Experimental performance analysis of a direct-expansion solar-assisted heat pump water heater with R134a in summer
•A direct-expansion solar-assisted heat pump for domestic hot water supply was built.•A series of experiments were carried out under typical summer weather conditions.•The effects of various parameters on the system thermal performance are analyzed. A direct-expansion solar-assisted heat pump (DX-SA...
Saved in:
Published in | International journal of refrigeration Vol. 91; pp. 12 - 19 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Paris
Elsevier Ltd
01.07.2018
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A direct-expansion solar-assisted heat pump for domestic hot water supply was built.•A series of experiments were carried out under typical summer weather conditions.•The effects of various parameters on the system thermal performance are analyzed.
A direct-expansion solar-assisted heat pump (DX-SAHP) system for domestic hot water supply was built and tested, which mainly consisted of a bare flat-plate collector/evaporator with a surface area of 2.1 m2, a variable-frequency rotary-type hermetic compressor, a hot water tank with the volume of 0.2 m3 surrounded by a micro-channel condenser, and an electronic expansion valve. A series of experiments were carried out to test the system performance under typical summer weather conditions in Qingdao, China. The effects of various parameters, including solar radiation intensity of 258–634 W·m−2, ambient temperature of 28–34 °C, compressor speed of 2500–6000 rpm and final water temperature of 50–60.3 °C, on the system performance are analyzed. Experimental results show that the system coefficient of performance(COP) could be enhanced with the increase of the solar radiation intensity or the ambient temperature, and with the decrease of the compressor speed or the final water temperature. |
---|---|
AbstractList | •A direct-expansion solar-assisted heat pump for domestic hot water supply was built.•A series of experiments were carried out under typical summer weather conditions.•The effects of various parameters on the system thermal performance are analyzed.
A direct-expansion solar-assisted heat pump (DX-SAHP) system for domestic hot water supply was built and tested, which mainly consisted of a bare flat-plate collector/evaporator with a surface area of 2.1 m2, a variable-frequency rotary-type hermetic compressor, a hot water tank with the volume of 0.2 m3 surrounded by a micro-channel condenser, and an electronic expansion valve. A series of experiments were carried out to test the system performance under typical summer weather conditions in Qingdao, China. The effects of various parameters, including solar radiation intensity of 258–634 W·m−2, ambient temperature of 28–34 °C, compressor speed of 2500–6000 rpm and final water temperature of 50–60.3 °C, on the system performance are analyzed. Experimental results show that the system coefficient of performance(COP) could be enhanced with the increase of the solar radiation intensity or the ambient temperature, and with the decrease of the compressor speed or the final water temperature. A direct-expansion solar-assisted heat pump (DX-SAHP) system for domestic hot water supply was built and tested, which mainly consisted of a bare flat-plate collector/evaporator with a surface area of 2.1 m2, a variable-frequency rotary-type hermetic compressor, a hot water tank with the volume of 0.2 m3 surrounded by a micro-channel condenser, and an electronic expansion valve. A series of experiments were carried out to test the system performance under typical summer weather conditions in Qingdao, China. The effects of various parameters, including solar radiation intensity of 258–634 W·m−2, ambient temperature of 28–34°C, compressor speed of 2500–6000 rpm and final water temperature of 50–60.3°C, on the system performance are analyzed. Experimental results show that the system coefficient of performance(COP) could be enhanced with the increase of the solar radiation intensity or the ambient temperature, and with the decrease of the compressor speed or the final water temperature. |
Author | Dong, Shandong Li, Ying Kong, Xiangqiang Sun, Penglong Jiang, Kailin |
Author_xml | – sequence: 1 givenname: Xiangqiang surname: Kong fullname: Kong, Xiangqiang email: xqkong@sdust.edu.cn – sequence: 2 givenname: Penglong surname: Sun fullname: Sun, Penglong – sequence: 3 givenname: Shandong surname: Dong fullname: Dong, Shandong – sequence: 4 givenname: Kailin surname: Jiang fullname: Jiang, Kailin – sequence: 5 givenname: Ying surname: Li fullname: Li, Ying |
BookMark | eNqFkMFq3DAQhkXZQDebvEIQ9Gx3JHtlG3JoWZK2EAiE5CxmtaNExrZcSdtk3z5Ktr30ktM_A_83MN8pW0x-IsYuBJQChPral64PZIN7LCWItoS6BCk-saVom66Q0IoFW4KooWgAms_sNMYeQDSwbpcsXL3MFNxIU8KB59H6MOJkiOOEwyG6yL3lyHcukEkFvcw4RecnHv2AocCYG4l2_Ikw8Xk_zvwZE4X3PcezS0_8TlQ1cpeZ_ThSOGMnFodI539zxR6ur-43P4ub2x-_Nt9vClPVkIq1bK1qt02TExWQoIpUh0BKdWRsvTamsbaRaCVZKbsaJRHQtrMShdpitWJfjnfn4H_vKSbd-33IX0UthVBt1dWdyq3LY8sEH2P2qI1LmPKLKaAbtAD9Zln3-p9l_WZZQ62z5Yyr__A528Rw-Bj8dgQpK_jjKOhoHGXxR9N6591HJ14BYF2gCQ |
CitedBy_id | crossref_primary_10_1016_j_renene_2020_11_008 crossref_primary_10_1016_j_solener_2021_10_018 crossref_primary_10_1016_j_solener_2022_12_005 crossref_primary_10_1016_j_solener_2020_04_048 crossref_primary_10_1016_j_solener_2019_11_104 crossref_primary_10_1016_j_solener_2019_05_072 crossref_primary_10_17163_ings_n24_2020_10 crossref_primary_10_1016_j_applthermaleng_2018_11_045 crossref_primary_10_1016_j_solener_2021_02_056 crossref_primary_10_1016_j_applthermaleng_2025_125725 crossref_primary_10_1016_j_solener_2019_04_027 crossref_primary_10_1016_j_applthermaleng_2022_119286 crossref_primary_10_1016_j_ijrefrig_2020_03_031 crossref_primary_10_1016_j_renene_2022_05_154 crossref_primary_10_1016_j_apenergy_2024_123478 crossref_primary_10_1016_j_enconman_2021_114710 crossref_primary_10_1016_j_rineng_2025_104394 crossref_primary_10_1016_j_enconman_2020_112651 crossref_primary_10_1016_j_ijrefrig_2021_01_008 crossref_primary_10_1016_j_solener_2018_10_067 crossref_primary_10_1016_j_applthermaleng_2024_122530 crossref_primary_10_1016_j_applthermaleng_2020_115007 crossref_primary_10_1016_j_tsep_2022_101534 crossref_primary_10_1016_j_solener_2020_12_052 crossref_primary_10_1016_j_ijrefrig_2020_10_037 crossref_primary_10_1016_j_ijrefrig_2020_12_022 crossref_primary_10_1016_j_renene_2019_08_045 crossref_primary_10_1016_j_solener_2019_08_013 crossref_primary_10_1016_j_applthermaleng_2023_120465 crossref_primary_10_1016_j_energy_2024_133696 crossref_primary_10_1016_j_ijrefrig_2021_10_010 crossref_primary_10_1016_j_applthermaleng_2019_114564 crossref_primary_10_3390_app14146169 crossref_primary_10_1016_j_ijft_2024_100794 crossref_primary_10_1016_j_applthermaleng_2022_119410 crossref_primary_10_1016_j_solener_2020_04_053 crossref_primary_10_1016_j_applthermaleng_2021_117693 crossref_primary_10_1080_23311916_2021_1975901 crossref_primary_10_1016_j_enbuild_2023_113383 crossref_primary_10_1016_j_enconman_2020_112781 crossref_primary_10_1016_j_jobe_2021_102732 crossref_primary_10_1016_j_ijrefrig_2020_01_019 crossref_primary_10_1016_j_renene_2024_121557 crossref_primary_10_1080_15435075_2023_2276159 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_106 crossref_primary_10_1016_j_jobe_2023_105963 crossref_primary_10_1007_s12204_020_2228_6 crossref_primary_10_1080_15567036_2019_1663305 |
Cites_doi | 10.1016/j.egypro.2016.11.232 10.1016/j.enconman.2012.01.018 10.1016/j.energy.2006.11.003 10.1016/j.egypro.2014.02.107 10.1016/j.applthermaleng.2016.06.004 10.1016/j.applthermaleng.2014.02.016 10.1016/j.enconman.2016.05.004 10.1016/j.enbuild.2015.01.019 10.1016/j.rser.2013.01.029 10.1016/j.enbuild.2012.08.009 10.1016/j.renene.2015.12.039 10.1016/j.apenergy.2012.05.058 10.1016/j.applthermaleng.2014.02.060 10.1016/j.rser.2015.10.157 10.1016/j.enconman.2013.09.050 10.1016/j.egypro.2015.02.140 10.1016/j.rser.2013.05.032 10.1016/j.scs.2017.05.020 10.1016/j.energy.2014.05.095 10.1177/0954406214545822 10.1016/j.applthermaleng.2016.10.040 10.1016/j.solener.2005.06.003 10.1016/j.enconman.2016.04.102 10.1016/j.enconman.2004.12.001 10.1016/j.solener.2016.12.043 10.1115/1.4027735 10.1016/j.ijrefrig.2017.01.020 10.1016/j.apenergy.2016.06.063 10.1016/j.enconman.2016.09.017 10.1016/S0196-8904(99)00189-2 |
ContentType | Journal Article |
Copyright | 2018 Copyright Elsevier Science Ltd. Jul 2018 |
Copyright_xml | – notice: 2018 – notice: Copyright Elsevier Science Ltd. Jul 2018 |
DBID | AAYXX CITATION 7TB 8FD FR3 |
DOI | 10.1016/j.ijrefrig.2018.04.021 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Analyse expérimentale des performances d’un chauffe-eau à pompe à chaleur à détente directe assistée par l’énergie solaire fonctionnant au 134a en été |
EISSN | 1879-2081 |
EndPage | 19 |
ExternalDocumentID | 10_1016_j_ijrefrig_2018_04_021 S0140700718301270 |
GeographicLocations | Qingdao China |
GeographicLocations_xml | – name: Qingdao China |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABFNM ABGRD ABJNI ABMAC ABTAH ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV ADTZH AEBSH AECPX AEIPS AEKER AEQOU AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSA SSH SST SSZ T5K WUQ XPP ZMT ZY4 ~02 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7TB 8FD EFKBS FR3 |
ID | FETCH-LOGICAL-c340t-528f68b7728fa60e1e3e69a0e669ecf45cc7ff72af2ef2294a2ee0eb9f2a16ba3 |
IEDL.DBID | .~1 |
ISSN | 0140-7007 |
IngestDate | Fri Jul 25 01:55:42 EDT 2025 Thu Apr 24 23:08:13 EDT 2025 Tue Jul 01 02:47:01 EDT 2025 Sun Apr 06 06:53:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solar assisted heat pump Eau chaude Pompe à chaleur assistée par l’énergie solaire Experiment Détente directe Direct expansion Thermal performance Hot water Expérimentation Performance thermique |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-528f68b7728fa60e1e3e69a0e669ecf45cc7ff72af2ef2294a2ee0eb9f2a16ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2116839496 |
PQPubID | 2047558 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2116839496 crossref_citationtrail_10_1016_j_ijrefrig_2018_04_021 crossref_primary_10_1016_j_ijrefrig_2018_04_021 elsevier_sciencedirect_doi_10_1016_j_ijrefrig_2018_04_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2018 2018-07-00 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
PublicationDecade | 2010 |
PublicationPlace | Paris |
PublicationPlace_xml | – name: Paris |
PublicationTitle | International journal of refrigeration |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Ma, Lin, Zhang, Zheng, He (bib0026) 2014; 35 Chata, Chaturvedi, Almogbel (bib0005) 2005; 46 Amin, Hawlader (bib0001) 2013; 26 Malali, Chaturvedi, Abdel-Salam (bib0027) 2016; 127 Wang, Wu, Xu, Wang (bib0036) 2001; 42 Wang, Wang, Ma, Song (bib0037) 2017; 112 Omojaro, Breitkopf (bib0028) 2013; 22 Wang (bib0035) 2012; 34 Chen, Yu (bib0008) 2017; 142 Li, Wang, Wu, Xu (bib0023) 2007; 32 Kong, Li, Lin, Yang (bib0019) 2017; 76 Deng, Dai, Wang (bib0012) 2012; 54 Peng, Luo, Cui, Li, Liu (bib0030) 2012; 37 Buker, Riffat (bib0004) 2016; 55 Huang, Yang, Wang, Wu (bib0015) 2009 Huang, Xu, Zhang (bib0016) 2016; 44 Khorasaninejad, Hajabdollahi (bib0018) 2014; 72 Bellos, Tzivanidis, Moschos (bib0002) 2016; 120 Bellos, Tzivanidis (bib0003) 2017; 33 Fernández-Seara, Piñeiro, Dopazo, Fernandes, Sousa (bib0014) 2012; 59 Tzivanidis, Bellos, Mitsopoulos (bib0034) 2016; 106 Paradeshi, Srinivas, Jayaraj (bib0029) 2016; 90 Sun, Dai, Novakovic, Wu, Wang (bib0031) 2015; 70 Chen, Dai, Wang (bib0007) 2016; 89 Chaturvedi, Gagrani, Abdel-Salam (bib0006) 2014; 77 Tagliafico, Scarpa, Valsuani (bib0033) 2014; 66 Deng, Yu (bib0013) 2016; 120 Yang, Xu, Zhu, Xiao (bib0038) 2012; 42 Kong, Zhang, Li, Yang (bib0020) 2011; 36 Chow, Bai, Fong, Lin (bib0010) 2012; 100 Li, Li, Zhang (bib0022) 2015; 91 Jordan, Threlkeld (bib0017) 1954; 26 Kuang, Wang (bib0021) 2006; 80 Cheng, Xu, Ni (bib0009) 2011; 39 Luca, Cesare, Stefano (bib0025) 2014; 48 Zhou, Zhao, Ma, Qiu (bib0040) 2016; 178 Chu, Cruickshank (bib0011) 2014; 136 Liu, Li, Fu, Fang (bib0024) 2011; 41 Zhang, Wu, Li (bib0039) 2015; 229 Sun, Wu, Dai, Wang (bib0032) 2014; 66 Tzivanidis (10.1016/j.ijrefrig.2018.04.021_bib0034) 2016; 106 Chen (10.1016/j.ijrefrig.2018.04.021_bib0008) 2017; 142 Bellos (10.1016/j.ijrefrig.2018.04.021_bib0002) 2016; 120 Chow (10.1016/j.ijrefrig.2018.04.021_bib0010) 2012; 100 Chaturvedi (10.1016/j.ijrefrig.2018.04.021_bib0006) 2014; 77 Li (10.1016/j.ijrefrig.2018.04.021_bib0022) 2015; 91 Fernández-Seara (10.1016/j.ijrefrig.2018.04.021_bib0014) 2012; 59 Kuang (10.1016/j.ijrefrig.2018.04.021_bib0021) 2006; 80 Zhou (10.1016/j.ijrefrig.2018.04.021_bib0040) 2016; 178 Omojaro (10.1016/j.ijrefrig.2018.04.021_bib0028) 2013; 22 Cheng (10.1016/j.ijrefrig.2018.04.021_bib0009) 2011; 39 Deng (10.1016/j.ijrefrig.2018.04.021_bib0012) 2012; 54 Huang (10.1016/j.ijrefrig.2018.04.021_bib0016) 2016; 44 Chu (10.1016/j.ijrefrig.2018.04.021_bib0011) 2014; 136 Wang (10.1016/j.ijrefrig.2018.04.021_bib0035) 2012; 34 Ma (10.1016/j.ijrefrig.2018.04.021_bib0026) 2014; 35 Malali (10.1016/j.ijrefrig.2018.04.021_bib0027) 2016; 127 Sun (10.1016/j.ijrefrig.2018.04.021_bib0031) 2015; 70 Sun (10.1016/j.ijrefrig.2018.04.021_bib0032) 2014; 66 Yang (10.1016/j.ijrefrig.2018.04.021_bib0038) 2012; 42 Chata (10.1016/j.ijrefrig.2018.04.021_bib0005) 2005; 46 Kong (10.1016/j.ijrefrig.2018.04.021_bib0019) 2017; 76 Deng (10.1016/j.ijrefrig.2018.04.021_bib0013) 2016; 120 Khorasaninejad (10.1016/j.ijrefrig.2018.04.021_bib0018) 2014; 72 Wang (10.1016/j.ijrefrig.2018.04.021_bib0037) 2017; 112 Huang (10.1016/j.ijrefrig.2018.04.021_bib0015) 2009 Tagliafico (10.1016/j.ijrefrig.2018.04.021_bib0033) 2014; 66 Peng (10.1016/j.ijrefrig.2018.04.021_bib0030) 2012; 37 Bellos (10.1016/j.ijrefrig.2018.04.021_bib0003) 2017; 33 Amin (10.1016/j.ijrefrig.2018.04.021_bib0001) 2013; 26 Li (10.1016/j.ijrefrig.2018.04.021_bib0023) 2007; 32 Kong (10.1016/j.ijrefrig.2018.04.021_bib0020) 2011; 36 Zhang (10.1016/j.ijrefrig.2018.04.021_bib0039) 2015; 229 Buker (10.1016/j.ijrefrig.2018.04.021_bib0004) 2016; 55 Liu (10.1016/j.ijrefrig.2018.04.021_bib0024) 2011; 41 Wang (10.1016/j.ijrefrig.2018.04.021_bib0036) 2001; 42 Luca (10.1016/j.ijrefrig.2018.04.021_bib0025) 2014; 48 Paradeshi (10.1016/j.ijrefrig.2018.04.021_bib0029) 2016; 90 Chen (10.1016/j.ijrefrig.2018.04.021_bib0007) 2016; 89 Jordan (10.1016/j.ijrefrig.2018.04.021_bib0017) 1954; 26 |
References_xml | – volume: 91 start-page: 57 year: 2015 end-page: 64 ident: bib0022 article-title: Simulation research of a hybrid heat source heat pump using R134a, R744 instead of R22 for domestic water heating in residential buildings publication-title: Energy Build. – volume: 32 start-page: 1361 year: 2007 end-page: 1374 ident: bib0023 article-title: Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater publication-title: Energy – volume: 66 start-page: 571 year: 2014 end-page: 579 ident: bib0032 article-title: Experimental study on roll-band collector/evaporator with optimized channel used in direct expansion solar assisted heat pump water heating system publication-title: Appl. Thermal Eng. – volume: 42 start-page: 233 year: 2001 end-page: 249 ident: bib0036 article-title: Performance researches and improvements on heat regenerative adsorption refrigerator and heat pump publication-title: Energy Convers. Manag. – volume: 48 start-page: 938 year: 2014 end-page: 945 ident: bib0025 article-title: Numerical analysis of the use of R-407C in direct expansion solar assisted heat pump publication-title: Energy Procedia – volume: 106 start-page: 87 year: 2016 end-page: 97 ident: bib0034 article-title: Energetic and financial evaluation of a solar assisted heat pump heating system with other usual heating systems in Athens publication-title: Appl. Thermal Eng. – volume: 36 start-page: 6830 year: 2011 end-page: 6838 ident: bib0020 article-title: Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater publication-title: Energy – volume: 120 start-page: 378 year: 2016 end-page: 387 ident: bib0013 article-title: Simulation analysis on dynamic performance of a combined solar/air dual source heat pump water heater publication-title: Energy Convers. Manag. – volume: 33 start-page: 70 year: 2017 end-page: 84 ident: bib0003 article-title: Energetic and financial sustainability of solar assisted heat pump heating systems in Europe publication-title: Sustain. Cities Soc. – volume: 66 start-page: 216 year: 2014 end-page: 226 ident: bib0033 article-title: Direct expansion solar assisted heat pumps - A clean steady state approach for overall performance analysis publication-title: Appl. Thermal Eng. – volume: 112 start-page: 248 year: 2017 end-page: 258 ident: bib0037 article-title: Numerical study on the operating performances of a novel frost-free air-source heat pump unit using three different types of refrigerant publication-title: Appl. Thermal Eng – volume: 72 start-page: 680 year: 2014 end-page: 690 ident: bib0018 article-title: Thermo-economic and environmental optimization of solar assisted heat pump by using multi-objective particle swam algorithm publication-title: Energy – volume: 26 start-page: 120 year: 1954 end-page: 130 ident: bib0017 article-title: Design and economics of solar energy heat pump systems publication-title: Heat. Pip. Air Cond. – volume: 22 start-page: 33 year: 2013 end-page: 45 ident: bib0028 article-title: Direct expansion solar assisted heat pumps: a review of applications and recent research publication-title: Renew. Sustain. Energy Rev. – volume: 120 start-page: 306 year: 2016 end-page: 319 ident: bib0002 article-title: Energetic and financial evaluation of solar assisted heat pump space heating systems publication-title: Energy Convers. Manag. – volume: 39 start-page: 44 year: 2011 end-page: 48 ident: bib0009 article-title: Selection and economic evaluation of piping program for ground-source heat pump publication-title: Build. Energy Effic. – volume: 41 start-page: 77 year: 2011 end-page: 80 ident: bib0024 article-title: Designing and operating optimization of ground-source heat pump system in severe cold area publication-title: Heat. Vent. Air Cond. – volume: 90 start-page: 635 year: 2016 end-page: 644 ident: bib0029 article-title: Parametric studies of a simple direct expansion solar assisted heat pump operating in a hot and humid environment publication-title: Energy Procedia – start-page: 678 year: 2009 end-page: 682 ident: bib0015 article-title: Integral-type solar water heater using loop heat pipe publication-title: Proceedings of ISES World Congress – volume: 89 start-page: 295 year: 2016 end-page: 304 ident: bib0007 article-title: Experimental and theoretical study on a solar assisted CO publication-title: Renew. Energy – volume: 44 start-page: 54 year: 2016 end-page: 58 ident: bib0016 article-title: Experimental study of multi-functional solar-air source heat pump system publication-title: Fluid Mach. – volume: 26 start-page: 286 year: 2013 end-page: 293 ident: bib0001 article-title: A review on solar assisted heat pump systems in Singapore publication-title: Renew. Sustain. Energy Rev. – volume: 35 start-page: 285 year: 2014 end-page: 290 ident: bib0026 article-title: Research of the influence of phase change thermal storage applied in direct-expansion solar heat pump publication-title: Acta Energiae Solaris Sinica – volume: 229 start-page: 1611 year: 2015 end-page: 1622 ident: bib0039 article-title: Annual performance evaluation and experimental study on variable speed compressors for room air conditioners publication-title: J. Mech. Eng. Sci. – volume: 136 start-page: 1 year: 2014 end-page: 9 ident: bib0011 article-title: Solar-assisted heat pump systems: a review of existing studies and their applicability to the Canadian residential sector publication-title: J. Solar Energy Eng.-Trans. ASME – volume: 46 start-page: 2614 year: 2005 end-page: 2624 ident: bib0005 article-title: Analysis of a direct expansion solar assisted heat pump using different refrigerants publication-title: Energy Convers. Manag. – volume: 55 start-page: 399 year: 2016 end-page: 413 ident: bib0004 article-title: Solar assisted heat pump systems for low temperature water heating applications: a systematic review publication-title: Renew. Sustain. Energy Rev. – volume: 127 start-page: 416 year: 2016 end-page: 423 ident: bib0027 article-title: An approximate method for prediction of thermal performance of direct expansion-solar assisted heat pump (DX-SAHP) systems for water heating applications publication-title: Energy Convers. Manag. – volume: 80 start-page: 795 year: 2006 end-page: 803 ident: bib0021 article-title: Performance of a multi-functional direct-expansion solar assisted heat pump system publication-title: Solar Energy – volume: 70 start-page: 394 year: 2015 end-page: 401 ident: bib0031 article-title: Performance comparison of direct expansion solar-assisted heat pump and conventional air source heat pump for domestic hot water publication-title: Energy Procedia – volume: 142 start-page: 299 year: 2017 end-page: 307 ident: bib0008 article-title: Theoretical analysis on a new direct expansion solar assisted ejector-compression heat pump cycle for water heater publication-title: Solar Energy – volume: 54 start-page: 337 year: 2012 end-page: 349 ident: bib0012 article-title: Performance study on hybrid solar-assisted CO publication-title: Energy Build. – volume: 178 start-page: 484 year: 2016 end-page: 495 ident: bib0040 article-title: Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules publication-title: Appl. Energy – volume: 77 start-page: 550 year: 2014 end-page: 557 ident: bib0006 article-title: Solar-assisted heat pump - a sustainable system for low temperature water heating applications publication-title: Energy Convers. Manag. – volume: 100 start-page: 309 year: 2012 end-page: 317 ident: bib0010 article-title: Analysis of a solar assisted heat pump system for indoor swimming pool water and space heating publication-title: Appl. Energy – volume: 42 start-page: 1 year: 2012 end-page: 8 ident: bib0038 article-title: Development trend analysis of heat pump technology at home and abroad publication-title: Heating Vent. Air Cond. – volume: 76 start-page: 136 year: 2017 end-page: 146 ident: bib0019 article-title: Modeling evaluation of a direct-expansion solar-assisted heat pump water heater using R410A publication-title: Int. J. Refrigeration – volume: 37 start-page: 54 year: 2012 end-page: 59 ident: bib0030 article-title: Application status and development trends of heat pump technology publication-title: J. Kunming Univ. Sci. Technol. (Nat. Sci. Edition) – volume: 34 start-page: 70 year: 2012 end-page: 76 ident: bib0035 article-title: Heat pump technology and its application in energy saving of thermal power plant publication-title: Huadian Technol. – volume: 59 start-page: 1 year: 2012 end-page: 8 ident: bib0014 article-title: Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions publication-title: Energy Convers. Manag. – volume: 90 start-page: 635 year: 2016 ident: 10.1016/j.ijrefrig.2018.04.021_bib0029 article-title: Parametric studies of a simple direct expansion solar assisted heat pump operating in a hot and humid environment publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.11.232 – volume: 59 start-page: 1 year: 2012 ident: 10.1016/j.ijrefrig.2018.04.021_bib0014 article-title: Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2012.01.018 – volume: 32 start-page: 1361 year: 2007 ident: 10.1016/j.ijrefrig.2018.04.021_bib0023 article-title: Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater publication-title: Energy doi: 10.1016/j.energy.2006.11.003 – volume: 42 start-page: 1 year: 2012 ident: 10.1016/j.ijrefrig.2018.04.021_bib0038 article-title: Development trend analysis of heat pump technology at home and abroad publication-title: Heating Vent. Air Cond. – volume: 48 start-page: 938 year: 2014 ident: 10.1016/j.ijrefrig.2018.04.021_bib0025 article-title: Numerical analysis of the use of R-407C in direct expansion solar assisted heat pump publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.02.107 – volume: 106 start-page: 87 year: 2016 ident: 10.1016/j.ijrefrig.2018.04.021_bib0034 article-title: Energetic and financial evaluation of a solar assisted heat pump heating system with other usual heating systems in Athens publication-title: Appl. Thermal Eng. doi: 10.1016/j.applthermaleng.2016.06.004 – volume: 39 start-page: 44 year: 2011 ident: 10.1016/j.ijrefrig.2018.04.021_bib0009 article-title: Selection and economic evaluation of piping program for ground-source heat pump publication-title: Build. Energy Effic. – volume: 66 start-page: 216 year: 2014 ident: 10.1016/j.ijrefrig.2018.04.021_bib0033 article-title: Direct expansion solar assisted heat pumps - A clean steady state approach for overall performance analysis publication-title: Appl. Thermal Eng. doi: 10.1016/j.applthermaleng.2014.02.016 – volume: 120 start-page: 306 year: 2016 ident: 10.1016/j.ijrefrig.2018.04.021_bib0002 article-title: Energetic and financial evaluation of solar assisted heat pump space heating systems publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.05.004 – volume: 91 start-page: 57 year: 2015 ident: 10.1016/j.ijrefrig.2018.04.021_bib0022 article-title: Simulation research of a hybrid heat source heat pump using R134a, R744 instead of R22 for domestic water heating in residential buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.01.019 – volume: 22 start-page: 33 year: 2013 ident: 10.1016/j.ijrefrig.2018.04.021_bib0028 article-title: Direct expansion solar assisted heat pumps: a review of applications and recent research publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.01.029 – volume: 41 start-page: 77 year: 2011 ident: 10.1016/j.ijrefrig.2018.04.021_bib0024 article-title: Designing and operating optimization of ground-source heat pump system in severe cold area publication-title: Heat. Vent. Air Cond. – volume: 54 start-page: 337 year: 2012 ident: 10.1016/j.ijrefrig.2018.04.021_bib0012 article-title: Performance study on hybrid solar-assisted CO2 heat pump system based on the energy balance of net zero energy apartment publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.08.009 – volume: 89 start-page: 295 year: 2016 ident: 10.1016/j.ijrefrig.2018.04.021_bib0007 article-title: Experimental and theoretical study on a solar assisted CO2 heat pump for space heating publication-title: Renew. Energy doi: 10.1016/j.renene.2015.12.039 – volume: 100 start-page: 309 year: 2012 ident: 10.1016/j.ijrefrig.2018.04.021_bib0010 article-title: Analysis of a solar assisted heat pump system for indoor swimming pool water and space heating publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.05.058 – volume: 66 start-page: 571 year: 2014 ident: 10.1016/j.ijrefrig.2018.04.021_bib0032 article-title: Experimental study on roll-band collector/evaporator with optimized channel used in direct expansion solar assisted heat pump water heating system publication-title: Appl. Thermal Eng. doi: 10.1016/j.applthermaleng.2014.02.060 – volume: 55 start-page: 399 year: 2016 ident: 10.1016/j.ijrefrig.2018.04.021_bib0004 article-title: Solar assisted heat pump systems for low temperature water heating applications: a systematic review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.10.157 – volume: 77 start-page: 550 year: 2014 ident: 10.1016/j.ijrefrig.2018.04.021_bib0006 article-title: Solar-assisted heat pump - a sustainable system for low temperature water heating applications publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.09.050 – volume: 37 start-page: 54 year: 2012 ident: 10.1016/j.ijrefrig.2018.04.021_bib0030 article-title: Application status and development trends of heat pump technology publication-title: J. Kunming Univ. Sci. Technol. (Nat. Sci. Edition) – volume: 70 start-page: 394 year: 2015 ident: 10.1016/j.ijrefrig.2018.04.021_bib0031 article-title: Performance comparison of direct expansion solar-assisted heat pump and conventional air source heat pump for domestic hot water publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.02.140 – volume: 26 start-page: 286 year: 2013 ident: 10.1016/j.ijrefrig.2018.04.021_bib0001 article-title: A review on solar assisted heat pump systems in Singapore publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.05.032 – volume: 33 start-page: 70 year: 2017 ident: 10.1016/j.ijrefrig.2018.04.021_bib0003 article-title: Energetic and financial sustainability of solar assisted heat pump heating systems in Europe publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2017.05.020 – volume: 72 start-page: 680 year: 2014 ident: 10.1016/j.ijrefrig.2018.04.021_bib0018 article-title: Thermo-economic and environmental optimization of solar assisted heat pump by using multi-objective particle swam algorithm publication-title: Energy doi: 10.1016/j.energy.2014.05.095 – volume: 229 start-page: 1611 year: 2015 ident: 10.1016/j.ijrefrig.2018.04.021_bib0039 article-title: Annual performance evaluation and experimental study on variable speed compressors for room air conditioners publication-title: J. Mech. Eng. Sci. doi: 10.1177/0954406214545822 – volume: 112 start-page: 248 year: 2017 ident: 10.1016/j.ijrefrig.2018.04.021_bib0037 article-title: Numerical study on the operating performances of a novel frost-free air-source heat pump unit using three different types of refrigerant publication-title: Appl. Thermal Eng doi: 10.1016/j.applthermaleng.2016.10.040 – volume: 80 start-page: 795 year: 2006 ident: 10.1016/j.ijrefrig.2018.04.021_bib0021 article-title: Performance of a multi-functional direct-expansion solar assisted heat pump system publication-title: Solar Energy doi: 10.1016/j.solener.2005.06.003 – volume: 120 start-page: 378 year: 2016 ident: 10.1016/j.ijrefrig.2018.04.021_bib0013 article-title: Simulation analysis on dynamic performance of a combined solar/air dual source heat pump water heater publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.04.102 – volume: 46 start-page: 2614 year: 2005 ident: 10.1016/j.ijrefrig.2018.04.021_bib0005 article-title: Analysis of a direct expansion solar assisted heat pump using different refrigerants publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2004.12.001 – volume: 142 start-page: 299 year: 2017 ident: 10.1016/j.ijrefrig.2018.04.021_bib0008 article-title: Theoretical analysis on a new direct expansion solar assisted ejector-compression heat pump cycle for water heater publication-title: Solar Energy doi: 10.1016/j.solener.2016.12.043 – volume: 136 start-page: 1 issue: 4 year: 2014 ident: 10.1016/j.ijrefrig.2018.04.021_bib0011 article-title: Solar-assisted heat pump systems: a review of existing studies and their applicability to the Canadian residential sector publication-title: J. Solar Energy Eng.-Trans. ASME doi: 10.1115/1.4027735 – volume: 36 start-page: 6830 year: 2011 ident: 10.1016/j.ijrefrig.2018.04.021_bib0020 article-title: Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater publication-title: Energy – volume: 26 start-page: 120 year: 1954 ident: 10.1016/j.ijrefrig.2018.04.021_bib0017 article-title: Design and economics of solar energy heat pump systems publication-title: Heat. Pip. Air Cond. – volume: 76 start-page: 136 year: 2017 ident: 10.1016/j.ijrefrig.2018.04.021_bib0019 article-title: Modeling evaluation of a direct-expansion solar-assisted heat pump water heater using R410A publication-title: Int. J. Refrigeration doi: 10.1016/j.ijrefrig.2017.01.020 – volume: 35 start-page: 285 year: 2014 ident: 10.1016/j.ijrefrig.2018.04.021_bib0026 article-title: Research of the influence of phase change thermal storage applied in direct-expansion solar heat pump publication-title: Acta Energiae Solaris Sinica – start-page: 678 year: 2009 ident: 10.1016/j.ijrefrig.2018.04.021_bib0015 article-title: Integral-type solar water heater using loop heat pipe – volume: 34 start-page: 70 year: 2012 ident: 10.1016/j.ijrefrig.2018.04.021_bib0035 article-title: Heat pump technology and its application in energy saving of thermal power plant publication-title: Huadian Technol. – volume: 178 start-page: 484 year: 2016 ident: 10.1016/j.ijrefrig.2018.04.021_bib0040 article-title: Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.06.063 – volume: 44 start-page: 54 year: 2016 ident: 10.1016/j.ijrefrig.2018.04.021_bib0016 article-title: Experimental study of multi-functional solar-air source heat pump system publication-title: Fluid Mach. – volume: 127 start-page: 416 year: 2016 ident: 10.1016/j.ijrefrig.2018.04.021_bib0027 article-title: An approximate method for prediction of thermal performance of direct expansion-solar assisted heat pump (DX-SAHP) systems for water heating applications publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.09.017 – volume: 42 start-page: 233 year: 2001 ident: 10.1016/j.ijrefrig.2018.04.021_bib0036 article-title: Performance researches and improvements on heat regenerative adsorption refrigerator and heat pump publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(99)00189-2 |
SSID | ssj0017058 |
Score | 2.4207425 |
Snippet | •A direct-expansion solar-assisted heat pump for domestic hot water supply was built.•A series of experiments were carried out under typical summer weather... A direct-expansion solar-assisted heat pump (DX-SAHP) system for domestic hot water supply was built and tested, which mainly consisted of a bare flat-plate... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12 |
SubjectTerms | Ambient temperature Direct expansion Détente directe Eau chaude Evaporators Experiment Expérimentation Gas expanders Heat pumps Hot water Microchannels Performance thermique Pompe à chaleur assistée par l’énergie solaire Pumps Solar assisted heat pump Solar radiation Summer Thermal performance Water heaters Water supply Water tanks Water temperature Weather |
Title | Experimental performance analysis of a direct-expansion solar-assisted heat pump water heater with R134a in summer |
URI | https://dx.doi.org/10.1016/j.ijrefrig.2018.04.021 https://www.proquest.com/docview/2116839496 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4muMAB8RSPgXLg2i1t06w5ThNogOCAmLRblHSO1AmNag_Bid-O3QcMJMSBU5WqrtrYtT-n9hfGLgEgUYiDA4WZdSCtmATaAwRWqCzSaENxSV98_6CGI3k7TsYtNmh6Yaissvb9lU8vvXV9plvPZrfI825ZltSjEJnG5f9T6mCXPbLyzvtnmQexxaRNGSNdvdYlPO3kUwxDmAVTiVdaUp5G4W8B6oerLuPP9S7bqYEj71fPtsdaMNtn22t0ggdsfrVG18-Lr5YAbmvqEf7iueXVKwfwhp6AFsv4gvLbAGE06XzCyT_zAvXMXxGJzssxHmjJlj-GsbQ8R5kVLXkfstH11dNgGNR7KgRZLMUS887Uq9Qhpk69VQJCiEFpK0ApDZmXSZb1vO9F1kfgo0hLGwEIcNpHNlTOxkdsY_Yyg2PGEbskyqHjdrGnNMuFIksh1kK6SRKCO2FJM5EmqwnHad-LZ9NUlk1NowBDCjBCGlTACet-yhUV5cafErrRk_lmPAbjwp-y7Uaxpv58FwazYoXIUWp1-o9bn7EtGlXFvW22sZyv4BwhzNJdlDZ6wTb7N3fDhw_ioPN6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYAB8RRvPLCGOonjxiNCoPLqgEBis-z0LLVCpSpF8PM5Ow4UJMTAFCXRRYnP-e47-_wZ4BgRC0k8OJGUWSfC8H6iHGJiuKwyRX0oD_LFtz3ZfRBXj8XjHJw1a2F8WWXE_hrTA1rHK-3Ymu3xYNAOZUkdHyLLPMyfzsOCV6cqWrBwennd7X1OJnR42KYzVDJ6g5mFwsOTwZAiESXCvsqrDKqnWfpbjPqB1iEEXazCSuSO7LR-vTWYw9E6LM8oCm7A5HxGsZ-Nv1YFMBPVR9izY4bVX53gO4GBHy9jLz7FTYhJe7f3mYdoNiZXszcio5NwTgc_asvu0lwYNiCbVz_qvQkPF-f3Z90kbquQVLngU0o9SydLS7S6dEZyTDFHqQxHKRVWThRV1XGukxmXocsyJUyGyNEql5lUWpNvQWv0PMJtYERfCmkJu23ufKZlU16VmCsubL9I0e5A0TSkrqLmuN_64kk3xWVD3ThAewdoLjQ5YAfan3bjWnXjTwvV-El_6z-aQsOftvuNY3X8g180JcaSyKNQcvcfjz6Cxe797Y2-uexd78GSv1PX-u5Dazp5xQNiNFN7GHvsBzLE9is |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+performance+analysis+of+a+direct-expansion+solar-assisted+heat+pump+water+heater+with+R134a+in+summer&rft.jtitle=International+journal+of+refrigeration&rft.au=Kong%2C+Xiangqiang&rft.au=Sun%2C+Penglong&rft.au=Dong%2C+Shandong&rft.au=Jiang%2C+Kailin&rft.date=2018-07-01&rft.pub=Elsevier+Ltd&rft.issn=0140-7007&rft.volume=91&rft.spage=12&rft.epage=19&rft_id=info:doi/10.1016%2Fj.ijrefrig.2018.04.021&rft.externalDocID=S0140700718301270 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7007&client=summon |