Cardiac and vascular responses to thigh cuffs and respiratory maneuvers on crewmembers of the International Space Station

Background: the transition to microgravity eliminates the hydrostatic gradients in the vascular system. The resulting fluid redistribution commonly manifests as facial edema, engorgement of the external neck veins, nasal congestion, and headache. This experiment examined the responses to modified Va...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 112; no. 3; pp. 454 - 462
Main Authors Hamilton, Douglas R., Sargsyan, Ashot E., Garcia, Kathleen, Ebert, Douglas J., Whitson, Peggy A., Feiveson, Alan H., Alferova, Irina V., Dulchavsky, Scott A., Matveev, Vladimir P., Bogomolov, Valery V., Duncan, J. Michael
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.02.2012
Subjects
Online AccessGet full text
ISSN8750-7587
1522-1601
1522-1601
DOI10.1152/japplphysiol.00557.2011

Cover

Loading…
Abstract Background: the transition to microgravity eliminates the hydrostatic gradients in the vascular system. The resulting fluid redistribution commonly manifests as facial edema, engorgement of the external neck veins, nasal congestion, and headache. This experiment examined the responses to modified Valsalva and Mueller maneuvers measured by cardiac and vascular ultrasound (ECHO) in a baseline steady state and under the influence of thigh occlusion cuffs available as a countermeasure device (Braslet cuffs). Methods: nine International Space Station crewmember subjects (expeditions 16–20) were examined in 15 experiment sessions 101 ± 46 days after launch (mean ± SD; 33–185). Twenty-seven cardiac and vascular parameters were obtained with/without respiratory maneuvers before and after tightening of the Braslet cuffs (162 parameter states/session). Quality of cardiac and vascular ultrasound examinations was assured through remote monitoring and guidance by investigators from the NASA Telescience Center in Houston, TX, and the Mission Control Center in Korolyov, Moscow region, Russia. Results: 14 of 81 conditions (27 parameters measured at baseline, Valsalva, and Mueller maneuver) were significantly different when the Braslet was applied. Seven of 27 parameters were found to respond differently to respiratory maneuvers depending on the presence or absence of thigh compression. Conclusions: acute application of Braslet occlusion cuffs causes lower extremity fluid sequestration and exerts commensurate measurable effects on cardiac performance in microgravity. Ultrasound techniques to measure the hemodynamic effects of thigh cuffs in combination with respiratory maneuvers may serve as an effective tool in determining the volume status of a cardiac or hemodynamically compromised patient at the “microgravity bedside.”
AbstractList Background: the transition to microgravity eliminates the hydrostatic gradients in the vascular system. The resulting fluid redistribution commonly manifests as facial edema, engorgement of the external neck veins, nasal congestion, and headache. This experiment examined the responses to modified Valsalva and Mueller maneuvers measured by cardiac and vascular ultrasound (ECHO) in a baseline steady state and under the influence of thigh occlusion cuffs available as a countermeasure device (Braslet cuffs). Methods: nine International Space Station crewmember subjects (expeditions 16–20) were examined in 15 experiment sessions 101 ± 46 days after launch (mean ± SD; 33–185). Twenty-seven cardiac and vascular parameters were obtained with/without respiratory maneuvers before and after tightening of the Braslet cuffs (162 parameter states/session). Quality of cardiac and vascular ultrasound examinations was assured through remote monitoring and guidance by investigators from the NASA Telescience Center in Houston, TX, and the Mission Control Center in Korolyov, Moscow region, Russia. Results: 14 of 81 conditions (27 parameters measured at baseline, Valsalva, and Mueller maneuver) were significantly different when the Braslet was applied. Seven of 27 parameters were found to respond differently to respiratory maneuvers depending on the presence or absence of thigh compression. Conclusions: acute application of Braslet occlusion cuffs causes lower extremity fluid sequestration and exerts commensurate measurable effects on cardiac performance in microgravity. Ultrasound techniques to measure the hemodynamic effects of thigh cuffs in combination with respiratory maneuvers may serve as an effective tool in determining the volume status of a cardiac or hemodynamically compromised patient at the “microgravity bedside.”
The transition to microgravity eliminates the hydrostatic gradients in the vascular system. The resulting fluid redistribution commonly manifests as facial edema, engorgement of the external neck veins, nasal congestion, and headache. This experiment examined the responses to modified Valsalva and Mueller maneuvers measured by cardiac and vascular ultrasound (ECHO) in a baseline steady state and under the influence of thigh occlusion cuffs available as a countermeasure device (Braslet cuffs). Nine International Space Station crewmember subjects (expeditions 16-20) were examined in 15 experiment sessions 101 ± 46 days after launch (mean ± SD; 33-185). Twenty-seven cardiac and vascular parameters were obtained with/without respiratory maneuvers before and after tightening of the Braslet cuffs (162 parameter states/session). Quality of cardiac and vascular ultrasound examinations was assured through remote monitoring and guidance by investigators from the NASA Telescience Center in Houston, TX, and the Mission Control Center in Korolyov, Moscow region, Russia. 14 of 81 conditions (27 parameters measured at baseline, Valsalva, and Mueller maneuver) were significantly different when the Braslet was applied. Seven of 27 parameters were found to respond differently to respiratory maneuvers depending on the presence or absence of thigh compression. Acute application of Braslet occlusion cuffs causes lower extremity fluid sequestration and exerts commensurate measurable effects on cardiac performance in microgravity. Ultrasound techniques to measure the hemodynamic effects of thigh cuffs in combination with respiratory maneuvers may serve as an effective tool in determining the volume status of a cardiac or hemodynamically compromised patient at the "microgravity bedside."
The transition to microgravity eliminates the hydrostatic gradients in the vascular system. The resulting fluid redistribution commonly manifests as facial edema, engorgement of the external neck veins, nasal congestion, and headache. This experiment examined the responses to modified Valsalva and Mueller maneuvers measured by cardiac and vascular ultrasound (ECHO) in a baseline steady state and under the influence of thigh occlusion cuffs available as a countermeasure device (Braslet cuffs).BACKGROUNDThe transition to microgravity eliminates the hydrostatic gradients in the vascular system. The resulting fluid redistribution commonly manifests as facial edema, engorgement of the external neck veins, nasal congestion, and headache. This experiment examined the responses to modified Valsalva and Mueller maneuvers measured by cardiac and vascular ultrasound (ECHO) in a baseline steady state and under the influence of thigh occlusion cuffs available as a countermeasure device (Braslet cuffs).Nine International Space Station crewmember subjects (expeditions 16-20) were examined in 15 experiment sessions 101 ± 46 days after launch (mean ± SD; 33-185). Twenty-seven cardiac and vascular parameters were obtained with/without respiratory maneuvers before and after tightening of the Braslet cuffs (162 parameter states/session). Quality of cardiac and vascular ultrasound examinations was assured through remote monitoring and guidance by investigators from the NASA Telescience Center in Houston, TX, and the Mission Control Center in Korolyov, Moscow region, Russia.METHODSNine International Space Station crewmember subjects (expeditions 16-20) were examined in 15 experiment sessions 101 ± 46 days after launch (mean ± SD; 33-185). Twenty-seven cardiac and vascular parameters were obtained with/without respiratory maneuvers before and after tightening of the Braslet cuffs (162 parameter states/session). Quality of cardiac and vascular ultrasound examinations was assured through remote monitoring and guidance by investigators from the NASA Telescience Center in Houston, TX, and the Mission Control Center in Korolyov, Moscow region, Russia.14 of 81 conditions (27 parameters measured at baseline, Valsalva, and Mueller maneuver) were significantly different when the Braslet was applied. Seven of 27 parameters were found to respond differently to respiratory maneuvers depending on the presence or absence of thigh compression.RESULTS14 of 81 conditions (27 parameters measured at baseline, Valsalva, and Mueller maneuver) were significantly different when the Braslet was applied. Seven of 27 parameters were found to respond differently to respiratory maneuvers depending on the presence or absence of thigh compression.Acute application of Braslet occlusion cuffs causes lower extremity fluid sequestration and exerts commensurate measurable effects on cardiac performance in microgravity. Ultrasound techniques to measure the hemodynamic effects of thigh cuffs in combination with respiratory maneuvers may serve as an effective tool in determining the volume status of a cardiac or hemodynamically compromised patient at the "microgravity bedside."CONCLUSIONSAcute application of Braslet occlusion cuffs causes lower extremity fluid sequestration and exerts commensurate measurable effects on cardiac performance in microgravity. Ultrasound techniques to measure the hemodynamic effects of thigh cuffs in combination with respiratory maneuvers may serve as an effective tool in determining the volume status of a cardiac or hemodynamically compromised patient at the "microgravity bedside."
The transition to microgravity eliminates the hydrostatic gradients in the vascular system. The resulting fluid redistribution commonly manifests as facial edema, engorgement of the external neck veins, nasal congestion, and headache. This experiment examined the responses to modified Valsalva and Mueller maneuvers measured by cardiac and vascular ultrasound (ECHO) in a baseline steady state and under the influence of thigh occlusion cuffs available as a countermeasure device (Braslet cuffs). Nine International Space Station crewmember subjects (expeditions 16-20) were examined in 15 experiment sessions 101 ± 46 days after launch (mean ± SD; 33-185). Twenty-seven cardiac and vascular parameters were obtained with/without respiratory maneuvers before and after tightening of the Braslet cuffs (162 parameter states/session). Quality of cardiac and vascular ultrasound examinations was assured through remote monitoring and guidance by investigators from the NASA Telescience Center in Houston, TX, and the Mission Control Center in Korolyov, Moscow region, Russia. 14 of 81 conditions (27 parameters measured at baseline, Valsalva, and Mueller maneuver) were significantly different when the Braslet was applied. Seven of 27 parameters were found to respond differently to respiratory maneuvers depending on the presence or absence of thigh compression. Acute application of Braslet occlusion cuffs causes lower extremity fluid sequestration and exerts commensurate measurable effects on cardiac performance in microgravity. Ultrasound techniques to measure the hemodynamic effects of thigh cuffs in combination with respiratory maneuvers may serve as an effective tool in determining the volume status of a cardiac or hemodynamically compromised patient at the "microgravity bedside."
Author Sargsyan, Ashot E.
Hamilton, Douglas R.
Ebert, Douglas J.
Feiveson, Alan H.
Bogomolov, Valery V.
Matveev, Vladimir P.
Garcia, Kathleen
Dulchavsky, Scott A.
Alferova, Irina V.
Duncan, J. Michael
Whitson, Peggy A.
Author_xml – sequence: 1
  givenname: Douglas R.
  surname: Hamilton
  fullname: Hamilton, Douglas R.
  organization: Wyle Integrated Science and Engineering
– sequence: 2
  givenname: Ashot E.
  surname: Sargsyan
  fullname: Sargsyan, Ashot E.
  organization: Wyle Integrated Science and Engineering
– sequence: 3
  givenname: Kathleen
  surname: Garcia
  fullname: Garcia, Kathleen
  organization: Wyle Integrated Science and Engineering
– sequence: 4
  givenname: Douglas J.
  surname: Ebert
  fullname: Ebert, Douglas J.
  organization: Wyle Integrated Science and Engineering
– sequence: 5
  givenname: Peggy A.
  surname: Whitson
  fullname: Whitson, Peggy A.
  organization: NASA Lyndon B. Johnson Space Center, Houston, Texas
– sequence: 6
  givenname: Alan H.
  surname: Feiveson
  fullname: Feiveson, Alan H.
  organization: NASA Lyndon B. Johnson Space Center, Houston, Texas
– sequence: 7
  givenname: Irina V.
  surname: Alferova
  fullname: Alferova, Irina V.
  organization: Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russian Federation
– sequence: 8
  givenname: Scott A.
  surname: Dulchavsky
  fullname: Dulchavsky, Scott A.
  organization: Henry Ford Hospital, Detroit, Michigan; and
– sequence: 9
  givenname: Vladimir P.
  surname: Matveev
  fullname: Matveev, Vladimir P.
  organization: Yuri A. Gagarin Cosmonaut Training Center, Star City, Russian Federation
– sequence: 10
  givenname: Valery V.
  surname: Bogomolov
  fullname: Bogomolov, Valery V.
  organization: Yuri A. Gagarin Cosmonaut Training Center, Star City, Russian Federation
– sequence: 11
  givenname: J. Michael
  surname: Duncan
  fullname: Duncan, J. Michael
  organization: NASA Lyndon B. Johnson Space Center, Houston, Texas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21903875$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFvwCWOHDKYifx14EDWvFRqRKHwtmadcasV0kcbKfV_nuyu62EeuFkjd7nHc_Me0UuxjgiIe84W3Mu6o97mKZ-2h1yiP2aMSHUumacvyCrRa0rLhm_ICutBKuU0OqSXOW8Z4y3reCvyGXNDWsWdUUOG0hdAEdh7Og9ZDf3kGjCPMUxY6Yl0rILv3fUzd7nE3UUQ4IS04EOMOJ8jynTOFKX8GHAYXsq_eJDejMWTCOUEEfo6d0EDuldOdWvyUsPfcY3j-81-fX1y8_N9-r2x7ebzefbyjUtK5XwqLRvGsOUbqUAs21QOWCidgy0rI0G7KQH2bqt7rRXQjoJnnMwnYQWm2vy4dx3SvHPjLnYIWSHfb-MHudsDTdGSG3MQr5_Ru7jvEzfZ8uF0E3dGNks1NtHat4O2NkphQHSwT7ddAE-nQGXYs4JvXXhvHJJEHrLmT1maP_N0J4ytMcMF7965n_64n_Ov7GqqEE
CitedBy_id crossref_primary_10_1152_japplphysiol_00676_2015
crossref_primary_10_1152_japplphysiol_00863_2020
crossref_primary_10_1016_j_thromres_2023_11_020
crossref_primary_10_1038_s41526_024_00366_8
crossref_primary_10_1016_j_actaastro_2024_10_021
crossref_primary_10_1016_j_preteyeres_2025_101340
crossref_primary_10_1007_s40477_024_00930_8
crossref_primary_10_1002_jmri_28102
crossref_primary_10_1113_EP087240
crossref_primary_10_3357_AMHP_6219_2023
crossref_primary_10_1152_japplphysiol_00384_2023
crossref_primary_10_1177_0194599814558402
crossref_primary_10_4236_jbise_2013_612A003
crossref_primary_10_1016_j_actaastro_2014_04_002
crossref_primary_10_3389_fncir_2022_876789
crossref_primary_10_1152_japplphysiol_00162_2024
crossref_primary_10_1002_jcsm_13559
crossref_primary_10_1038_s41526_024_00356_w
crossref_primary_10_1371_journal_pone_0103089
crossref_primary_10_1152_japplphysiol_00003_2018
crossref_primary_10_1152_japplphysiol_00841_2015
crossref_primary_10_1007_s12217_024_10143_7
crossref_primary_10_1016_j_survophthal_2024_08_005
crossref_primary_10_1152_japplphysiol_00786_2020
crossref_primary_10_1038_nrrheum_2018_37
crossref_primary_10_3109_08830185_2015_1027821
Cites_doi 10.1126/science.6729478
10.2214/ajr.175.1.1750221
10.1016/j.ophtha.2011.06.021
10.1093/bja/89.5.769
10.1161/01.CIR.90.5.2492
10.1148/radiol.2342041680
10.1007/s11897-009-0022-8
10.1152/jappl.1999.86.6.1852
10.1016/0735-1097(96)00202-1
10.1111/j.1365-2621.2002.tb10622.x
10.1186/cc7006
10.1016/0094-5765(88)90016-1
10.1007/s004210050058
10.1152/jappl.1996.81.1.408
10.1111/j.1540-8175.2011.01385.x
10.1161/CIRCULATIONAHA.107.653576
10.1097/01.TA.0000162456.37962.01
10.1249/00005768-198315050-00015
10.1214/aos/1013699998
10.1016/0094-5765(86)90007-X
10.1152/jappl.1996.81.1.19
10.1016/S0894-7317(97)70090-7
10.1152/jappl.2001.90.4.1481
10.3357/ASEM.2583.2010
10.1152/japplphysiol.91578.2008
10.1097/01.TA.0000145083.47032.78
10.1016/0094-5765(95)00151-4
10.1016/0002-9149(88)90976-9
10.1152/ajpheart.01198.2010
10.1016/S0735-1097(97)00184-8
10.1152/jappl.1999.87.6.2168
10.1007/s00234-006-0095-y
10.1016/S0301-5629(00)00190-3
10.1097/00005768-199610000-00029
10.1016/S0929-8266(01)00135-5
ContentType Journal Article
Copyright Copyright American Physiological Society Feb 1, 2012
Copyright_xml – notice: Copyright American Physiological Society Feb 1, 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1152/japplphysiol.00557.2011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
Technology Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 462
ExternalDocumentID 3417569291
21903875
10_1152_japplphysiol_00557_2011
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GeographicLocations United States--US
Moscow Russia
Houston Texas
Russia
GeographicLocations_xml – name: Moscow Russia
– name: Houston Texas
– name: Russia
– name: United States--US
GroupedDBID ---
-~X
.55
18M
29J
2WC
4.4
53G
5VS
85S
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ABOCM
ACBEA
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADFNX
AEILP
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
KQ8
L7B
OK1
P-O
P2P
P6G
PQQKQ
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
XSW
YBH
YQT
YWH
~02
.GJ
1CY
39C
3O-
8M5
ACKIV
ACYGS
ADXHL
AETEA
AGCDD
AGNAY
AI.
AIDAL
AJUXI
C1A
C2-
CGR
CUY
CVF
ECM
EIF
J5H
MVM
NEJ
NPM
OHT
VH1
XOL
YQJ
ZXP
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c340t-5fe78f339078465a9b3e7ca052c0a86298aed6fa64cb8d8f756c6af11a9d6a4e3
ISSN 8750-7587
1522-1601
IngestDate Thu Sep 04 16:33:28 EDT 2025
Mon Jun 30 08:30:18 EDT 2025
Mon Jul 21 06:06:10 EDT 2025
Thu Apr 24 22:52:24 EDT 2025
Tue Jul 01 01:13:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-5fe78f339078465a9b3e7ca052c0a86298aed6fa64cb8d8f756c6af11a9d6a4e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 21903875
PQID 1558323963
PQPubID 40905
PageCount 9
ParticipantIDs proquest_miscellaneous_919956899
proquest_journals_1558323963
pubmed_primary_21903875
crossref_citationtrail_10_1152_japplphysiol_00557_2011
crossref_primary_10_1152_japplphysiol_00557_2011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-01
2012-Feb
20120201
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2012
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B25
B26
Bungo MW (B15) 1985; 56
B27
B28
B29
Tomaselli CM (B52) 1987; 58
Foale CM (B19) 2005; 76
B30
B32
B34
B36
B38
Atkov OY (B9) 1987; 58
Benjamini Y (B10) 2001; 29
B1
Hinghofer-Szalkay H (B33) 2004; 75
B8
B40
B41
B42
Thornton WE (B51) 1987; 58
B43
B44
B45
B48
B49
Arbeille P (B7) 1996; 3
Sargsyan AE (B47)
Pourcelot L (B46) 1986; 170
Lindgren KN (B37) 1998; 69
American Registry for Diagnostic Medical Sonography (B2)
Katkov VE (B35) 1981; 15
Buckey JC (B13) 1987; 21
B50
B53
B54
B11
B12
B49a
B14
Arbeille P (B4) 1999; 6
B16
B17
B18
Arbeille P (B5) 1995; 2
Matsnev EI (B39) 1983; 54
Gazenko OG (B24) 1982; 53
Arbeille P (B6) 1991; 34
References_xml – volume: 3
  start-page: 91
  year: 1996
  ident: B7
  publication-title: J Gravit Physiol
– ident: B36
  doi: 10.1126/science.6729478
– ident: B40
  doi: 10.2214/ajr.175.1.1750221
– ident: B38
  doi: 10.1016/j.ophtha.2011.06.021
– volume-title: Aviat Space Environ Med 77th Annual Scientific Meetings, ASMA
  ident: B47
– ident: B49
  doi: 10.1093/bja/89.5.769
– ident: B28
  doi: 10.1161/01.CIR.90.5.2492
– ident: B18
  doi: 10.1148/radiol.2342041680
– ident: B41
  doi: 10.1007/s11897-009-0022-8
– ident: B21
  doi: 10.1152/jappl.1999.86.6.1852
– ident: B49a
  doi: 10.1016/0735-1097(96)00202-1
– volume: 170
  start-page: 341
  year: 1986
  ident: B46
  publication-title: Bull Acad Natl Med
– ident: B42
  doi: 10.1111/j.1365-2621.2002.tb10622.x
– ident: B25
  doi: 10.1186/cc7006
– ident: B23
  doi: 10.1016/0094-5765(88)90016-1
– ident: B32
  doi: 10.1007/s004210050058
– ident: B20
  doi: 10.1152/jappl.1996.81.1.408
– volume: 53
  start-page: 523
  year: 1982
  ident: B24
  publication-title: Aviat Space Environ Med
– volume: 6
  start-page: 39
  year: 1999
  ident: B4
  publication-title: J Gravit Physiol
– ident: B30
  doi: 10.1111/j.1540-8175.2011.01385.x
– ident: B27
  doi: 10.1161/CIRCULATIONAHA.107.653576
– volume: 58
  start-page: 69
  year: 1987
  ident: B9
  publication-title: Aviat Space Environ Med
– ident: B16
  doi: 10.1097/01.TA.0000162456.37962.01
– ident: B11
  doi: 10.1249/00005768-198315050-00015
– volume: 21
  start-page: 238
  year: 1987
  ident: B13
  publication-title: Med Instrum
– volume: 56
  start-page: 985
  year: 1985
  ident: B15
  publication-title: Aviat Space Environ Med
– volume: 76
  start-page: 594
  year: 2005
  ident: B19
  publication-title: Aviat Space Environ Med
– volume: 29
  start-page: 1165
  year: 2001
  ident: B10
  publication-title: Ann Statistics
  doi: 10.1214/aos/1013699998
– ident: B44
  doi: 10.1016/0094-5765(86)90007-X
– ident: B12
  doi: 10.1152/jappl.1996.81.1.19
– ident: B50
  doi: 10.1016/S0894-7317(97)70090-7
– volume: 15
  start-page: 9
  year: 1981
  ident: B35
  publication-title: Kosm Biol Aviakosm Med
– volume: 58
  start-page: 3
  year: 1987
  ident: B52
  publication-title: Aviat Space Environ Med
– ident: B29
  doi: 10.1152/jappl.2001.90.4.1481
– ident: B26
  doi: 10.3357/ASEM.2583.2010
– volume: 2
  start-page: 9
  year: 1995
  ident: B5
  publication-title: J Gravit Physiol
– ident: B53
  doi: 10.1152/japplphysiol.91578.2008
– ident: B2
  publication-title: ARDMS (Online)
– volume: 54
  start-page: 312
  year: 1983
  ident: B39
  publication-title: Aviat Space Environ Med
– ident: B48
  doi: 10.1097/01.TA.0000145083.47032.78
– ident: B43
  doi: 10.1016/0094-5765(95)00151-4
– volume: 69
  start-page: 1052
  year: 1998
  ident: B37
  publication-title: Aviat Space Environ Med
– ident: B14
  doi: 10.1016/0002-9149(88)90976-9
– volume: 58
  start-page: 86
  year: 1987
  ident: B51
  publication-title: Aviat Space Environ Med
– ident: B22
  doi: 10.1152/ajpheart.01198.2010
– volume: 75
  start-page: 947
  year: 2004
  ident: B33
  publication-title: Aviat Space Environ Med
– ident: B34
  doi: 10.1016/S0735-1097(97)00184-8
– ident: B8
  doi: 10.1152/jappl.1999.87.6.2168
– volume: 34
  start-page: 151
  year: 1991
  ident: B6
  publication-title: Physiologist
– ident: B1
  doi: 10.1007/s00234-006-0095-y
– ident: B45
  doi: 10.1016/S0301-5629(00)00190-3
– ident: B54
  doi: 10.1097/00005768-199610000-00029
– ident: B17
  doi: 10.1016/S0929-8266(01)00135-5
SSID ssj0014451
Score 2.2250257
SecondaryResourceType review_article
Snippet Background: the transition to microgravity eliminates the hydrostatic gradients in the vascular system. The resulting fluid redistribution commonly manifests...
The transition to microgravity eliminates the hydrostatic gradients in the vascular system. The resulting fluid redistribution commonly manifests as facial...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 454
SubjectTerms Adaptation, Physiological - physiology
Cardiovascular System - diagnostic imaging
Cardiovascular System - physiopathology
Edema
Fluid dynamics
Headaches
Hemodynamics - physiology
Humans
Respiratory system
Respiratory System - physiopathology
Space Flight
Thigh - blood supply
Ultrasonic imaging
Ultrasonography
Weightlessness
Weightlessness Countermeasures
Weightlessness Simulation - methods
Title Cardiac and vascular responses to thigh cuffs and respiratory maneuvers on crewmembers of the International Space Station
URI https://www.ncbi.nlm.nih.gov/pubmed/21903875
https://www.proquest.com/docview/1558323963
https://www.proquest.com/docview/919956899
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGLXKkBAvCDYuHQP5AfGCMpqLnfixmjaqaQyktVLfIiex4YEmqEmEut_Cj-XzJa6rbRrwErVunVQ-p_b32cfHCL3LRFFGnGdBWlUkSKooDgouSQAEEkxmaTYRWuV7SWeL5HxJlqPRb0-11HfFcXl9676S_0EVygBXtUv2H5B1N4UCeA34whUQhutfYXyi4TWGq05SujaqV2Pd0Ck74g9lL6XxYl57K-srXoteqTLUggEEj79WQp0O0g6ygd3JwitIroWOTQckb4a03Ia0errEmDspHyiWEW_CYaamVKxo34bvW9XiFV9_azdmUnbafm-67U6JT-rUI-4rQFw2UNiNR8Ptzv25DCUKcboQ2_1CahxSWyRuKRv67DDyyBl7PXBiPKlvjgwk0icSQEPYRjjW_mPaxXU7GA4CgMsv-dni4iKfny7nD9DDCJIQfTDI0gmIQmXtpt147e-z6kF4__GOx-zGPnckNDqwmT9FTyx8eGro9QyNRL2PDqYAfLPa4Pf4qwNzHz36bKUYB2hjyYeBVnggH3bkw12DNfmwJp_-lkc-7MiHmxp75MONhHoC75APa_JhS77naHF2Oj-ZBfYcj6CMk0kXECnSTMYxg3A0oYSzIhZpySckKiccMmqWcVFRyWlSFlmVyZTQknIZhpxVlCcifoH26qYWrxBOlQogikshCcSWlWBFlEhBQplWQjBSjBEdWjgvrcm9OmvlR66TXRLlPjS5hiZX0IzRxFX8aXxe7q9yNECY206hzSE8hzEyhmFtjLD7GLpstQ4HLdv0bc6ULQLNGBujlwZ590iIH5SehBzeX_k1erz9Cx2hvW7dizcQIHfFW83TP-BsxAc
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiac+and+vascular+responses+to+thigh+cuffs+and+respiratory+maneuvers+on+crewmembers+of+the+International+Space+Station&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Hamilton%2C+Douglas+R&rft.au=Sargsyan%2C+Ashot+E&rft.au=Garcia%2C+Kathleen&rft.au=Ebert%2C+Douglas+J&rft.date=2012-02-01&rft.issn=1522-1601&rft.eissn=1522-1601&rft.volume=112&rft.issue=3&rft.spage=454&rft_id=info:doi/10.1152%2Fjapplphysiol.00557.2011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon