1995; 121
Li, Ellingwood (b37) 2006; 28
Rosowsky, Cheng (b11) 1999; 125
Lin, Vanmarcke (b21) 2010; 13
Vickery, Skerlj, Twisdale (b35) 2000; 126
Lee, Rosowsky (b13) 2006; 9
Zhang, Nishijima, Maruyama (b25) 2014; 124
Abdelhady AU, Spence SMJ, McCormick J. Probabilistic quantification of hurricane resilience of communities through a distributed simulation platform. In: 13th international conference on applications of statistics and probability in civil engineering. 2019.
Ahmad, Kumar (b43) 2001; 23
Abdelhady AU, Lin S-Y, Xu L, Sediek OA, Hlynka AW, El-Tawil S et al. A distributed computing platform for community resilience estimation. In: 13th International conference on applications of statistics and probability in civil engineering. 2019.
Dong, Li (b18) 2016; 1
Datin, Prevatt, Pang (b41) 2011; 17
Gavanski, Kordi, Kopp, Vickery (b44) 2013; 114
Rosowsky, Ellingwood (b32) 2002; 128
Surry, Lin (b42) 1995; 58
Ellingwood (10.1016/j.strusafe.2021.102137_b5) 2004; 130
Grayson (10.1016/j.strusafe.2021.102137_b24) 2013; 51
Yau (10.1016/j.strusafe.2021.102137_b23) 2011; 12
10.1016/j.strusafe.2021.102137_b28
Stewart (10.1016/j.strusafe.2021.102137_b14) 2018; 171
10.1016/j.strusafe.2021.102137_b26
Holmes (10.1016/j.strusafe.2021.102137_b40) 2017
Abdelhady (10.1016/j.strusafe.2021.102137_b30) 2021; 214
Qin (10.1016/j.strusafe.2021.102137_b9) 2020; 197
Gavanski (10.1016/j.strusafe.2021.102137_b15) 2014; 41
Beason (10.1016/j.strusafe.2021.102137_b1) 1984; 110
Dong (10.1016/j.strusafe.2021.102137_b18) 2016; 1
Abdelhady (10.1016/j.strusafe.2021.102137_b39) 2021
Surry (10.1016/j.strusafe.2021.102137_b42) 1995; 58
Lin (10.1016/j.strusafe.2021.102137_b21) 2010; 13
Tokyo Polytechnic University (10.1016/j.strusafe.2021.102137_b38) 2007
Gavanski (10.1016/j.strusafe.2021.102137_b44) 2013; 114
Rosowsky (10.1016/j.strusafe.2021.102137_b32) 2002; 128
Vickery (10.1016/j.strusafe.2021.102137_b34) 1995; 121
Masters (10.1016/j.strusafe.2021.102137_b3) 2010; 32
Lee (10.1016/j.strusafe.2021.102137_b6) 2005; 27
Qin (10.1016/j.strusafe.2021.102137_b8) 2019; 79
Memari (10.1016/j.strusafe.2021.102137_b17) 2018; 144
Qin (10.1016/j.strusafe.2021.102137_b10) 2020; 1
Grayson (10.1016/j.strusafe.2021.102137_b31) 2012; 102
Minor (10.1016/j.strusafe.2021.102137_b2) 1994; 53
Rosowsky (10.1016/j.strusafe.2021.102137_b11) 1999; 125
Vickery (10.1016/j.strusafe.2021.102137_b20) 2006; 7
van de Lindt (10.1016/j.strusafe.2021.102137_b7) 2009; 135
Abdelhady (10.1016/j.strusafe.2021.102137_b27) 2019
Vickery (10.1016/j.strusafe.2021.102137_b35) 2000; 126
Masoomi (10.1016/j.strusafe.2021.102137_b16) 2018; 32
Vickery (10.1016/j.strusafe.2021.102137_b33) 1995; 121
Zhang (10.1016/j.strusafe.2021.102137_b25) 2014; 124
Rosowsky (10.1016/j.strusafe.2021.102137_b12) 1999; 125
ASCE/SEI 7-16 (10.1016/j.strusafe.2021.102137_b36) 2017
Lin (10.1016/j.strusafe.2021.102137_b22) 2010; 13
Abdelhady (10.1016/j.strusafe.2021.102137_b29) 2020; 206
Congressional Budget Office (10.1016/j.strusafe.2021.102137_b4) 2019
Gurley (10.1016/j.strusafe.2021.102137_b19) 2005
Ahmad (10.1016/j.strusafe.2021.102137_b43) 2001; 23
Lee (10.1016/j.strusafe.2021.102137_b13) 2006; 9
Datin (10.1016/j.strusafe.2021.102137_b41) 2011; 17
Li (10.1016/j.strusafe.2021.102137_b37) 2006; 28
References_xml – volume: 130
  start-page: 1921
  year: 2004
  end-page: 1930
  ident: b5
  article-title: Fragility assessment of light-frame wood construction subjected to wind and earthquake hazards
  publication-title: J Struct Eng
– volume: 1
  start-page: 46
  year: 2016
  end-page: 62
  ident: b18
  article-title: Risk-based assessment of wood residential construction subjected to hurricane events considering indirect and environmental loss
  publication-title: Sustain Resil Infrastruct
– volume: 7
  start-page: 94
  year: 2006
  end-page: 103
  ident: b20
  article-title: HAZUS-MH Hurricane model methodology. II: Damage and loss estimation
  publication-title: Nat Hazards Rev
– volume: 17
  start-page: 144
  year: 2011
  end-page: 154
  ident: b41
  article-title: Wind-uplift capacity of residential wood roof-sheathing panels retrofitted with insulating foam adhesive
  publication-title: J Archit Eng
– volume: 23
  start-page: 1577
  year: 2001
  end-page: 1589
  ident: b43
  article-title: Interference effects on wind loads on low-rise hip roof buildings
  publication-title: Eng Struct
– volume: 126
  start-page: 1222
  year: 2000
  end-page: 1237
  ident: b35
  article-title: Simulation of hurricane risk in the U.S. using empirical track model
  publication-title: J Struct Eng
– volume: 128
  start-page: 32
  year: 2002
  end-page: 38
  ident: b32
  article-title: Performance-based engineering of wood frame housing: Fragility analysis methodology
  publication-title: J Struct Eng
– volume: 121
  start-page: 1691
  year: 1995
  end-page: 1699
  ident: b33
  article-title: Prediction of hurricane wind speeds in the United States
  publication-title: J Struct Eng
– year: 2007
  ident: b38
  article-title: Aerodynamic database of non-isolated low-rise buildings
– volume: 28
  start-page: 1009
  year: 2006
  end-page: 1018
  ident: b37
  article-title: Hurricane damage to residential construction in the US: Importance of uncertainty modeling in risk assessment
  publication-title: Eng Struct
– year: 2017
  ident: b40
  article-title: Wind loading of structures
– reference: Abdelhady AU, Spence SMJ, McCormick J. Probabilistic quantification of hurricane resilience of communities through a distributed simulation platform. In: 13th international conference on applications of statistics and probability in civil engineering. 2019.
– volume: 9
  start-page: 217
  year: 2006
  end-page: 230
  ident: b13
  article-title: Fragility curves for woodframe structures subjected to lateral wind loads
  publication-title: Wind Struct Int J
– volume: 121
  start-page: 1700
  year: 1995
  end-page: 1709
  ident: b34
  article-title: Wind-field and filling models for hurricane wind speed predicitons
  publication-title: J Struct Eng
– volume: 214
  year: 2021
  ident: b30
  article-title: A three-dimensional six-degree-of-freedom windborne debris trajectory model for tornadoes
  publication-title: J Wind Eng Ind Aerodyn
– volume: 1
  start-page: 3
  year: 2020
  ident: b10
  article-title: Risk-based cost-benefit analysis of climate adaptation measures for Australian contemporary houses under extreme winds
  publication-title: J Infrastruct Preserv Resil
– volume: 41
  start-page: 717
  year: 2014
  end-page: 727
  ident: b15
  article-title: Reliability analysis of roof sheathing panels on wood-frame houses under wind loads in Canadian cities
  publication-title: Can J Civil Eng
– volume: 144
  year: 2018
  ident: b17
  article-title: Minimal building fragility portfolio for damage assessment of communities subjected to tornadoes
  publication-title: J Struct Eng
– reference: Abdelhady AU, Lin S-Y, Xu L, Sediek OA, Hlynka AW, El-Tawil S et al. A distributed computing platform for community resilience estimation. In: 13th International conference on applications of statistics and probability in civil engineering. 2019.
– year: 2017
  ident: b36
  article-title: Minimum design loads and associated criteria for buildings and other structures
– volume: 13
  start-page: 191
  year: 2010
  end-page: 206
  ident: b21
  article-title: Windborne debris risk analysis - Part I. Introduction and methodology
  publication-title: Wind Struct
– volume: 53
  start-page: 207
  year: 1994
  end-page: 227
  ident: b2
  article-title: Windborne debris and the building envelope
  publication-title: J Wind Eng Ind Aerodyn
– volume: 12
  start-page: 184
  year: 2011
  end-page: 189
  ident: b23
  article-title: Hurricane damage and loss estimation using an integrated vulnerability model
  publication-title: Nat Hazards Rev
– volume: 135
  start-page: 169
  year: 2009
  end-page: 177
  ident: b7
  article-title: Performance-based wind engineering for wood-frame buildings
  publication-title: J Struct Eng
– volume: 32
  year: 2018
  ident: b16
  article-title: Wind performance enhancement strategies for residential wood-frame buildings
  publication-title: J Perform Construct Facil
– volume: 124
  start-page: 68
  year: 2014
  end-page: 81
  ident: b25
  article-title: Reliability-based modeling of typhoon induced wind vulnerability for residential buildings in Japan
  publication-title: J Wind Eng Ind Aerodyn
– volume: 206
  year: 2020
  ident: b29
  article-title: A framework for the probabilistic quantification of the resilience of communities to hurricane winds
  publication-title: J Wind Eng Ind Aerodyn
– volume: 110
  start-page: 2843
  year: 1984
  end-page: 2857
  ident: b1
  article-title: Hurricane related window glass damage in Houston
  publication-title: J Struct Eng
– volume: 51
  start-page: 245
  year: 2013
  end-page: 258
  ident: b24
  article-title: Building envelope failure assessment framework for residential communities subjected to hurricanes
  publication-title: Eng Struct
– volume: 27
  start-page: 857
  year: 2005
  end-page: 868
  ident: b6
  article-title: Fragility assessment for roof sheathing failure in high wind regions
  publication-title: Eng Struct
– year: 2021
  ident: b39
  article-title: Exogenous windborne debris: Definition and required extent of surrounding buildings for modeling in hurricanes
  publication-title: Eng Struct
– year: 2019
  ident: b4
  article-title: Expected costs of damage from hurricane winds and storm-related flooding
– volume: 79
  start-page: 80
  year: 2019
  end-page: 93
  ident: b8
  article-title: System fragility analysis of roof cladding and trusses for Australian contemporary housing subjected to wind uplift
  publication-title: Struct Saf
– volume: 197
  year: 2020
  ident: b9
  article-title: Construction defects and wind fragility assessment for metal roof failure: A Bayesian approach
  publication-title: Reliab Eng Syst Saf
– volume: 125
  start-page: 725
  year: 1999
  end-page: 733
  ident: b12
  article-title: Reliability of light-frame roofs in high-wind regions. I: Wind loads
  publication-title: J Struct Eng
– volume: 13
  start-page: 207
  year: 2010
  end-page: 220
  ident: b22
  article-title: Windborne debris risk analysis - Part II. Application to structural vulnerability modeling
  publication-title: Wind Struct
– volume: 114
  start-page: 106
  year: 2013
  end-page: 121
  ident: b44
  article-title: Wind loads on roof sheathing of houses
  publication-title: J Wind Eng Ind Aerodyn
– start-page: 134
  year: 2019
  end-page: 151
  ident: b27
  article-title: Realizing hurricane resilient communities through distributed computing
  publication-title: Routledge handbook of sustainable and resilient infrastructure
– volume: 58
  start-page: 113
  year: 1995
  end-page: 138
  ident: b42
  article-title: The effect of surroundings and roof corner geometric modifications on roof pressures on low-rise buildings
  publication-title: J Wind Eng Ind Aerodyn
– volume: 32
  start-page: 911
  year: 2010
  end-page: 921
  ident: b3
  article-title: The vulnerability of residential window glass to lightweight windborne debris
  publication-title: Eng Struct
– volume: 102
  start-page: 22
  year: 2012
  end-page: 35
  ident: b31
  article-title: Three-dimensional probabilistic wind-borne debris trajectory model for building envelope impact risk assessment
  publication-title: J Wind Eng Ind Aerodyn
– volume: 171
  start-page: 464
  year: 2018
  end-page: 475
  ident: b14
  article-title: Fragility and climate impact assessment of contemporary housing roof sheeting failure due to extreme wind
  publication-title: Eng Struct
– volume: 125
  start-page: 734
  year: 1999
  end-page: 739
  ident: b11
  article-title: Reliability of light-frame roofs in high-wind regions. II: Reliability analysis
  publication-title: J Struct Eng
– year: 2005
  ident: b19
  article-title: Florida public hurricane loss projection model, engineering team final report
– ident: 10.1016/j.strusafe.2021.102137_b28
  doi: 10.1016/j.jweia.2020.104376
– volume: 128
  start-page: 32
  issue: 1
  year: 2002
  ident: 10.1016/j.strusafe.2021.102137_b32
  article-title: Performance-based engineering of wood frame housing: Fragility analysis methodology
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2002)128:1(32)
– year: 2017
  ident: 10.1016/j.strusafe.2021.102137_b36
– volume: 130
  start-page: 1921
  issue: 12
  year: 2004
  ident: 10.1016/j.strusafe.2021.102137_b5
  article-title: Fragility assessment of light-frame wood construction subjected to wind and earthquake hazards
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2004)130:12(1921)
– volume: 41
  start-page: 717
  issue: 8
  year: 2014
  ident: 10.1016/j.strusafe.2021.102137_b15
  article-title: Reliability analysis of roof sheathing panels on wood-frame houses under wind loads in Canadian cities
  publication-title: Can J Civil Eng
  doi: 10.1139/cjce-2013-0549
– volume: 53
  start-page: 207
  issue: 1–2
  year: 1994
  ident: 10.1016/j.strusafe.2021.102137_b2
  article-title: Windborne debris and the building envelope
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/0167-6105(94)90027-2
– volume: 125
  start-page: 734
  issue: 7
  year: 1999
  ident: 10.1016/j.strusafe.2021.102137_b11
  article-title: Reliability of light-frame roofs in high-wind regions. II: Reliability analysis
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1999)125:7(734)
– volume: 17
  start-page: 144
  issue: 4
  year: 2011
  ident: 10.1016/j.strusafe.2021.102137_b41
  article-title: Wind-uplift capacity of residential wood roof-sheathing panels retrofitted with insulating foam adhesive
  publication-title: J Archit Eng
  doi: 10.1061/(ASCE)AE.1943-5568.0000034
– volume: 206
  year: 2020
  ident: 10.1016/j.strusafe.2021.102137_b29
  article-title: A framework for the probabilistic quantification of the resilience of communities to hurricane winds
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2020.104376
– year: 2019
  ident: 10.1016/j.strusafe.2021.102137_b4
– ident: 10.1016/j.strusafe.2021.102137_b26
– volume: 121
  start-page: 1700
  issue: 11
  year: 1995
  ident: 10.1016/j.strusafe.2021.102137_b34
  article-title: Wind-field and filling models for hurricane wind speed predicitons
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1995)121:11(1700)
– year: 2005
  ident: 10.1016/j.strusafe.2021.102137_b19
– volume: 124
  start-page: 68
  year: 2014
  ident: 10.1016/j.strusafe.2021.102137_b25
  article-title: Reliability-based modeling of typhoon induced wind vulnerability for residential buildings in Japan
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2013.11.004
– volume: 13
  start-page: 207
  issue: 2
  year: 2010
  ident: 10.1016/j.strusafe.2021.102137_b22
  article-title: Windborne debris risk analysis - Part II. Application to structural vulnerability modeling
  publication-title: Wind Struct
  doi: 10.12989/was.2010.13.2.207
– volume: 114
  start-page: 106
  year: 2013
  ident: 10.1016/j.strusafe.2021.102137_b44
  article-title: Wind loads on roof sheathing of houses
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2012.12.011
– volume: 23
  start-page: 1577
  issue: 12
  year: 2001
  ident: 10.1016/j.strusafe.2021.102137_b43
  article-title: Interference effects on wind loads on low-rise hip roof buildings
  publication-title: Eng Struct
  doi: 10.1016/S0141-0296(01)00057-8
– volume: 9
  start-page: 217
  issue: 3
  year: 2006
  ident: 10.1016/j.strusafe.2021.102137_b13
  article-title: Fragility curves for woodframe structures subjected to lateral wind loads
  publication-title: Wind Struct Int J
  doi: 10.12989/was.2006.9.3.217
– volume: 125
  start-page: 725
  issue: 7
  year: 1999
  ident: 10.1016/j.strusafe.2021.102137_b12
  article-title: Reliability of light-frame roofs in high-wind regions. I: Wind loads
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1999)125:7(725)
– volume: 58
  start-page: 113
  issue: 1–2
  year: 1995
  ident: 10.1016/j.strusafe.2021.102137_b42
  article-title: The effect of surroundings and roof corner geometric modifications on roof pressures on low-rise buildings
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/0167-6105(95)00016-K
– volume: 126
  start-page: 1222
  issue: 10
  year: 2000
  ident: 10.1016/j.strusafe.2021.102137_b35
  article-title: Simulation of hurricane risk in the U.S. using empirical track model
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2000)126:10(1222)
– volume: 32
  start-page: 911
  issue: 4
  year: 2010
  ident: 10.1016/j.strusafe.2021.102137_b3
  article-title: The vulnerability of residential window glass to lightweight windborne debris
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2009.12.016
– volume: 13
  start-page: 191
  issue: 2
  year: 2010
  ident: 10.1016/j.strusafe.2021.102137_b21
  article-title: Windborne debris risk analysis - Part I. Introduction and methodology
  publication-title: Wind Struct
  doi: 10.12989/was.2010.13.2.191
– volume: 51
  start-page: 245
  year: 2013
  ident: 10.1016/j.strusafe.2021.102137_b24
  article-title: Building envelope failure assessment framework for residential communities subjected to hurricanes
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2013.01.027
– volume: 171
  start-page: 464
  year: 2018
  ident: 10.1016/j.strusafe.2021.102137_b14
  article-title: Fragility and climate impact assessment of contemporary housing roof sheeting failure due to extreme wind
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.05.125
– volume: 102
  start-page: 22
  year: 2012
  ident: 10.1016/j.strusafe.2021.102137_b31
  article-title: Three-dimensional probabilistic wind-borne debris trajectory model for building envelope impact risk assessment
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2012.01.002
– volume: 121
  start-page: 1691
  issue: 11
  year: 1995
  ident: 10.1016/j.strusafe.2021.102137_b33
  article-title: Prediction of hurricane wind speeds in the United States
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1995)121:11(1691)
– volume: 110
  start-page: 2843
  issue: 12
  year: 1984
  ident: 10.1016/j.strusafe.2021.102137_b1
  article-title: Hurricane related window glass damage in Houston
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1984)110:12(2843)
– volume: 32
  issue: 3
  year: 2018
  ident: 10.1016/j.strusafe.2021.102137_b16
  article-title: Wind performance enhancement strategies for residential wood-frame buildings
  publication-title: J Perform Construct Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0001172
– start-page: 134
  year: 2019
  ident: 10.1016/j.strusafe.2021.102137_b27
  article-title: Realizing hurricane resilient communities through distributed computing
– volume: 28
  start-page: 1009
  issue: 7
  year: 2006
  ident: 10.1016/j.strusafe.2021.102137_b37
  article-title: Hurricane damage to residential construction in the US: Importance of uncertainty modeling in risk assessment
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2005.11.005
– year: 2017
  ident: 10.1016/j.strusafe.2021.102137_b40
– volume: 1
  start-page: 3
  issue: 1
  year: 2020
  ident: 10.1016/j.strusafe.2021.102137_b10
  article-title: Risk-based cost-benefit analysis of climate adaptation measures for Australian contemporary houses under extreme winds
  publication-title: J Infrastruct Preserv Resil
  doi: 10.1186/s43065-020-00002-1
– volume: 197
  year: 2020
  ident: 10.1016/j.strusafe.2021.102137_b9
  article-title: Construction defects and wind fragility assessment for metal roof failure: A Bayesian approach
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.106777
– volume: 27
  start-page: 857
  issue: 6
  year: 2005
  ident: 10.1016/j.strusafe.2021.102137_b6
  article-title: Fragility assessment for roof sheathing failure in high wind regions
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2004.12.017
– volume: 135
  start-page: 169
  issue: 2
  year: 2009
  ident: 10.1016/j.strusafe.2021.102137_b7
  article-title: Performance-based wind engineering for wood-frame buildings
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2009)135:2(169)
– volume: 1
  start-page: 46
  issue: 1–2
  year: 2016
  ident: 10.1016/j.strusafe.2021.102137_b18
  article-title: Risk-based assessment of wood residential construction subjected to hurricane events considering indirect and environmental loss
  publication-title: Sustain Resil Infrastruct
  doi: 10.1080/23789689.2016.1179051
– volume: 214
  year: 2021
  ident: 10.1016/j.strusafe.2021.102137_b30
  article-title: A three-dimensional six-degree-of-freedom windborne debris trajectory model for tornadoes
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2021.104622
– year: 2021
  ident: 10.1016/j.strusafe.2021.102137_b39
  article-title: Exogenous windborne debris: Definition and required extent of surrounding buildings for modeling in hurricanes
  publication-title: Eng Struct
– volume: 79
  start-page: 80
  year: 2019
  ident: 10.1016/j.strusafe.2021.102137_b8
  article-title: System fragility analysis of roof cladding and trusses for Australian contemporary housing subjected to wind uplift
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2019.03.005
– volume: 144
  issue: 7
  year: 2018
  ident: 10.1016/j.strusafe.2021.102137_b17
  article-title: Minimal building fragility portfolio for damage assessment of communities subjected to tornadoes
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002047
– volume: 7
  start-page: 94
  issue: 2
  year: 2006
  ident: 10.1016/j.strusafe.2021.102137_b20
  article-title: HAZUS-MH Hurricane model methodology. II: Damage and loss estimation
  publication-title: Nat Hazards Rev
  doi: 10.1061/(ASCE)1527-6988(2006)7:2(94)
– volume: 12
  start-page: 184
  issue: 4
  year: 2011
  ident: 10.1016/j.strusafe.2021.102137_b23
  article-title: Hurricane damage and loss estimation using an integrated vulnerability model
  publication-title: Nat Hazards Rev
  doi: 10.1061/(ASCE)NH.1527-6996.0000035
– year: 2007
  ident: 10.1016/j.strusafe.2021.102137_b38
SSID ssj0005828
Score 2.4626803
Snippet Hurricanes are one of the major causes of damage and loss to residential wooden buildings in the United States. The study of hurricane-imposed risks to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102137
SubjectTerms Building components
Buildings
Construction
Damage
Debris
Fragility
Fragility analysis
Hurricanes
Methodology
Performance assessment
Residential areas
Residential buildings
Residential communities
Residential-wooden buildings
Risk assessment
Shielding
Storm damage
Vulnerability models
Wind pressure
Windborne debris damage
Title Risk and fragility assessment of residential wooden buildings subject to hurricane winds
URI https://dx.doi.org/10.1016/j.strusafe.2021.102137
https://www.proquest.com/docview/2620963240
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9jvuiD-Ikfc-TB125L0ybt4xiO-cGQ6WBvIWka3ZRu2In44t9uLm3HFGEPPhVKLpTL9XJ3_O53CF0SY1iotfEY09QLiCJezADkGClJeCqte3Ao3yEbjIObSTipoV7VCwOwytL3Fz7deevyTbvUZnsxnbYfHIDeGqhPHKsI0G4HAQcrb32twTwiN1-14Pe2q9e6hGct4GjNpQG6TJ8AiwGBeeh_X1C_XLW7f_p7aLcMHHG3-LZ9VEuzA7SzRid4iCajaf6CZaaxeZNPAHr9xHLFvInnBtvceuo6c-1OALZJM6zKudg5zt8VFGXwco6fXWFQZin-sDl7foTG_avH3sArJyd4CQ06S6t4G-j5MdchtwEJ7wTaTyihkgaK6ZAqQjRTzDfcjxLrYHgSBqnhyhiipI3YCD1G9WyepScIQ7HRyDBhsVQ212QxjTgNdZoow22qZ05RWKlLJCWtOEy3eBUVfmwmKjULULMo1HyK2iu5RUGssVEirk5D_DARYb3_RtlGdXyi_ElzAVz8MdDVd87-sfU52vahJcKVZRqobpekFzZQWaqms8Qm2ur2Rnf38Ly-HQy_AbXs6j8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4QD-rB-DOiqD14HdB1a9nREAkqclBIuDXtuipoBnEY48W_3dduI2hMPHhd2mZ5bb--9_K97yF0QYxhodbGY0xTLyCKeBGzJMe2koQnEuDBsXwHrDcKbsbhuII6ZS2MpVUW2J9jukPr4kuzsGZzPpk0HxyBHg6oT5yqCFtD6wFcX9vGoPG5wvNouwarucA3DF8pE542rEhrJo3Vy_SJlTEgtiH67y_UD6x2D1B3B20XniO-zH9uF1WSdA9tregJ7qPx_SR7xjLV2LzKR8t6_cByKb2JZwZDcD1xpbmwkmXbJClWRWPsDGdvymZl8GKGn1xmUKYJfoegPTtAo-7VsNPzitYJXkyD1gIsD56eH3EdcvBIeCvQfkwJlTRQTIdUEaKZYr7hfjsGhOFxGCSGK2OIkuCyEXqIquksTY4QttlGI8OYRVJBsMki2uY01EmsDIdYz9RQWJpLxIWuuG1v8SJKAtlUlGYW1swiN3MNNZfz5rmyxp8zonI3xLczIgD-_5xbL7dPFLc0E1aMP7J69a3jfyx9jjZ6w7u-6F8Pbk_Qpm_rI1yOpo6qMDw5Ba9loc7cqfwCyifqOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk+and+fragility+assessment+of+residential+wooden+buildings+subject+to+hurricane+winds&rft.jtitle=Structural+safety&rft.au=Abdelhady%2C+Ahmed+U.&rft.au=Spence%2C+Seymour+M.J.&rft.au=McCormick%2C+Jason&rft.date=2022-01-01&rft.issn=0167-4730&rft.volume=94&rft.spage=102137&rft_id=info:doi/10.1016%2Fj.strusafe.2021.102137&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_strusafe_2021_102137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4730&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4730&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4730&client=summon