A simple, fast and cost-effective method of synthesis of cupric oxide nanoparticle with promising antibacterial potency: Unraveling the biological and chemical modes of action
Gradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of physiological pH with potential antibacterial action. Cu(II) oxide NP was synthesized by reduction-oxidation of CuCl2, using polyvinyl alcohol as...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1850; no. 4; pp. 845 - 856 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
01.04.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 0006-3002 |
DOI | 10.1016/j.bbagen.2015.01.015 |
Cover
Loading…
Abstract | Gradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of physiological pH with potential antibacterial action.
Cu(II) oxide NP was synthesized by reduction-oxidation of CuCl2, using polyvinyl alcohol as stabilizer. Characteristics and antibacterial activity of the particles were investigated by techniques like UV-Vis spectrophotometry, DLS, AFM, TEM, EDS, FTIR, AAS, agar plating, FACS, gel electrophoresis and XPS.
The NPs were about 50 nm in size and cubic in shape with two surface plasmon peaks at 266 and 370 nm and had semi-conducting behavior with a band gap of 3.40 and 3.96 eV. About 80% of precursor CuCl2 was converted to NP. The minimum inhibitory and the minimum bactericidal concentrations of CuO-NP were respectively 120 and 160 μg/mL for Escherichia coli and 180 and 195 μg/mL for Staphylococcus aureus in Luria-Bertani medium. In growth media, the NPs got modified by media organics with displacement of the stabilizer PVA molecules. This modified NP (around 240 nm) killed cells by generating ROS, which finally caused membrane lipid per-oxidation and chromosomal DNA degradation in NP-treated cells.
Reports indicate that we are among the few who had prepared CuO-NP in colloidal form. The antibacterial potency of our particle in growth media was much promising than other reports. Our findings demonstrated that 'particle-specific' effect, not 'ion-specific' one, was responsible for the NP action.
The NP may be used as a sterilizing agent in various bioprocesses and as substituent of antibiotics, after thorough toxicological study. |
---|---|
AbstractList | Gradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of physiological pH with potential antibacterial action.BACKGROUNDGradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of physiological pH with potential antibacterial action.Cu(II) oxide NP was synthesized by reduction-oxidation of CuCl2, using polyvinyl alcohol as stabilizer. Characteristics and antibacterial activity of the particles were investigated by techniques like UV-Vis spectrophotometry, DLS, AFM, TEM, EDS, FTIR, AAS, agar plating, FACS, gel electrophoresis and XPS.METHODSCu(II) oxide NP was synthesized by reduction-oxidation of CuCl2, using polyvinyl alcohol as stabilizer. Characteristics and antibacterial activity of the particles were investigated by techniques like UV-Vis spectrophotometry, DLS, AFM, TEM, EDS, FTIR, AAS, agar plating, FACS, gel electrophoresis and XPS.The NPs were about 50 nm in size and cubic in shape with two surface plasmon peaks at 266 and 370 nm and had semi-conducting behavior with a band gap of 3.40 and 3.96 eV. About 80% of precursor CuCl2 was converted to NP. The minimum inhibitory and the minimum bactericidal concentrations of CuO-NP were respectively 120 and 160 μg/mL for Escherichia coli and 180 and 195 μg/mL for Staphylococcus aureus in Luria-Bertani medium. In growth media, the NPs got modified by media organics with displacement of the stabilizer PVA molecules. This modified NP (around 240 nm) killed cells by generating ROS, which finally caused membrane lipid per-oxidation and chromosomal DNA degradation in NP-treated cells.RESULTSThe NPs were about 50 nm in size and cubic in shape with two surface plasmon peaks at 266 and 370 nm and had semi-conducting behavior with a band gap of 3.40 and 3.96 eV. About 80% of precursor CuCl2 was converted to NP. The minimum inhibitory and the minimum bactericidal concentrations of CuO-NP were respectively 120 and 160 μg/mL for Escherichia coli and 180 and 195 μg/mL for Staphylococcus aureus in Luria-Bertani medium. In growth media, the NPs got modified by media organics with displacement of the stabilizer PVA molecules. This modified NP (around 240 nm) killed cells by generating ROS, which finally caused membrane lipid per-oxidation and chromosomal DNA degradation in NP-treated cells.Reports indicate that we are among the few who had prepared CuO-NP in colloidal form. The antibacterial potency of our particle in growth media was much promising than other reports. Our findings demonstrated that 'particle-specific' effect, not 'ion-specific' one, was responsible for the NP action.CONCLUSIONReports indicate that we are among the few who had prepared CuO-NP in colloidal form. The antibacterial potency of our particle in growth media was much promising than other reports. Our findings demonstrated that 'particle-specific' effect, not 'ion-specific' one, was responsible for the NP action.The NP may be used as a sterilizing agent in various bioprocesses and as substituent of antibiotics, after thorough toxicological study.GENERAL SIGNIFICANCEThe NP may be used as a sterilizing agent in various bioprocesses and as substituent of antibiotics, after thorough toxicological study. Gradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of physiological pH with potential antibacterial action. Cu(II) oxide NP was synthesized by reduction-oxidation of CuCl2, using polyvinyl alcohol as stabilizer. Characteristics and antibacterial activity of the particles were investigated by techniques like UV-Vis spectrophotometry, DLS, AFM, TEM, EDS, FTIR, AAS, agar plating, FACS, gel electrophoresis and XPS. The NPs were about 50 nm in size and cubic in shape with two surface plasmon peaks at 266 and 370 nm and had semi-conducting behavior with a band gap of 3.40 and 3.96 eV. About 80% of precursor CuCl2 was converted to NP. The minimum inhibitory and the minimum bactericidal concentrations of CuO-NP were respectively 120 and 160 μg/mL for Escherichia coli and 180 and 195 μg/mL for Staphylococcus aureus in Luria-Bertani medium. In growth media, the NPs got modified by media organics with displacement of the stabilizer PVA molecules. This modified NP (around 240 nm) killed cells by generating ROS, which finally caused membrane lipid per-oxidation and chromosomal DNA degradation in NP-treated cells. Reports indicate that we are among the few who had prepared CuO-NP in colloidal form. The antibacterial potency of our particle in growth media was much promising than other reports. Our findings demonstrated that 'particle-specific' effect, not 'ion-specific' one, was responsible for the NP action. The NP may be used as a sterilizing agent in various bioprocesses and as substituent of antibiotics, after thorough toxicological study. Gradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of physiological pH with potential antibacterial action.Cu(II) oxide NP was synthesized by reduction–oxidation of CuCl2, using polyvinyl alcohol as stabilizer. Characteristics and antibacterial activity of the particles were investigated by techniques like UV–Vis spectrophotometry, DLS, AFM, TEM, EDS, FTIR, AAS, agar plating, FACS, gel electrophoresis and XPS.The NPs were about 50nm in size and cubic in shape with two surface plasmon peaks at 266 and 370nm and had semi-conducting behavior with a band gap of 3.40 and 3.96eV. About 80% of precursor CuCl2 was converted to NP. The minimum inhibitory and the minimum bactericidal concentrations of CuO-NP were respectively 120 and 160μg/mL for Escherichia coli and 180 and 195μg/mL for Staphylococcus aureus in Luria–Bertani medium. In growth media, the NPs got modified by media organics with displacement of the stabilizer PVA molecules. This modified NP (around 240nm) killed cells by generating ROS, which finally caused membrane lipid per-oxidation and chromosomal DNA degradation in NP-treated cells.Reports indicate that we are among the few who had prepared CuO-NP in colloidal form. The antibacterial potency of our particle in growth media was much promising than other reports. Our findings demonstrated that ‘particle-specific’ effect, not ‘ion-specific’ one, was responsible for the NP action.The NP may be used as a sterilizing agent in various bioprocesses and as substituent of antibiotics, after thorough toxicological study. |
Author | Sarkar, Raj Kumar Chattopadhyay, Asoke Prasun Basu, Tarakdas Manju, Unnikrishnan Chakraborty, Ruchira Chatterjee, Arijit Kumar |
Author_xml | – sequence: 1 givenname: Ruchira surname: Chakraborty fullname: Chakraborty, Ruchira – sequence: 2 givenname: Raj Kumar surname: Sarkar fullname: Sarkar, Raj Kumar – sequence: 3 givenname: Arijit Kumar surname: Chatterjee fullname: Chatterjee, Arijit Kumar – sequence: 4 givenname: Unnikrishnan surname: Manju fullname: Manju, Unnikrishnan – sequence: 5 givenname: Asoke Prasun surname: Chattopadhyay fullname: Chattopadhyay, Asoke Prasun – sequence: 6 givenname: Tarakdas surname: Basu fullname: Basu, Tarakdas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25637716$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v3CAQhjmkyvc_qCqOPdTbwdjYzS2K-iVF6iU5IzwedlnZ4Bo2zf6q_sXi3eTSQ4tGQiOeeYeZ94Kd-OCJsbcCVgKE-rhddZ1Zk1-VIOoViBz1CTsHCVVRCVWfsYsYt5BP_ak-ZWdlrWTTCHXOft_y6MZpoA_cmpi48T3HEFNB1hIm90R8pLQJPQ-Wx71PG4ouLgnuptkhD8-uJ-6ND5OZk8OB-C-XNnyaw-ii8-ssmVxnMNHszMCnkMjj_oY_-tk80bAQWZR3Lgxh7TAjhz9saDwkY-jp0C8ruOCv2BtrhkjXL_cle_zy-eHuW3H_4-v3u9v7AmUFqaiQpBJt3XRV34KCBo2VfSeVFNZihQaBDEqBIMtGlKVVNj-aviGQqrMgL9n7o26e4-eOYtJ5GqRhMJ7CLuoy77KEFsr2v2jev4JKtmJB372gu26kXucNjmbe61c_MnBzBHAOMc5kNbpklsHTbNygBejFcL3VR8P1YrgGkaPOxdVfxa_6_yz7A5FvtxU |
CitedBy_id | crossref_primary_10_1007_s10876_019_01558_z crossref_primary_10_2174_1381612825666191022163237 crossref_primary_10_1016_j_msec_2018_11_029 crossref_primary_10_1007_s12034_018_1613_3 crossref_primary_10_1016_j_surfin_2024_105587 crossref_primary_10_1049_nbt2_12100 crossref_primary_10_1021_acsanm_1c04518 crossref_primary_10_1093_femsre_fux003 crossref_primary_10_1038_s41598_019_51906_2 crossref_primary_10_1515_ntrev_2017_0159 crossref_primary_10_1007_s00339_023_06530_3 crossref_primary_10_1016_j_msec_2020_110669 crossref_primary_10_1016_j_clay_2018_08_021 crossref_primary_10_1038_s41598_022_24514_w crossref_primary_10_1155_2017_1064918 crossref_primary_10_1016_j_micpath_2024_107002 crossref_primary_10_1039_C6CS00691D crossref_primary_10_1089_mdr_2020_0131 crossref_primary_10_1186_s12917_023_03643_y crossref_primary_10_1039_D0NA00179A crossref_primary_10_1080_24701556_2021_2025103 crossref_primary_10_1088_1361_6528_aac372 crossref_primary_10_3233_MGC_210152 crossref_primary_10_1051_matecconf_20164302002 crossref_primary_10_1007_s12668_023_01274_z crossref_primary_10_2478_am_2023_0001 crossref_primary_10_1016_j_heliyon_2023_e22105 crossref_primary_10_1016_j_colsurfb_2016_07_045 crossref_primary_10_3389_fmicb_2018_01441 crossref_primary_10_1016_j_semcancer_2021_06_020 crossref_primary_10_1016_j_envint_2019_03_072 crossref_primary_10_1016_j_envpol_2016_11_066 crossref_primary_10_1021_acsami_6b16373 crossref_primary_10_4012_dmj_2017_195 crossref_primary_10_1039_D0EN00949K |
Cites_doi | 10.1016/j.matlet.2013.02.024 10.1016/j.matlet.2009.05.061 10.1021/nn300934k 10.1016/j.actbio.2007.11.006 10.1063/1.2736285 10.1016/j.jlumin.2014.02.015 10.1016/j.powtec.2012.02.008 10.1039/C3DT52522H 10.1021/cm000166z 10.1016/0891-5849(90)90131-2 10.1016/j.ijantimicag.2008.12.004 10.1016/j.tsf.2004.08.071 10.1021/cg060480r 10.1088/0957-4484/23/8/085103 10.1016/0003-2697(76)90527-3 10.1016/0040-6090(92)90286-K 10.1063/1.466786 10.1007/s11051-011-0709-0 10.1007/s10853-009-4158-4 10.1016/j.jcrysgro.2005.11.111 10.1016/j.apsusc.2011.11.025 10.1002/smll.201200772 10.1016/j.biocel.2004.05.012 10.1016/j.colsurfb.2012.07.002 10.1007/PL00010877 10.1295/polymj.27.300 10.1088/0957-4484/25/13/135101 10.1088/0957-4484/19/8/085707 10.1103/PhysRevB.61.11093 10.1006/jssc.1999.8409 10.1021/nn2020248 10.1016/j.apsusc.2009.06.056 10.1016/S0022-0248(02)01571-3 10.1016/j.envpol.2012.05.009 |
ContentType | Journal Article |
Copyright | Copyright © 2015 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: Copyright © 2015 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2015.01.015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EndPage | 856 |
ExternalDocumentID | 25637716 10_1016_j_bbagen_2015_01_015 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABGSF ABMAC ABUDA ABWVN ABXDB ACDAQ ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c340t-4ce361857b4d80607caf3db3631ffc4cac0eac31c0327122f6fb36ad7e036bf03 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Tue Aug 05 10:53:13 EDT 2025 Thu Jul 10 18:32:23 EDT 2025 Mon Jul 21 06:05:04 EDT 2025 Thu Apr 24 22:54:42 EDT 2025 Tue Jul 01 00:22:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Antibacterial action Cupric oxide nanoparticle ROS generation Modification of Cu(II) oxide NP Colloidal suspension Growth media organics |
Language | English |
License | Copyright © 2015 Elsevier B.V. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c340t-4ce361857b4d80607caf3db3631ffc4cac0eac31c0327122f6fb36ad7e036bf03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25637716 |
PQID | 1656043818 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000208028 proquest_miscellaneous_1656043818 pubmed_primary_25637716 crossref_citationtrail_10_1016_j_bbagen_2015_01_015 crossref_primary_10_1016_j_bbagen_2015_01_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2015 |
References | Yu (10.1016/j.bbagen.2015.01.015_bb0130) 2009; 63 Liu (10.1016/j.bbagen.2015.01.015_bb0170) 2007; 7 Wang (10.1016/j.bbagen.2015.01.015_bb0060) 2002; 244 Banik (10.1016/j.bbagen.2015.01.015_bb0080) 2014; 43 Bai (10.1016/j.bbagen.2015.01.015_bb0120) 2012; 227 Shenoy (10.1016/j.bbagen.2015.01.015_bb0125) 2013; 3 Kavita (10.1016/j.bbagen.2015.01.015_bb0050) 2000; 61 Bondarenko (10.1016/j.bbagen.2015.01.015_bb0140) 2012; 169 Das (10.1016/j.bbagen.2015.01.015_bb0010) 2013; 101 Applerot (10.1016/j.bbagen.2015.01.015_bb0015) 2012; 8 Xu (10.1016/j.bbagen.2015.01.015_bb0045) 2009; 147 Santra (10.1016/j.bbagen.2015.01.015_bb0155) 1992; 213 Chowdhury (10.1016/j.bbagen.2015.01.015_bb0115) 2013; 98 Du (10.1016/j.bbagen.2015.01.015_bb0185) 2004; 36 Inoue (10.1016/j.bbagen.2015.01.015_bb0205) 1995; 27 Kumar (10.1016/j.bbagen.2015.01.015_bb0055) 2000; 12 Bakalova (10.1016/j.bbagen.2015.01.015_bb0190) 2004; 22 VanBogelen (10.1016/j.bbagen.2015.01.015_bb0105) 1999 Eliseev (10.1016/j.bbagen.2015.01.015_bb0065) 2000; 3 Gandhi (10.1016/j.bbagen.2015.01.015_bb0150) 2010; 45 Li (10.1016/j.bbagen.2015.01.015_bb0180) 2012; 6 Gunawan (10.1016/j.bbagen.2015.01.015_bb0030) 2011; 9 Lanje (10.1016/j.bbagen.2015.01.015_bb0145) 2010; 1 Ruparelia (10.1016/j.bbagen.2015.01.015_bb0040) 2008; 4 Wilson (10.1016/j.bbagen.2015.01.015_bb0095) 1994 Son (10.1016/j.bbagen.2015.01.015_bb0070) 2009; 255 Pandey (10.1016/j.bbagen.2015.01.015_bb0025) 2012; 14 Kaur (10.1016/j.bbagen.2015.01.015_bb0165) 2006; 289 Bozack (10.1016/j.bbagen.2015.01.015_bb0210) 1994; 100 Dagher (10.1016/j.bbagen.2015.01.015_bb0075) 2014; 151 Chen (10.1016/j.bbagen.2015.01.015_bb0135) 2007; 90 Chatterjee (10.1016/j.bbagen.2015.01.015_bb0005) 2014; 25 Bradford (10.1016/j.bbagen.2015.01.015_bb0090) 1976; 72 El-Trass (10.1016/j.bbagen.2015.01.015_bb0195) 2012; 258 Manju (10.1016/j.bbagen.2015.01.015_bb0110) 2013; 105 Morales (10.1016/j.bbagen.2015.01.015_bb0160) 2005; 474 Rogojanu (10.1016/j.bbagen.2015.01.015_bb0200) 2011; 6 Ren (10.1016/j.bbagen.2015.01.015_bb0035) 2009; 33 Du (10.1016/j.bbagen.2015.01.015_bb0175) 2008; 19 Janero (10.1016/j.bbagen.2015.01.015_bb0085) 1990; 9 Chatterjee (10.1016/j.bbagen.2015.01.015_bb0020) 2012; 23 Sambrook (10.1016/j.bbagen.2015.01.015_bb0100) 2001 |
References_xml | – volume: 98 start-page: 26 year: 2013 ident: 10.1016/j.bbagen.2015.01.015_bb0115 article-title: Synthesis of copper nanoparticles and their antimicrobial performances in natural fibres publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.02.024 – volume: 63 start-page: 1840 year: 2009 ident: 10.1016/j.bbagen.2015.01.015_bb0130 article-title: Solution-phase synthesis of rose-like CuO publication-title: Mater. Lett. doi: 10.1016/j.matlet.2009.05.061 – volume: 6 start-page: 5164 year: 2012 ident: 10.1016/j.bbagen.2015.01.015_bb0180 article-title: Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles publication-title: ACS Nano doi: 10.1021/nn300934k – volume: 105 start-page: 1056 year: 2013 ident: 10.1016/j.bbagen.2015.01.015_bb0110 article-title: Multi-technique photoelectron spectrometer for micro-area spectroscopy and imaging publication-title: Curr. Sci. – volume: 4 start-page: 707 year: 2008 ident: 10.1016/j.bbagen.2015.01.015_bb0040 article-title: Strain specificity in antimicrobial activity of silver and copper nanoparticles publication-title: Acta Biomater. doi: 10.1016/j.actbio.2007.11.006 – start-page: 21 year: 1999 ident: 10.1016/j.bbagen.2015.01.015_bb0105 article-title: Preparation of Escherichia coli samples for 2-D gel analysis – volume: 90 year: 2007 ident: 10.1016/j.bbagen.2015.01.015_bb0135 article-title: Shape-induced ultraviolet absorption of CuO shuttlelike nanoparticles publication-title: Appl. Phys. Lett. doi: 10.1063/1.2736285 – volume: 151 start-page: 149 year: 2014 ident: 10.1016/j.bbagen.2015.01.015_bb0075 article-title: Synthesis and optical properties of colloidal CuO nanoparticles publication-title: J. Lumin. doi: 10.1016/j.jlumin.2014.02.015 – volume: 227 start-page: 35 year: 2012 ident: 10.1016/j.bbagen.2015.01.015_bb0120 article-title: Shape control mechanism of cuprous oxide nanoparticles in aqueous colloidal solutions publication-title: Powder Technol. doi: 10.1016/j.powtec.2012.02.008 – volume: 43 start-page: 3244 year: 2014 ident: 10.1016/j.bbagen.2015.01.015_bb0080 article-title: Calcium phosphate nanoparticles: a study of their synthesis, characterization and mode of interaction with salmon testis DNA publication-title: Dalton Trans. doi: 10.1039/C3DT52522H – volume: 12 start-page: 2301 year: 2000 ident: 10.1016/j.bbagen.2015.01.015_bb0055 article-title: Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates publication-title: Chem. Mater. doi: 10.1021/cm000166z – volume: 9 start-page: 515 year: 1990 ident: 10.1016/j.bbagen.2015.01.015_bb0085 article-title: Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury publication-title: Free Radic. Biol. Med. doi: 10.1016/0891-5849(90)90131-2 – volume: 33 start-page: 587 year: 2009 ident: 10.1016/j.bbagen.2015.01.015_bb0035 article-title: Characterisation of copper oxide nanoparticles for antimicrobial applications publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2008.12.004 – volume: 474 start-page: 133 year: 2005 ident: 10.1016/j.bbagen.2015.01.015_bb0160 article-title: Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.08.071 – volume: 7 start-page: 467 year: 2007 ident: 10.1016/j.bbagen.2015.01.015_bb0170 article-title: Anion-controlled construction of CuO honeycombs and flowerlike assemblies on copper foils publication-title: Cryst. Growth Des. doi: 10.1021/cg060480r – volume: 23 year: 2012 ident: 10.1016/j.bbagen.2015.01.015_bb0020 article-title: A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli publication-title: Nanotechnology doi: 10.1088/0957-4484/23/8/085103 – volume: 72 start-page: 248 year: 1976 ident: 10.1016/j.bbagen.2015.01.015_bb0090 article-title: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye-binding publication-title: Anal. Biochem. doi: 10.1016/0003-2697(76)90527-3 – volume: 213 start-page: 226 year: 1992 ident: 10.1016/j.bbagen.2015.01.015_bb0155 article-title: Copper oxide thin films grown by plasma evaporation method publication-title: Thin Solid Films doi: 10.1016/0040-6090(92)90286-K – volume: 100 start-page: 8392 year: 1994 ident: 10.1016/j.bbagen.2015.01.015_bb0210 article-title: Structural modifications in the amino-acid lysine induced by soft-X-ray irradiation publication-title: J. Chem. Phys. doi: 10.1063/1.466786 – volume: 14 year: 2012 ident: 10.1016/j.bbagen.2015.01.015_bb0025 article-title: Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-011-0709-0 – volume: 45 start-page: 1688 year: 2010 ident: 10.1016/j.bbagen.2015.01.015_bb0150 article-title: Ultrasound assisted one pot synthesis of nano-sized CuO and its nanocomposite with poly(vinyl alcohol) publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-4158-4 – volume: 3 year: 2013 ident: 10.1016/j.bbagen.2015.01.015_bb0125 article-title: A facile one step solution route to synthesize cuprous oxide nanofluid publication-title: Nanosci. Nanotechnol. – volume: 289 start-page: 670 year: 2006 ident: 10.1016/j.bbagen.2015.01.015_bb0165 article-title: Growth and branching of CuO nanowires by thermal oxidation of copper publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2005.11.111 – volume: 258 start-page: 2997 year: 2012 ident: 10.1016/j.bbagen.2015.01.015_bb0195 article-title: CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.11.025 – volume: 8 start-page: 3326 year: 2012 ident: 10.1016/j.bbagen.2015.01.015_bb0015 article-title: Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress publication-title: Small doi: 10.1002/smll.201200772 – volume: 36 start-page: 2334 year: 2004 ident: 10.1016/j.bbagen.2015.01.015_bb0185 article-title: Proteins are major initial cell targets of hydroxyl free radicals publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2004.05.012 – volume: 22 start-page: 1360 year: 2004 ident: 10.1016/j.bbagen.2015.01.015_bb0190 article-title: Quantum dots as photosensitizers? publication-title: Nature – volume: 101 start-page: 430 year: 2013 ident: 10.1016/j.bbagen.2015.01.015_bb0010 article-title: Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2012.07.002 – volume: 3 start-page: 308 year: 2000 ident: 10.1016/j.bbagen.2015.01.015_bb0065 article-title: Complexes of Cu(II) with polyvinyl alcohol as precursors for the preparation of CuO/SiO2 nanocomposites publication-title: Mater. Res. Innov. doi: 10.1007/PL00010877 – volume: 27 start-page: 300 year: 1995 ident: 10.1016/j.bbagen.2015.01.015_bb0205 article-title: Simulation of XPS of poly(vinyl alcohol), poly(acrylic acid), poly(vinyl acetate), and poly(methyl methacrylate) polymers by an ab initio mo method using the model molecules publication-title: Polym. J. doi: 10.1295/polymj.27.300 – volume: 25 year: 2014 ident: 10.1016/j.bbagen.2015.01.015_bb0005 article-title: Mechanism of antibacterial activity of copper nanoparticle publication-title: Nanotechnology doi: 10.1088/0957-4484/25/13/135101 – volume: 19 year: 2008 ident: 10.1016/j.bbagen.2015.01.015_bb0175 article-title: Preparation, characterization and antibacterial properties against E. coli K88 of chitosan nanoparticle loaded copper ions publication-title: Nanotechnology doi: 10.1088/0957-4484/19/8/085707 – volume: 61 start-page: 11093 year: 2000 ident: 10.1016/j.bbagen.2015.01.015_bb0050 article-title: Quantum size effects in CuO nanoparticles publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.11093 – volume: 147 start-page: 516 year: 2009 ident: 10.1016/j.bbagen.2015.01.015_bb0045 article-title: Preparation and characterization of CuO nanocrystals publication-title: J. Solid State Chem. doi: 10.1006/jssc.1999.8409 – start-page: 2.4.1 year: 1994 ident: 10.1016/j.bbagen.2015.01.015_bb0095 – volume: 9 start-page: 7214 year: 2011 ident: 10.1016/j.bbagen.2015.01.015_bb0030 article-title: Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts publication-title: ACS Nano doi: 10.1021/nn2020248 – volume: 255 start-page: 8794 year: 2009 ident: 10.1016/j.bbagen.2015.01.015_bb0070 article-title: Structural, optical, and electronic properties of colloidal CuO nanoparticles formed by using a colloid-thermal synthesis process publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.06.056 – volume: 1 start-page: 36 year: 2010 ident: 10.1016/j.bbagen.2015.01.015_bb0145 article-title: Synthesis and optical characterization of copper oxide nanoparticles publication-title: Adv. Appl. Sci. Res. – volume: 244 start-page: 88 year: 2002 ident: 10.1016/j.bbagen.2015.01.015_bb0060 article-title: Preparation of CuO nanoparticles by microwave irradiation publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(02)01571-3 – volume: 169 start-page: 81 year: 2012 ident: 10.1016/j.bbagen.2015.01.015_bb0140 article-title: Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2012.05.009 – volume: 6 start-page: 809 year: 2011 ident: 10.1016/j.bbagen.2015.01.015_bb0200 article-title: Development and characterization of poly(vinyl alcohol) matrix for drug release publication-title: Dig. J. Nanomater. Bios. – start-page: 5.10 year: 2001 ident: 10.1016/j.bbagen.2015.01.015_bb0100 |
SSID | ssj0000595 ssj0025309 |
Score | 2.324383 |
Snippet | Gradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 845 |
SubjectTerms | agar Anti-Bacterial Agents - chemical synthesis Anti-Bacterial Agents - pharmacology antibacterial properties antibiotic resistance antibiotics atomic force microscopy Colloids Copper - pharmacology cost effectiveness Cost-Benefit Analysis Culture Media cupric oxide DNA energy-dispersive X-ray analysis Escherichia coli Fourier transform infrared spectroscopy gel electrophoresis lipids mechanism of action Metal Nanoparticles minimum inhibitory concentration nanoparticles polyvinyl alcohol Reactive Oxygen Species - metabolism Staphylococcus aureus sterilizing transmission electron microscopy |
Title | A simple, fast and cost-effective method of synthesis of cupric oxide nanoparticle with promising antibacterial potency: Unraveling the biological and chemical modes of action |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25637716 https://www.proquest.com/docview/1656043818 https://www.proquest.com/docview/2000208028 |
Volume | 1850 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5RAFJ70ElNfjNZbvTRj4tvKBhhu69um0TQ29UG7sW9kZoAU2kCzQGJ98C_5Fz2HM7CLtWpNNmQXhhmW8zFzZvjOdxh7rWHcENKWVpBIZXk6ca2ZrTIrEJ5ypZuG4QzjnY8_BocL78Opf7qxubPGWmobNdXffhtX8j9WhX1gV4ySvYVlh0phB3wH-8IWLAzbf7LxfFLnqO6L9ymTdWOC1OrGIpoGsoIoRTT6hPVVCd6eESDR7SVy6KuveZJOSlnC3Jnqp5VZ6FcBABTA2OSKJJ0xaKtCH7tTiVqUmLnoog-3IjWnQXtA90IEmGqna5EiKEYvkfNKn-VYbJI2WAEts0gsKqe9IvakbhUuFg3Ov2EiwLyBAILpXJbD6PJZLs8NaVwWk45BvnYixi4VxD2aL_Mib8YljmVZtHhwUZb5OfR_Z6V5eszCiOOv8WlMQBjsAH_TH3f2pHNrYO2t9d0R6Vr2bgDpnV8bYWixo5gqBaVQQNch3VfHX42oPYvgl4F2oD_2zLoiplpirCW2Hfj4m2zbhRkPjjHT7yu2EnjBPr0Qo__UR4F2VMXr1zL2sm6YOnUu1Ml9ds_MfficgPaAbaTlLrtD2VCvdtnOQZ988CH7MecE7Tccgc0BUnwMbE7A5lXGB2DjDwI274DN14HNEdh8ADYfAZsbYL_lK1hzqJSvYE3XYGDNO1hjewTrR2zx_t3JwaFlcotYWnh2A71SKgLUQVNeEtmBHWqZiUSJQDhZpj0ttQ0uiXC0LdzQcd0syOCgTMIUXD6V2eIx2yqrMn3KuJ2Kji3oaBl4mZ0qbzbTbup5MhKRyII9JnpbxNoI72P-l4v4TzjYY9Zw1iUJz_yl_KvezDHcR3ztJ8u0auu409dCJb_o5jJuR0mIYLKxx54QRoZWYVIkwtAJnt3yip6zu6vH8gXbapZt-hI8-Ebtd9jeZ9vzo09fjn4CHgL8oQ |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple%2C+fast+and+cost-effective+method+of+synthesis+of+cupric+oxide+nanoparticle+with+promising+antibacterial+potency%3A+Unraveling+the+biological+and+chemical+modes+of+action&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Chakraborty%2C+Ruchira&rft.au=Sarkar%2C+Raj+Kumar&rft.au=Chatterjee%2C+Arijit+Kumar&rft.au=Manju%2C+Unnikrishnan&rft.date=2015-04-01&rft.issn=0304-4165&rft.volume=1850&rft.issue=4&rft.spage=845&rft.epage=856&rft_id=info:doi/10.1016%2Fj.bbagen.2015.01.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2015_01_015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |