Paved with good intentions: Analysis of a randomized block Kaczmarz method

The block Kaczmarz method is an iterative scheme for solving overdetermined least-squares problems. At each step, the algorithm projects the current iterate onto the solution space of a subset of the constraints. This paper describes a block Kaczmarz algorithm that uses a randomized control scheme t...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 441; pp. 199 - 221
Main Authors Needell, Deanna, Tropp, Joel A.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The block Kaczmarz method is an iterative scheme for solving overdetermined least-squares problems. At each step, the algorithm projects the current iterate onto the solution space of a subset of the constraints. This paper describes a block Kaczmarz algorithm that uses a randomized control scheme to choose the subset at each step. This algorithm is the first block Kaczmarz method with an (expected) linear rate of convergence that can be expressed in terms of the geometric properties of the matrix and its submatrices. The analysis reveals that the algorithm is most effective when it is given a good row paving of the matrix, a partition of the rows into well-conditioned blocks. The operator theory literature provides detailed information about the existence and construction of good row pavings. Together, these results yield an efficient block Kaczmarz scheme that applies to many overdetermined least-squares problem.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2012.12.022