A class of linear sets in PG(1,q5)
Maximum scattered linear sets in PG(1,qn) have been completely classified for n≤4, see Csajbók and Zanella (2018) [9]; Lavrauw and Van de Voorde (2010) [10]. Here a wide class of linear sets in PG(1,q5) is studied which depends on two parameters. Conditions for the existence, in this class, of possi...
Saved in:
Published in | Finite fields and their applications Vol. 78; p. 101983 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1071-5797 1090-2465 |
DOI | 10.1016/j.ffa.2021.101983 |
Cover
Abstract | Maximum scattered linear sets in PG(1,qn) have been completely classified for n≤4, see Csajbók and Zanella (2018) [9]; Lavrauw and Van de Voorde (2010) [10]. Here a wide class of linear sets in PG(1,q5) is studied which depends on two parameters. Conditions for the existence, in this class, of possible new maximum scattered linear sets in PG(1,q5) are exhibited. |
---|---|
AbstractList | Maximum scattered linear sets in PG(1,qn) have been completely classified for n≤4, see Csajbók and Zanella (2018) [9]; Lavrauw and Van de Voorde (2010) [10]. Here a wide class of linear sets in PG(1,q5) is studied which depends on two parameters. Conditions for the existence, in this class, of possible new maximum scattered linear sets in PG(1,q5) are exhibited. |
ArticleNumber | 101983 |
Author | Montanucci, Maria Zanella, Corrado |
Author_xml | – sequence: 1 givenname: Maria surname: Montanucci fullname: Montanucci, Maria email: marimo@dtu.dk organization: Technical University of Denmark, Asmussens Allé, Building 303B, room 150, 2800 Kgs. Lyngby, Denmark – sequence: 2 givenname: Corrado surname: Zanella fullname: Zanella, Corrado organization: Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università degli Studi di Padova, Stradella S. Nicola, 3, 36100 Vicenza VI, Italy |
BookMark | eNp9z0FLwzAUwPEgE9ymH8Bb8aRg53tN0y54GkOnMNCDnsPbawIptdWkCH57W-rJw055Ofwe778Qs7ZrrRCXCCsELO7qlXO0yiDD8a_X8kTMETSkWV6o2TiXmKpSl2diEWMNgKjkei6uNgk3FGPSuaTxraWQRNvHxLfJ6-4ab7_Uzbk4ddREe_H3LsX748Pb9indv-yet5t9yjKHPlVcEDiWmS1yOlRKs5TEWq3BYXXQBSgqISdUBOzkQKQERxVrm5fDXSSXopz2cuhiDNYZ9j31vmv7QL4xCGZMNbUZUs2YaqbUQeI_-Rn8B4Wfo-Z-MnZI-vY2mMjetmwrHyz3pur8Ef0LbX5qgA |
CitedBy_id | crossref_primary_10_1016_j_ffa_2022_102034 crossref_primary_10_1016_j_laa_2024_10_015 crossref_primary_10_1007_s10623_022_01179_0 crossref_primary_10_1007_s10801_023_01275_x |
Cites_doi | 10.1016/j.jalgebra.2018.03.010 10.1016/j.ffa.2016.04.006 10.2140/iig.2005.2.35 10.1007/s10623-010-9393-9 10.1515/form.2004.029 10.1016/j.disc.2017.07.001 10.1023/A:1011265919847 10.1007/s00493-016-3531-6 10.1016/j.ffa.2018.11.009 10.1016/j.jcta.2018.03.007 10.1007/s10623-015-0141-z 10.1016/j.jcta.2018.05.004 10.3934/amc.2016019 10.26493/1855-3974.1651.e79 10.1016/j.ffa.2017.07.002 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ffa.2021.101983 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1090-2465 |
ExternalDocumentID | 10_1016_j_ffa_2021_101983 S1071579721001775 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c340t-5c6a0fc32e64abd59c33ac9580f1db9605a704a15a0cf3340330fadc9e47797a3 |
IEDL.DBID | AIKHN |
ISSN | 1071-5797 |
IngestDate | Thu Apr 24 23:11:38 EDT 2025 Tue Jul 01 03:35:31 EDT 2025 Fri Feb 23 02:43:40 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite projective space Subgeometry 51E20 Linear set 05B25 Finite projective line |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-5c6a0fc32e64abd59c33ac9580f1db9605a704a15a0cf3340330fadc9e47797a3 |
OpenAccessLink | https://hdl.handle.net/11577/3416660 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ffa_2021_101983 crossref_primary_10_1016_j_ffa_2021_101983 elsevier_sciencedirect_doi_10_1016_j_ffa_2021_101983 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Finite fields and their applications |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Csajbók, Marino, Polverino, Zullo (br0070) 2019; 56 Slavov (br0170) 2017; 48 Csajbók, Zanella (br0090) 2016; 41 Lavrauw, Van de Voorde (br0110) 2010; 56 Csajbók, Marino, Polverino (br0050) 2019; 16 Csajbók, Zanella (br0100) 2018; 341 Lunardon, Polverino (br0130) 2001; 14 Lunardon, Polverino (br0140) 2004; 16 Bonoli, Polverino (br0040) 2005; 2 Bartoli, Giulietti, Marino, Polverino (br0010) 2018; 38 Csajbók, Marino, Polverino (br0060) 2018; 157 Sheekey (br0160) 2016; 10 Csajbók, Zanella (br0080) 2016; 81 Lunardon, Trombetti, Zhou (br0150) 2018; 159 Bartoli, Zhou (br0020) 2018; 509 Lidl, Niederreiter (br0120) 1997 Lunardon (10.1016/j.ffa.2021.101983_br0130) 2001; 14 Sheekey (10.1016/j.ffa.2021.101983_br0160) 2016; 10 Lavrauw (10.1016/j.ffa.2021.101983_br0110) 2010; 56 Bonoli (10.1016/j.ffa.2021.101983_br0040) 2005; 2 Lunardon (10.1016/j.ffa.2021.101983_br0140) 2004; 16 Csajbók (10.1016/j.ffa.2021.101983_br0090) 2016; 41 Csajbók (10.1016/j.ffa.2021.101983_br0060) 2018; 157 Bartoli (10.1016/j.ffa.2021.101983_br0010) 2018; 38 Slavov (10.1016/j.ffa.2021.101983_br0170) 2017; 48 Lidl (10.1016/j.ffa.2021.101983_br0120) 1997 Csajbók (10.1016/j.ffa.2021.101983_br0050) 2019; 16 Csajbók (10.1016/j.ffa.2021.101983_br0080) 2016; 81 Lunardon (10.1016/j.ffa.2021.101983_br0150) 2018; 159 Csajbók (10.1016/j.ffa.2021.101983_br0070) 2019; 56 Bartoli (10.1016/j.ffa.2021.101983_br0020) 2018; 509 Csajbók (10.1016/j.ffa.2021.101983_br0100) 2018; 341 |
References_xml | – year: 1997 ident: br0120 article-title: Finite Fields, vol. 20 – volume: 48 start-page: 60 year: 2017 end-page: 67 ident: br0170 article-title: An application of random plane slicing to counting publication-title: Finite Fields Appl. – volume: 157 start-page: 402 year: 2018 end-page: 426 ident: br0060 article-title: Classes and equivalence of linear sets in publication-title: J. Comb. Theory, Ser. A – volume: 16 start-page: 663 year: 2004 end-page: 669 ident: br0140 article-title: Translation ovoids of orthogonal polar spaces publication-title: Forum Math. – volume: 509 start-page: 507 year: 2018 end-page: 534 ident: br0020 article-title: Exceptional scattered polynomials publication-title: J. Algebra – volume: 56 start-page: 89 year: 2010 end-page: 104 ident: br0110 article-title: On linear sets on a projective line publication-title: Des. Codes Cryptogr. – volume: 341 start-page: 74 year: 2018 end-page: 80 ident: br0100 article-title: Maximum scattered publication-title: Discrete Math. – volume: 2 start-page: 35 year: 2005 end-page: 56 ident: br0040 article-title: -linear blocking sets in publication-title: Innov. Incid. Geom. – volume: 56 start-page: 109 year: 2019 end-page: 130 ident: br0070 article-title: A characterization of linearized polynomials with maximum kernel publication-title: Finite Fields Appl. – volume: 14 start-page: 49 year: 2001 end-page: 56 ident: br0130 article-title: Blocking sets and derivable partial spreads publication-title: J. Algebraic Comb. – volume: 10 start-page: 475 year: 2016 end-page: 488 ident: br0160 article-title: A new family of linear maximum rank distance codes publication-title: Adv. Math. Commun. – volume: 16 start-page: 585 year: 2019 end-page: 608 ident: br0050 article-title: A Carlitz type result for linearized polynomials publication-title: Ars Math. Contemp. – volume: 81 start-page: 269 year: 2016 end-page: 281 ident: br0080 article-title: On the equivalence of linear sets publication-title: Des. Codes Cryptogr. – volume: 159 start-page: 79 year: 2018 end-page: 106 ident: br0150 article-title: Generalized twisted Gabidulin codes publication-title: J. Comb. Theory, Ser. A – volume: 41 start-page: 34 year: 2016 end-page: 54 ident: br0090 article-title: On scattered linear sets of pseudoregulus type in publication-title: Finite Fields Appl. – volume: 38 start-page: 255 year: 2018 end-page: 278 ident: br0010 article-title: Maximum scattered linear sets and complete caps in Galois spaces publication-title: Combinatorica – volume: 509 start-page: 507 year: 2018 ident: 10.1016/j.ffa.2021.101983_br0020 article-title: Exceptional scattered polynomials publication-title: J. Algebra doi: 10.1016/j.jalgebra.2018.03.010 – volume: 41 start-page: 34 year: 2016 ident: 10.1016/j.ffa.2021.101983_br0090 article-title: On scattered linear sets of pseudoregulus type in PG(1,qt) publication-title: Finite Fields Appl. doi: 10.1016/j.ffa.2016.04.006 – volume: 2 start-page: 35 year: 2005 ident: 10.1016/j.ffa.2021.101983_br0040 article-title: Fq-linear blocking sets in PG(2,q4) publication-title: Innov. Incid. Geom. doi: 10.2140/iig.2005.2.35 – volume: 56 start-page: 89 year: 2010 ident: 10.1016/j.ffa.2021.101983_br0110 article-title: On linear sets on a projective line publication-title: Des. Codes Cryptogr. doi: 10.1007/s10623-010-9393-9 – year: 1997 ident: 10.1016/j.ffa.2021.101983_br0120 – volume: 16 start-page: 663 year: 2004 ident: 10.1016/j.ffa.2021.101983_br0140 article-title: Translation ovoids of orthogonal polar spaces publication-title: Forum Math. doi: 10.1515/form.2004.029 – volume: 341 start-page: 74 year: 2018 ident: 10.1016/j.ffa.2021.101983_br0100 article-title: Maximum scattered Fq-linear sets of PG(1,q4) publication-title: Discrete Math. doi: 10.1016/j.disc.2017.07.001 – volume: 14 start-page: 49 year: 2001 ident: 10.1016/j.ffa.2021.101983_br0130 article-title: Blocking sets and derivable partial spreads publication-title: J. Algebraic Comb. doi: 10.1023/A:1011265919847 – volume: 38 start-page: 255 year: 2018 ident: 10.1016/j.ffa.2021.101983_br0010 article-title: Maximum scattered linear sets and complete caps in Galois spaces publication-title: Combinatorica doi: 10.1007/s00493-016-3531-6 – volume: 56 start-page: 109 year: 2019 ident: 10.1016/j.ffa.2021.101983_br0070 article-title: A characterization of linearized polynomials with maximum kernel publication-title: Finite Fields Appl. doi: 10.1016/j.ffa.2018.11.009 – volume: 157 start-page: 402 year: 2018 ident: 10.1016/j.ffa.2021.101983_br0060 article-title: Classes and equivalence of linear sets in PG(1,qn) publication-title: J. Comb. Theory, Ser. A doi: 10.1016/j.jcta.2018.03.007 – volume: 81 start-page: 269 year: 2016 ident: 10.1016/j.ffa.2021.101983_br0080 article-title: On the equivalence of linear sets publication-title: Des. Codes Cryptogr. doi: 10.1007/s10623-015-0141-z – volume: 159 start-page: 79 year: 2018 ident: 10.1016/j.ffa.2021.101983_br0150 article-title: Generalized twisted Gabidulin codes publication-title: J. Comb. Theory, Ser. A doi: 10.1016/j.jcta.2018.05.004 – volume: 10 start-page: 475 issue: 3 year: 2016 ident: 10.1016/j.ffa.2021.101983_br0160 article-title: A new family of linear maximum rank distance codes publication-title: Adv. Math. Commun. doi: 10.3934/amc.2016019 – volume: 16 start-page: 585 year: 2019 ident: 10.1016/j.ffa.2021.101983_br0050 article-title: A Carlitz type result for linearized polynomials publication-title: Ars Math. Contemp. doi: 10.26493/1855-3974.1651.e79 – volume: 48 start-page: 60 year: 2017 ident: 10.1016/j.ffa.2021.101983_br0170 article-title: An application of random plane slicing to counting Fq-points on hypersurfaces publication-title: Finite Fields Appl. doi: 10.1016/j.ffa.2017.07.002 |
SSID | ssj0011538 |
Score | 2.2886987 |
Snippet | Maximum scattered linear sets in PG(1,qn) have been completely classified for n≤4, see Csajbók and Zanella (2018) [9]; Lavrauw and Van de Voorde (2010) [10].... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101983 |
SubjectTerms | Finite projective line Finite projective space Linear set Subgeometry |
Title | A class of linear sets in PG(1,q5) |
URI | https://dx.doi.org/10.1016/j.ffa.2021.101983 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7s8qIP4hXnZRTxQcW6pkl6eRzDOS8bQx3srZymCUykm1t99bebrO1QUB98bOkHzUn65TvNyReAUxJzhpIyneQg2oxL10YaCNuPHeknIWVCmf8d_YHXG7G7MR9XoFPuhTFllQX355y-ZOviTquIZms2mbSedOJCuG_cZwzV-rwKdZeGHq9BvX173xusFhPMR52XHhLbAMrFzWWZl1LGfcgl5joM6M_T05cpp7sJG4VWtNr562xBRabbsN5fGa0uduCkbQmjf62psoxgxLm1kNnCmqTW8OaMXL7x810Yda-fOz27OPbAFpQ5mc2Fh44S1JUewzjhoaAURcgDR5Ek1hkHR99hSDg6QlENodRRmIhQMl-3Duke1NJpKvfBopxyRObFQRIzLdVCpVwfGXNRqEQnPg1wytZGovAEN0dTvEZl8ddLpAMUmQBFeYAacLGCzHJDjL8eZmUIo2-9GmnC_h128D_YIay5ZnPCsqb6CGrZ_F0ea8mQxU2oXn2Qph4YnceHYbMYIJ-sIbya |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA1zPqgP4hXnNYgPKtYlTdLLowzn1G0IbrC38jVNYCLd3Oqrv92kl6GgPvjYkA-S0_bL-dqTE4TOaCw4KMZNkQPgcKFcB1ggHT8myk9CxqW23zt6fa8z5A8jMaqhVrUXxsoqy9xf5PQ8W5ctzRLN5nQ8bj6bwoUK37rP2FTriyW0zAXzra7v-mOh86D2lS6Eh9Sx3atfm7nIS2vrPeRSex0G7OfF6cuC095A6yVTxDfFYDZRTaVbaK23sFmdb6PTGywt-8UTjS1dhBmeq2yOxyl-ujunV2_iYgcN27eDVscpDz1wJOMkc4T0gGjJXOVxiBMRSsZAhiIgmiaxqTcE-IQDFUCkZiaEMaIhkaHivpkdsF1UTyep2kOYCSYAuBcHScwNUQu1dn3g3AWpE1P2NBCpZhvJ0hHcHkzxGlXSr5fIABRZgKICoAa6XIRMCzuMvzrzCsLo2z2NTLr-PWz_f2EnaKUz6HWj7n3_8QCtunabQq6uPkT1bPaujgx5yOLj_OH4BFJMu9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+class+of+linear+sets+in+PG%281%2Cq5%29&rft.jtitle=Finite+fields+and+their+applications&rft.au=Montanucci%2C+Maria&rft.au=Zanella%2C+Corrado&rft.date=2022-02-01&rft.pub=Elsevier+Inc&rft.issn=1071-5797&rft.eissn=1090-2465&rft.volume=78&rft_id=info:doi/10.1016%2Fj.ffa.2021.101983&rft.externalDocID=S1071579721001775 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-5797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-5797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-5797&client=summon |