Impact response of additively manufactured metallic hybrid lattice materials
•Metallic hybrid cellular structures were manufactured with selective laser melting.•The hybrid geometry was created by combining honeycomb and lattice architectures.•These structures were tested in quasi-static and dynamic compression up to 150 m/s.•Performance was evaluated by seeking high energy...
Saved in:
Published in | International journal of impact engineering Vol. 104; pp. 177 - 191 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.06.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Metallic hybrid cellular structures were manufactured with selective laser melting.•The hybrid geometry was created by combining honeycomb and lattice architectures.•These structures were tested in quasi-static and dynamic compression up to 150 m/s.•Performance was evaluated by seeking high energy absorption and low maximum stress.•The hybrid geometry outperformed the benchmark square honeycomb at 100 m/s.
Additive manufacturing (AM) enables the design of new cellular materials for blast and impact mitigation by allowing novel material-geometry combinations to be realised and examined at a laboratory scale. However, design of these materials requires an understanding of the relationship between the AM process and material properties at different length scales: from the microstructure to geometric feature rendition to overall dynamic performance. To date, there remain significant uncertainties about both the potential benefits and pitfalls of using AM to design and optimise cellular materials for dynamic energy absorbing applications. This experimental investigation focuses on the out-of-plane compression of stainless steel cellular materials fabricated using selective laser melting (SLM), and makes two specific contributions. First, we demonstrate how the AM process itself influences the characteristics of these cellular materials across a range of length scales, and, crucially, how this influences the dynamic deformation. Secondly, we demonstrate how an AM route can be used to add geometric complexity to the cell structure, creating a versatile basis for future geometry optimisation. Starting with an AM square honeycomb (the reference case), we add porosity to the walls by replacing them with a lattice truss, while maintaining the same relative density. This geometry hybridisation is an approach uniquely suited to this manufacturing route. It is found that the hybrid lattice-walled honeycomb geometry significantly outperforms previously reported AM lattices in terms of specific strength, specific energy absorption, and energy absorption efficiency. It is also found that the hybrid geometry outperforms the benchmark metallic square honeycomb in terms of energy absorption efficiency in the intermediate impact velocity regime (i.e. between quasi-static loading and loading rates at which wave propagation effects begin to become pronounced), a regime in which the collapse is dominated by dynamic buckling effects. |
---|---|
AbstractList | Additive manufacturing (AM) enables the design of new cellular materials for blast and impact mitigation by allowing novel material-geometry combinations to be realised and examined at a laboratory scale. However, design of these materials requires an understanding of the relationship between the AM process and material properties at different length scales: from the microstructure to geometric feature rendition to overall dynamic performance. To date, there remain significant uncertainties about both the potential benefits and pitfalls of using AM to design and optimise cellular materials for dynamic energy absorbing applications. This experimental investigation focuses on the out-of-plane compression of stainless steel cellular materials fabricated using selective laser melting (SLM), and makes two specific contributions. First, we demonstrate how the AM process itself influences the characteristics of these cellular materials across a range of length scales, and, crucially, how this influences the dynamic deformation. Secondly, we demonstrate how an AM route can be used to add geometric complexity to the cell structure, creating a versatile basis for future geometry optimisation. Starting with an AM square honeycomb (the reference case), we add porosity to the walls by replacing them with a lattice truss, while maintaining the same relative density. This geometry hybridisation is an approach uniquely suited to this manufacturing route. It is found that the hybrid lattice-walled honeycomb geometry significantly outperforms previously reported AM lattices in terms of specific strength, specific energy absorption, and energy absorption efficiency. It is also found that the hybrid geometry outperforms the benchmark metallic square honeycomb in terms of energy absorption efficiency in the intermediate impact velocity regime (i.e. between quasi-static loading and loading rates at which wave propagation effects begin to become pronounced), a regime in which the collapse is dominated by dynamic buckling effects. •Metallic hybrid cellular structures were manufactured with selective laser melting.•The hybrid geometry was created by combining honeycomb and lattice architectures.•These structures were tested in quasi-static and dynamic compression up to 150 m/s.•Performance was evaluated by seeking high energy absorption and low maximum stress.•The hybrid geometry outperformed the benchmark square honeycomb at 100 m/s. Additive manufacturing (AM) enables the design of new cellular materials for blast and impact mitigation by allowing novel material-geometry combinations to be realised and examined at a laboratory scale. However, design of these materials requires an understanding of the relationship between the AM process and material properties at different length scales: from the microstructure to geometric feature rendition to overall dynamic performance. To date, there remain significant uncertainties about both the potential benefits and pitfalls of using AM to design and optimise cellular materials for dynamic energy absorbing applications. This experimental investigation focuses on the out-of-plane compression of stainless steel cellular materials fabricated using selective laser melting (SLM), and makes two specific contributions. First, we demonstrate how the AM process itself influences the characteristics of these cellular materials across a range of length scales, and, crucially, how this influences the dynamic deformation. Secondly, we demonstrate how an AM route can be used to add geometric complexity to the cell structure, creating a versatile basis for future geometry optimisation. Starting with an AM square honeycomb (the reference case), we add porosity to the walls by replacing them with a lattice truss, while maintaining the same relative density. This geometry hybridisation is an approach uniquely suited to this manufacturing route. It is found that the hybrid lattice-walled honeycomb geometry significantly outperforms previously reported AM lattices in terms of specific strength, specific energy absorption, and energy absorption efficiency. It is also found that the hybrid geometry outperforms the benchmark metallic square honeycomb in terms of energy absorption efficiency in the intermediate impact velocity regime (i.e. between quasi-static loading and loading rates at which wave propagation effects begin to become pronounced), a regime in which the collapse is dominated by dynamic buckling effects. |
Author | McShane, G.J. Harris, J.A. Winter, R.E. |
Author_xml | – sequence: 1 givenname: J.A. surname: Harris fullname: Harris, J.A. email: jah236@cam.ac.uk organization: Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK – sequence: 2 givenname: R.E. surname: Winter fullname: Winter, R.E. organization: AWE, Aldermaston, Reading, Berkshire, UK – sequence: 3 givenname: G.J. surname: McShane fullname: McShane, G.J. email: gjm31@cam.ac.uk organization: Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK |
BookMark | eNqFkE1LJDEQhsPiwo7j_oWlwXO3lU7SH-BBET8GBrwo7C2kk8qapr9MMsL8-80wevEypyqo530LnnNyNs0TEvKHQkGBVld94Xo3Ljj9K0qgdQFlAVD_ICva1G3OBLRnZAU143nN2d9f5DyEHhIIAlZkuxkXpWPmMSzzFDCbbaaMcdF94LDPRjXtbLrvPJpsxKiGwensbd95Z7JBxeg0Jiiid2oIF-SnTQN_f841eX24f7l7yrfPj5u7222uGYeYVwKNYLqhiqqKNmANb5lVHVcGBEt7WwrOq5qDqmzbNJ3VnegoWK2EZqVga3J57F38_L7DEGU_7_yUXkrasrpqSi4O1PWR0n4OwaOV2kUV3TxFr9wgKciDP9nLL3_y4E9CKZO_FK--xRfvRuX3p4M3xyAmBR8OvQza4aTROI86SjO7UxX_AXsoka0 |
CitedBy_id | crossref_primary_10_1142_S1758825118501077 crossref_primary_10_1007_s40436_024_00542_9 crossref_primary_10_1016_j_matdes_2021_110368 crossref_primary_10_1016_j_compositesb_2019_107715 crossref_primary_10_1177_00219983241271054 crossref_primary_10_1007_s40870_024_00425_x crossref_primary_10_1089_3dp_2022_0224 crossref_primary_10_1016_j_ijimpeng_2019_05_013 crossref_primary_10_1016_j_jmrt_2022_05_068 crossref_primary_10_1016_j_jmapro_2022_07_051 crossref_primary_10_1016_j_tws_2023_111109 crossref_primary_10_1002_adem_202402792 crossref_primary_10_1016_j_ijimpeng_2018_07_014 crossref_primary_10_1016_j_istruc_2020_05_001 crossref_primary_10_1007_s10338_018_0055_1 crossref_primary_10_1088_1361_665X_ab0dd6 crossref_primary_10_1016_j_addma_2021_102054 crossref_primary_10_1177_0036850420950158 crossref_primary_10_3390_ma11091763 crossref_primary_10_1177_14644207241244731 crossref_primary_10_1016_j_conbuildmat_2022_128409 crossref_primary_10_1016_j_mser_2021_100648 crossref_primary_10_1016_j_engfailanal_2023_107476 crossref_primary_10_3390_ma14174912 crossref_primary_10_1007_s00170_020_06136_6 crossref_primary_10_1016_j_bioactmat_2021_12_027 crossref_primary_10_1016_j_tws_2019_01_039 crossref_primary_10_1016_j_jmrt_2023_01_032 crossref_primary_10_1016_j_matdes_2018_05_059 crossref_primary_10_1002_pssb_201800040 crossref_primary_10_1016_j_mtcomm_2021_102902 crossref_primary_10_3390_ma16041571 crossref_primary_10_1016_j_matpr_2023_08_053 crossref_primary_10_1016_j_mtcomm_2023_107352 crossref_primary_10_1002_adem_202100646 crossref_primary_10_1016_j_ijimpeng_2020_103741 crossref_primary_10_1016_j_taml_2024_100509 crossref_primary_10_1016_j_addlet_2022_100112 crossref_primary_10_1016_j_addma_2021_102220 crossref_primary_10_1007_s11665_018_3810_z crossref_primary_10_1016_j_matdes_2022_110664 crossref_primary_10_3390_ma11112129 crossref_primary_10_1016_j_msea_2018_08_069 crossref_primary_10_1016_j_jmrt_2022_12_031 crossref_primary_10_3390_met15010081 crossref_primary_10_1016_j_istruc_2025_108658 crossref_primary_10_1007_s00170_024_14900_1 crossref_primary_10_1016_j_matdes_2019_108054 crossref_primary_10_1177_0954406218813386 crossref_primary_10_3390_ma14092462 crossref_primary_10_1007_s00170_021_08203_y crossref_primary_10_1016_j_tws_2023_110722 crossref_primary_10_1002_adem_202100173 crossref_primary_10_1016_j_compstruct_2021_114164 crossref_primary_10_1016_j_ijimpeng_2021_103976 crossref_primary_10_1016_j_ijimpeng_2020_103730 crossref_primary_10_1177_09544062231198306 crossref_primary_10_1061__ASCE_SC_1943_5576_0000607 crossref_primary_10_31202_ecjse_978310 crossref_primary_10_1016_j_ijimpeng_2023_104752 crossref_primary_10_1016_j_pmatsci_2021_100918 crossref_primary_10_1016_j_matdes_2021_110236 crossref_primary_10_1007_s40430_024_05002_w crossref_primary_10_1016_j_addma_2018_11_018 crossref_primary_10_1016_j_jmapro_2023_10_018 crossref_primary_10_1177_20414196231187004 crossref_primary_10_1007_s11665_021_05873_3 crossref_primary_10_1016_j_ijmecsci_2020_105639 crossref_primary_10_1016_j_jmrt_2022_04_051 crossref_primary_10_1051_epjconf_202125001022 crossref_primary_10_1080_17452759_2024_2414395 crossref_primary_10_1002_app_52343 crossref_primary_10_1016_j_matdes_2021_110192 crossref_primary_10_1016_j_tws_2022_109966 crossref_primary_10_3390_jmmp6060140 crossref_primary_10_1016_j_ijmecsci_2020_106042 crossref_primary_10_1016_j_ijimpeng_2020_103566 crossref_primary_10_1016_j_surfcoat_2024_131659 crossref_primary_10_1016_j_matdes_2022_110963 crossref_primary_10_1016_j_mattod_2021_03_019 crossref_primary_10_1016_j_ijimpeng_2024_105216 crossref_primary_10_1007_s11665_022_07104_9 crossref_primary_10_1016_j_matdes_2019_107655 crossref_primary_10_1016_j_compositesb_2020_108340 crossref_primary_10_1002_adem_202000669 crossref_primary_10_1016_j_tws_2024_111710 crossref_primary_10_1016_j_engstruct_2023_115954 crossref_primary_10_1016_j_addma_2018_09_016 crossref_primary_10_1016_j_ijimpeng_2025_105294 crossref_primary_10_1016_j_compositesb_2018_02_012 crossref_primary_10_3390_ma13245616 crossref_primary_10_1002_adem_202400177 crossref_primary_10_1016_j_jmrt_2024_06_234 crossref_primary_10_1016_j_addma_2019_100976 crossref_primary_10_1016_j_ijimpeng_2023_104527 crossref_primary_10_1016_j_ijmecsci_2020_105460 crossref_primary_10_1002_mdp2_248 crossref_primary_10_1080_17452759_2024_2425822 crossref_primary_10_1016_j_compstruct_2021_113958 crossref_primary_10_3390_ma13092204 crossref_primary_10_1016_j_jmapro_2021_03_060 crossref_primary_10_1016_j_ijimpeng_2024_104992 crossref_primary_10_1016_j_msea_2019_138356 crossref_primary_10_1016_j_compositesb_2019_107522 crossref_primary_10_1007_s00170_022_09406_7 crossref_primary_10_1002_adem_202401892 crossref_primary_10_1007_s00170_020_05239_4 crossref_primary_10_1016_j_dt_2023_09_003 crossref_primary_10_1016_j_jmrt_2025_01_195 crossref_primary_10_1007_s40870_019_00219_6 crossref_primary_10_1088_2631_6331_acc0d0 crossref_primary_10_1038_s41563_021_01033_z crossref_primary_10_1177_20414196211035486 crossref_primary_10_1016_j_dt_2025_01_003 crossref_primary_10_1016_j_ijsolstr_2019_09_007 crossref_primary_10_1002_pc_28259 crossref_primary_10_1007_s40964_024_00842_3 crossref_primary_10_1016_j_ijmecsci_2022_107751 crossref_primary_10_1016_j_compstruct_2022_116174 crossref_primary_10_1016_j_msea_2021_141379 crossref_primary_10_1016_j_ijmecsci_2023_108102 crossref_primary_10_3390_ma12203455 crossref_primary_10_1002_adem_202301040 crossref_primary_10_1016_j_matdes_2019_107839 crossref_primary_10_1016_j_jmapro_2018_08_015 crossref_primary_10_1007_s00170_022_10325_w crossref_primary_10_3390_en16104179 crossref_primary_10_1016_j_optlastec_2024_112066 crossref_primary_10_1115_1_4045381 crossref_primary_10_1007_s00170_019_03541_4 crossref_primary_10_1126_sciadv_ade6725 crossref_primary_10_1016_j_matdes_2022_111398 crossref_primary_10_3390_met11081196 crossref_primary_10_1016_j_matdes_2022_110852 crossref_primary_10_1016_j_ijimpeng_2024_105147 crossref_primary_10_1007_s10853_023_09086_y crossref_primary_10_1016_j_matdes_2019_108137 crossref_primary_10_1016_j_ijmecsci_2024_109905 crossref_primary_10_1016_j_matchar_2018_04_040 crossref_primary_10_1007_s40436_021_00348_z crossref_primary_10_1016_j_compstruct_2019_111815 crossref_primary_10_1016_j_paerosci_2024_101021 crossref_primary_10_1016_j_matdes_2018_10_043 crossref_primary_10_1016_j_tws_2020_107153 crossref_primary_10_1007_s00170_023_12809_9 crossref_primary_10_1016_j_compstruct_2019_111821 crossref_primary_10_1088_2053_1591_aaf78c crossref_primary_10_15407_mfint_44_10_1361 crossref_primary_10_1016_j_addma_2024_104248 crossref_primary_10_1016_j_jmrt_2023_06_268 crossref_primary_10_1016_j_jobe_2023_105863 crossref_primary_10_1016_j_jmatprotec_2023_117915 crossref_primary_10_1016_j_dt_2024_09_002 crossref_primary_10_1016_j_ijimpeng_2020_103767 crossref_primary_10_1016_j_ijimpeng_2020_103768 crossref_primary_10_1016_j_tafmec_2024_104349 |
Cites_doi | 10.1126/science.1252291 10.1088/0965-0393/22/2/025021 10.1177/1099636213515507 10.1016/0020-7403(84)90021-3 10.1002/adem.201300254 10.1007/978-3-319-48762-5_11 10.1016/j.proeng.2011.11.130 10.1016/0020-7403(93)90054-X 10.1179/026708301125000384 10.1016/0001-6160(84)90177-9 10.1016/j.actamat.2010.02.004 10.1115/1.1629109 10.1016/j.ijimpeng.2007.10.005 10.1016/j.ijmecsci.2013.01.006 10.1016/j.matdes.2013.10.027 10.1016/S0734-743X(99)00153-0 10.1016/j.jmatprotec.2013.03.013 10.1016/j.ijimpeng.2013.04.007 10.1016/S0266-3538(03)00266-5 10.1016/j.msea.2004.03.051 10.2140/jomms.2014.9.149 10.1115/1.2424717 10.1103/PhysRev.59.588 10.1016/0956-7151(95)00110-H 10.1088/1742-6596/382/1/012042 10.1098/rsta.2005.1697 10.1016/0734-743X(94)90011-9 10.1016/S1359-6454(00)00379-7 10.1016/j.euromechsol.2005.08.001 10.1007/s11663-013-9875-z 10.1126/science.1211649 10.1177/1099636210388983 10.1007/s00170-014-5954-9 10.1016/j.msea.2011.06.045 10.1016/S0734-743X(97)00016-X 10.1016/j.ijplas.2006.02.006 10.1016/S2238-7854(12)70009-1 10.1016/j.ijimpeng.2003.08.007 10.1007/BF02813258 10.1016/j.euromechsol.2009.05.003 10.1179/026708302225002092 10.4028/www.scientific.net/KEM.523-524.244 10.1016/j.ijsolstr.2005.07.006 |
ContentType | Journal Article |
Copyright | 2017 Copyright Elsevier BV Jun 2017 |
Copyright_xml | – notice: 2017 – notice: Copyright Elsevier BV Jun 2017 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2017.02.007 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
EndPage | 191 |
ExternalDocumentID | 10_1016_j_ijimpeng_2017_02_007 S0734743X16306947 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c340t-65ed53c81a1a6180fd493fab4ad053493925446740a6f988bfcb5b10fca5c3253 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Fri Jul 25 21:31:53 EDT 2025 Tue Jul 01 03:11:40 EDT 2025 Thu Apr 24 22:51:12 EDT 2025 Fri Feb 23 02:28:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Impact Additive manufacturing Selective laser melting Blast Cellular structures |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-65ed53c81a1a6180fd493fab4ad053493925446740a6f988bfcb5b10fca5c3253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1937682455 |
PQPubID | 2045463 |
PageCount | 15 |
ParticipantIDs | proquest_journals_1937682455 crossref_citationtrail_10_1016_j_ijimpeng_2017_02_007 crossref_primary_10_1016_j_ijimpeng_2017_02_007 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2017_02_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2017 2017-06-00 20170601 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Reid, Peng (bib0052) 1997; 19 Voce (bib0047) 1955; 51 Lee, Barthelat, Hutchinson, Espinosa (bib0016) 2006; 22 Montemayor, Meza, Greer (bib0021) 2014; 16 Thijs, Verhaeghe, Craeghs, Humbeeck, Kruth (bib0038) 2010; 58 Lifshitz, Leber (bib0050) 1994; 15 Metals M.A.S.. AISI type 316L stainless steel, annealed. 2014. URL Van Bael, Kerckhofs, Moesen, Pyka, Schrooten, Kruth (bib0028) 2011; 528 Niendorf, Leuders, Riemer, Richard, Troster, Schwarze (bib0041) 2013; 44 Holloman, Kandan, Deshpande, Wadley (bib0049) 2014; 9 Martinez E., Murr L., Amato K., Hernandez J., Shindo P., Gaytan S., et al. 3D microstructural architectures for metal and alloy components fabricated by 3D printing/additive manufacturing technologies. 2012. Smith, Cantwell, Guan, Tsopanos, Theobald, Nurick (bib0007) 2010; 13 Ashby, Gibson (bib0001) 1999 Schaedler, Jacobsen, Torrents, Sorensen, Lian, Greer (bib0019) 2011; 334 Zheng et. al (bib0022) 2014; 344 Gray III (bib0034) 2000; 8 McShane, Radford, Deshpande, Fleck (bib0009) 2006; 25 Yasa, Kruth (bib0037) 2011; 19 Calladine, English (bib0010) 1984; 26 Fleck, Deshpande (bib0005) 2004; 71 Wadley (bib0017) 2003; 63 Fleck, Deshpande (bib0014) 2001 . Murr, Martinez, Amato, Gaytan, Hernandez, Ramirez (bib0039) 2012; 1 Kamath, El-dasher, Gallegos, King, Sisto (bib0036) 2014; 74 Ashby, Evans, Fleck, Gibson, Hutchinson, Wadley (bib0002) 2000 Radford, McShane, Deshpande, Fleck (bib0031) 2007; 74 Gumruk, Mines (bib0027) 2013; 68 Xue, Hutchinson (bib0013) 2004; 30 Deshpande, Fleck (bib0015) 2000; 24 Wadley (bib0018) 2006; 364 Tan, Harrigan, Reid (bib0011) 2002; 18 McKown, Shen, Brookes, Sutcliffe, Cantwell, Langdon (bib0024) 2008; 35 Ludwigson (bib0048) 1971; 2 Lausic, Steeves, Hibbard (bib0020) 2014; 16 Rizal Alkahari, Furumoto, Ueda, Hosokawa, Tanaka, Abdul Aziz (bib0042) 2012; 523–524 Brenne, Niendorf, Maier (bib0029) 2013; 213 Radford, McShane, Deshpande, Fleck (bib0008) 2006; 43 Dharmasena, Queheillalt, Wadley, Dudt, Chen, Knight (bib0004) 2010; 29 Yan, Hao, Hussein, Young, Raymont (bib0023) 2014; 55 Maiti, Gibson, Ashby (bib0003) 1984; 32 Hollomon (bib0045) 1945; 162 Winter, Cotton, Harris, Maw, Chapman, Eakins (bib0025) 2014; 22 Reid (bib0012) 1993; 35 Kashyap, Tangri (bib0043) 1995; 43 Ludwik (bib0046) 1909 Mines, Tsopanos, Shen, Hasan, McKown (bib0026) 2013; 60 Deshpande, Ashby, Fleck (bib0006) 2001; 49 Cote, Deshpande, Fleck, Evans (bib0032) 2004; 380 Bancroft (bib0051) 1941; 59 Ozdemir, Hernandez-Nava, Tyas, Warren, Fay, Goodall (bib0030) 2015 Brennan-Craddock, Brackett, Wildman, Hague (bib0033) 2012; 382 Lindberg, Florence (bib0053) 1983 Singh, Sangal, Murty (bib0044) 2002; 18 Kashyap (10.1016/j.ijimpeng.2017.02.007_bib0043) 1995; 43 Hollomon (10.1016/j.ijimpeng.2017.02.007_bib0045) 1945; 162 Xue (10.1016/j.ijimpeng.2017.02.007_bib0013) 2004; 30 Ludwik (10.1016/j.ijimpeng.2017.02.007_bib0046) 1909 Schaedler (10.1016/j.ijimpeng.2017.02.007_sbref0019) 2011; 334 Tan (10.1016/j.ijimpeng.2017.02.007_bib0011) 2002; 18 Kamath (10.1016/j.ijimpeng.2017.02.007_bib0036) 2014; 74 Deshpande (10.1016/j.ijimpeng.2017.02.007_bib0015) 2000; 24 Murr (10.1016/j.ijimpeng.2017.02.007_bib0039) 2012; 1 Dharmasena (10.1016/j.ijimpeng.2017.02.007_bib0004) 2010; 29 Ozdemir (10.1016/j.ijimpeng.2017.02.007_bib0030) 2015 Holloman (10.1016/j.ijimpeng.2017.02.007_bib0049) 2014; 9 Bancroft (10.1016/j.ijimpeng.2017.02.007_bib0051) 1941; 59 Zheng et. al (10.1016/j.ijimpeng.2017.02.007_bib0022) 2014; 344 Fleck (10.1016/j.ijimpeng.2017.02.007_bib0005) 2004; 71 McKown (10.1016/j.ijimpeng.2017.02.007_bib0024) 2008; 35 Fleck (10.1016/j.ijimpeng.2017.02.007_bib0014) 2001 Winter (10.1016/j.ijimpeng.2017.02.007_bib0025) 2014; 22 Radford (10.1016/j.ijimpeng.2017.02.007_bib0008) 2006; 43 Calladine (10.1016/j.ijimpeng.2017.02.007_bib0010) 1984; 26 Lee (10.1016/j.ijimpeng.2017.02.007_bib0016) 2006; 22 Gumruk (10.1016/j.ijimpeng.2017.02.007_bib0027) 2013; 68 Reid (10.1016/j.ijimpeng.2017.02.007_bib0012) 1993; 35 Montemayor (10.1016/j.ijimpeng.2017.02.007_bib0021) 2014; 16 Maiti (10.1016/j.ijimpeng.2017.02.007_bib0003) 1984; 32 Thijs (10.1016/j.ijimpeng.2017.02.007_bib0038) 2010; 58 Deshpande (10.1016/j.ijimpeng.2017.02.007_bib0006) 2001; 49 Gray III (10.1016/j.ijimpeng.2017.02.007_bib0034) 2000; 8 Lifshitz (10.1016/j.ijimpeng.2017.02.007_bib0050) 1994; 15 Wadley (10.1016/j.ijimpeng.2017.02.007_bib0017) 2003; 63 Yan (10.1016/j.ijimpeng.2017.02.007_bib0023) 2014; 55 Wadley (10.1016/j.ijimpeng.2017.02.007_bib0018) 2006; 364 10.1016/j.ijimpeng.2017.02.007_bib0040 Rizal Alkahari (10.1016/j.ijimpeng.2017.02.007_bib0042) 2012; 523–524 Van Bael (10.1016/j.ijimpeng.2017.02.007_bib0028) 2011; 528 McShane (10.1016/j.ijimpeng.2017.02.007_bib0009) 2006; 25 Ludwigson (10.1016/j.ijimpeng.2017.02.007_bib0048) 1971; 2 Singh (10.1016/j.ijimpeng.2017.02.007_bib0044) 2002; 18 Mines (10.1016/j.ijimpeng.2017.02.007_bib0026) 2013; 60 Radford (10.1016/j.ijimpeng.2017.02.007_bib0031) 2007; 74 Ashby (10.1016/j.ijimpeng.2017.02.007_bib0001) 1999 Smith (10.1016/j.ijimpeng.2017.02.007_bib0007) 2010; 13 Cote (10.1016/j.ijimpeng.2017.02.007_bib0032) 2004; 380 Niendorf (10.1016/j.ijimpeng.2017.02.007_bib0041) 2013; 44 Brenne (10.1016/j.ijimpeng.2017.02.007_bib0029) 2013; 213 10.1016/j.ijimpeng.2017.02.007_bib0035 Reid (10.1016/j.ijimpeng.2017.02.007_bib0052) 1997; 19 Lindberg (10.1016/j.ijimpeng.2017.02.007_bib0053) 1983 Brennan-Craddock (10.1016/j.ijimpeng.2017.02.007_bib0033) 2012; 382 Ashby (10.1016/j.ijimpeng.2017.02.007_bib0002) 2000 Yasa (10.1016/j.ijimpeng.2017.02.007_bib0037) 2011; 19 Voce (10.1016/j.ijimpeng.2017.02.007_bib0047) 1955; 51 Lausic (10.1016/j.ijimpeng.2017.02.007_bib0020) 2014; 16 |
References_xml | – volume: 162 start-page: 268 year: 1945 end-page: 290 ident: bib0045 article-title: Properties and structure of steel - tensile deformation publication-title: AIME Trans – volume: 44 start-page: 794 year: 2013 end-page: 796 ident: bib0041 article-title: Highly anisotropic steel processed by selective laser melting publication-title: Metall Mater Trans B – year: 1983 ident: bib0053 article-title: Dynamic pulse buckling - theory and experiment – volume: 19 start-page: 531 year: 1997 end-page: 570 ident: bib0052 article-title: Dynamic uniaxial crushing of wood publication-title: Int J Impact Eng – volume: 43 start-page: 2243 year: 2006 end-page: 2259 ident: bib0008 article-title: The response of clamped sandwich plates with metallic foam cores to simulated blast loading publication-title: Int J Solids Struct – volume: 16 start-page: 251 year: 2014 end-page: 271 ident: bib0020 article-title: Effect of grain size on the optimal architecture of electrodeposited metal/polymer microtrusses publication-title: J Sandwich Struct Mater – volume: 9 start-page: 149 year: 2014 end-page: 182 ident: bib0049 article-title: Dynamic compression of square tube cellular structures publication-title: J Mech Mater Struct – volume: 49 start-page: 1035 year: 2001 end-page: 1040 ident: bib0006 article-title: Foam topology bending verseus stretching dominated architectures publication-title: Acta Mater – year: 1909 ident: bib0046 article-title: Elemente der technologischen mechanik – volume: 523–524 start-page: 244 year: 2012 end-page: 249 ident: bib0042 article-title: Thermal conductivity of metal powder and consolidated material fabricated via selective laser melting publication-title: Key Eng Mater – volume: 35 start-page: 795 year: 2008 end-page: 810 ident: bib0024 article-title: The quasi-static and blast loading response of lattice structures publication-title: Int J Impact Eng – reference: Martinez E., Murr L., Amato K., Hernandez J., Shindo P., Gaytan S., et al. 3D microstructural architectures for metal and alloy components fabricated by 3D printing/additive manufacturing technologies. 2012. – year: 1999 ident: bib0001 article-title: Cellular solids: structure and properties – volume: 68 start-page: 125 year: 2013 end-page: 139 ident: bib0027 article-title: Compressive behaviour of stainless steel micro-lattice structures publication-title: Int J Mech Sci – volume: 2 start-page: 2825 year: 1971 end-page: 2828 ident: bib0048 article-title: Modified stress-strain relation for FCC metals and alloys publication-title: Metall Trans – volume: 71 start-page: 386 year: 2004 end-page: 401 ident: bib0005 article-title: The resistance of clamped sandwich beams to shock loading publication-title: J Appl Mech – volume: 15 start-page: 723 year: 1994 end-page: 733 ident: bib0050 article-title: Data processing in the split Hopkinson pressure bar tests publication-title: Int J Impact Eng – volume: 334 year: 2011 ident: bib0019 article-title: Ultralight metallic microlattices publication-title: Science – volume: 24 start-page: 277 year: 2000 end-page: 298 ident: bib0015 article-title: High strain rate compressive behaviour of aluminium alloy foams publication-title: Int J Impact Eng – volume: 382 year: 2012 ident: bib0033 article-title: The design of impact absorbing structures for additive manufacture publication-title: J Phys Conf Ser – volume: 19 start-page: 389 year: 2011 end-page: 395 ident: bib0037 article-title: Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting publication-title: Procedia Eng – volume: 1 start-page: 42 year: 2012 end-page: 54 ident: bib0039 article-title: Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science publication-title: J Mater Res Technol – volume: 8 start-page: 1041 year: 2000 end-page: 1042 ident: bib0034 article-title: Classic split-Hopkinson pressure bar testing publication-title: ASM Handbook Vol 8: mechanical testing and evaluation – year: 2000 ident: bib0002 article-title: Metal foams - a design guide – volume: 344 start-page: 1373 year: 2014 end-page: 1377 ident: bib0022 article-title: Ultralight, ultrastiff mechanical metamaterials publication-title: Science – volume: 63 start-page: 2331 year: 2003 end-page: 2343 ident: bib0017 article-title: Fabrication and structural performance of periodic cellular metal sandwich structures publication-title: Compos Sci Technol – volume: 213 start-page: 1558 year: 2013 end-page: 1564 ident: bib0029 article-title: Additively manufactured cellular structures: impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load publication-title: J Mater Process Technol – volume: 18 start-page: 165 year: 2002 end-page: 172 ident: bib0044 article-title: Hall Petch behaviour of 316L austenitic stainless steel at room temperature publication-title: Mater Sci Technol – volume: 74 start-page: 658 year: 2007 end-page: 667 ident: bib0031 article-title: Dynamic compressive response of stainless-steel square honeycombs publication-title: J Appl Mech – volume: 30 start-page: 1283 year: 2004 end-page: 1305 ident: bib0013 article-title: A comparative study of impulse-resistant metal sandwich plates publication-title: Int J Impact Eng – volume: 32 start-page: 1963 year: 1984 end-page: 1975 ident: bib0003 article-title: Deformation and energy absorption diagrams for cellular solids publication-title: Acta Metall – volume: 380 start-page: 272 year: 2004 end-page: 280 ident: bib0032 article-title: The out-of-plane compressive behavior of metallic honeycombs publication-title: Mater Sci Eng: A – reference: Metals M.A.S.. AISI type 316L stainless steel, annealed. 2014. URL – volume: 43 start-page: 3971 year: 1995 end-page: 3981 ident: bib0043 article-title: On the Hall-Petch relationship and substructural evolution in type 316L stainless steel publication-title: Acta Metall – start-page: 6275 year: 2001 end-page: 6305 ident: bib0014 article-title: Collapse of truss core sandwich beams in 3-point bending publication-title: Int J Solids Struct – volume: 16 start-page: 184 year: 2014 end-page: 189 ident: bib0021 article-title: Design and fabrication of hollow rigid nanolattices via two-photon lithography publication-title: Adv Eng Mater – volume: 74 start-page: 65 year: 2014 end-page: 78 ident: bib0036 article-title: Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W publication-title: Int JAdv Manuf Technol – volume: 22 start-page: 2118 year: 2006 end-page: 2145 ident: bib0016 article-title: Dynamic failure of metallic pyramidal truss core materials experiments and modeling publication-title: Int J Plast – start-page: 49 year: 2015 end-page: 61 ident: bib0030 article-title: Energy absorption in lattice structures in dynamics: experiments publication-title: Int J Impact Eng – volume: 528 start-page: 7423 year: 2011 end-page: 7431 ident: bib0028 article-title: Micro-ct-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures publication-title: Mater Sci Eng: A – volume: 22 start-page: 025021 year: 2014 ident: bib0025 article-title: Plate-impact loading of cellular structures formed by selective laser melting publication-title: Modell Simul Mater Sci Eng – volume: 13 start-page: 479 year: 2010 end-page: 501 ident: bib0007 article-title: The quasi-static and blast response of steel lattice structures publication-title: J Sandwich Struct Mater – volume: 364 start-page: 31 year: 2006 end-page: 68 ident: bib0018 article-title: Multifunctional periodic cellular metals publication-title: Philos Trans A Math Phys Eng Sci – volume: 29 start-page: 56 year: 2010 end-page: 67 ident: bib0004 article-title: Dynamic compression of metallic sandwich structures during planar impulsive loading in water publication-title: Eur J Mech A Solids – volume: 51 start-page: 219 year: 1955 ident: bib0047 article-title: A practical strain hardening function publication-title: Metallurgia – volume: 25 start-page: 215 year: 2006 end-page: 229 ident: bib0009 article-title: The response of clamped sandwich plates with lattice cores subjected to shock loading publication-title: Eur J Mech A Solids – reference: . – volume: 55 start-page: 533 year: 2014 end-page: 541 ident: bib0023 article-title: Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting publication-title: Mater Des – volume: 59 start-page: 588 year: 1941 end-page: 593 ident: bib0051 article-title: The velocity of longitudinal waves in cylindrical bars publication-title: Phys Rev – volume: 18 start-page: 480 year: 2002 end-page: 488 ident: bib0011 article-title: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam publication-title: Mater Sci Technol – volume: 60 start-page: 120 year: 2013 end-page: 132 ident: bib0026 article-title: Drop weight impact behaviour of sandwich panels with metallic micro lattice cores publication-title: Int J Impact Eng – volume: 26 start-page: 689 year: 1984 end-page: 701 ident: bib0010 article-title: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure publication-title: Int J Mech Sci – volume: 35 start-page: 1035 year: 1993 end-page: 1052 ident: bib0012 article-title: Plastic deformation mechanisms in axially compressed metal tubes used as impact energy absorbers publication-title: Int J Mech Sci – volume: 58 start-page: 3303 year: 2010 end-page: 3312 ident: bib0038 article-title: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V publication-title: Acta Mater – volume: 344 start-page: 1373 issue: 6190 year: 2014 ident: 10.1016/j.ijimpeng.2017.02.007_bib0022 article-title: Ultralight, ultrastiff mechanical metamaterials publication-title: Science doi: 10.1126/science.1252291 – volume: 22 start-page: 025021 issue: 2 year: 2014 ident: 10.1016/j.ijimpeng.2017.02.007_bib0025 article-title: Plate-impact loading of cellular structures formed by selective laser melting publication-title: Modell Simul Mater Sci Eng doi: 10.1088/0965-0393/22/2/025021 – year: 1999 ident: 10.1016/j.ijimpeng.2017.02.007_bib0001 – volume: 16 start-page: 251 issue: 3 year: 2014 ident: 10.1016/j.ijimpeng.2017.02.007_bib0020 article-title: Effect of grain size on the optimal architecture of electrodeposited metal/polymer microtrusses publication-title: J Sandwich Struct Mater doi: 10.1177/1099636213515507 – volume: 26 start-page: 689 issue: 11/12 year: 1984 ident: 10.1016/j.ijimpeng.2017.02.007_bib0010 article-title: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure publication-title: Int J Mech Sci doi: 10.1016/0020-7403(84)90021-3 – volume: 162 start-page: 268 year: 1945 ident: 10.1016/j.ijimpeng.2017.02.007_bib0045 article-title: Properties and structure of steel - tensile deformation publication-title: AIME Trans – volume: 16 start-page: 184 issue: 2 year: 2014 ident: 10.1016/j.ijimpeng.2017.02.007_bib0021 article-title: Design and fabrication of hollow rigid nanolattices via two-photon lithography publication-title: Adv Eng Mater doi: 10.1002/adem.201300254 – ident: 10.1016/j.ijimpeng.2017.02.007_bib0040 doi: 10.1007/978-3-319-48762-5_11 – year: 1983 ident: 10.1016/j.ijimpeng.2017.02.007_bib0053 – year: 2000 ident: 10.1016/j.ijimpeng.2017.02.007_bib0002 – volume: 19 start-page: 389 year: 2011 ident: 10.1016/j.ijimpeng.2017.02.007_bib0037 article-title: Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting publication-title: Procedia Eng doi: 10.1016/j.proeng.2011.11.130 – volume: 35 start-page: 1035 issue: 2 year: 1993 ident: 10.1016/j.ijimpeng.2017.02.007_bib0012 article-title: Plastic deformation mechanisms in axially compressed metal tubes used as impact energy absorbers publication-title: Int J Mech Sci doi: 10.1016/0020-7403(93)90054-X – volume: 18 start-page: 165 issue: 2 year: 2002 ident: 10.1016/j.ijimpeng.2017.02.007_bib0044 article-title: Hall Petch behaviour of 316L austenitic stainless steel at room temperature publication-title: Mater Sci Technol doi: 10.1179/026708301125000384 – volume: 32 start-page: 1963 issue: 11 year: 1984 ident: 10.1016/j.ijimpeng.2017.02.007_bib0003 article-title: Deformation and energy absorption diagrams for cellular solids publication-title: Acta Metall doi: 10.1016/0001-6160(84)90177-9 – start-page: 6275 year: 2001 ident: 10.1016/j.ijimpeng.2017.02.007_bib0014 article-title: Collapse of truss core sandwich beams in 3-point bending publication-title: Int J Solids Struct – volume: 58 start-page: 3303 issue: 9 year: 2010 ident: 10.1016/j.ijimpeng.2017.02.007_bib0038 article-title: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V publication-title: Acta Mater doi: 10.1016/j.actamat.2010.02.004 – volume: 71 start-page: 386 issue: 3 year: 2004 ident: 10.1016/j.ijimpeng.2017.02.007_bib0005 article-title: The resistance of clamped sandwich beams to shock loading publication-title: J Appl Mech doi: 10.1115/1.1629109 – volume: 35 start-page: 795 issue: 8 year: 2008 ident: 10.1016/j.ijimpeng.2017.02.007_bib0024 article-title: The quasi-static and blast loading response of lattice structures publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2007.10.005 – volume: 68 start-page: 125 year: 2013 ident: 10.1016/j.ijimpeng.2017.02.007_bib0027 article-title: Compressive behaviour of stainless steel micro-lattice structures publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2013.01.006 – start-page: 49 year: 2015 ident: 10.1016/j.ijimpeng.2017.02.007_bib0030 article-title: Energy absorption in lattice structures in dynamics: experiments publication-title: Int J Impact Eng – volume: 55 start-page: 533 year: 2014 ident: 10.1016/j.ijimpeng.2017.02.007_bib0023 article-title: Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting publication-title: Mater Des doi: 10.1016/j.matdes.2013.10.027 – volume: 24 start-page: 277 year: 2000 ident: 10.1016/j.ijimpeng.2017.02.007_bib0015 article-title: High strain rate compressive behaviour of aluminium alloy foams publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(99)00153-0 – volume: 213 start-page: 1558 issue: 9 year: 2013 ident: 10.1016/j.ijimpeng.2017.02.007_bib0029 article-title: Additively manufactured cellular structures: impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2013.03.013 – volume: 60 start-page: 120 year: 2013 ident: 10.1016/j.ijimpeng.2017.02.007_bib0026 article-title: Drop weight impact behaviour of sandwich panels with metallic micro lattice cores publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2013.04.007 – volume: 63 start-page: 2331 issue: 16 year: 2003 ident: 10.1016/j.ijimpeng.2017.02.007_bib0017 article-title: Fabrication and structural performance of periodic cellular metal sandwich structures publication-title: Compos Sci Technol doi: 10.1016/S0266-3538(03)00266-5 – volume: 380 start-page: 272 issue: 1–2 year: 2004 ident: 10.1016/j.ijimpeng.2017.02.007_bib0032 article-title: The out-of-plane compressive behavior of metallic honeycombs publication-title: Mater Sci Eng: A doi: 10.1016/j.msea.2004.03.051 – volume: 9 start-page: 149 issue: 2 year: 2014 ident: 10.1016/j.ijimpeng.2017.02.007_bib0049 article-title: Dynamic compression of square tube cellular structures publication-title: J Mech Mater Struct doi: 10.2140/jomms.2014.9.149 – volume: 74 start-page: 658 year: 2007 ident: 10.1016/j.ijimpeng.2017.02.007_bib0031 article-title: Dynamic compressive response of stainless-steel square honeycombs publication-title: J Appl Mech doi: 10.1115/1.2424717 – volume: 59 start-page: 588 year: 1941 ident: 10.1016/j.ijimpeng.2017.02.007_bib0051 article-title: The velocity of longitudinal waves in cylindrical bars publication-title: Phys Rev doi: 10.1103/PhysRev.59.588 – year: 1909 ident: 10.1016/j.ijimpeng.2017.02.007_bib0046 – volume: 43 start-page: 3971 issue: 11 year: 1995 ident: 10.1016/j.ijimpeng.2017.02.007_bib0043 article-title: On the Hall-Petch relationship and substructural evolution in type 316L stainless steel publication-title: Acta Metall doi: 10.1016/0956-7151(95)00110-H – volume: 51 start-page: 219 year: 1955 ident: 10.1016/j.ijimpeng.2017.02.007_bib0047 article-title: A practical strain hardening function publication-title: Metallurgia – volume: 382 year: 2012 ident: 10.1016/j.ijimpeng.2017.02.007_bib0033 article-title: The design of impact absorbing structures for additive manufacture publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/382/1/012042 – volume: 364 start-page: 31 issue: 1838 year: 2006 ident: 10.1016/j.ijimpeng.2017.02.007_bib0018 article-title: Multifunctional periodic cellular metals publication-title: Philos Trans A Math Phys Eng Sci doi: 10.1098/rsta.2005.1697 – volume: 15 start-page: 723 issue: 6 year: 1994 ident: 10.1016/j.ijimpeng.2017.02.007_bib0050 article-title: Data processing in the split Hopkinson pressure bar tests publication-title: Int J Impact Eng doi: 10.1016/0734-743X(94)90011-9 – volume: 49 start-page: 1035 year: 2001 ident: 10.1016/j.ijimpeng.2017.02.007_bib0006 article-title: Foam topology bending verseus stretching dominated architectures publication-title: Acta Mater doi: 10.1016/S1359-6454(00)00379-7 – volume: 25 start-page: 215 issue: 2 year: 2006 ident: 10.1016/j.ijimpeng.2017.02.007_bib0009 article-title: The response of clamped sandwich plates with lattice cores subjected to shock loading publication-title: Eur J Mech A Solids doi: 10.1016/j.euromechsol.2005.08.001 – volume: 44 start-page: 794 issue: 4 year: 2013 ident: 10.1016/j.ijimpeng.2017.02.007_bib0041 article-title: Highly anisotropic steel processed by selective laser melting publication-title: Metall Mater Trans B doi: 10.1007/s11663-013-9875-z – volume: 334 issue: 6058 year: 2011 ident: 10.1016/j.ijimpeng.2017.02.007_sbref0019 article-title: Ultralight metallic microlattices publication-title: Science doi: 10.1126/science.1211649 – volume: 13 start-page: 479 issue: 4 year: 2010 ident: 10.1016/j.ijimpeng.2017.02.007_bib0007 article-title: The quasi-static and blast response of steel lattice structures publication-title: J Sandwich Struct Mater doi: 10.1177/1099636210388983 – volume: 74 start-page: 65 issue: 1–4 year: 2014 ident: 10.1016/j.ijimpeng.2017.02.007_bib0036 article-title: Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W publication-title: Int JAdv Manuf Technol doi: 10.1007/s00170-014-5954-9 – volume: 528 start-page: 7423 issue: 24 year: 2011 ident: 10.1016/j.ijimpeng.2017.02.007_bib0028 article-title: Micro-ct-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures publication-title: Mater Sci Eng: A doi: 10.1016/j.msea.2011.06.045 – volume: 19 start-page: 531 issue: 5–6 year: 1997 ident: 10.1016/j.ijimpeng.2017.02.007_bib0052 article-title: Dynamic uniaxial crushing of wood publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(97)00016-X – volume: 22 start-page: 2118 issue: 11 year: 2006 ident: 10.1016/j.ijimpeng.2017.02.007_bib0016 article-title: Dynamic failure of metallic pyramidal truss core materials experiments and modeling publication-title: Int J Plast doi: 10.1016/j.ijplas.2006.02.006 – volume: 1 start-page: 42 issue: 1 year: 2012 ident: 10.1016/j.ijimpeng.2017.02.007_bib0039 article-title: Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science publication-title: J Mater Res Technol doi: 10.1016/S2238-7854(12)70009-1 – volume: 30 start-page: 1283 issue: 10 year: 2004 ident: 10.1016/j.ijimpeng.2017.02.007_bib0013 article-title: A comparative study of impulse-resistant metal sandwich plates publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2003.08.007 – volume: 2 start-page: 2825 year: 1971 ident: 10.1016/j.ijimpeng.2017.02.007_bib0048 article-title: Modified stress-strain relation for FCC metals and alloys publication-title: Metall Trans doi: 10.1007/BF02813258 – volume: 29 start-page: 56 year: 2010 ident: 10.1016/j.ijimpeng.2017.02.007_bib0004 article-title: Dynamic compression of metallic sandwich structures during planar impulsive loading in water publication-title: Eur J Mech A Solids doi: 10.1016/j.euromechsol.2009.05.003 – volume: 18 start-page: 480 issue: 5 year: 2002 ident: 10.1016/j.ijimpeng.2017.02.007_bib0011 article-title: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam publication-title: Mater Sci Technol doi: 10.1179/026708302225002092 – volume: 523–524 start-page: 244 year: 2012 ident: 10.1016/j.ijimpeng.2017.02.007_bib0042 article-title: Thermal conductivity of metal powder and consolidated material fabricated via selective laser melting publication-title: Key Eng Mater doi: 10.4028/www.scientific.net/KEM.523-524.244 – volume: 8 start-page: 1041 year: 2000 ident: 10.1016/j.ijimpeng.2017.02.007_bib0034 article-title: Classic split-Hopkinson pressure bar testing – volume: 43 start-page: 2243 issue: 7–8 year: 2006 ident: 10.1016/j.ijimpeng.2017.02.007_bib0008 article-title: The response of clamped sandwich plates with metallic foam cores to simulated blast loading publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2005.07.006 – ident: 10.1016/j.ijimpeng.2017.02.007_bib0035 |
SSID | ssj0017050 |
Score | 2.5564659 |
Snippet | •Metallic hybrid cellular structures were manufactured with selective laser melting.•The hybrid geometry was created by combining honeycomb and lattice... Additive manufacturing (AM) enables the design of new cellular materials for blast and impact mitigation by allowing novel material-geometry combinations to be... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 177 |
SubjectTerms | Additive manufacturing Blast Cellular manufacture Cellular structures Deformation mechanisms Design optimization Energy absorption Impact Impact response Impact velocity Laser beam melting Lattice theory Lattices Materials selection Melting Porosity Power efficiency Selective laser melting Stainless steel Wave propagation |
Title | Impact response of additively manufactured metallic hybrid lattice materials |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2017.02.007 https://www.proquest.com/docview/1937682455 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPMVbHljTxomdxCNCoPJQF6jUzXIcG1KVtCrp0IXfzl0eVUFCDGxJdI6i8_nuHH3fZ0KuoGS4TCTMs0HoPIgQ46VGaw-lrGIZRCaq0RaDqD_kDyMx6pCblguDsMom99c5vcrWzZNe483eLM97zxCcHOrfCDoKZG8io5zzGKO8-7mCeaBaTPWfBYw9tF5jCY-7-TiH5rR4RYhXXGt3xr8VqB-puqo_d7tkp2kc6XX9bXukY4t9sr0mJ3hAnu4ryiOd17hXS6eOIl4IM9pkSd91sUAew2JuM_puoeue5Ia-LZGzRSe6RBgcGJV1TB6S4d3ty03fa05L8EzI_dKLhM1EaBKmmY5Y4ruMy9DplOsMFhpcS1Qji2Lu68jJJEmdSUXKfGe0MGEgwiOyUUwLe0wobIkSPwqkzTjjTsOaZlI43MnFfiZZekJE6yJlGilxPNFiolrM2Fi1rlXoWuUHClx7QnqrcbNaTOPPEbKdAfUtLBRk_D_HnrdTppqF-aGgX4UNVsCFOP3Hq8_IFt7VkLFzslHOF_YCmpMyvayi75JsXt8_9gdfmjTkVA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLYKDMCAOMWNB9a0OewcI0KgFgoLrdTNchwbUqUpKunAwm_nvRxVQUId2KLEL4qe3xl97zMh15AyTMJDx9KuZyywEGXFSkoLqayCyPWVX6Etnv3ukD2M-KhFbptZGIRV1rG_iulltK7vdGptdt7TtPMCxskg_42gosDpzWCNbDBwXzzGoP21wHkgXUz5owVWW7h8aUx43E7HKVSn-StivIKKvDP4K0P9itVlArrfJTt15Uhvqo_bIy2d75PtJT7BA9LvlTOPdFYBXzWdGoqAIQxp2SedyHyOgwzzmU7oREPZnaWKvn3i0BbNZIE4OFhUVEZ5SIb3d4PbrlUfl2Apj9mF5XOdcE-FjnSk74S2SVjkGRkzmYCnwXWEdGR-wGzpmygMY6NiHju2UZIrz-XeEVnPp7k-JhR6otD23UgnzGFGglM7ETfYygV2EjnxCeGNioSqucTxSItMNKCxsWhUK1C1wnYFqPaEdBZy7xWbxkqJqNkB8cMuBIT8lbLnzZaJ2jM_BBSs0GG5jPPTf7z6imx2B0990e89P56RLXxS4cfOyXoxm-sLqFSK-LK0xG_lM-Xi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+response+of+additively+manufactured+metallic+hybrid+lattice+materials&rft.jtitle=International+journal+of+impact+engineering&rft.au=Harris%2C+J.A.&rft.au=Winter%2C+R.E.&rft.au=McShane%2C+G.J.&rft.date=2017-06-01&rft.pub=Elsevier+Ltd&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=104&rft.spage=177&rft.epage=191&rft_id=info:doi/10.1016%2Fj.ijimpeng.2017.02.007&rft.externalDocID=S0734743X16306947 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |