Solitary wave solutions for a strain wave equation in a microstructured solid

In this article, a strain wave equation (SWE) is studied, which is used to model wave propagation in microstructured materials that earn a noteworthy place in solid-state physics. This equation also signifies the dynamics of various physical phenomena. The Sardar-subequation method (SSM) is utilized...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 39; p. 105755
Main Authors Rehman, Hamood ur, Awan, Aziz Ullah, Habib, Azka, Gamaoun, Fehmi, Din, ElSayed M. Tag El, Galal, Ahmed M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, a strain wave equation (SWE) is studied, which is used to model wave propagation in microstructured materials that earn a noteworthy place in solid-state physics. This equation also signifies the dynamics of various physical phenomena. The Sardar-subequation method (SSM) is utilized for this model. Granting appropriate values to parameters, we obtain various types of soliton solutions such as periodic singular solitons, bright solitons, dark solitons, singular soliton, combined dark-bright solitons, and some other wave solutions. These novel solitons and other wave results have significant applications in engineering and applied sciences. The graphical sketchings of the results are illustrated to purify the impact of the SSM. Furthermore, the executed technique can be utilized for further studies to discuss the realistic phenomena developing in physical and engineering problems. •A strain wave equation is studied, which is used to model wave propagation in microstructured materials.•The Sardar-subequation method is utilized for this model.•Granting appropriate values to parameters, we obtained various types of soliton solutions.•These novel solitons and other wave results have significant applications in engineering and applied sciences.
AbstractList In this article, a strain wave equation (SWE) is studied, which is used to model wave propagation in microstructured materials that earn a noteworthy place in solid-state physics. This equation also signifies the dynamics of various physical phenomena. The Sardar-subequation method (SSM) is utilized for this model. Granting appropriate values to parameters, we obtain various types of soliton solutions such as periodic singular solitons, bright solitons, dark solitons, singular soliton, combined dark-bright solitons, and some other wave solutions. These novel solitons and other wave results have significant applications in engineering and applied sciences. The graphical sketchings of the results are illustrated to purify the impact of the SSM. Furthermore, the executed technique can be utilized for further studies to discuss the realistic phenomena developing in physical and engineering problems.
In this article, a strain wave equation (SWE) is studied, which is used to model wave propagation in microstructured materials that earn a noteworthy place in solid-state physics. This equation also signifies the dynamics of various physical phenomena. The Sardar-subequation method (SSM) is utilized for this model. Granting appropriate values to parameters, we obtain various types of soliton solutions such as periodic singular solitons, bright solitons, dark solitons, singular soliton, combined dark-bright solitons, and some other wave solutions. These novel solitons and other wave results have significant applications in engineering and applied sciences. The graphical sketchings of the results are illustrated to purify the impact of the SSM. Furthermore, the executed technique can be utilized for further studies to discuss the realistic phenomena developing in physical and engineering problems. •A strain wave equation is studied, which is used to model wave propagation in microstructured materials.•The Sardar-subequation method is utilized for this model.•Granting appropriate values to parameters, we obtained various types of soliton solutions.•These novel solitons and other wave results have significant applications in engineering and applied sciences.
ArticleNumber 105755
Author Galal, Ahmed M.
Awan, Aziz Ullah
Habib, Azka
Din, ElSayed M. Tag El
Gamaoun, Fehmi
Rehman, Hamood ur
Author_xml – sequence: 1
  givenname: Hamood ur
  surname: Rehman
  fullname: Rehman, Hamood ur
  organization: Department of Mathematics, University of Okara, Okara, Pakistan
– sequence: 2
  givenname: Aziz Ullah
  orcidid: 0000-0003-3184-3652
  surname: Awan
  fullname: Awan, Aziz Ullah
  email: aziz.math@pu.edu.pk
  organization: Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan
– sequence: 3
  givenname: Azka
  surname: Habib
  fullname: Habib, Azka
  organization: Department of Mathematics, University of Okara, Okara, Pakistan
– sequence: 4
  givenname: Fehmi
  surname: Gamaoun
  fullname: Gamaoun, Fehmi
  organization: Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
– sequence: 5
  givenname: ElSayed M. Tag El
  surname: Din
  fullname: Din, ElSayed M. Tag El
  organization: Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt
– sequence: 6
  givenname: Ahmed M.
  surname: Galal
  fullname: Galal, Ahmed M.
  organization: Mechanical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Wadi addawaser 11991, Saudi Arabia
BookMark eNp9kN9KwzAYxYNMcM69gFd9gc58adI24I0M_wwmXqjXIU1SSemambYT397EKogXu8rHOfwOOecczTrXGYQuAa8AQ37VrLzt9iuCCQkCKxg7QXNCANKs4MXsz32Gln3fYBwoyhjAHD0-u9YO0n8mH_Jgkt6142Bd1ye184lM-sFL202eeR9l9JIgyGRnlXfBHtUweqMjafUFOq1l25vlz7tAr3e3L-uHdPt0v1nfbFOVUTykOXAKmGstaWGorqXkFXCodUUrKlnBlSoqrnNSBIVhxsoqrykwltckA0KzBdpMudrJRuy93YUGwkkrvgXn34T0g1WtEcB0TZQ2HDJFcYHLjGEChnFscloCD1nllBX79N7UQoVBYtHYvRWARVxZNCKuLOLKYlo5oOQf-vuVo9D1BJkw0MEaL3plTaeMtt6oITSwx_Av3MuXuw
CitedBy_id crossref_primary_10_1016_j_rinp_2023_106452
crossref_primary_10_1016_j_rinp_2023_106771
crossref_primary_10_1016_j_rinp_2024_107467
crossref_primary_10_1016_j_rinp_2023_106690
crossref_primary_10_3390_sym15030650
crossref_primary_10_3390_sym15081567
crossref_primary_10_1007_s42452_024_05759_8
crossref_primary_10_1007_s11082_023_04866_x
crossref_primary_10_1016_j_rinp_2023_107160
crossref_primary_10_1016_j_asej_2024_103090
crossref_primary_10_1016_j_aej_2024_07_014
crossref_primary_10_1016_j_rinp_2022_105969
crossref_primary_10_1016_j_asej_2023_102567
crossref_primary_10_1016_j_rinp_2023_106632
crossref_primary_10_1016_j_rinp_2024_107369
crossref_primary_10_1007_s12346_024_01002_2
crossref_primary_10_1016_j_heliyon_2023_e15690
crossref_primary_10_1016_j_padiff_2023_100537
crossref_primary_10_1016_j_rineng_2024_101861
crossref_primary_10_1016_j_rinp_2024_107550
crossref_primary_10_3390_math10183377
crossref_primary_10_1007_s11082_023_06220_7
crossref_primary_10_1155_2022_1555198
crossref_primary_10_1007_s11082_022_04208_3
crossref_primary_10_1007_s11082_024_06705_z
crossref_primary_10_1007_s11082_024_06413_8
crossref_primary_10_1007_s11082_023_06208_3
crossref_primary_10_1016_j_ijleo_2023_171305
crossref_primary_10_1007_s11082_024_06594_2
crossref_primary_10_3390_sym14102151
crossref_primary_10_1016_j_rinp_2022_105918
crossref_primary_10_1016_j_rinp_2022_106049
crossref_primary_10_1016_j_asej_2024_102757
crossref_primary_10_1016_j_asej_2023_102413
crossref_primary_10_1007_s40819_024_01761_1
crossref_primary_10_3390_axioms12121106
crossref_primary_10_3934_math_20231101
Cites_doi 10.1016/j.mcm.2003.12.010
10.1088/1402-4896/ac3879
10.1007/s12190-008-0159-8
10.1016/j.cnsns.2011.05.025
10.1016/j.physa.2019.124077
10.1016/j.cnsns.2008.04.016
10.3934/math.2021349
10.1007/s11082-021-02775-5
10.1007/s11071-021-06284-8
10.1016/j.jksus.2018.03.019
10.1016/j.geomphys.2021.104347
10.1016/S0375-9601(98)00956-6
10.1016/j.rinp.2020.103324
10.3390/sym13060963
10.1016/j.aml.2020.106936
10.1007/s00521-012-1077-0
10.1016/j.chaos.2020.110487
10.1016/j.rinp.2021.104133
10.1088/0253-6102/54/3/04
10.1063/5.0050624
10.1140/epjp/s13360-021-01773-6
10.1007/s11082-018-1406-3
10.1007/s11082-021-03190-6
10.1016/j.joes.2021.08.009
10.1016/j.aml.2021.107301
10.1016/j.amc.2004.09.054
10.1016/j.chaos.2021.111066
10.1016/j.physleta.2007.07.051
10.1063/5.0038671
10.1515/nleng-2016-0020
10.1016/j.aml.2021.107161
10.1140/epjp/s13360-021-01385-0
10.3934/math.2022623
10.1142/S0217984921500585
10.1142/S0217984921503243
10.1088/1572-9494/ac1a6c
10.1016/S0375-9601(00)00010-4
10.1016/j.cam.2011.02.021
10.1007/s12043-020-02025-5
10.1142/S0217979221500016
10.1016/j.aej.2014.01.002
10.1088/1402-4896/ab52c1
10.1016/j.chaos.2021.111222
10.1108/COMPEL-08-2020-0286
10.1016/j.rinp.2021.104557
10.1103/PhysRevE.72.026616
10.1142/S0217984921503723
10.1016/j.rinp.2021.103850
10.1016/j.rinp.2021.104656
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rinp.2022.105755
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2211-3797
ExternalDocumentID oai_doaj_org_article_15df2cde913c4070835021e590e64819
10_1016_j_rinp_2022_105755
S2211379722004272
GroupedDBID --K
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
XH2
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c340t-6194109dda47e4dfaa9b191fdb4b4a579cc7b9d627db450558b6f41556f231243
IEDL.DBID M48
ISSN 2211-3797
IngestDate Wed Aug 27 01:29:20 EDT 2025
Tue Jul 01 02:27:44 EDT 2025
Thu Apr 24 23:09:48 EDT 2025
Wed Jun 26 17:52:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Strain wave equation (SWE)
Nonlinear partial differential equation (NLPDEs)
Solitary wave solutions
Sardar-subequation method (SSM)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-6194109dda47e4dfaa9b191fdb4b4a579cc7b9d627db450558b6f41556f231243
ORCID 0000-0003-3184-3652
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211379722004272
ParticipantIDs doaj_primary_oai_doaj_org_article_15df2cde913c4070835021e590e64819
crossref_citationtrail_10_1016_j_rinp_2022_105755
crossref_primary_10_1016_j_rinp_2022_105755
elsevier_sciencedirect_doi_10_1016_j_rinp_2022_105755
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Results in physics
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wazwaz (b32) 2005; 169
Khater, Lu (b3) 2021; 35
Khater, Akinyemi, Elagan, El-Shorbagy, Alfalqi, Alzaidi (b1) 2021; 13
Sulaiman, Yusuf, Abdeljabbar, Alquran (b22) 2021; 169
Sulaiman, Yusuf, Alquran (b26) 2021; 104
Akinyemi, Rezazadeh, Shi, Inc, Khater, Ahmad (b52) 2021; 29
Wang, Li, Zhang (b35) 2008; 372
Yang, Tian, Qu, Zhang, Chen, Wei (b49) 2021; 150
Gao, Guo, Shan (b44) 2021; 150
Khater (b4) 2021; 35
Ai-Lin, Ji (b37) 2010; 54
Sulaiman, Yusuf, Tchier, Inc, Tawfiq, Bousbahi (b27) 2021; 22
Ayati, Hosseini, Mirzazadeh (b41) 2017; 6
Tariq, Seadawy (b25) 2020; 32
Irshad, Ahmed, Nazir, Khan, Mohyud-Din (b56) 2020; 550
Akbar, Kayum, Osman (b12) 2021; 73
Brazhnyi, Konotop (b21) 2005; 72
Kumar, Mohan (b24) 2021; 96
Khan (b14) 2020; 18
Gao, Guo, Shan (b45) 2021; 136
Asjad, Munawar, Muhammad, Hamoud, Emadifar, Hamasalh (b51) 2022; 7
Gao, Tian, Shen, Feng (b48) 2021; 151
Akbar, Hj, Ali, Mohyud-din (b33) 2012; 16
Wazwaz (b30) 2004; 40
Khan, Ahmad, Akgül, Ahmad, Thounthong (b23) 2021; 95
Khan, Faraz (b20) 2021; 40
Khan, Taghipour, Falahian, Nikkar (b18) 2013; 23
Yan, Zhang (b31) 1999; 252
Wazwaz (b38) 2012; 17
Rezazadeh, Inc, Baleanu (b50) 2020; 8
Osman, Liu, Hosseini, Yusuf (b10) 2020; 95
Fan (b40) 2000; 265
Fahim, Kundu, Islam, Akbar, Osman (b13) 2022; 7
Wang, Tian, Hu, Liu (b46) 2021; 119
Shen, Tian (b47) 2021; 122
Gao, Guo, Shan (b42) 2021; 120
Khan (b16) 2021; 35
Baskonus, Osman, Ramzan, Tahir, Ashraf (b11) 2021; 53
Khan (b17) 2021; 35
Khan, Taghipour, Falahian, Nikkar (b19) 2013; 23
Leto, Choudhury (b28) 2009; 14
Alam, Akbar, Mohyud-Din (b29) 2014; 53
Khater, Mousa, El-Shorbagy, Attia (b7) 2021; 136
Khater, Anwar, Tariq, Mohamed (b8) 2021; 11
Siddique, Jaradat, Zafar, Mehdi, Osman (b9) 2021; 28
Ablowitz, Ablowitz, Clarkson, Clarkson (b36) 1991
Khan (b15) 2021; 53
Taghizadeh, Mirzazadeh (b39) 2011; 235
Gao, Guo, Shan (b43) 2022
Zayed (b34) 2009; 30
Rehman, Inc, Asjad, Habib, Munir (b53) 2022
Cattani, Sulaiman, Baskonus, Bulut (b55) 2018; 50
Khater, Elagan, Mousa, El-Shorbagy, Alfalqi, Alzaidi (b6) 2021; 25
Attia, Khater, El-Sayed Ahmed, El-Shorbagy (b5) 2021; 11
Ayati, Hosseini, Mirzazadeh (b54) 2017; 6
Khater, Ahmed (b2) 2021; 6
Khan (10.1016/j.rinp.2022.105755_b20) 2021; 40
Gao (10.1016/j.rinp.2022.105755_b48) 2021; 151
Khan (10.1016/j.rinp.2022.105755_b14) 2020; 18
Brazhnyi (10.1016/j.rinp.2022.105755_b21) 2005; 72
Siddique (10.1016/j.rinp.2022.105755_b9) 2021; 28
Gao (10.1016/j.rinp.2022.105755_b42) 2021; 120
Wang (10.1016/j.rinp.2022.105755_b46) 2021; 119
Shen (10.1016/j.rinp.2022.105755_b47) 2021; 122
Gao (10.1016/j.rinp.2022.105755_b43) 2022
Osman (10.1016/j.rinp.2022.105755_b10) 2020; 95
Wazwaz (10.1016/j.rinp.2022.105755_b32) 2005; 169
Rezazadeh (10.1016/j.rinp.2022.105755_b50) 2020; 8
Akbar (10.1016/j.rinp.2022.105755_b33) 2012; 16
Khater (10.1016/j.rinp.2022.105755_b2) 2021; 6
Ablowitz (10.1016/j.rinp.2022.105755_b36) 1991
Sulaiman (10.1016/j.rinp.2022.105755_b27) 2021; 22
Yan (10.1016/j.rinp.2022.105755_b31) 1999; 252
Asjad (10.1016/j.rinp.2022.105755_b51) 2022; 7
Ayati (10.1016/j.rinp.2022.105755_b54) 2017; 6
Fahim (10.1016/j.rinp.2022.105755_b13) 2022; 7
Yang (10.1016/j.rinp.2022.105755_b49) 2021; 150
Wang (10.1016/j.rinp.2022.105755_b35) 2008; 372
Taghizadeh (10.1016/j.rinp.2022.105755_b39) 2011; 235
Zayed (10.1016/j.rinp.2022.105755_b34) 2009; 30
Leto (10.1016/j.rinp.2022.105755_b28) 2009; 14
Kumar (10.1016/j.rinp.2022.105755_b24) 2021; 96
Wazwaz (10.1016/j.rinp.2022.105755_b38) 2012; 17
Alam (10.1016/j.rinp.2022.105755_b29) 2014; 53
Gao (10.1016/j.rinp.2022.105755_b44) 2021; 150
Cattani (10.1016/j.rinp.2022.105755_b55) 2018; 50
Wazwaz (10.1016/j.rinp.2022.105755_b30) 2004; 40
Fan (10.1016/j.rinp.2022.105755_b40) 2000; 265
Khater (10.1016/j.rinp.2022.105755_b6) 2021; 25
Khan (10.1016/j.rinp.2022.105755_b17) 2021; 35
Irshad (10.1016/j.rinp.2022.105755_b56) 2020; 550
Ayati (10.1016/j.rinp.2022.105755_b41) 2017; 6
Khater (10.1016/j.rinp.2022.105755_b4) 2021; 35
Baskonus (10.1016/j.rinp.2022.105755_b11) 2021; 53
Khan (10.1016/j.rinp.2022.105755_b19) 2013; 23
Akinyemi (10.1016/j.rinp.2022.105755_b52) 2021; 29
Sulaiman (10.1016/j.rinp.2022.105755_b22) 2021; 169
Khan (10.1016/j.rinp.2022.105755_b23) 2021; 95
Khan (10.1016/j.rinp.2022.105755_b15) 2021; 53
Sulaiman (10.1016/j.rinp.2022.105755_b26) 2021; 104
Khater (10.1016/j.rinp.2022.105755_b1) 2021; 13
Khater (10.1016/j.rinp.2022.105755_b8) 2021; 11
Khan (10.1016/j.rinp.2022.105755_b16) 2021; 35
Rehman (10.1016/j.rinp.2022.105755_b53) 2022
Tariq (10.1016/j.rinp.2022.105755_b25) 2020; 32
Khater (10.1016/j.rinp.2022.105755_b7) 2021; 136
Attia (10.1016/j.rinp.2022.105755_b5) 2021; 11
Gao (10.1016/j.rinp.2022.105755_b45) 2021; 136
Ai-Lin (10.1016/j.rinp.2022.105755_b37) 2010; 54
Akbar (10.1016/j.rinp.2022.105755_b12) 2021; 73
Khan (10.1016/j.rinp.2022.105755_b18) 2013; 23
Khater (10.1016/j.rinp.2022.105755_b3) 2021; 35
References_xml – volume: 23
  start-page: 1335
  year: 2013
  end-page: 1341
  ident: b18
  article-title: A new approach to modified regularized long wave equation
  publication-title: Neural Comput Appl
– volume: 40
  start-page: 593
  year: 2021
  end-page: 601
  ident: b20
  article-title: Simple use of the Maclaurin series method for linear and non-linear differential equations arising in circuit analysis
  publication-title: COMPEL
– volume: 169
  year: 2021
  ident: b22
  article-title: Dynamics of lump collision phenomena to the (3+ 1)-dimensional nonlinear evolution equation
  publication-title: J Geom Phys
– start-page: 1
  year: 2022
  end-page: 9
  ident: b43
  article-title: In nonlinear optics, fluid mechanics, plasma physics or atmospheric science: Symbolic computation on a generalized variable-coefficient Korteweg–de Vries equation
  publication-title: Acta Math Sin (Engl Ser)
– volume: 550
  year: 2020
  ident: b56
  article-title: Novel exact double periodic soliton solutions to strain wave equation in micro structured solids
  publication-title: Physica A
– volume: 35
  year: 2021
  ident: b3
  article-title: Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation
  publication-title: Modern Phys Lett B
– volume: 53
  start-page: 1
  year: 2021
  end-page: 8
  ident: b15
  article-title: A novel soliton solutions for the fractal Radhakrishnan-Kundu-Lakshmanan model arising in birefringent fibers
  publication-title: Opt Quantum Electron
– volume: 122
  year: 2021
  ident: b47
  article-title: Bilinear auto-bäcklund transformations and soliton solutions of a (3+ 1)-dimensional generalized nonlinear evolution equation for the shallow water waves
  publication-title: Appl Math Lett
– volume: 25
  year: 2021
  ident: b6
  article-title: Sub-10-fs-pulse propagation between analytical and numerical investigation
  publication-title: Results Phys
– volume: 16
  start-page: 1551
  year: 2012
  end-page: 1558
  ident: b33
  article-title: Some new exact traveling wave solutions to the (3+ 1)-dimensional Kadomtsev–Petviashvili equation
  publication-title: World Appl Sci J
– volume: 53
  start-page: 1
  year: 2021
  end-page: 17
  ident: b11
  article-title: On pulse propagation of soliton wave solutions related to the perturbed Chen–Lee–Liu equation in an optical fiber
  publication-title: Opt Quantum Electron
– volume: 30
  start-page: 89
  year: 2009
  end-page: 103
  ident: b34
  article-title: The
  publication-title: J Appl Math Comput
– volume: 95
  year: 2020
  ident: b10
  article-title: Different wave structures and stability analysis for the generalized (2+ 1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation
  publication-title: Phys Scr
– volume: 136
  start-page: 1
  year: 2021
  end-page: 9
  ident: b45
  article-title: Looking at an open sea via a generalized
  publication-title: Eur Phys J Plus
– volume: 73
  year: 2021
  ident: b12
  article-title: Bright, periodic, compacton and bell-shape soliton solutions of the extended QZK and (3+ 1)-dimensional ZK equations
  publication-title: Commun Theor Phys
– volume: 17
  start-page: 491
  year: 2012
  end-page: 495
  ident: b38
  article-title: Multiple-soliton solutions for a (3+ 1)-dimensional generalized KP equation
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 35
  year: 2021
  ident: b16
  article-title: A novel type of soliton solutions for the Fokas-Lenells equation arising in the application of optical fibers
  publication-title: Modern Phys Lett B
– volume: 372
  start-page: 417
  year: 2008
  end-page: 423
  ident: b35
  article-title: The
  publication-title: Phys Lett A
– volume: 32
  start-page: 156
  year: 2020
  end-page: 162
  ident: b25
  article-title: On the soliton solutions to the modified Benjamin–Bona–Mahony and coupled Drinfeld-Sokolov-Wilson models and its applications
  publication-title: J King Saud Univ-Sci
– volume: 13
  start-page: 963
  year: 2021
  ident: b1
  article-title: Bright—dark soliton waves dynamics in pseudo spherical surfaces through the nonlinear Kaup—Kupershmidt equation
  publication-title: Symmetry
– volume: 35
  year: 2021
  ident: b4
  article-title: Abundant breather and semi-analytical investigation: On high-frequency waves dynamics in the relaxation medium
  publication-title: Modern Phys Lett B
– volume: 104
  start-page: 639
  year: 2021
  end-page: 648
  ident: b26
  article-title: Dynamics of optical solitons and nonautonomous complex wave solutions to the nonlinear Schrodinger equation with variable coefficients
  publication-title: Nonlinear Dynam
– volume: 6
  start-page: 25
  year: 2017
  end-page: 29
  ident: b54
  article-title: Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids
  publication-title: Nonlinear Eng
– volume: 265
  start-page: 353
  year: 2000
  end-page: 357
  ident: b40
  article-title: Two new applications of the homogeneous balance method
  publication-title: Phys Lett A
– volume: 96
  year: 2021
  ident: b24
  article-title: A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev–Petviashvili equation with variable time coeffcient using Hirota method
  publication-title: Phys Scr
– year: 2022
  ident: b53
  article-title: New soliton solutions for the space–time fractional modified third order Korteweg–de Vries equation
  publication-title: J Ocean Eng Sci
– volume: 136
  start-page: 1
  year: 2021
  end-page: 11
  ident: b7
  article-title: Abundant novel wave solutions of nonlinear Klein–Gordon–Zakharov (KGZ) model
  publication-title: Eur Phys J Plus
– volume: 169
  start-page: 321
  year: 2005
  end-page: 338
  ident: b32
  article-title: The tanh method for generalized forms of nonlinear heat conduction and Burgers—Fisher equations
  publication-title: Appl Math Comput
– volume: 11
  year: 2021
  ident: b8
  article-title: Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method
  publication-title: AIP Adv
– year: 1991
  ident: b36
  publication-title: Solitons, nonlinear evolution equations and inverse scattering
– volume: 18
  year: 2020
  ident: b14
  article-title: Fractal modification of complex Ginzburg–Landau model arising in the oscillating phenomena
  publication-title: Results Phys
– volume: 8
  year: 2020
  ident: b50
  article-title: New solitary wave solutions for variants of (3+ 1)-dimensional Wazwaz-Benjamin–Bona–Mahony equations
  publication-title: Front Phys
– volume: 95
  start-page: 1
  year: 2021
  end-page: 13
  ident: b23
  article-title: Numerical solution of time–fractional coupled Korteweg–de Vries and Klein—Gordon equations by local meshless method
  publication-title: Pramana
– volume: 252
  start-page: 291
  year: 1999
  end-page: 296
  ident: b31
  article-title: New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics
  publication-title: Phys Lett A
– volume: 28
  year: 2021
  ident: b9
  article-title: Exact traveling wave solutions for two prolific conformable M-fractional differential equations via three diverse approaches
  publication-title: Results Phys
– volume: 120
  year: 2021
  ident: b42
  article-title: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system
  publication-title: Appl Math Lett
– volume: 22
  year: 2021
  ident: b27
  article-title: Lie-Bäcklund symmetries, analytical solutions and conservation laws to the more general (2+ 1)-dimensional Boussinesq equation
  publication-title: Results Phys
– volume: 235
  start-page: 4871
  year: 2011
  end-page: 4877
  ident: b39
  article-title: The first integral method to some complex nonlinear partial differential equations
  publication-title: J Comput Appl Math
– volume: 50
  start-page: 1
  year: 2018
  end-page: 11
  ident: b55
  article-title: On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel-Sokolov systems
  publication-title: Opt Quantum Electron
– volume: 72
  year: 2005
  ident: b21
  article-title: Stable and unstable vector dark solitons of coupled nonlinear Schrödinger equations: Application to two-component Bose–Einstein condensates
  publication-title: Phys Rev E
– volume: 119
  year: 2021
  ident: b46
  article-title: Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber
  publication-title: Appl Math Lett
– volume: 54
  start-page: 401
  year: 2010
  ident: b37
  article-title: Exact solutions of (2+ 1)-dimensional HNLS equation
  publication-title: Commun Theor Phys
– volume: 6
  start-page: 5896
  year: 2021
  end-page: 5908
  ident: b2
  article-title: Strong langmuir turbulence dynamics through the trigonometric quintic and exponential B-spline schemes
  publication-title: AIMS Math
– volume: 150
  year: 2021
  ident: b44
  article-title: Symbolic computation on a (2+ 1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system for the water waves
  publication-title: Chaos Solitons Fractals
– volume: 53
  start-page: 233
  year: 2014
  end-page: 241
  ident: b29
  article-title: General traveling wave solutions of the strain wave equation in microstructured solids via the new approach of generalized (G’/G)-expansion method
  publication-title: Alex Eng J
– volume: 35
  year: 2021
  ident: b17
  article-title: Novel soliton solutions of the fractal Biswas-Milovic model arising in photonics
  publication-title: Internat J Modern Phys B
– volume: 7
  start-page: 11134
  year: 2022
  end-page: 11149
  ident: b51
  article-title: Traveling wave solutions to the Boussinesq equation via sardar sub-equation technique
  publication-title: AIMS Math
– volume: 150
  year: 2021
  ident: b49
  article-title: Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber
  publication-title: Chaos Solitons Fractals
– volume: 6
  start-page: 25
  year: 2017
  end-page: 29
  ident: b41
  article-title: Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids
  publication-title: Nonlinear Eng
– volume: 29
  year: 2021
  ident: b52
  article-title: New optical solitons of perturbed nonlinear Schrödinger—Hirota equation with spatio-temporal dispersion
  publication-title: Results Phys
– volume: 23
  start-page: 1335
  year: 2013
  end-page: 1341
  ident: b19
  article-title: A new approach to modified regularized long wave equation
  publication-title: Neural Comput Appl
– volume: 40
  start-page: 499
  year: 2004
  end-page: 508
  ident: b30
  article-title: A sine-cosine method for handling nonlinear wave equations
  publication-title: Math Comput Modelling
– volume: 14
  start-page: 1999
  year: 2009
  end-page: 2005
  ident: b28
  article-title: Solitary wave families of a generalized microstructure PDE
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 151
  year: 2021
  ident: b48
  article-title: Comment on ”shallow water in an open sea or a wide channel: Auto-and non-auto-Bäcklund transformations with solitons for a generalized (2+ 1)-dimensional dispersive long-wave system”
  publication-title: Chaos Solitons Fractals
– volume: 11
  year: 2021
  ident: b5
  article-title: Accurate sets of solitary solutions for the quadratic–cubic fractional nonlinear Schrödinger equation
  publication-title: AIP Adv
– volume: 7
  start-page: 272
  year: 2022
  end-page: 279
  ident: b13
  article-title: Wave profile analysis of a couple of (3+ 1)-dimensional nonlinear evolution equations by sine-Gordon expansion approach
  publication-title: J Ocean Eng Sci
– volume: 40
  start-page: 499
  issue: 5–6
  year: 2004
  ident: 10.1016/j.rinp.2022.105755_b30
  article-title: A sine-cosine method for handling nonlinear wave equations
  publication-title: Math Comput Modelling
  doi: 10.1016/j.mcm.2003.12.010
– volume: 96
  issue: 12
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b24
  article-title: A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev–Petviashvili equation with variable time coeffcient using Hirota method
  publication-title: Phys Scr
  doi: 10.1088/1402-4896/ac3879
– volume: 30
  start-page: 89
  issue: 1
  year: 2009
  ident: 10.1016/j.rinp.2022.105755_b34
  article-title: The (G′G)-expansion method and its applications to some nonlinear evolution equations in the mathematical physics
  publication-title: J Appl Math Comput
  doi: 10.1007/s12190-008-0159-8
– volume: 17
  start-page: 491
  issue: 2
  year: 2012
  ident: 10.1016/j.rinp.2022.105755_b38
  article-title: Multiple-soliton solutions for a (3+ 1)-dimensional generalized KP equation
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2011.05.025
– volume: 550
  year: 2020
  ident: 10.1016/j.rinp.2022.105755_b56
  article-title: Novel exact double periodic soliton solutions to strain wave equation in micro structured solids
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.124077
– volume: 14
  start-page: 1999
  issue: 5
  year: 2009
  ident: 10.1016/j.rinp.2022.105755_b28
  article-title: Solitary wave families of a generalized microstructure PDE
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2008.04.016
– volume: 6
  start-page: 5896
  issue: 6
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b2
  article-title: Strong langmuir turbulence dynamics through the trigonometric quintic and exponential B-spline schemes
  publication-title: AIMS Math
  doi: 10.3934/math.2021349
– start-page: 1
  year: 2022
  ident: 10.1016/j.rinp.2022.105755_b43
  article-title: In nonlinear optics, fluid mechanics, plasma physics or atmospheric science: Symbolic computation on a generalized variable-coefficient Korteweg–de Vries equation
  publication-title: Acta Math Sin (Engl Ser)
– volume: 53
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b15
  article-title: A novel soliton solutions for the fractal Radhakrishnan-Kundu-Lakshmanan model arising in birefringent fibers
  publication-title: Opt Quantum Electron
  doi: 10.1007/s11082-021-02775-5
– volume: 104
  start-page: 639
  issue: 1
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b26
  article-title: Dynamics of optical solitons and nonautonomous complex wave solutions to the nonlinear Schrodinger equation with variable coefficients
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-021-06284-8
– volume: 16
  start-page: 1551
  issue: 11
  year: 2012
  ident: 10.1016/j.rinp.2022.105755_b33
  article-title: Some new exact traveling wave solutions to the (3+ 1)-dimensional Kadomtsev–Petviashvili equation
  publication-title: World Appl Sci J
– volume: 32
  start-page: 156
  issue: 1
  year: 2020
  ident: 10.1016/j.rinp.2022.105755_b25
  article-title: On the soliton solutions to the modified Benjamin–Bona–Mahony and coupled Drinfeld-Sokolov-Wilson models and its applications
  publication-title: J King Saud Univ-Sci
  doi: 10.1016/j.jksus.2018.03.019
– volume: 8
  issue: 332
  year: 2020
  ident: 10.1016/j.rinp.2022.105755_b50
  article-title: New solitary wave solutions for variants of (3+ 1)-dimensional Wazwaz-Benjamin–Bona–Mahony equations
  publication-title: Front Phys
– volume: 169
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b22
  article-title: Dynamics of lump collision phenomena to the (3+ 1)-dimensional nonlinear evolution equation
  publication-title: J Geom Phys
  doi: 10.1016/j.geomphys.2021.104347
– volume: 252
  start-page: 291
  issue: 6
  year: 1999
  ident: 10.1016/j.rinp.2022.105755_b31
  article-title: New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(98)00956-6
– volume: 18
  year: 2020
  ident: 10.1016/j.rinp.2022.105755_b14
  article-title: Fractal modification of complex Ginzburg–Landau model arising in the oscillating phenomena
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2020.103324
– volume: 13
  start-page: 963
  issue: 6
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b1
  article-title: Bright—dark soliton waves dynamics in pseudo spherical surfaces through the nonlinear Kaup—Kupershmidt equation
  publication-title: Symmetry
  doi: 10.3390/sym13060963
– year: 1991
  ident: 10.1016/j.rinp.2022.105755_b36
– volume: 119
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b46
  article-title: Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2020.106936
– volume: 23
  start-page: 1335
  issue: 5
  year: 2013
  ident: 10.1016/j.rinp.2022.105755_b19
  article-title: A new approach to modified regularized long wave equation
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1077-0
– volume: 150
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b49
  article-title: Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110487
– volume: 25
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b6
  article-title: Sub-10-fs-pulse propagation between analytical and numerical investigation
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.104133
– volume: 54
  start-page: 401
  issue: 3
  year: 2010
  ident: 10.1016/j.rinp.2022.105755_b37
  article-title: Exact solutions of (2+ 1)-dimensional HNLS equation
  publication-title: Commun Theor Phys
  doi: 10.1088/0253-6102/54/3/04
– volume: 11
  issue: 5
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b5
  article-title: Accurate sets of solitary solutions for the quadratic–cubic fractional nonlinear Schrödinger equation
  publication-title: AIP Adv
  doi: 10.1063/5.0050624
– volume: 136
  start-page: 1
  issue: 8
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b45
  article-title: Looking at an open sea via a generalized (2+1)-dimensional dispersive long-wave system for the shallow water: Scaling transformations, hetero-bäcklund transformations, bilinear forms and N solitons
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-021-01773-6
– volume: 50
  start-page: 1
  issue: 3
  year: 2018
  ident: 10.1016/j.rinp.2022.105755_b55
  article-title: On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel-Sokolov systems
  publication-title: Opt Quantum Electron
  doi: 10.1007/s11082-018-1406-3
– volume: 53
  start-page: 1
  issue: 10
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b11
  article-title: On pulse propagation of soliton wave solutions related to the perturbed Chen–Lee–Liu equation in an optical fiber
  publication-title: Opt Quantum Electron
  doi: 10.1007/s11082-021-03190-6
– volume: 7
  start-page: 272
  issue: 3
  year: 2022
  ident: 10.1016/j.rinp.2022.105755_b13
  article-title: Wave profile analysis of a couple of (3+ 1)-dimensional nonlinear evolution equations by sine-Gordon expansion approach
  publication-title: J Ocean Eng Sci
  doi: 10.1016/j.joes.2021.08.009
– volume: 122
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b47
  article-title: Bilinear auto-bäcklund transformations and soliton solutions of a (3+ 1)-dimensional generalized nonlinear evolution equation for the shallow water waves
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2021.107301
– volume: 169
  start-page: 321
  issue: 1
  year: 2005
  ident: 10.1016/j.rinp.2022.105755_b32
  article-title: The tanh method for generalized forms of nonlinear heat conduction and Burgers—Fisher equations
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2004.09.054
– volume: 150
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b44
  article-title: Symbolic computation on a (2+ 1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system for the water waves
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111066
– volume: 372
  start-page: 417
  issue: 4
  year: 2008
  ident: 10.1016/j.rinp.2022.105755_b35
  article-title: The (G′G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2007.07.051
– volume: 11
  issue: 2
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b8
  article-title: Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method
  publication-title: AIP Adv
  doi: 10.1063/5.0038671
– volume: 6
  start-page: 25
  issue: 1
  year: 2017
  ident: 10.1016/j.rinp.2022.105755_b41
  article-title: Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids
  publication-title: Nonlinear Eng
  doi: 10.1515/nleng-2016-0020
– volume: 120
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b42
  article-title: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2021.107161
– volume: 136
  start-page: 1
  issue: 5
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b7
  article-title: Abundant novel wave solutions of nonlinear Klein–Gordon–Zakharov (KGZ) model
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-021-01385-0
– volume: 7
  start-page: 11134
  issue: 6
  year: 2022
  ident: 10.1016/j.rinp.2022.105755_b51
  article-title: Traveling wave solutions to the Boussinesq equation via sardar sub-equation technique
  publication-title: AIMS Math
  doi: 10.3934/math.2022623
– volume: 35
  issue: 03
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b16
  article-title: A novel type of soliton solutions for the Fokas-Lenells equation arising in the application of optical fibers
  publication-title: Modern Phys Lett B
  doi: 10.1142/S0217984921500585
– volume: 35
  issue: 19
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b3
  article-title: Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation
  publication-title: Modern Phys Lett B
  doi: 10.1142/S0217984921503243
– volume: 73
  issue: 10
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b12
  article-title: Bright, periodic, compacton and bell-shape soliton solutions of the extended QZK and (3+ 1)-dimensional ZK equations
  publication-title: Commun Theor Phys
  doi: 10.1088/1572-9494/ac1a6c
– volume: 6
  start-page: 25
  issue: 1
  year: 2017
  ident: 10.1016/j.rinp.2022.105755_b54
  article-title: Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids
  publication-title: Nonlinear Eng
  doi: 10.1515/nleng-2016-0020
– volume: 265
  start-page: 353
  issue: 5–6
  year: 2000
  ident: 10.1016/j.rinp.2022.105755_b40
  article-title: Two new applications of the homogeneous balance method
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(00)00010-4
– volume: 235
  start-page: 4871
  issue: 16
  year: 2011
  ident: 10.1016/j.rinp.2022.105755_b39
  article-title: The first integral method to some complex nonlinear partial differential equations
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2011.02.021
– volume: 95
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b23
  article-title: Numerical solution of time–fractional coupled Korteweg–de Vries and Klein—Gordon equations by local meshless method
  publication-title: Pramana
  doi: 10.1007/s12043-020-02025-5
– year: 2022
  ident: 10.1016/j.rinp.2022.105755_b53
  article-title: New soliton solutions for the space–time fractional modified third order Korteweg–de Vries equation
  publication-title: J Ocean Eng Sci
– volume: 35
  issue: 01
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b17
  article-title: Novel soliton solutions of the fractal Biswas-Milovic model arising in photonics
  publication-title: Internat J Modern Phys B
  doi: 10.1142/S0217979221500016
– volume: 53
  start-page: 233
  issue: 1
  year: 2014
  ident: 10.1016/j.rinp.2022.105755_b29
  article-title: General traveling wave solutions of the strain wave equation in microstructured solids via the new approach of generalized (G’/G)-expansion method
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2014.01.002
– volume: 95
  issue: 3
  year: 2020
  ident: 10.1016/j.rinp.2022.105755_b10
  article-title: Different wave structures and stability analysis for the generalized (2+ 1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation
  publication-title: Phys Scr
  doi: 10.1088/1402-4896/ab52c1
– volume: 151
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b48
  article-title: Comment on ”shallow water in an open sea or a wide channel: Auto-and non-auto-Bäcklund transformations with solitons for a generalized (2+ 1)-dimensional dispersive long-wave system”
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111222
– volume: 40
  start-page: 593
  issue: 3
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b20
  article-title: Simple use of the Maclaurin series method for linear and non-linear differential equations arising in circuit analysis
  publication-title: COMPEL
  doi: 10.1108/COMPEL-08-2020-0286
– volume: 28
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b9
  article-title: Exact traveling wave solutions for two prolific conformable M-fractional differential equations via three diverse approaches
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.104557
– volume: 72
  issue: 2
  year: 2005
  ident: 10.1016/j.rinp.2022.105755_b21
  article-title: Stable and unstable vector dark solitons of coupled nonlinear Schrödinger equations: Application to two-component Bose–Einstein condensates
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.72.026616
– volume: 35
  issue: 22
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b4
  article-title: Abundant breather and semi-analytical investigation: On high-frequency waves dynamics in the relaxation medium
  publication-title: Modern Phys Lett B
  doi: 10.1142/S0217984921503723
– volume: 22
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b27
  article-title: Lie-Bäcklund symmetries, analytical solutions and conservation laws to the more general (2+ 1)-dimensional Boussinesq equation
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.103850
– volume: 29
  year: 2021
  ident: 10.1016/j.rinp.2022.105755_b52
  article-title: New optical solitons of perturbed nonlinear Schrödinger—Hirota equation with spatio-temporal dispersion
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.104656
– volume: 23
  start-page: 1335
  issue: 5
  year: 2013
  ident: 10.1016/j.rinp.2022.105755_b18
  article-title: A new approach to modified regularized long wave equation
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1077-0
SSID ssj0001645511
Score 2.4300287
Snippet In this article, a strain wave equation (SWE) is studied, which is used to model wave propagation in microstructured materials that earn a noteworthy place in...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 105755
SubjectTerms Nonlinear partial differential equation (NLPDEs)
Sardar-subequation method (SSM)
Solitary wave solutions
Strain wave equation (SWE)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6wvcvAmi7vZbLY5qliKUC9a6G3JYwIVrdpWxX_vzGZb9lQvXrN5bL4MzDdh8g1jF6CczR0ar00hTWRuQ6IBsqQwSG6Dg8IGeuA8fFCDkbwfF-NWqS_KCYvywBG4q6zwQTgPOssdBh_EGNAtQaFTULJXC34K9HmtYKq-XVESqQBFW0KQTl-py-bFTEzumk2mJFYpRF3nlt75tbxSLd7fck4th9PfYdsNU-TX8Q932QZM99hmnbHp5vts-EiZa2b2w7_NF_CVCXFkodzweV37IX6Dj6jnzbHB8FdKwYuysZ8z8DRy4g_YqH_3dDtImtoIictlukjo8iFLtfdGliB9MEZbDL2Ct9JKxFk7V1rtlSixBVlO0bMqEHlQARmdkPkh60zfpnDEuJfK5BIPLVOAwUjokUK-yIvcp0pbyLosW2JTuUY4nPbwUi0zxJ4rwrMiPKuIZ5ddrsa8R9mMtb1vCPJVT5K8rhvQEKrGEKq_DKHLiuWBVQ17iKwAp5qsWfz4PxY_YVs0ZcwMPGUdPEQ4Q7aysOe1Yf4C04vjYg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYiJCQuFaVUDW2RD71Vq-zaXm98BFQUIcEljZTbyo9xtVUJkEAR_54ZexPChQPHnfXsY2Y0_saaB2M_QHsnPRqvK6EslHSxMABVUVsEt9FD7SIVOF9e6clMXczr-YCdrWthKK2y9_3Zpydv3VNGvTRHt103mgqMXWRjGiHSwAjyw1KNUxHf_PTlnEUrBAUUd9H6ghj62pmc5rXsFtS2Uog08ZYq_rb2p9TGf2ub2tp6zvfZhx4z8pP8WR_ZABYHbDflbvrVJ3Y5pRw2u3zij_Y_8I0xccSj3PJVmgKR78Fd7uzNkWD5NSXj5QayD0sIxNmFQzY7__X7bFL0UxIKL1V5X9AxRFWaEKxqQIVorXEYhMXglFMoceN940zQokEK4p167HQkGKEjYjuh5Ge2s7hZwBfGg9JWKlRfpQHDkjimXvlC1jKU2jiohqxay6b1fQtx-od_7TpX7G9L8mxJnm2W55D93PDc5gYab64-JZFvVlLz60S4Wf5pe-23VR2i8AFMJT3GowQiEalAbUrQChHOkNVrhbWvbAkf1b3x8qN38n1le3SV0wK_sR3UG3xHqHLvjpMtPgPAo-UW
  priority: 102
  providerName: Elsevier
Title Solitary wave solutions for a strain wave equation in a microstructured solid
URI https://dx.doi.org/10.1016/j.rinp.2022.105755
https://doaj.org/article/15df2cde913c4070835021e590e64819
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_sidAXsbXSs_XYh76VlHzsbtyHIioVrVwfao_eW9iP2XJiz5qztfffO5PkTgURfAlks7tJZmaZ3yyzvwH4gNq7wpPxuhTTRBYuJgYxS5QlcBs9Khf5gPPwmz4eya9jNV6BRbmjToCzR0M7ric1qi8-_b-a79GC_3yXq1VPpsw9medN2VqlXsAqeaaSKxoMO7jf7LloSQCBY7A8Z_a-0pTdOZrHp3ngqxpK_3su654bOtqA9Q4_iv1W4a9gBaevYa3J4_SzTRiecT6brefixv5DsTQsQdhUWDFrKkK0z_CqZfkW1GDFb07Ma8lk_9YYeOQkvIHR0Zcfh8dJVzEh8YVMrxPekshSE4KVJcoQrTWOArIYnHSSpG-8L50JOi-phbCP2nU6MqTQkXBeLost6E0vp_gWRJDaFpJUmWmkECXuMm9-XqgipNo4zPqQLWRT-Y5OnP_holrkjZ1XLM-K5Vm18uzDx-WYPy2ZxpO9D1jky55MhN00XNa_qm5dVZkKMfcBTVZ4ik0ZUBJqQWVS1JLQTh_UQmFVhylarEBTTZ54-fazPvUdvOS7NjHwPfRIW7hDYOXaDWB1__T7z9NBE-zT9WR8MGis8haszeiT
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFaKXqtCibh_gAzcUbWI7Dj4WVLQ8lgsg7c3yY1ylggUW2qr_vjNxdlkuHLiOM3nMTMbfWPNgbBd08DKg8foSykJJnwoDUBW1Q3CbAtQ-UYHz-FyPrtTJpJ6ssMN5LQylVfa-P_v0zlv3lGEvzeFd2w4vBMYusjGNEN3ACPTDbxANNPR3Hk8Ong5atEJUQIEXMRTE0RfP5DyvWTulvpVCdCNvqeRvaYPq-vgv7VNLe8_Re_auB438e36vDbYC00221iVvhocPbHxBSWxu9o__dX-AL6yJIyDljj90YyDyGtzn1t4cCY7fUDZe7iD7ewaRONv4kV0d_bg8HBX9mIQiSFU-FnQOUZUmRqcaUDE5ZzxGYSl65RWK3ITQeBO1aJCCgKfe9zoRjtAJwZ1QcoutTm-n8InxqLSTCvVXacC4JO1Ts3whaxlLbTxUA1bNZWND30OcvuHazpPFflmSpyV52izPAdtb8NzlDhovXn1AIl9cSd2vO8Lt7Kft1W-rOiYRIphKBgxICUUiVIHalKAVQpwBq-cKs8-MCW_VvvDwz6_k22Hro8vxmT07Pj_9wt7SSs4R_MpWUYfwDXHLo9_u7PI_UWzoNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solitary+wave+solutions+for+a+strain+wave+equation+in+a+microstructured+solid&rft.jtitle=Results+in+physics&rft.au=Rehman%2C+Hamood+ur&rft.au=Awan%2C+Aziz+Ullah&rft.au=Habib%2C+Azka&rft.au=Gamaoun%2C+Fehmi&rft.date=2022-08-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=39&rft.spage=105755&rft_id=info:doi/10.1016%2Fj.rinp.2022.105755&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2022_105755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon