Impact response of additively manufactured metallic hybrid lattice materials

•Metallic hybrid cellular structures were manufactured with selective laser melting.•The hybrid geometry was created by combining honeycomb and lattice architectures.•These structures were tested in quasi-static and dynamic compression up to 150 m/s.•Performance was evaluated by seeking high energy...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 104; pp. 177 - 191
Main Authors Harris, J.A., Winter, R.E., McShane, G.J.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.06.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Metallic hybrid cellular structures were manufactured with selective laser melting.•The hybrid geometry was created by combining honeycomb and lattice architectures.•These structures were tested in quasi-static and dynamic compression up to 150 m/s.•Performance was evaluated by seeking high energy absorption and low maximum stress.•The hybrid geometry outperformed the benchmark square honeycomb at 100 m/s. Additive manufacturing (AM) enables the design of new cellular materials for blast and impact mitigation by allowing novel material-geometry combinations to be realised and examined at a laboratory scale. However, design of these materials requires an understanding of the relationship between the AM process and material properties at different length scales: from the microstructure to geometric feature rendition to overall dynamic performance. To date, there remain significant uncertainties about both the potential benefits and pitfalls of using AM to design and optimise cellular materials for dynamic energy absorbing applications. This experimental investigation focuses on the out-of-plane compression of stainless steel cellular materials fabricated using selective laser melting (SLM), and makes two specific contributions. First, we demonstrate how the AM process itself influences the characteristics of these cellular materials across a range of length scales, and, crucially, how this influences the dynamic deformation. Secondly, we demonstrate how an AM route can be used to add geometric complexity to the cell structure, creating a versatile basis for future geometry optimisation. Starting with an AM square honeycomb (the reference case), we add porosity to the walls by replacing them with a lattice truss, while maintaining the same relative density. This geometry hybridisation is an approach uniquely suited to this manufacturing route. It is found that the hybrid lattice-walled honeycomb geometry significantly outperforms previously reported AM lattices in terms of specific strength, specific energy absorption, and energy absorption efficiency. It is also found that the hybrid geometry outperforms the benchmark metallic square honeycomb in terms of energy absorption efficiency in the intermediate impact velocity regime (i.e. between quasi-static loading and loading rates at which wave propagation effects begin to become pronounced), a regime in which the collapse is dominated by dynamic buckling effects.
AbstractList Additive manufacturing (AM) enables the design of new cellular materials for blast and impact mitigation by allowing novel material-geometry combinations to be realised and examined at a laboratory scale. However, design of these materials requires an understanding of the relationship between the AM process and material properties at different length scales: from the microstructure to geometric feature rendition to overall dynamic performance. To date, there remain significant uncertainties about both the potential benefits and pitfalls of using AM to design and optimise cellular materials for dynamic energy absorbing applications. This experimental investigation focuses on the out-of-plane compression of stainless steel cellular materials fabricated using selective laser melting (SLM), and makes two specific contributions. First, we demonstrate how the AM process itself influences the characteristics of these cellular materials across a range of length scales, and, crucially, how this influences the dynamic deformation. Secondly, we demonstrate how an AM route can be used to add geometric complexity to the cell structure, creating a versatile basis for future geometry optimisation. Starting with an AM square honeycomb (the reference case), we add porosity to the walls by replacing them with a lattice truss, while maintaining the same relative density. This geometry hybridisation is an approach uniquely suited to this manufacturing route. It is found that the hybrid lattice-walled honeycomb geometry significantly outperforms previously reported AM lattices in terms of specific strength, specific energy absorption, and energy absorption efficiency. It is also found that the hybrid geometry outperforms the benchmark metallic square honeycomb in terms of energy absorption efficiency in the intermediate impact velocity regime (i.e. between quasi-static loading and loading rates at which wave propagation effects begin to become pronounced), a regime in which the collapse is dominated by dynamic buckling effects.
•Metallic hybrid cellular structures were manufactured with selective laser melting.•The hybrid geometry was created by combining honeycomb and lattice architectures.•These structures were tested in quasi-static and dynamic compression up to 150 m/s.•Performance was evaluated by seeking high energy absorption and low maximum stress.•The hybrid geometry outperformed the benchmark square honeycomb at 100 m/s. Additive manufacturing (AM) enables the design of new cellular materials for blast and impact mitigation by allowing novel material-geometry combinations to be realised and examined at a laboratory scale. However, design of these materials requires an understanding of the relationship between the AM process and material properties at different length scales: from the microstructure to geometric feature rendition to overall dynamic performance. To date, there remain significant uncertainties about both the potential benefits and pitfalls of using AM to design and optimise cellular materials for dynamic energy absorbing applications. This experimental investigation focuses on the out-of-plane compression of stainless steel cellular materials fabricated using selective laser melting (SLM), and makes two specific contributions. First, we demonstrate how the AM process itself influences the characteristics of these cellular materials across a range of length scales, and, crucially, how this influences the dynamic deformation. Secondly, we demonstrate how an AM route can be used to add geometric complexity to the cell structure, creating a versatile basis for future geometry optimisation. Starting with an AM square honeycomb (the reference case), we add porosity to the walls by replacing them with a lattice truss, while maintaining the same relative density. This geometry hybridisation is an approach uniquely suited to this manufacturing route. It is found that the hybrid lattice-walled honeycomb geometry significantly outperforms previously reported AM lattices in terms of specific strength, specific energy absorption, and energy absorption efficiency. It is also found that the hybrid geometry outperforms the benchmark metallic square honeycomb in terms of energy absorption efficiency in the intermediate impact velocity regime (i.e. between quasi-static loading and loading rates at which wave propagation effects begin to become pronounced), a regime in which the collapse is dominated by dynamic buckling effects.
Author McShane, G.J.
Harris, J.A.
Winter, R.E.
Author_xml – sequence: 1
  givenname: J.A.
  surname: Harris
  fullname: Harris, J.A.
  email: jah236@cam.ac.uk
  organization: Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
– sequence: 2
  givenname: R.E.
  surname: Winter
  fullname: Winter, R.E.
  organization: AWE, Aldermaston, Reading, Berkshire, UK
– sequence: 3
  givenname: G.J.
  surname: McShane
  fullname: McShane, G.J.
  email: gjm31@cam.ac.uk
  organization: Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
BookMark eNqFkE1LJDEQhsPiwo7j_oWlwXO3lU7SH-BBET8GBrwo7C2kk8qapr9MMsL8-80wevEypyqo530LnnNyNs0TEvKHQkGBVld94Xo3Ljj9K0qgdQFlAVD_ICva1G3OBLRnZAU143nN2d9f5DyEHhIIAlZkuxkXpWPmMSzzFDCbbaaMcdF94LDPRjXtbLrvPJpsxKiGwensbd95Z7JBxeg0Jiiid2oIF-SnTQN_f841eX24f7l7yrfPj5u7222uGYeYVwKNYLqhiqqKNmANb5lVHVcGBEt7WwrOq5qDqmzbNJ3VnegoWK2EZqVga3J57F38_L7DEGU_7_yUXkrasrpqSi4O1PWR0n4OwaOV2kUV3TxFr9wgKciDP9nLL3_y4E9CKZO_FK--xRfvRuX3p4M3xyAmBR8OvQza4aTROI86SjO7UxX_AXsoka0
CitedBy_id crossref_primary_10_1142_S1758825118501077
crossref_primary_10_1007_s40436_024_00542_9
crossref_primary_10_1016_j_matdes_2021_110368
crossref_primary_10_1016_j_compositesb_2019_107715
crossref_primary_10_1177_00219983241271054
crossref_primary_10_1007_s40870_024_00425_x
crossref_primary_10_1089_3dp_2022_0224
crossref_primary_10_1016_j_ijimpeng_2019_05_013
crossref_primary_10_1016_j_jmrt_2022_05_068
crossref_primary_10_1016_j_jmapro_2022_07_051
crossref_primary_10_1016_j_tws_2023_111109
crossref_primary_10_1002_adem_202402792
crossref_primary_10_1016_j_ijimpeng_2018_07_014
crossref_primary_10_1016_j_istruc_2020_05_001
crossref_primary_10_1007_s10338_018_0055_1
crossref_primary_10_1088_1361_665X_ab0dd6
crossref_primary_10_1016_j_addma_2021_102054
crossref_primary_10_1177_0036850420950158
crossref_primary_10_3390_ma11091763
crossref_primary_10_1177_14644207241244731
crossref_primary_10_1016_j_conbuildmat_2022_128409
crossref_primary_10_1016_j_mser_2021_100648
crossref_primary_10_1016_j_engfailanal_2023_107476
crossref_primary_10_3390_ma14174912
crossref_primary_10_1007_s00170_020_06136_6
crossref_primary_10_1016_j_bioactmat_2021_12_027
crossref_primary_10_1016_j_tws_2019_01_039
crossref_primary_10_1016_j_jmrt_2023_01_032
crossref_primary_10_1016_j_matdes_2018_05_059
crossref_primary_10_1002_pssb_201800040
crossref_primary_10_1016_j_mtcomm_2021_102902
crossref_primary_10_3390_ma16041571
crossref_primary_10_1016_j_matpr_2023_08_053
crossref_primary_10_1016_j_mtcomm_2023_107352
crossref_primary_10_1002_adem_202100646
crossref_primary_10_1016_j_ijimpeng_2020_103741
crossref_primary_10_1016_j_taml_2024_100509
crossref_primary_10_1016_j_addlet_2022_100112
crossref_primary_10_1016_j_addma_2021_102220
crossref_primary_10_1007_s11665_018_3810_z
crossref_primary_10_1016_j_matdes_2022_110664
crossref_primary_10_3390_ma11112129
crossref_primary_10_1016_j_msea_2018_08_069
crossref_primary_10_1016_j_jmrt_2022_12_031
crossref_primary_10_3390_met15010081
crossref_primary_10_1016_j_istruc_2025_108658
crossref_primary_10_1007_s00170_024_14900_1
crossref_primary_10_1016_j_matdes_2019_108054
crossref_primary_10_1177_0954406218813386
crossref_primary_10_3390_ma14092462
crossref_primary_10_1007_s00170_021_08203_y
crossref_primary_10_1016_j_tws_2023_110722
crossref_primary_10_1002_adem_202100173
crossref_primary_10_1016_j_compstruct_2021_114164
crossref_primary_10_1016_j_ijimpeng_2021_103976
crossref_primary_10_1016_j_ijimpeng_2020_103730
crossref_primary_10_1177_09544062231198306
crossref_primary_10_1061__ASCE_SC_1943_5576_0000607
crossref_primary_10_31202_ecjse_978310
crossref_primary_10_1016_j_ijimpeng_2023_104752
crossref_primary_10_1016_j_pmatsci_2021_100918
crossref_primary_10_1016_j_matdes_2021_110236
crossref_primary_10_1007_s40430_024_05002_w
crossref_primary_10_1016_j_addma_2018_11_018
crossref_primary_10_1016_j_jmapro_2023_10_018
crossref_primary_10_1177_20414196231187004
crossref_primary_10_1007_s11665_021_05873_3
crossref_primary_10_1016_j_ijmecsci_2020_105639
crossref_primary_10_1016_j_jmrt_2022_04_051
crossref_primary_10_1051_epjconf_202125001022
crossref_primary_10_1080_17452759_2024_2414395
crossref_primary_10_1002_app_52343
crossref_primary_10_1016_j_matdes_2021_110192
crossref_primary_10_1016_j_tws_2022_109966
crossref_primary_10_3390_jmmp6060140
crossref_primary_10_1016_j_ijmecsci_2020_106042
crossref_primary_10_1016_j_ijimpeng_2020_103566
crossref_primary_10_1016_j_surfcoat_2024_131659
crossref_primary_10_1016_j_matdes_2022_110963
crossref_primary_10_1016_j_mattod_2021_03_019
crossref_primary_10_1016_j_ijimpeng_2024_105216
crossref_primary_10_1007_s11665_022_07104_9
crossref_primary_10_1016_j_matdes_2019_107655
crossref_primary_10_1016_j_compositesb_2020_108340
crossref_primary_10_1002_adem_202000669
crossref_primary_10_1016_j_tws_2024_111710
crossref_primary_10_1016_j_engstruct_2023_115954
crossref_primary_10_1016_j_addma_2018_09_016
crossref_primary_10_1016_j_ijimpeng_2025_105294
crossref_primary_10_1016_j_compositesb_2018_02_012
crossref_primary_10_3390_ma13245616
crossref_primary_10_1002_adem_202400177
crossref_primary_10_1016_j_jmrt_2024_06_234
crossref_primary_10_1016_j_addma_2019_100976
crossref_primary_10_1016_j_ijimpeng_2023_104527
crossref_primary_10_1016_j_ijmecsci_2020_105460
crossref_primary_10_1002_mdp2_248
crossref_primary_10_1080_17452759_2024_2425822
crossref_primary_10_1016_j_compstruct_2021_113958
crossref_primary_10_3390_ma13092204
crossref_primary_10_1016_j_jmapro_2021_03_060
crossref_primary_10_1016_j_ijimpeng_2024_104992
crossref_primary_10_1016_j_msea_2019_138356
crossref_primary_10_1016_j_compositesb_2019_107522
crossref_primary_10_1007_s00170_022_09406_7
crossref_primary_10_1002_adem_202401892
crossref_primary_10_1007_s00170_020_05239_4
crossref_primary_10_1016_j_dt_2023_09_003
crossref_primary_10_1016_j_jmrt_2025_01_195
crossref_primary_10_1007_s40870_019_00219_6
crossref_primary_10_1088_2631_6331_acc0d0
crossref_primary_10_1038_s41563_021_01033_z
crossref_primary_10_1177_20414196211035486
crossref_primary_10_1016_j_dt_2025_01_003
crossref_primary_10_1016_j_ijsolstr_2019_09_007
crossref_primary_10_1002_pc_28259
crossref_primary_10_1007_s40964_024_00842_3
crossref_primary_10_1016_j_ijmecsci_2022_107751
crossref_primary_10_1016_j_compstruct_2022_116174
crossref_primary_10_1016_j_msea_2021_141379
crossref_primary_10_1016_j_ijmecsci_2023_108102
crossref_primary_10_3390_ma12203455
crossref_primary_10_1002_adem_202301040
crossref_primary_10_1016_j_matdes_2019_107839
crossref_primary_10_1016_j_jmapro_2018_08_015
crossref_primary_10_1007_s00170_022_10325_w
crossref_primary_10_3390_en16104179
crossref_primary_10_1016_j_optlastec_2024_112066
crossref_primary_10_1115_1_4045381
crossref_primary_10_1007_s00170_019_03541_4
crossref_primary_10_1126_sciadv_ade6725
crossref_primary_10_1016_j_matdes_2022_111398
crossref_primary_10_3390_met11081196
crossref_primary_10_1016_j_matdes_2022_110852
crossref_primary_10_1016_j_ijimpeng_2024_105147
crossref_primary_10_1007_s10853_023_09086_y
crossref_primary_10_1016_j_matdes_2019_108137
crossref_primary_10_1016_j_ijmecsci_2024_109905
crossref_primary_10_1016_j_matchar_2018_04_040
crossref_primary_10_1007_s40436_021_00348_z
crossref_primary_10_1016_j_compstruct_2019_111815
crossref_primary_10_1016_j_paerosci_2024_101021
crossref_primary_10_1016_j_matdes_2018_10_043
crossref_primary_10_1016_j_tws_2020_107153
crossref_primary_10_1007_s00170_023_12809_9
crossref_primary_10_1016_j_compstruct_2019_111821
crossref_primary_10_1088_2053_1591_aaf78c
crossref_primary_10_15407_mfint_44_10_1361
crossref_primary_10_1016_j_addma_2024_104248
crossref_primary_10_1016_j_jmrt_2023_06_268
crossref_primary_10_1016_j_jobe_2023_105863
crossref_primary_10_1016_j_jmatprotec_2023_117915
crossref_primary_10_1016_j_dt_2024_09_002
crossref_primary_10_1016_j_ijimpeng_2020_103767
crossref_primary_10_1016_j_ijimpeng_2020_103768
crossref_primary_10_1016_j_tafmec_2024_104349
Cites_doi 10.1126/science.1252291
10.1088/0965-0393/22/2/025021
10.1177/1099636213515507
10.1016/0020-7403(84)90021-3
10.1002/adem.201300254
10.1007/978-3-319-48762-5_11
10.1016/j.proeng.2011.11.130
10.1016/0020-7403(93)90054-X
10.1179/026708301125000384
10.1016/0001-6160(84)90177-9
10.1016/j.actamat.2010.02.004
10.1115/1.1629109
10.1016/j.ijimpeng.2007.10.005
10.1016/j.ijmecsci.2013.01.006
10.1016/j.matdes.2013.10.027
10.1016/S0734-743X(99)00153-0
10.1016/j.jmatprotec.2013.03.013
10.1016/j.ijimpeng.2013.04.007
10.1016/S0266-3538(03)00266-5
10.1016/j.msea.2004.03.051
10.2140/jomms.2014.9.149
10.1115/1.2424717
10.1103/PhysRev.59.588
10.1016/0956-7151(95)00110-H
10.1088/1742-6596/382/1/012042
10.1098/rsta.2005.1697
10.1016/0734-743X(94)90011-9
10.1016/S1359-6454(00)00379-7
10.1016/j.euromechsol.2005.08.001
10.1007/s11663-013-9875-z
10.1126/science.1211649
10.1177/1099636210388983
10.1007/s00170-014-5954-9
10.1016/j.msea.2011.06.045
10.1016/S0734-743X(97)00016-X
10.1016/j.ijplas.2006.02.006
10.1016/S2238-7854(12)70009-1
10.1016/j.ijimpeng.2003.08.007
10.1007/BF02813258
10.1016/j.euromechsol.2009.05.003
10.1179/026708302225002092
10.4028/www.scientific.net/KEM.523-524.244
10.1016/j.ijsolstr.2005.07.006
ContentType Journal Article
Copyright 2017
Copyright Elsevier BV Jun 2017
Copyright_xml – notice: 2017
– notice: Copyright Elsevier BV Jun 2017
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijimpeng.2017.02.007
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3509
EndPage 191
ExternalDocumentID 10_1016_j_ijimpeng_2017_02_007
S0734743X16306947
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c340t-65ed53c81a1a6180fd493fab4ad053493925446740a6f988bfcb5b10fca5c3253
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Fri Jul 25 21:31:53 EDT 2025
Tue Jul 01 03:11:40 EDT 2025
Thu Apr 24 22:51:12 EDT 2025
Fri Feb 23 02:28:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Impact
Additive manufacturing
Selective laser melting
Blast
Cellular structures
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-65ed53c81a1a6180fd493fab4ad053493925446740a6f988bfcb5b10fca5c3253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1937682455
PQPubID 2045463
PageCount 15
ParticipantIDs proquest_journals_1937682455
crossref_citationtrail_10_1016_j_ijimpeng_2017_02_007
crossref_primary_10_1016_j_ijimpeng_2017_02_007
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2017_02_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2017
2017-06-00
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of impact engineering
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Reid, Peng (bib0052) 1997; 19
Voce (bib0047) 1955; 51
Lee, Barthelat, Hutchinson, Espinosa (bib0016) 2006; 22
Montemayor, Meza, Greer (bib0021) 2014; 16
Thijs, Verhaeghe, Craeghs, Humbeeck, Kruth (bib0038) 2010; 58
Lifshitz, Leber (bib0050) 1994; 15
Metals M.A.S.. AISI type 316L stainless steel, annealed. 2014. URL
Van Bael, Kerckhofs, Moesen, Pyka, Schrooten, Kruth (bib0028) 2011; 528
Niendorf, Leuders, Riemer, Richard, Troster, Schwarze (bib0041) 2013; 44
Holloman, Kandan, Deshpande, Wadley (bib0049) 2014; 9
Martinez E., Murr L., Amato K., Hernandez J., Shindo P., Gaytan S., et al. 3D microstructural architectures for metal and alloy components fabricated by 3D printing/additive manufacturing technologies. 2012.
Smith, Cantwell, Guan, Tsopanos, Theobald, Nurick (bib0007) 2010; 13
Ashby, Gibson (bib0001) 1999
Schaedler, Jacobsen, Torrents, Sorensen, Lian, Greer (bib0019) 2011; 334
Zheng et. al (bib0022) 2014; 344
Gray III (bib0034) 2000; 8
McShane, Radford, Deshpande, Fleck (bib0009) 2006; 25
Yasa, Kruth (bib0037) 2011; 19
Calladine, English (bib0010) 1984; 26
Fleck, Deshpande (bib0005) 2004; 71
Wadley (bib0017) 2003; 63
Fleck, Deshpande (bib0014) 2001
.
Murr, Martinez, Amato, Gaytan, Hernandez, Ramirez (bib0039) 2012; 1
Kamath, El-dasher, Gallegos, King, Sisto (bib0036) 2014; 74
Ashby, Evans, Fleck, Gibson, Hutchinson, Wadley (bib0002) 2000
Radford, McShane, Deshpande, Fleck (bib0031) 2007; 74
Gumruk, Mines (bib0027) 2013; 68
Xue, Hutchinson (bib0013) 2004; 30
Deshpande, Fleck (bib0015) 2000; 24
Wadley (bib0018) 2006; 364
Tan, Harrigan, Reid (bib0011) 2002; 18
McKown, Shen, Brookes, Sutcliffe, Cantwell, Langdon (bib0024) 2008; 35
Ludwigson (bib0048) 1971; 2
Lausic, Steeves, Hibbard (bib0020) 2014; 16
Rizal Alkahari, Furumoto, Ueda, Hosokawa, Tanaka, Abdul Aziz (bib0042) 2012; 523–524
Brenne, Niendorf, Maier (bib0029) 2013; 213
Radford, McShane, Deshpande, Fleck (bib0008) 2006; 43
Dharmasena, Queheillalt, Wadley, Dudt, Chen, Knight (bib0004) 2010; 29
Yan, Hao, Hussein, Young, Raymont (bib0023) 2014; 55
Maiti, Gibson, Ashby (bib0003) 1984; 32
Hollomon (bib0045) 1945; 162
Winter, Cotton, Harris, Maw, Chapman, Eakins (bib0025) 2014; 22
Reid (bib0012) 1993; 35
Kashyap, Tangri (bib0043) 1995; 43
Ludwik (bib0046) 1909
Mines, Tsopanos, Shen, Hasan, McKown (bib0026) 2013; 60
Deshpande, Ashby, Fleck (bib0006) 2001; 49
Cote, Deshpande, Fleck, Evans (bib0032) 2004; 380
Bancroft (bib0051) 1941; 59
Ozdemir, Hernandez-Nava, Tyas, Warren, Fay, Goodall (bib0030) 2015
Brennan-Craddock, Brackett, Wildman, Hague (bib0033) 2012; 382
Lindberg, Florence (bib0053) 1983
Singh, Sangal, Murty (bib0044) 2002; 18
Kashyap (10.1016/j.ijimpeng.2017.02.007_bib0043) 1995; 43
Hollomon (10.1016/j.ijimpeng.2017.02.007_bib0045) 1945; 162
Xue (10.1016/j.ijimpeng.2017.02.007_bib0013) 2004; 30
Ludwik (10.1016/j.ijimpeng.2017.02.007_bib0046) 1909
Schaedler (10.1016/j.ijimpeng.2017.02.007_sbref0019) 2011; 334
Tan (10.1016/j.ijimpeng.2017.02.007_bib0011) 2002; 18
Kamath (10.1016/j.ijimpeng.2017.02.007_bib0036) 2014; 74
Deshpande (10.1016/j.ijimpeng.2017.02.007_bib0015) 2000; 24
Murr (10.1016/j.ijimpeng.2017.02.007_bib0039) 2012; 1
Dharmasena (10.1016/j.ijimpeng.2017.02.007_bib0004) 2010; 29
Ozdemir (10.1016/j.ijimpeng.2017.02.007_bib0030) 2015
Holloman (10.1016/j.ijimpeng.2017.02.007_bib0049) 2014; 9
Bancroft (10.1016/j.ijimpeng.2017.02.007_bib0051) 1941; 59
Zheng et. al (10.1016/j.ijimpeng.2017.02.007_bib0022) 2014; 344
Fleck (10.1016/j.ijimpeng.2017.02.007_bib0005) 2004; 71
McKown (10.1016/j.ijimpeng.2017.02.007_bib0024) 2008; 35
Fleck (10.1016/j.ijimpeng.2017.02.007_bib0014) 2001
Winter (10.1016/j.ijimpeng.2017.02.007_bib0025) 2014; 22
Radford (10.1016/j.ijimpeng.2017.02.007_bib0008) 2006; 43
Calladine (10.1016/j.ijimpeng.2017.02.007_bib0010) 1984; 26
Lee (10.1016/j.ijimpeng.2017.02.007_bib0016) 2006; 22
Gumruk (10.1016/j.ijimpeng.2017.02.007_bib0027) 2013; 68
Reid (10.1016/j.ijimpeng.2017.02.007_bib0012) 1993; 35
Montemayor (10.1016/j.ijimpeng.2017.02.007_bib0021) 2014; 16
Maiti (10.1016/j.ijimpeng.2017.02.007_bib0003) 1984; 32
Thijs (10.1016/j.ijimpeng.2017.02.007_bib0038) 2010; 58
Deshpande (10.1016/j.ijimpeng.2017.02.007_bib0006) 2001; 49
Gray III (10.1016/j.ijimpeng.2017.02.007_bib0034) 2000; 8
Lifshitz (10.1016/j.ijimpeng.2017.02.007_bib0050) 1994; 15
Wadley (10.1016/j.ijimpeng.2017.02.007_bib0017) 2003; 63
Yan (10.1016/j.ijimpeng.2017.02.007_bib0023) 2014; 55
Wadley (10.1016/j.ijimpeng.2017.02.007_bib0018) 2006; 364
10.1016/j.ijimpeng.2017.02.007_bib0040
Rizal Alkahari (10.1016/j.ijimpeng.2017.02.007_bib0042) 2012; 523–524
Van Bael (10.1016/j.ijimpeng.2017.02.007_bib0028) 2011; 528
McShane (10.1016/j.ijimpeng.2017.02.007_bib0009) 2006; 25
Ludwigson (10.1016/j.ijimpeng.2017.02.007_bib0048) 1971; 2
Singh (10.1016/j.ijimpeng.2017.02.007_bib0044) 2002; 18
Mines (10.1016/j.ijimpeng.2017.02.007_bib0026) 2013; 60
Radford (10.1016/j.ijimpeng.2017.02.007_bib0031) 2007; 74
Ashby (10.1016/j.ijimpeng.2017.02.007_bib0001) 1999
Smith (10.1016/j.ijimpeng.2017.02.007_bib0007) 2010; 13
Cote (10.1016/j.ijimpeng.2017.02.007_bib0032) 2004; 380
Niendorf (10.1016/j.ijimpeng.2017.02.007_bib0041) 2013; 44
Brenne (10.1016/j.ijimpeng.2017.02.007_bib0029) 2013; 213
10.1016/j.ijimpeng.2017.02.007_bib0035
Reid (10.1016/j.ijimpeng.2017.02.007_bib0052) 1997; 19
Lindberg (10.1016/j.ijimpeng.2017.02.007_bib0053) 1983
Brennan-Craddock (10.1016/j.ijimpeng.2017.02.007_bib0033) 2012; 382
Ashby (10.1016/j.ijimpeng.2017.02.007_bib0002) 2000
Yasa (10.1016/j.ijimpeng.2017.02.007_bib0037) 2011; 19
Voce (10.1016/j.ijimpeng.2017.02.007_bib0047) 1955; 51
Lausic (10.1016/j.ijimpeng.2017.02.007_bib0020) 2014; 16
References_xml – volume: 162
  start-page: 268
  year: 1945
  end-page: 290
  ident: bib0045
  article-title: Properties and structure of steel - tensile deformation
  publication-title: AIME Trans
– volume: 44
  start-page: 794
  year: 2013
  end-page: 796
  ident: bib0041
  article-title: Highly anisotropic steel processed by selective laser melting
  publication-title: Metall Mater Trans B
– year: 1983
  ident: bib0053
  article-title: Dynamic pulse buckling - theory and experiment
– volume: 19
  start-page: 531
  year: 1997
  end-page: 570
  ident: bib0052
  article-title: Dynamic uniaxial crushing of wood
  publication-title: Int J Impact Eng
– volume: 43
  start-page: 2243
  year: 2006
  end-page: 2259
  ident: bib0008
  article-title: The response of clamped sandwich plates with metallic foam cores to simulated blast loading
  publication-title: Int J Solids Struct
– volume: 16
  start-page: 251
  year: 2014
  end-page: 271
  ident: bib0020
  article-title: Effect of grain size on the optimal architecture of electrodeposited metal/polymer microtrusses
  publication-title: J Sandwich Struct Mater
– volume: 9
  start-page: 149
  year: 2014
  end-page: 182
  ident: bib0049
  article-title: Dynamic compression of square tube cellular structures
  publication-title: J Mech Mater Struct
– volume: 49
  start-page: 1035
  year: 2001
  end-page: 1040
  ident: bib0006
  article-title: Foam topology bending verseus stretching dominated architectures
  publication-title: Acta Mater
– year: 1909
  ident: bib0046
  article-title: Elemente der technologischen mechanik
– volume: 523–524
  start-page: 244
  year: 2012
  end-page: 249
  ident: bib0042
  article-title: Thermal conductivity of metal powder and consolidated material fabricated via selective laser melting
  publication-title: Key Eng Mater
– volume: 35
  start-page: 795
  year: 2008
  end-page: 810
  ident: bib0024
  article-title: The quasi-static and blast loading response of lattice structures
  publication-title: Int J Impact Eng
– reference: Martinez E., Murr L., Amato K., Hernandez J., Shindo P., Gaytan S., et al. 3D microstructural architectures for metal and alloy components fabricated by 3D printing/additive manufacturing technologies. 2012.
– year: 1999
  ident: bib0001
  article-title: Cellular solids: structure and properties
– volume: 68
  start-page: 125
  year: 2013
  end-page: 139
  ident: bib0027
  article-title: Compressive behaviour of stainless steel micro-lattice structures
  publication-title: Int J Mech Sci
– volume: 2
  start-page: 2825
  year: 1971
  end-page: 2828
  ident: bib0048
  article-title: Modified stress-strain relation for FCC metals and alloys
  publication-title: Metall Trans
– volume: 71
  start-page: 386
  year: 2004
  end-page: 401
  ident: bib0005
  article-title: The resistance of clamped sandwich beams to shock loading
  publication-title: J Appl Mech
– volume: 15
  start-page: 723
  year: 1994
  end-page: 733
  ident: bib0050
  article-title: Data processing in the split Hopkinson pressure bar tests
  publication-title: Int J Impact Eng
– volume: 334
  year: 2011
  ident: bib0019
  article-title: Ultralight metallic microlattices
  publication-title: Science
– volume: 24
  start-page: 277
  year: 2000
  end-page: 298
  ident: bib0015
  article-title: High strain rate compressive behaviour of aluminium alloy foams
  publication-title: Int J Impact Eng
– volume: 382
  year: 2012
  ident: bib0033
  article-title: The design of impact absorbing structures for additive manufacture
  publication-title: J Phys Conf Ser
– volume: 19
  start-page: 389
  year: 2011
  end-page: 395
  ident: bib0037
  article-title: Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting
  publication-title: Procedia Eng
– volume: 1
  start-page: 42
  year: 2012
  end-page: 54
  ident: bib0039
  article-title: Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science
  publication-title: J Mater Res Technol
– volume: 8
  start-page: 1041
  year: 2000
  end-page: 1042
  ident: bib0034
  article-title: Classic split-Hopkinson pressure bar testing
  publication-title: ASM Handbook Vol 8: mechanical testing and evaluation
– year: 2000
  ident: bib0002
  article-title: Metal foams - a design guide
– volume: 344
  start-page: 1373
  year: 2014
  end-page: 1377
  ident: bib0022
  article-title: Ultralight, ultrastiff mechanical metamaterials
  publication-title: Science
– volume: 63
  start-page: 2331
  year: 2003
  end-page: 2343
  ident: bib0017
  article-title: Fabrication and structural performance of periodic cellular metal sandwich structures
  publication-title: Compos Sci Technol
– volume: 213
  start-page: 1558
  year: 2013
  end-page: 1564
  ident: bib0029
  article-title: Additively manufactured cellular structures: impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load
  publication-title: J Mater Process Technol
– volume: 18
  start-page: 165
  year: 2002
  end-page: 172
  ident: bib0044
  article-title: Hall Petch behaviour of 316L austenitic stainless steel at room temperature
  publication-title: Mater Sci Technol
– volume: 74
  start-page: 658
  year: 2007
  end-page: 667
  ident: bib0031
  article-title: Dynamic compressive response of stainless-steel square honeycombs
  publication-title: J Appl Mech
– volume: 30
  start-page: 1283
  year: 2004
  end-page: 1305
  ident: bib0013
  article-title: A comparative study of impulse-resistant metal sandwich plates
  publication-title: Int J Impact Eng
– volume: 32
  start-page: 1963
  year: 1984
  end-page: 1975
  ident: bib0003
  article-title: Deformation and energy absorption diagrams for cellular solids
  publication-title: Acta Metall
– volume: 380
  start-page: 272
  year: 2004
  end-page: 280
  ident: bib0032
  article-title: The out-of-plane compressive behavior of metallic honeycombs
  publication-title: Mater Sci Eng: A
– reference: Metals M.A.S.. AISI type 316L stainless steel, annealed. 2014. URL
– volume: 43
  start-page: 3971
  year: 1995
  end-page: 3981
  ident: bib0043
  article-title: On the Hall-Petch relationship and substructural evolution in type 316L stainless steel
  publication-title: Acta Metall
– start-page: 6275
  year: 2001
  end-page: 6305
  ident: bib0014
  article-title: Collapse of truss core sandwich beams in 3-point bending
  publication-title: Int J Solids Struct
– volume: 16
  start-page: 184
  year: 2014
  end-page: 189
  ident: bib0021
  article-title: Design and fabrication of hollow rigid nanolattices via two-photon lithography
  publication-title: Adv Eng Mater
– volume: 74
  start-page: 65
  year: 2014
  end-page: 78
  ident: bib0036
  article-title: Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W
  publication-title: Int JAdv Manuf Technol
– volume: 22
  start-page: 2118
  year: 2006
  end-page: 2145
  ident: bib0016
  article-title: Dynamic failure of metallic pyramidal truss core materials experiments and modeling
  publication-title: Int J Plast
– start-page: 49
  year: 2015
  end-page: 61
  ident: bib0030
  article-title: Energy absorption in lattice structures in dynamics: experiments
  publication-title: Int J Impact Eng
– volume: 528
  start-page: 7423
  year: 2011
  end-page: 7431
  ident: bib0028
  article-title: Micro-ct-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures
  publication-title: Mater Sci Eng: A
– volume: 22
  start-page: 025021
  year: 2014
  ident: bib0025
  article-title: Plate-impact loading of cellular structures formed by selective laser melting
  publication-title: Modell Simul Mater Sci Eng
– volume: 13
  start-page: 479
  year: 2010
  end-page: 501
  ident: bib0007
  article-title: The quasi-static and blast response of steel lattice structures
  publication-title: J Sandwich Struct Mater
– volume: 364
  start-page: 31
  year: 2006
  end-page: 68
  ident: bib0018
  article-title: Multifunctional periodic cellular metals
  publication-title: Philos Trans A Math Phys Eng Sci
– volume: 29
  start-page: 56
  year: 2010
  end-page: 67
  ident: bib0004
  article-title: Dynamic compression of metallic sandwich structures during planar impulsive loading in water
  publication-title: Eur J Mech A Solids
– volume: 51
  start-page: 219
  year: 1955
  ident: bib0047
  article-title: A practical strain hardening function
  publication-title: Metallurgia
– volume: 25
  start-page: 215
  year: 2006
  end-page: 229
  ident: bib0009
  article-title: The response of clamped sandwich plates with lattice cores subjected to shock loading
  publication-title: Eur J Mech A Solids
– reference: .
– volume: 55
  start-page: 533
  year: 2014
  end-page: 541
  ident: bib0023
  article-title: Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting
  publication-title: Mater Des
– volume: 59
  start-page: 588
  year: 1941
  end-page: 593
  ident: bib0051
  article-title: The velocity of longitudinal waves in cylindrical bars
  publication-title: Phys Rev
– volume: 18
  start-page: 480
  year: 2002
  end-page: 488
  ident: bib0011
  article-title: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam
  publication-title: Mater Sci Technol
– volume: 60
  start-page: 120
  year: 2013
  end-page: 132
  ident: bib0026
  article-title: Drop weight impact behaviour of sandwich panels with metallic micro lattice cores
  publication-title: Int J Impact Eng
– volume: 26
  start-page: 689
  year: 1984
  end-page: 701
  ident: bib0010
  article-title: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure
  publication-title: Int J Mech Sci
– volume: 35
  start-page: 1035
  year: 1993
  end-page: 1052
  ident: bib0012
  article-title: Plastic deformation mechanisms in axially compressed metal tubes used as impact energy absorbers
  publication-title: Int J Mech Sci
– volume: 58
  start-page: 3303
  year: 2010
  end-page: 3312
  ident: bib0038
  article-title: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V
  publication-title: Acta Mater
– volume: 344
  start-page: 1373
  issue: 6190
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0022
  article-title: Ultralight, ultrastiff mechanical metamaterials
  publication-title: Science
  doi: 10.1126/science.1252291
– volume: 22
  start-page: 025021
  issue: 2
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0025
  article-title: Plate-impact loading of cellular structures formed by selective laser melting
  publication-title: Modell Simul Mater Sci Eng
  doi: 10.1088/0965-0393/22/2/025021
– year: 1999
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0001
– volume: 16
  start-page: 251
  issue: 3
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0020
  article-title: Effect of grain size on the optimal architecture of electrodeposited metal/polymer microtrusses
  publication-title: J Sandwich Struct Mater
  doi: 10.1177/1099636213515507
– volume: 26
  start-page: 689
  issue: 11/12
  year: 1984
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0010
  article-title: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure
  publication-title: Int J Mech Sci
  doi: 10.1016/0020-7403(84)90021-3
– volume: 162
  start-page: 268
  year: 1945
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0045
  article-title: Properties and structure of steel - tensile deformation
  publication-title: AIME Trans
– volume: 16
  start-page: 184
  issue: 2
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0021
  article-title: Design and fabrication of hollow rigid nanolattices via two-photon lithography
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.201300254
– ident: 10.1016/j.ijimpeng.2017.02.007_bib0040
  doi: 10.1007/978-3-319-48762-5_11
– year: 1983
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0053
– year: 2000
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0002
– volume: 19
  start-page: 389
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0037
  article-title: Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2011.11.130
– volume: 35
  start-page: 1035
  issue: 2
  year: 1993
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0012
  article-title: Plastic deformation mechanisms in axially compressed metal tubes used as impact energy absorbers
  publication-title: Int J Mech Sci
  doi: 10.1016/0020-7403(93)90054-X
– volume: 18
  start-page: 165
  issue: 2
  year: 2002
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0044
  article-title: Hall Petch behaviour of 316L austenitic stainless steel at room temperature
  publication-title: Mater Sci Technol
  doi: 10.1179/026708301125000384
– volume: 32
  start-page: 1963
  issue: 11
  year: 1984
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0003
  article-title: Deformation and energy absorption diagrams for cellular solids
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(84)90177-9
– start-page: 6275
  year: 2001
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0014
  article-title: Collapse of truss core sandwich beams in 3-point bending
  publication-title: Int J Solids Struct
– volume: 58
  start-page: 3303
  issue: 9
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0038
  article-title: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2010.02.004
– volume: 71
  start-page: 386
  issue: 3
  year: 2004
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0005
  article-title: The resistance of clamped sandwich beams to shock loading
  publication-title: J Appl Mech
  doi: 10.1115/1.1629109
– volume: 35
  start-page: 795
  issue: 8
  year: 2008
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0024
  article-title: The quasi-static and blast loading response of lattice structures
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2007.10.005
– volume: 68
  start-page: 125
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0027
  article-title: Compressive behaviour of stainless steel micro-lattice structures
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2013.01.006
– start-page: 49
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0030
  article-title: Energy absorption in lattice structures in dynamics: experiments
  publication-title: Int J Impact Eng
– volume: 55
  start-page: 533
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0023
  article-title: Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.10.027
– volume: 24
  start-page: 277
  year: 2000
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0015
  article-title: High strain rate compressive behaviour of aluminium alloy foams
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(99)00153-0
– volume: 213
  start-page: 1558
  issue: 9
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0029
  article-title: Additively manufactured cellular structures: impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2013.03.013
– volume: 60
  start-page: 120
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0026
  article-title: Drop weight impact behaviour of sandwich panels with metallic micro lattice cores
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2013.04.007
– volume: 63
  start-page: 2331
  issue: 16
  year: 2003
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0017
  article-title: Fabrication and structural performance of periodic cellular metal sandwich structures
  publication-title: Compos Sci Technol
  doi: 10.1016/S0266-3538(03)00266-5
– volume: 380
  start-page: 272
  issue: 1–2
  year: 2004
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0032
  article-title: The out-of-plane compressive behavior of metallic honeycombs
  publication-title: Mater Sci Eng: A
  doi: 10.1016/j.msea.2004.03.051
– volume: 9
  start-page: 149
  issue: 2
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0049
  article-title: Dynamic compression of square tube cellular structures
  publication-title: J Mech Mater Struct
  doi: 10.2140/jomms.2014.9.149
– volume: 74
  start-page: 658
  year: 2007
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0031
  article-title: Dynamic compressive response of stainless-steel square honeycombs
  publication-title: J Appl Mech
  doi: 10.1115/1.2424717
– volume: 59
  start-page: 588
  year: 1941
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0051
  article-title: The velocity of longitudinal waves in cylindrical bars
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.59.588
– year: 1909
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0046
– volume: 43
  start-page: 3971
  issue: 11
  year: 1995
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0043
  article-title: On the Hall-Petch relationship and substructural evolution in type 316L stainless steel
  publication-title: Acta Metall
  doi: 10.1016/0956-7151(95)00110-H
– volume: 51
  start-page: 219
  year: 1955
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0047
  article-title: A practical strain hardening function
  publication-title: Metallurgia
– volume: 382
  year: 2012
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0033
  article-title: The design of impact absorbing structures for additive manufacture
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/382/1/012042
– volume: 364
  start-page: 31
  issue: 1838
  year: 2006
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0018
  article-title: Multifunctional periodic cellular metals
  publication-title: Philos Trans A Math Phys Eng Sci
  doi: 10.1098/rsta.2005.1697
– volume: 15
  start-page: 723
  issue: 6
  year: 1994
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0050
  article-title: Data processing in the split Hopkinson pressure bar tests
  publication-title: Int J Impact Eng
  doi: 10.1016/0734-743X(94)90011-9
– volume: 49
  start-page: 1035
  year: 2001
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0006
  article-title: Foam topology bending verseus stretching dominated architectures
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(00)00379-7
– volume: 25
  start-page: 215
  issue: 2
  year: 2006
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0009
  article-title: The response of clamped sandwich plates with lattice cores subjected to shock loading
  publication-title: Eur J Mech A Solids
  doi: 10.1016/j.euromechsol.2005.08.001
– volume: 44
  start-page: 794
  issue: 4
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0041
  article-title: Highly anisotropic steel processed by selective laser melting
  publication-title: Metall Mater Trans B
  doi: 10.1007/s11663-013-9875-z
– volume: 334
  issue: 6058
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.02.007_sbref0019
  article-title: Ultralight metallic microlattices
  publication-title: Science
  doi: 10.1126/science.1211649
– volume: 13
  start-page: 479
  issue: 4
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0007
  article-title: The quasi-static and blast response of steel lattice structures
  publication-title: J Sandwich Struct Mater
  doi: 10.1177/1099636210388983
– volume: 74
  start-page: 65
  issue: 1–4
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0036
  article-title: Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W
  publication-title: Int JAdv Manuf Technol
  doi: 10.1007/s00170-014-5954-9
– volume: 528
  start-page: 7423
  issue: 24
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0028
  article-title: Micro-ct-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures
  publication-title: Mater Sci Eng: A
  doi: 10.1016/j.msea.2011.06.045
– volume: 19
  start-page: 531
  issue: 5–6
  year: 1997
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0052
  article-title: Dynamic uniaxial crushing of wood
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(97)00016-X
– volume: 22
  start-page: 2118
  issue: 11
  year: 2006
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0016
  article-title: Dynamic failure of metallic pyramidal truss core materials experiments and modeling
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2006.02.006
– volume: 1
  start-page: 42
  issue: 1
  year: 2012
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0039
  article-title: Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science
  publication-title: J Mater Res Technol
  doi: 10.1016/S2238-7854(12)70009-1
– volume: 30
  start-page: 1283
  issue: 10
  year: 2004
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0013
  article-title: A comparative study of impulse-resistant metal sandwich plates
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2003.08.007
– volume: 2
  start-page: 2825
  year: 1971
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0048
  article-title: Modified stress-strain relation for FCC metals and alloys
  publication-title: Metall Trans
  doi: 10.1007/BF02813258
– volume: 29
  start-page: 56
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0004
  article-title: Dynamic compression of metallic sandwich structures during planar impulsive loading in water
  publication-title: Eur J Mech A Solids
  doi: 10.1016/j.euromechsol.2009.05.003
– volume: 18
  start-page: 480
  issue: 5
  year: 2002
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0011
  article-title: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam
  publication-title: Mater Sci Technol
  doi: 10.1179/026708302225002092
– volume: 523–524
  start-page: 244
  year: 2012
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0042
  article-title: Thermal conductivity of metal powder and consolidated material fabricated via selective laser melting
  publication-title: Key Eng Mater
  doi: 10.4028/www.scientific.net/KEM.523-524.244
– volume: 8
  start-page: 1041
  year: 2000
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0034
  article-title: Classic split-Hopkinson pressure bar testing
– volume: 43
  start-page: 2243
  issue: 7–8
  year: 2006
  ident: 10.1016/j.ijimpeng.2017.02.007_bib0008
  article-title: The response of clamped sandwich plates with metallic foam cores to simulated blast loading
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2005.07.006
– ident: 10.1016/j.ijimpeng.2017.02.007_bib0035
SSID ssj0017050
Score 2.5564659
Snippet •Metallic hybrid cellular structures were manufactured with selective laser melting.•The hybrid geometry was created by combining honeycomb and lattice...
Additive manufacturing (AM) enables the design of new cellular materials for blast and impact mitigation by allowing novel material-geometry combinations to be...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 177
SubjectTerms Additive manufacturing
Blast
Cellular manufacture
Cellular structures
Deformation mechanisms
Design optimization
Energy absorption
Impact
Impact response
Impact velocity
Laser beam melting
Lattice theory
Lattices
Materials selection
Melting
Porosity
Power efficiency
Selective laser melting
Stainless steel
Wave propagation
Title Impact response of additively manufactured metallic hybrid lattice materials
URI https://dx.doi.org/10.1016/j.ijimpeng.2017.02.007
https://www.proquest.com/docview/1937682455
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPMVbHljTxomdxCNCoPJQF6jUzXIcG1KVtCrp0IXfzl0eVUFCDGxJdI6i8_nuHH3fZ0KuoGS4TCTMs0HoPIgQ46VGaw-lrGIZRCaq0RaDqD_kDyMx6pCblguDsMom99c5vcrWzZNe483eLM97zxCcHOrfCDoKZG8io5zzGKO8-7mCeaBaTPWfBYw9tF5jCY-7-TiH5rR4RYhXXGt3xr8VqB-puqo_d7tkp2kc6XX9bXukY4t9sr0mJ3hAnu4ryiOd17hXS6eOIl4IM9pkSd91sUAew2JuM_puoeue5Ia-LZGzRSe6RBgcGJV1TB6S4d3ty03fa05L8EzI_dKLhM1EaBKmmY5Y4ruMy9DplOsMFhpcS1Qji2Lu68jJJEmdSUXKfGe0MGEgwiOyUUwLe0wobIkSPwqkzTjjTsOaZlI43MnFfiZZekJE6yJlGilxPNFiolrM2Fi1rlXoWuUHClx7QnqrcbNaTOPPEbKdAfUtLBRk_D_HnrdTppqF-aGgX4UNVsCFOP3Hq8_IFt7VkLFzslHOF_YCmpMyvayi75JsXt8_9gdfmjTkVA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLYKDMCAOMWNB9a0OewcI0KgFgoLrdTNchwbUqUpKunAwm_nvRxVQUId2KLEL4qe3xl97zMh15AyTMJDx9KuZyywEGXFSkoLqayCyPWVX6Etnv3ukD2M-KhFbptZGIRV1rG_iulltK7vdGptdt7TtPMCxskg_42gosDpzWCNbDBwXzzGoP21wHkgXUz5owVWW7h8aUx43E7HKVSn-StivIKKvDP4K0P9itVlArrfJTt15Uhvqo_bIy2d75PtJT7BA9LvlTOPdFYBXzWdGoqAIQxp2SedyHyOgwzzmU7oREPZnaWKvn3i0BbNZIE4OFhUVEZ5SIb3d4PbrlUfl2Apj9mF5XOdcE-FjnSk74S2SVjkGRkzmYCnwXWEdGR-wGzpmygMY6NiHju2UZIrz-XeEVnPp7k-JhR6otD23UgnzGFGglM7ETfYygV2EjnxCeGNioSqucTxSItMNKCxsWhUK1C1wnYFqPaEdBZy7xWbxkqJqNkB8cMuBIT8lbLnzZaJ2jM_BBSs0GG5jPPTf7z6imx2B0990e89P56RLXxS4cfOyXoxm-sLqFSK-LK0xG_lM-Xi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+response+of+additively+manufactured+metallic+hybrid+lattice+materials&rft.jtitle=International+journal+of+impact+engineering&rft.au=Harris%2C+J.A.&rft.au=Winter%2C+R.E.&rft.au=McShane%2C+G.J.&rft.date=2017-06-01&rft.pub=Elsevier+Ltd&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=104&rft.spage=177&rft.epage=191&rft_id=info:doi/10.1016%2Fj.ijimpeng.2017.02.007&rft.externalDocID=S0734743X16306947
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon