Solitary wave solutions for a strain wave equation in a microstructured solid
In this article, a strain wave equation (SWE) is studied, which is used to model wave propagation in microstructured materials that earn a noteworthy place in solid-state physics. This equation also signifies the dynamics of various physical phenomena. The Sardar-subequation method (SSM) is utilized...
Saved in:
Published in | Results in physics Vol. 39; p. 105755 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, a strain wave equation (SWE) is studied, which is used to model wave propagation in microstructured materials that earn a noteworthy place in solid-state physics. This equation also signifies the dynamics of various physical phenomena. The Sardar-subequation method (SSM) is utilized for this model. Granting appropriate values to parameters, we obtain various types of soliton solutions such as periodic singular solitons, bright solitons, dark solitons, singular soliton, combined dark-bright solitons, and some other wave solutions. These novel solitons and other wave results have significant applications in engineering and applied sciences. The graphical sketchings of the results are illustrated to purify the impact of the SSM. Furthermore, the executed technique can be utilized for further studies to discuss the realistic phenomena developing in physical and engineering problems.
•A strain wave equation is studied, which is used to model wave propagation in microstructured materials.•The Sardar-subequation method is utilized for this model.•Granting appropriate values to parameters, we obtained various types of soliton solutions.•These novel solitons and other wave results have significant applications in engineering and applied sciences. |
---|---|
AbstractList | In this article, a strain wave equation (SWE) is studied, which is used to model wave propagation in microstructured materials that earn a noteworthy place in solid-state physics. This equation also signifies the dynamics of various physical phenomena. The Sardar-subequation method (SSM) is utilized for this model. Granting appropriate values to parameters, we obtain various types of soliton solutions such as periodic singular solitons, bright solitons, dark solitons, singular soliton, combined dark-bright solitons, and some other wave solutions. These novel solitons and other wave results have significant applications in engineering and applied sciences. The graphical sketchings of the results are illustrated to purify the impact of the SSM. Furthermore, the executed technique can be utilized for further studies to discuss the realistic phenomena developing in physical and engineering problems. In this article, a strain wave equation (SWE) is studied, which is used to model wave propagation in microstructured materials that earn a noteworthy place in solid-state physics. This equation also signifies the dynamics of various physical phenomena. The Sardar-subequation method (SSM) is utilized for this model. Granting appropriate values to parameters, we obtain various types of soliton solutions such as periodic singular solitons, bright solitons, dark solitons, singular soliton, combined dark-bright solitons, and some other wave solutions. These novel solitons and other wave results have significant applications in engineering and applied sciences. The graphical sketchings of the results are illustrated to purify the impact of the SSM. Furthermore, the executed technique can be utilized for further studies to discuss the realistic phenomena developing in physical and engineering problems. •A strain wave equation is studied, which is used to model wave propagation in microstructured materials.•The Sardar-subequation method is utilized for this model.•Granting appropriate values to parameters, we obtained various types of soliton solutions.•These novel solitons and other wave results have significant applications in engineering and applied sciences. |
ArticleNumber | 105755 |
Author | Galal, Ahmed M. Awan, Aziz Ullah Habib, Azka Din, ElSayed M. Tag El Gamaoun, Fehmi Rehman, Hamood ur |
Author_xml | – sequence: 1 givenname: Hamood ur surname: Rehman fullname: Rehman, Hamood ur organization: Department of Mathematics, University of Okara, Okara, Pakistan – sequence: 2 givenname: Aziz Ullah orcidid: 0000-0003-3184-3652 surname: Awan fullname: Awan, Aziz Ullah email: aziz.math@pu.edu.pk organization: Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan – sequence: 3 givenname: Azka surname: Habib fullname: Habib, Azka organization: Department of Mathematics, University of Okara, Okara, Pakistan – sequence: 4 givenname: Fehmi surname: Gamaoun fullname: Gamaoun, Fehmi organization: Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia – sequence: 5 givenname: ElSayed M. Tag El surname: Din fullname: Din, ElSayed M. Tag El organization: Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt – sequence: 6 givenname: Ahmed M. surname: Galal fullname: Galal, Ahmed M. organization: Mechanical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Wadi addawaser 11991, Saudi Arabia |
BookMark | eNp9kN9KwzAYxYNMcM69gFd9gc58adI24I0M_wwmXqjXIU1SSemambYT397EKogXu8rHOfwOOecczTrXGYQuAa8AQ37VrLzt9iuCCQkCKxg7QXNCANKs4MXsz32Gln3fYBwoyhjAHD0-u9YO0n8mH_Jgkt6142Bd1ye184lM-sFL202eeR9l9JIgyGRnlXfBHtUweqMjafUFOq1l25vlz7tAr3e3L-uHdPt0v1nfbFOVUTykOXAKmGstaWGorqXkFXCodUUrKlnBlSoqrnNSBIVhxsoqrykwltckA0KzBdpMudrJRuy93YUGwkkrvgXn34T0g1WtEcB0TZQ2HDJFcYHLjGEChnFscloCD1nllBX79N7UQoVBYtHYvRWARVxZNCKuLOLKYlo5oOQf-vuVo9D1BJkw0MEaL3plTaeMtt6oITSwx_Av3MuXuw |
CitedBy_id | crossref_primary_10_1016_j_rinp_2023_106452 crossref_primary_10_1016_j_rinp_2023_106771 crossref_primary_10_1016_j_rinp_2024_107467 crossref_primary_10_1016_j_rinp_2023_106690 crossref_primary_10_3390_sym15030650 crossref_primary_10_3390_sym15081567 crossref_primary_10_1007_s42452_024_05759_8 crossref_primary_10_1007_s11082_023_04866_x crossref_primary_10_1016_j_rinp_2023_107160 crossref_primary_10_1016_j_asej_2024_103090 crossref_primary_10_1016_j_aej_2024_07_014 crossref_primary_10_1016_j_rinp_2022_105969 crossref_primary_10_1016_j_asej_2023_102567 crossref_primary_10_1016_j_rinp_2023_106632 crossref_primary_10_1016_j_rinp_2024_107369 crossref_primary_10_1007_s12346_024_01002_2 crossref_primary_10_1016_j_heliyon_2023_e15690 crossref_primary_10_1016_j_padiff_2023_100537 crossref_primary_10_1016_j_rineng_2024_101861 crossref_primary_10_1016_j_rinp_2024_107550 crossref_primary_10_3390_math10183377 crossref_primary_10_1007_s11082_023_06220_7 crossref_primary_10_1155_2022_1555198 crossref_primary_10_1007_s11082_022_04208_3 crossref_primary_10_1007_s11082_024_06705_z crossref_primary_10_1007_s11082_024_06413_8 crossref_primary_10_1007_s11082_023_06208_3 crossref_primary_10_1016_j_ijleo_2023_171305 crossref_primary_10_1007_s11082_024_06594_2 crossref_primary_10_3390_sym14102151 crossref_primary_10_1016_j_rinp_2022_105918 crossref_primary_10_1016_j_rinp_2022_106049 crossref_primary_10_1016_j_asej_2024_102757 crossref_primary_10_1016_j_asej_2023_102413 crossref_primary_10_1007_s40819_024_01761_1 crossref_primary_10_3390_axioms12121106 crossref_primary_10_3934_math_20231101 |
Cites_doi | 10.1016/j.mcm.2003.12.010 10.1088/1402-4896/ac3879 10.1007/s12190-008-0159-8 10.1016/j.cnsns.2011.05.025 10.1016/j.physa.2019.124077 10.1016/j.cnsns.2008.04.016 10.3934/math.2021349 10.1007/s11082-021-02775-5 10.1007/s11071-021-06284-8 10.1016/j.jksus.2018.03.019 10.1016/j.geomphys.2021.104347 10.1016/S0375-9601(98)00956-6 10.1016/j.rinp.2020.103324 10.3390/sym13060963 10.1016/j.aml.2020.106936 10.1007/s00521-012-1077-0 10.1016/j.chaos.2020.110487 10.1016/j.rinp.2021.104133 10.1088/0253-6102/54/3/04 10.1063/5.0050624 10.1140/epjp/s13360-021-01773-6 10.1007/s11082-018-1406-3 10.1007/s11082-021-03190-6 10.1016/j.joes.2021.08.009 10.1016/j.aml.2021.107301 10.1016/j.amc.2004.09.054 10.1016/j.chaos.2021.111066 10.1016/j.physleta.2007.07.051 10.1063/5.0038671 10.1515/nleng-2016-0020 10.1016/j.aml.2021.107161 10.1140/epjp/s13360-021-01385-0 10.3934/math.2022623 10.1142/S0217984921500585 10.1142/S0217984921503243 10.1088/1572-9494/ac1a6c 10.1016/S0375-9601(00)00010-4 10.1016/j.cam.2011.02.021 10.1007/s12043-020-02025-5 10.1142/S0217979221500016 10.1016/j.aej.2014.01.002 10.1088/1402-4896/ab52c1 10.1016/j.chaos.2021.111222 10.1108/COMPEL-08-2020-0286 10.1016/j.rinp.2021.104557 10.1103/PhysRevE.72.026616 10.1142/S0217984921503723 10.1016/j.rinp.2021.103850 10.1016/j.rinp.2021.104656 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rinp.2022.105755 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2211-3797 |
ExternalDocumentID | oai_doaj_org_article_15df2cde913c4070835021e590e64819 10_1016_j_rinp_2022_105755 S2211379722004272 |
GroupedDBID | --K 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O-L O9- OK1 RIG ROL SES SSZ XH2 AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c340t-6194109dda47e4dfaa9b191fdb4b4a579cc7b9d627db450558b6f41556f231243 |
IEDL.DBID | M48 |
ISSN | 2211-3797 |
IngestDate | Wed Aug 27 01:29:20 EDT 2025 Tue Jul 01 02:27:44 EDT 2025 Thu Apr 24 23:09:48 EDT 2025 Wed Jun 26 17:52:50 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Strain wave equation (SWE) Nonlinear partial differential equation (NLPDEs) Solitary wave solutions Sardar-subequation method (SSM) |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-6194109dda47e4dfaa9b191fdb4b4a579cc7b9d627db450558b6f41556f231243 |
ORCID | 0000-0003-3184-3652 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211379722004272 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_15df2cde913c4070835021e590e64819 crossref_citationtrail_10_1016_j_rinp_2022_105755 crossref_primary_10_1016_j_rinp_2022_105755 elsevier_sciencedirect_doi_10_1016_j_rinp_2022_105755 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationTitle | Results in physics |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Wazwaz (b32) 2005; 169 Khater, Lu (b3) 2021; 35 Khater, Akinyemi, Elagan, El-Shorbagy, Alfalqi, Alzaidi (b1) 2021; 13 Sulaiman, Yusuf, Abdeljabbar, Alquran (b22) 2021; 169 Sulaiman, Yusuf, Alquran (b26) 2021; 104 Akinyemi, Rezazadeh, Shi, Inc, Khater, Ahmad (b52) 2021; 29 Wang, Li, Zhang (b35) 2008; 372 Yang, Tian, Qu, Zhang, Chen, Wei (b49) 2021; 150 Gao, Guo, Shan (b44) 2021; 150 Khater (b4) 2021; 35 Ai-Lin, Ji (b37) 2010; 54 Sulaiman, Yusuf, Tchier, Inc, Tawfiq, Bousbahi (b27) 2021; 22 Ayati, Hosseini, Mirzazadeh (b41) 2017; 6 Tariq, Seadawy (b25) 2020; 32 Irshad, Ahmed, Nazir, Khan, Mohyud-Din (b56) 2020; 550 Akbar, Kayum, Osman (b12) 2021; 73 Brazhnyi, Konotop (b21) 2005; 72 Kumar, Mohan (b24) 2021; 96 Khan (b14) 2020; 18 Gao, Guo, Shan (b45) 2021; 136 Asjad, Munawar, Muhammad, Hamoud, Emadifar, Hamasalh (b51) 2022; 7 Gao, Tian, Shen, Feng (b48) 2021; 151 Akbar, Hj, Ali, Mohyud-din (b33) 2012; 16 Wazwaz (b30) 2004; 40 Khan, Ahmad, Akgül, Ahmad, Thounthong (b23) 2021; 95 Khan, Faraz (b20) 2021; 40 Khan, Taghipour, Falahian, Nikkar (b18) 2013; 23 Yan, Zhang (b31) 1999; 252 Wazwaz (b38) 2012; 17 Rezazadeh, Inc, Baleanu (b50) 2020; 8 Osman, Liu, Hosseini, Yusuf (b10) 2020; 95 Fan (b40) 2000; 265 Fahim, Kundu, Islam, Akbar, Osman (b13) 2022; 7 Wang, Tian, Hu, Liu (b46) 2021; 119 Shen, Tian (b47) 2021; 122 Gao, Guo, Shan (b42) 2021; 120 Khan (b16) 2021; 35 Baskonus, Osman, Ramzan, Tahir, Ashraf (b11) 2021; 53 Khan (b17) 2021; 35 Khan, Taghipour, Falahian, Nikkar (b19) 2013; 23 Leto, Choudhury (b28) 2009; 14 Alam, Akbar, Mohyud-Din (b29) 2014; 53 Khater, Mousa, El-Shorbagy, Attia (b7) 2021; 136 Khater, Anwar, Tariq, Mohamed (b8) 2021; 11 Siddique, Jaradat, Zafar, Mehdi, Osman (b9) 2021; 28 Ablowitz, Ablowitz, Clarkson, Clarkson (b36) 1991 Khan (b15) 2021; 53 Taghizadeh, Mirzazadeh (b39) 2011; 235 Gao, Guo, Shan (b43) 2022 Zayed (b34) 2009; 30 Rehman, Inc, Asjad, Habib, Munir (b53) 2022 Cattani, Sulaiman, Baskonus, Bulut (b55) 2018; 50 Khater, Elagan, Mousa, El-Shorbagy, Alfalqi, Alzaidi (b6) 2021; 25 Attia, Khater, El-Sayed Ahmed, El-Shorbagy (b5) 2021; 11 Ayati, Hosseini, Mirzazadeh (b54) 2017; 6 Khater, Ahmed (b2) 2021; 6 Khan (10.1016/j.rinp.2022.105755_b20) 2021; 40 Gao (10.1016/j.rinp.2022.105755_b48) 2021; 151 Khan (10.1016/j.rinp.2022.105755_b14) 2020; 18 Brazhnyi (10.1016/j.rinp.2022.105755_b21) 2005; 72 Siddique (10.1016/j.rinp.2022.105755_b9) 2021; 28 Gao (10.1016/j.rinp.2022.105755_b42) 2021; 120 Wang (10.1016/j.rinp.2022.105755_b46) 2021; 119 Shen (10.1016/j.rinp.2022.105755_b47) 2021; 122 Gao (10.1016/j.rinp.2022.105755_b43) 2022 Osman (10.1016/j.rinp.2022.105755_b10) 2020; 95 Wazwaz (10.1016/j.rinp.2022.105755_b32) 2005; 169 Rezazadeh (10.1016/j.rinp.2022.105755_b50) 2020; 8 Akbar (10.1016/j.rinp.2022.105755_b33) 2012; 16 Khater (10.1016/j.rinp.2022.105755_b2) 2021; 6 Ablowitz (10.1016/j.rinp.2022.105755_b36) 1991 Sulaiman (10.1016/j.rinp.2022.105755_b27) 2021; 22 Yan (10.1016/j.rinp.2022.105755_b31) 1999; 252 Asjad (10.1016/j.rinp.2022.105755_b51) 2022; 7 Ayati (10.1016/j.rinp.2022.105755_b54) 2017; 6 Fahim (10.1016/j.rinp.2022.105755_b13) 2022; 7 Yang (10.1016/j.rinp.2022.105755_b49) 2021; 150 Wang (10.1016/j.rinp.2022.105755_b35) 2008; 372 Taghizadeh (10.1016/j.rinp.2022.105755_b39) 2011; 235 Zayed (10.1016/j.rinp.2022.105755_b34) 2009; 30 Leto (10.1016/j.rinp.2022.105755_b28) 2009; 14 Kumar (10.1016/j.rinp.2022.105755_b24) 2021; 96 Wazwaz (10.1016/j.rinp.2022.105755_b38) 2012; 17 Alam (10.1016/j.rinp.2022.105755_b29) 2014; 53 Gao (10.1016/j.rinp.2022.105755_b44) 2021; 150 Cattani (10.1016/j.rinp.2022.105755_b55) 2018; 50 Wazwaz (10.1016/j.rinp.2022.105755_b30) 2004; 40 Fan (10.1016/j.rinp.2022.105755_b40) 2000; 265 Khater (10.1016/j.rinp.2022.105755_b6) 2021; 25 Khan (10.1016/j.rinp.2022.105755_b17) 2021; 35 Irshad (10.1016/j.rinp.2022.105755_b56) 2020; 550 Ayati (10.1016/j.rinp.2022.105755_b41) 2017; 6 Khater (10.1016/j.rinp.2022.105755_b4) 2021; 35 Baskonus (10.1016/j.rinp.2022.105755_b11) 2021; 53 Khan (10.1016/j.rinp.2022.105755_b19) 2013; 23 Akinyemi (10.1016/j.rinp.2022.105755_b52) 2021; 29 Sulaiman (10.1016/j.rinp.2022.105755_b22) 2021; 169 Khan (10.1016/j.rinp.2022.105755_b23) 2021; 95 Khan (10.1016/j.rinp.2022.105755_b15) 2021; 53 Sulaiman (10.1016/j.rinp.2022.105755_b26) 2021; 104 Khater (10.1016/j.rinp.2022.105755_b1) 2021; 13 Khater (10.1016/j.rinp.2022.105755_b8) 2021; 11 Khan (10.1016/j.rinp.2022.105755_b16) 2021; 35 Rehman (10.1016/j.rinp.2022.105755_b53) 2022 Tariq (10.1016/j.rinp.2022.105755_b25) 2020; 32 Khater (10.1016/j.rinp.2022.105755_b7) 2021; 136 Attia (10.1016/j.rinp.2022.105755_b5) 2021; 11 Gao (10.1016/j.rinp.2022.105755_b45) 2021; 136 Ai-Lin (10.1016/j.rinp.2022.105755_b37) 2010; 54 Akbar (10.1016/j.rinp.2022.105755_b12) 2021; 73 Khan (10.1016/j.rinp.2022.105755_b18) 2013; 23 Khater (10.1016/j.rinp.2022.105755_b3) 2021; 35 |
References_xml | – volume: 23 start-page: 1335 year: 2013 end-page: 1341 ident: b18 article-title: A new approach to modified regularized long wave equation publication-title: Neural Comput Appl – volume: 40 start-page: 593 year: 2021 end-page: 601 ident: b20 article-title: Simple use of the Maclaurin series method for linear and non-linear differential equations arising in circuit analysis publication-title: COMPEL – volume: 169 year: 2021 ident: b22 article-title: Dynamics of lump collision phenomena to the (3+ 1)-dimensional nonlinear evolution equation publication-title: J Geom Phys – start-page: 1 year: 2022 end-page: 9 ident: b43 article-title: In nonlinear optics, fluid mechanics, plasma physics or atmospheric science: Symbolic computation on a generalized variable-coefficient Korteweg–de Vries equation publication-title: Acta Math Sin (Engl Ser) – volume: 550 year: 2020 ident: b56 article-title: Novel exact double periodic soliton solutions to strain wave equation in micro structured solids publication-title: Physica A – volume: 35 year: 2021 ident: b3 article-title: Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation publication-title: Modern Phys Lett B – volume: 53 start-page: 1 year: 2021 end-page: 8 ident: b15 article-title: A novel soliton solutions for the fractal Radhakrishnan-Kundu-Lakshmanan model arising in birefringent fibers publication-title: Opt Quantum Electron – volume: 122 year: 2021 ident: b47 article-title: Bilinear auto-bäcklund transformations and soliton solutions of a (3+ 1)-dimensional generalized nonlinear evolution equation for the shallow water waves publication-title: Appl Math Lett – volume: 25 year: 2021 ident: b6 article-title: Sub-10-fs-pulse propagation between analytical and numerical investigation publication-title: Results Phys – volume: 16 start-page: 1551 year: 2012 end-page: 1558 ident: b33 article-title: Some new exact traveling wave solutions to the (3+ 1)-dimensional Kadomtsev–Petviashvili equation publication-title: World Appl Sci J – volume: 53 start-page: 1 year: 2021 end-page: 17 ident: b11 article-title: On pulse propagation of soliton wave solutions related to the perturbed Chen–Lee–Liu equation in an optical fiber publication-title: Opt Quantum Electron – volume: 30 start-page: 89 year: 2009 end-page: 103 ident: b34 article-title: The publication-title: J Appl Math Comput – volume: 95 year: 2020 ident: b10 article-title: Different wave structures and stability analysis for the generalized (2+ 1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation publication-title: Phys Scr – volume: 136 start-page: 1 year: 2021 end-page: 9 ident: b45 article-title: Looking at an open sea via a generalized publication-title: Eur Phys J Plus – volume: 73 year: 2021 ident: b12 article-title: Bright, periodic, compacton and bell-shape soliton solutions of the extended QZK and (3+ 1)-dimensional ZK equations publication-title: Commun Theor Phys – volume: 17 start-page: 491 year: 2012 end-page: 495 ident: b38 article-title: Multiple-soliton solutions for a (3+ 1)-dimensional generalized KP equation publication-title: Commun Nonlinear Sci Numer Simul – volume: 35 year: 2021 ident: b16 article-title: A novel type of soliton solutions for the Fokas-Lenells equation arising in the application of optical fibers publication-title: Modern Phys Lett B – volume: 372 start-page: 417 year: 2008 end-page: 423 ident: b35 article-title: The publication-title: Phys Lett A – volume: 32 start-page: 156 year: 2020 end-page: 162 ident: b25 article-title: On the soliton solutions to the modified Benjamin–Bona–Mahony and coupled Drinfeld-Sokolov-Wilson models and its applications publication-title: J King Saud Univ-Sci – volume: 13 start-page: 963 year: 2021 ident: b1 article-title: Bright—dark soliton waves dynamics in pseudo spherical surfaces through the nonlinear Kaup—Kupershmidt equation publication-title: Symmetry – volume: 35 year: 2021 ident: b4 article-title: Abundant breather and semi-analytical investigation: On high-frequency waves dynamics in the relaxation medium publication-title: Modern Phys Lett B – volume: 104 start-page: 639 year: 2021 end-page: 648 ident: b26 article-title: Dynamics of optical solitons and nonautonomous complex wave solutions to the nonlinear Schrodinger equation with variable coefficients publication-title: Nonlinear Dynam – volume: 6 start-page: 25 year: 2017 end-page: 29 ident: b54 article-title: Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids publication-title: Nonlinear Eng – volume: 265 start-page: 353 year: 2000 end-page: 357 ident: b40 article-title: Two new applications of the homogeneous balance method publication-title: Phys Lett A – volume: 96 year: 2021 ident: b24 article-title: A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev–Petviashvili equation with variable time coeffcient using Hirota method publication-title: Phys Scr – year: 2022 ident: b53 article-title: New soliton solutions for the space–time fractional modified third order Korteweg–de Vries equation publication-title: J Ocean Eng Sci – volume: 136 start-page: 1 year: 2021 end-page: 11 ident: b7 article-title: Abundant novel wave solutions of nonlinear Klein–Gordon–Zakharov (KGZ) model publication-title: Eur Phys J Plus – volume: 169 start-page: 321 year: 2005 end-page: 338 ident: b32 article-title: The tanh method for generalized forms of nonlinear heat conduction and Burgers—Fisher equations publication-title: Appl Math Comput – volume: 11 year: 2021 ident: b8 article-title: Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method publication-title: AIP Adv – year: 1991 ident: b36 publication-title: Solitons, nonlinear evolution equations and inverse scattering – volume: 18 year: 2020 ident: b14 article-title: Fractal modification of complex Ginzburg–Landau model arising in the oscillating phenomena publication-title: Results Phys – volume: 8 year: 2020 ident: b50 article-title: New solitary wave solutions for variants of (3+ 1)-dimensional Wazwaz-Benjamin–Bona–Mahony equations publication-title: Front Phys – volume: 95 start-page: 1 year: 2021 end-page: 13 ident: b23 article-title: Numerical solution of time–fractional coupled Korteweg–de Vries and Klein—Gordon equations by local meshless method publication-title: Pramana – volume: 252 start-page: 291 year: 1999 end-page: 296 ident: b31 article-title: New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics publication-title: Phys Lett A – volume: 28 year: 2021 ident: b9 article-title: Exact traveling wave solutions for two prolific conformable M-fractional differential equations via three diverse approaches publication-title: Results Phys – volume: 120 year: 2021 ident: b42 article-title: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system publication-title: Appl Math Lett – volume: 22 year: 2021 ident: b27 article-title: Lie-Bäcklund symmetries, analytical solutions and conservation laws to the more general (2+ 1)-dimensional Boussinesq equation publication-title: Results Phys – volume: 235 start-page: 4871 year: 2011 end-page: 4877 ident: b39 article-title: The first integral method to some complex nonlinear partial differential equations publication-title: J Comput Appl Math – volume: 50 start-page: 1 year: 2018 end-page: 11 ident: b55 article-title: On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel-Sokolov systems publication-title: Opt Quantum Electron – volume: 72 year: 2005 ident: b21 article-title: Stable and unstable vector dark solitons of coupled nonlinear Schrödinger equations: Application to two-component Bose–Einstein condensates publication-title: Phys Rev E – volume: 119 year: 2021 ident: b46 article-title: Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber publication-title: Appl Math Lett – volume: 54 start-page: 401 year: 2010 ident: b37 article-title: Exact solutions of (2+ 1)-dimensional HNLS equation publication-title: Commun Theor Phys – volume: 6 start-page: 5896 year: 2021 end-page: 5908 ident: b2 article-title: Strong langmuir turbulence dynamics through the trigonometric quintic and exponential B-spline schemes publication-title: AIMS Math – volume: 150 year: 2021 ident: b44 article-title: Symbolic computation on a (2+ 1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system for the water waves publication-title: Chaos Solitons Fractals – volume: 53 start-page: 233 year: 2014 end-page: 241 ident: b29 article-title: General traveling wave solutions of the strain wave equation in microstructured solids via the new approach of generalized (G’/G)-expansion method publication-title: Alex Eng J – volume: 35 year: 2021 ident: b17 article-title: Novel soliton solutions of the fractal Biswas-Milovic model arising in photonics publication-title: Internat J Modern Phys B – volume: 7 start-page: 11134 year: 2022 end-page: 11149 ident: b51 article-title: Traveling wave solutions to the Boussinesq equation via sardar sub-equation technique publication-title: AIMS Math – volume: 150 year: 2021 ident: b49 article-title: Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber publication-title: Chaos Solitons Fractals – volume: 6 start-page: 25 year: 2017 end-page: 29 ident: b41 article-title: Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids publication-title: Nonlinear Eng – volume: 29 year: 2021 ident: b52 article-title: New optical solitons of perturbed nonlinear Schrödinger—Hirota equation with spatio-temporal dispersion publication-title: Results Phys – volume: 23 start-page: 1335 year: 2013 end-page: 1341 ident: b19 article-title: A new approach to modified regularized long wave equation publication-title: Neural Comput Appl – volume: 40 start-page: 499 year: 2004 end-page: 508 ident: b30 article-title: A sine-cosine method for handling nonlinear wave equations publication-title: Math Comput Modelling – volume: 14 start-page: 1999 year: 2009 end-page: 2005 ident: b28 article-title: Solitary wave families of a generalized microstructure PDE publication-title: Commun Nonlinear Sci Numer Simul – volume: 151 year: 2021 ident: b48 article-title: Comment on ”shallow water in an open sea or a wide channel: Auto-and non-auto-Bäcklund transformations with solitons for a generalized (2+ 1)-dimensional dispersive long-wave system” publication-title: Chaos Solitons Fractals – volume: 11 year: 2021 ident: b5 article-title: Accurate sets of solitary solutions for the quadratic–cubic fractional nonlinear Schrödinger equation publication-title: AIP Adv – volume: 7 start-page: 272 year: 2022 end-page: 279 ident: b13 article-title: Wave profile analysis of a couple of (3+ 1)-dimensional nonlinear evolution equations by sine-Gordon expansion approach publication-title: J Ocean Eng Sci – volume: 40 start-page: 499 issue: 5–6 year: 2004 ident: 10.1016/j.rinp.2022.105755_b30 article-title: A sine-cosine method for handling nonlinear wave equations publication-title: Math Comput Modelling doi: 10.1016/j.mcm.2003.12.010 – volume: 96 issue: 12 year: 2021 ident: 10.1016/j.rinp.2022.105755_b24 article-title: A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev–Petviashvili equation with variable time coeffcient using Hirota method publication-title: Phys Scr doi: 10.1088/1402-4896/ac3879 – volume: 30 start-page: 89 issue: 1 year: 2009 ident: 10.1016/j.rinp.2022.105755_b34 article-title: The (G′G)-expansion method and its applications to some nonlinear evolution equations in the mathematical physics publication-title: J Appl Math Comput doi: 10.1007/s12190-008-0159-8 – volume: 17 start-page: 491 issue: 2 year: 2012 ident: 10.1016/j.rinp.2022.105755_b38 article-title: Multiple-soliton solutions for a (3+ 1)-dimensional generalized KP equation publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2011.05.025 – volume: 550 year: 2020 ident: 10.1016/j.rinp.2022.105755_b56 article-title: Novel exact double periodic soliton solutions to strain wave equation in micro structured solids publication-title: Physica A doi: 10.1016/j.physa.2019.124077 – volume: 14 start-page: 1999 issue: 5 year: 2009 ident: 10.1016/j.rinp.2022.105755_b28 article-title: Solitary wave families of a generalized microstructure PDE publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2008.04.016 – volume: 6 start-page: 5896 issue: 6 year: 2021 ident: 10.1016/j.rinp.2022.105755_b2 article-title: Strong langmuir turbulence dynamics through the trigonometric quintic and exponential B-spline schemes publication-title: AIMS Math doi: 10.3934/math.2021349 – start-page: 1 year: 2022 ident: 10.1016/j.rinp.2022.105755_b43 article-title: In nonlinear optics, fluid mechanics, plasma physics or atmospheric science: Symbolic computation on a generalized variable-coefficient Korteweg–de Vries equation publication-title: Acta Math Sin (Engl Ser) – volume: 53 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.rinp.2022.105755_b15 article-title: A novel soliton solutions for the fractal Radhakrishnan-Kundu-Lakshmanan model arising in birefringent fibers publication-title: Opt Quantum Electron doi: 10.1007/s11082-021-02775-5 – volume: 104 start-page: 639 issue: 1 year: 2021 ident: 10.1016/j.rinp.2022.105755_b26 article-title: Dynamics of optical solitons and nonautonomous complex wave solutions to the nonlinear Schrodinger equation with variable coefficients publication-title: Nonlinear Dynam doi: 10.1007/s11071-021-06284-8 – volume: 16 start-page: 1551 issue: 11 year: 2012 ident: 10.1016/j.rinp.2022.105755_b33 article-title: Some new exact traveling wave solutions to the (3+ 1)-dimensional Kadomtsev–Petviashvili equation publication-title: World Appl Sci J – volume: 32 start-page: 156 issue: 1 year: 2020 ident: 10.1016/j.rinp.2022.105755_b25 article-title: On the soliton solutions to the modified Benjamin–Bona–Mahony and coupled Drinfeld-Sokolov-Wilson models and its applications publication-title: J King Saud Univ-Sci doi: 10.1016/j.jksus.2018.03.019 – volume: 8 issue: 332 year: 2020 ident: 10.1016/j.rinp.2022.105755_b50 article-title: New solitary wave solutions for variants of (3+ 1)-dimensional Wazwaz-Benjamin–Bona–Mahony equations publication-title: Front Phys – volume: 169 year: 2021 ident: 10.1016/j.rinp.2022.105755_b22 article-title: Dynamics of lump collision phenomena to the (3+ 1)-dimensional nonlinear evolution equation publication-title: J Geom Phys doi: 10.1016/j.geomphys.2021.104347 – volume: 252 start-page: 291 issue: 6 year: 1999 ident: 10.1016/j.rinp.2022.105755_b31 article-title: New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics publication-title: Phys Lett A doi: 10.1016/S0375-9601(98)00956-6 – volume: 18 year: 2020 ident: 10.1016/j.rinp.2022.105755_b14 article-title: Fractal modification of complex Ginzburg–Landau model arising in the oscillating phenomena publication-title: Results Phys doi: 10.1016/j.rinp.2020.103324 – volume: 13 start-page: 963 issue: 6 year: 2021 ident: 10.1016/j.rinp.2022.105755_b1 article-title: Bright—dark soliton waves dynamics in pseudo spherical surfaces through the nonlinear Kaup—Kupershmidt equation publication-title: Symmetry doi: 10.3390/sym13060963 – year: 1991 ident: 10.1016/j.rinp.2022.105755_b36 – volume: 119 year: 2021 ident: 10.1016/j.rinp.2022.105755_b46 article-title: Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber publication-title: Appl Math Lett doi: 10.1016/j.aml.2020.106936 – volume: 23 start-page: 1335 issue: 5 year: 2013 ident: 10.1016/j.rinp.2022.105755_b19 article-title: A new approach to modified regularized long wave equation publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1077-0 – volume: 150 year: 2021 ident: 10.1016/j.rinp.2022.105755_b49 article-title: Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110487 – volume: 25 year: 2021 ident: 10.1016/j.rinp.2022.105755_b6 article-title: Sub-10-fs-pulse propagation between analytical and numerical investigation publication-title: Results Phys doi: 10.1016/j.rinp.2021.104133 – volume: 54 start-page: 401 issue: 3 year: 2010 ident: 10.1016/j.rinp.2022.105755_b37 article-title: Exact solutions of (2+ 1)-dimensional HNLS equation publication-title: Commun Theor Phys doi: 10.1088/0253-6102/54/3/04 – volume: 11 issue: 5 year: 2021 ident: 10.1016/j.rinp.2022.105755_b5 article-title: Accurate sets of solitary solutions for the quadratic–cubic fractional nonlinear Schrödinger equation publication-title: AIP Adv doi: 10.1063/5.0050624 – volume: 136 start-page: 1 issue: 8 year: 2021 ident: 10.1016/j.rinp.2022.105755_b45 article-title: Looking at an open sea via a generalized (2+1)-dimensional dispersive long-wave system for the shallow water: Scaling transformations, hetero-bäcklund transformations, bilinear forms and N solitons publication-title: Eur Phys J Plus doi: 10.1140/epjp/s13360-021-01773-6 – volume: 50 start-page: 1 issue: 3 year: 2018 ident: 10.1016/j.rinp.2022.105755_b55 article-title: On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel-Sokolov systems publication-title: Opt Quantum Electron doi: 10.1007/s11082-018-1406-3 – volume: 53 start-page: 1 issue: 10 year: 2021 ident: 10.1016/j.rinp.2022.105755_b11 article-title: On pulse propagation of soliton wave solutions related to the perturbed Chen–Lee–Liu equation in an optical fiber publication-title: Opt Quantum Electron doi: 10.1007/s11082-021-03190-6 – volume: 7 start-page: 272 issue: 3 year: 2022 ident: 10.1016/j.rinp.2022.105755_b13 article-title: Wave profile analysis of a couple of (3+ 1)-dimensional nonlinear evolution equations by sine-Gordon expansion approach publication-title: J Ocean Eng Sci doi: 10.1016/j.joes.2021.08.009 – volume: 122 year: 2021 ident: 10.1016/j.rinp.2022.105755_b47 article-title: Bilinear auto-bäcklund transformations and soliton solutions of a (3+ 1)-dimensional generalized nonlinear evolution equation for the shallow water waves publication-title: Appl Math Lett doi: 10.1016/j.aml.2021.107301 – volume: 169 start-page: 321 issue: 1 year: 2005 ident: 10.1016/j.rinp.2022.105755_b32 article-title: The tanh method for generalized forms of nonlinear heat conduction and Burgers—Fisher equations publication-title: Appl Math Comput doi: 10.1016/j.amc.2004.09.054 – volume: 150 year: 2021 ident: 10.1016/j.rinp.2022.105755_b44 article-title: Symbolic computation on a (2+ 1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system for the water waves publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111066 – volume: 372 start-page: 417 issue: 4 year: 2008 ident: 10.1016/j.rinp.2022.105755_b35 article-title: The (G′G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics publication-title: Phys Lett A doi: 10.1016/j.physleta.2007.07.051 – volume: 11 issue: 2 year: 2021 ident: 10.1016/j.rinp.2022.105755_b8 article-title: Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method publication-title: AIP Adv doi: 10.1063/5.0038671 – volume: 6 start-page: 25 issue: 1 year: 2017 ident: 10.1016/j.rinp.2022.105755_b41 article-title: Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids publication-title: Nonlinear Eng doi: 10.1515/nleng-2016-0020 – volume: 120 year: 2021 ident: 10.1016/j.rinp.2022.105755_b42 article-title: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system publication-title: Appl Math Lett doi: 10.1016/j.aml.2021.107161 – volume: 136 start-page: 1 issue: 5 year: 2021 ident: 10.1016/j.rinp.2022.105755_b7 article-title: Abundant novel wave solutions of nonlinear Klein–Gordon–Zakharov (KGZ) model publication-title: Eur Phys J Plus doi: 10.1140/epjp/s13360-021-01385-0 – volume: 7 start-page: 11134 issue: 6 year: 2022 ident: 10.1016/j.rinp.2022.105755_b51 article-title: Traveling wave solutions to the Boussinesq equation via sardar sub-equation technique publication-title: AIMS Math doi: 10.3934/math.2022623 – volume: 35 issue: 03 year: 2021 ident: 10.1016/j.rinp.2022.105755_b16 article-title: A novel type of soliton solutions for the Fokas-Lenells equation arising in the application of optical fibers publication-title: Modern Phys Lett B doi: 10.1142/S0217984921500585 – volume: 35 issue: 19 year: 2021 ident: 10.1016/j.rinp.2022.105755_b3 article-title: Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation publication-title: Modern Phys Lett B doi: 10.1142/S0217984921503243 – volume: 73 issue: 10 year: 2021 ident: 10.1016/j.rinp.2022.105755_b12 article-title: Bright, periodic, compacton and bell-shape soliton solutions of the extended QZK and (3+ 1)-dimensional ZK equations publication-title: Commun Theor Phys doi: 10.1088/1572-9494/ac1a6c – volume: 6 start-page: 25 issue: 1 year: 2017 ident: 10.1016/j.rinp.2022.105755_b54 article-title: Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids publication-title: Nonlinear Eng doi: 10.1515/nleng-2016-0020 – volume: 265 start-page: 353 issue: 5–6 year: 2000 ident: 10.1016/j.rinp.2022.105755_b40 article-title: Two new applications of the homogeneous balance method publication-title: Phys Lett A doi: 10.1016/S0375-9601(00)00010-4 – volume: 235 start-page: 4871 issue: 16 year: 2011 ident: 10.1016/j.rinp.2022.105755_b39 article-title: The first integral method to some complex nonlinear partial differential equations publication-title: J Comput Appl Math doi: 10.1016/j.cam.2011.02.021 – volume: 95 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.rinp.2022.105755_b23 article-title: Numerical solution of time–fractional coupled Korteweg–de Vries and Klein—Gordon equations by local meshless method publication-title: Pramana doi: 10.1007/s12043-020-02025-5 – year: 2022 ident: 10.1016/j.rinp.2022.105755_b53 article-title: New soliton solutions for the space–time fractional modified third order Korteweg–de Vries equation publication-title: J Ocean Eng Sci – volume: 35 issue: 01 year: 2021 ident: 10.1016/j.rinp.2022.105755_b17 article-title: Novel soliton solutions of the fractal Biswas-Milovic model arising in photonics publication-title: Internat J Modern Phys B doi: 10.1142/S0217979221500016 – volume: 53 start-page: 233 issue: 1 year: 2014 ident: 10.1016/j.rinp.2022.105755_b29 article-title: General traveling wave solutions of the strain wave equation in microstructured solids via the new approach of generalized (G’/G)-expansion method publication-title: Alex Eng J doi: 10.1016/j.aej.2014.01.002 – volume: 95 issue: 3 year: 2020 ident: 10.1016/j.rinp.2022.105755_b10 article-title: Different wave structures and stability analysis for the generalized (2+ 1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation publication-title: Phys Scr doi: 10.1088/1402-4896/ab52c1 – volume: 151 year: 2021 ident: 10.1016/j.rinp.2022.105755_b48 article-title: Comment on ”shallow water in an open sea or a wide channel: Auto-and non-auto-Bäcklund transformations with solitons for a generalized (2+ 1)-dimensional dispersive long-wave system” publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111222 – volume: 40 start-page: 593 issue: 3 year: 2021 ident: 10.1016/j.rinp.2022.105755_b20 article-title: Simple use of the Maclaurin series method for linear and non-linear differential equations arising in circuit analysis publication-title: COMPEL doi: 10.1108/COMPEL-08-2020-0286 – volume: 28 year: 2021 ident: 10.1016/j.rinp.2022.105755_b9 article-title: Exact traveling wave solutions for two prolific conformable M-fractional differential equations via three diverse approaches publication-title: Results Phys doi: 10.1016/j.rinp.2021.104557 – volume: 72 issue: 2 year: 2005 ident: 10.1016/j.rinp.2022.105755_b21 article-title: Stable and unstable vector dark solitons of coupled nonlinear Schrödinger equations: Application to two-component Bose–Einstein condensates publication-title: Phys Rev E doi: 10.1103/PhysRevE.72.026616 – volume: 35 issue: 22 year: 2021 ident: 10.1016/j.rinp.2022.105755_b4 article-title: Abundant breather and semi-analytical investigation: On high-frequency waves dynamics in the relaxation medium publication-title: Modern Phys Lett B doi: 10.1142/S0217984921503723 – volume: 22 year: 2021 ident: 10.1016/j.rinp.2022.105755_b27 article-title: Lie-Bäcklund symmetries, analytical solutions and conservation laws to the more general (2+ 1)-dimensional Boussinesq equation publication-title: Results Phys doi: 10.1016/j.rinp.2021.103850 – volume: 29 year: 2021 ident: 10.1016/j.rinp.2022.105755_b52 article-title: New optical solitons of perturbed nonlinear Schrödinger—Hirota equation with spatio-temporal dispersion publication-title: Results Phys doi: 10.1016/j.rinp.2021.104656 – volume: 23 start-page: 1335 issue: 5 year: 2013 ident: 10.1016/j.rinp.2022.105755_b18 article-title: A new approach to modified regularized long wave equation publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1077-0 |
SSID | ssj0001645511 |
Score | 2.4300287 |
Snippet | In this article, a strain wave equation (SWE) is studied, which is used to model wave propagation in microstructured materials that earn a noteworthy place in... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 105755 |
SubjectTerms | Nonlinear partial differential equation (NLPDEs) Sardar-subequation method (SSM) Solitary wave solutions Strain wave equation (SWE) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6wvcvAmi7vZbLY5qliKUC9a6G3JYwIVrdpWxX_vzGZb9lQvXrN5bL4MzDdh8g1jF6CczR0ar00hTWRuQ6IBsqQwSG6Dg8IGeuA8fFCDkbwfF-NWqS_KCYvywBG4q6zwQTgPOssdBh_EGNAtQaFTULJXC34K9HmtYKq-XVESqQBFW0KQTl-py-bFTEzumk2mJFYpRF3nlt75tbxSLd7fck4th9PfYdsNU-TX8Q932QZM99hmnbHp5vts-EiZa2b2w7_NF_CVCXFkodzweV37IX6Dj6jnzbHB8FdKwYuysZ8z8DRy4g_YqH_3dDtImtoIictlukjo8iFLtfdGliB9MEZbDL2Ct9JKxFk7V1rtlSixBVlO0bMqEHlQARmdkPkh60zfpnDEuJfK5BIPLVOAwUjokUK-yIvcp0pbyLosW2JTuUY4nPbwUi0zxJ4rwrMiPKuIZ5ddrsa8R9mMtb1vCPJVT5K8rhvQEKrGEKq_DKHLiuWBVQ17iKwAp5qsWfz4PxY_YVs0ZcwMPGUdPEQ4Q7aysOe1Yf4C04vjYg priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYiJCQuFaVUDW2RD71Vq-zaXm98BFQUIcEljZTbyo9xtVUJkEAR_54ZexPChQPHnfXsY2Y0_saaB2M_QHsnPRqvK6EslHSxMABVUVsEt9FD7SIVOF9e6clMXczr-YCdrWthKK2y9_3Zpydv3VNGvTRHt103mgqMXWRjGiHSwAjyw1KNUxHf_PTlnEUrBAUUd9H6ghj62pmc5rXsFtS2Uog08ZYq_rb2p9TGf2ub2tp6zvfZhx4z8pP8WR_ZABYHbDflbvrVJ3Y5pRw2u3zij_Y_8I0xccSj3PJVmgKR78Fd7uzNkWD5NSXj5QayD0sIxNmFQzY7__X7bFL0UxIKL1V5X9AxRFWaEKxqQIVorXEYhMXglFMoceN940zQokEK4p167HQkGKEjYjuh5Ge2s7hZwBfGg9JWKlRfpQHDkjimXvlC1jKU2jiohqxay6b1fQtx-od_7TpX7G9L8mxJnm2W55D93PDc5gYab64-JZFvVlLz60S4Wf5pe-23VR2i8AFMJT3GowQiEalAbUrQChHOkNVrhbWvbAkf1b3x8qN38n1le3SV0wK_sR3UG3xHqHLvjpMtPgPAo-UW priority: 102 providerName: Elsevier |
Title | Solitary wave solutions for a strain wave equation in a microstructured solid |
URI | https://dx.doi.org/10.1016/j.rinp.2022.105755 https://doaj.org/article/15df2cde913c4070835021e590e64819 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_sidAXsbXSs_XYh76VlHzsbtyHIioVrVwfao_eW9iP2XJiz5qztfffO5PkTgURfAlks7tJZmaZ3yyzvwH4gNq7wpPxuhTTRBYuJgYxS5QlcBs9Khf5gPPwmz4eya9jNV6BRbmjToCzR0M7ric1qi8-_b-a79GC_3yXq1VPpsw9medN2VqlXsAqeaaSKxoMO7jf7LloSQCBY7A8Z_a-0pTdOZrHp3ngqxpK_3su654bOtqA9Q4_iv1W4a9gBaevYa3J4_SzTRiecT6brefixv5DsTQsQdhUWDFrKkK0z_CqZfkW1GDFb07Ma8lk_9YYeOQkvIHR0Zcfh8dJVzEh8YVMrxPekshSE4KVJcoQrTWOArIYnHSSpG-8L50JOi-phbCP2nU6MqTQkXBeLost6E0vp_gWRJDaFpJUmWmkECXuMm9-XqgipNo4zPqQLWRT-Y5OnP_holrkjZ1XLM-K5Vm18uzDx-WYPy2ZxpO9D1jky55MhN00XNa_qm5dVZkKMfcBTVZ4ik0ZUBJqQWVS1JLQTh_UQmFVhylarEBTTZ54-fazPvUdvOS7NjHwPfRIW7hDYOXaDWB1__T7z9NBE-zT9WR8MGis8haszeiT |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFaKXqtCibh_gAzcUbWI7Dj4WVLQ8lgsg7c3yY1ylggUW2qr_vjNxdlkuHLiOM3nMTMbfWPNgbBd08DKg8foSykJJnwoDUBW1Q3CbAtQ-UYHz-FyPrtTJpJ6ssMN5LQylVfa-P_v0zlv3lGEvzeFd2w4vBMYusjGNEN3ACPTDbxANNPR3Hk8Ong5atEJUQIEXMRTE0RfP5DyvWTulvpVCdCNvqeRvaYPq-vgv7VNLe8_Re_auB438e36vDbYC00221iVvhocPbHxBSWxu9o__dX-AL6yJIyDljj90YyDyGtzn1t4cCY7fUDZe7iD7ewaRONv4kV0d_bg8HBX9mIQiSFU-FnQOUZUmRqcaUDE5ZzxGYSl65RWK3ITQeBO1aJCCgKfe9zoRjtAJwZ1QcoutTm-n8InxqLSTCvVXacC4JO1Ts3whaxlLbTxUA1bNZWND30OcvuHazpPFflmSpyV52izPAdtb8NzlDhovXn1AIl9cSd2vO8Lt7Kft1W-rOiYRIphKBgxICUUiVIHalKAVQpwBq-cKs8-MCW_VvvDwz6_k22Hro8vxmT07Pj_9wt7SSs4R_MpWUYfwDXHLo9_u7PI_UWzoNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solitary+wave+solutions+for+a+strain+wave+equation+in+a+microstructured+solid&rft.jtitle=Results+in+physics&rft.au=Rehman%2C+Hamood+ur&rft.au=Awan%2C+Aziz+Ullah&rft.au=Habib%2C+Azka&rft.au=Gamaoun%2C+Fehmi&rft.date=2022-08-01&rft.issn=2211-3797&rft.eissn=2211-3797&rft.volume=39&rft.spage=105755&rft_id=info:doi/10.1016%2Fj.rinp.2022.105755&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rinp_2022_105755 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3797&client=summon |