A simple, fast and cost-effective method of synthesis of cupric oxide nanoparticle with promising antibacterial potency: Unraveling the biological and chemical modes of action

Gradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of physiological pH with potential antibacterial action. Cu(II) oxide NP was synthesized by reduction-oxidation of CuCl2, using polyvinyl alcohol as...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1850; no. 4; pp. 845 - 856
Main Authors Chakraborty, Ruchira, Sarkar, Raj Kumar, Chatterjee, Arijit Kumar, Manju, Unnikrishnan, Chattopadhyay, Asoke Prasun, Basu, Tarakdas
Format Journal Article
LanguageEnglish
Published Netherlands 01.04.2015
Subjects
Online AccessGet full text
ISSN0304-4165
0006-3002
DOI10.1016/j.bbagen.2015.01.015

Cover

Loading…
Abstract Gradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of physiological pH with potential antibacterial action. Cu(II) oxide NP was synthesized by reduction-oxidation of CuCl2, using polyvinyl alcohol as stabilizer. Characteristics and antibacterial activity of the particles were investigated by techniques like UV-Vis spectrophotometry, DLS, AFM, TEM, EDS, FTIR, AAS, agar plating, FACS, gel electrophoresis and XPS. The NPs were about 50 nm in size and cubic in shape with two surface plasmon peaks at 266 and 370 nm and had semi-conducting behavior with a band gap of 3.40 and 3.96 eV. About 80% of precursor CuCl2 was converted to NP. The minimum inhibitory and the minimum bactericidal concentrations of CuO-NP were respectively 120 and 160 μg/mL for Escherichia coli and 180 and 195 μg/mL for Staphylococcus aureus in Luria-Bertani medium. In growth media, the NPs got modified by media organics with displacement of the stabilizer PVA molecules. This modified NP (around 240 nm) killed cells by generating ROS, which finally caused membrane lipid per-oxidation and chromosomal DNA degradation in NP-treated cells. Reports indicate that we are among the few who had prepared CuO-NP in colloidal form. The antibacterial potency of our particle in growth media was much promising than other reports. Our findings demonstrated that 'particle-specific' effect, not 'ion-specific' one, was responsible for the NP action. The NP may be used as a sterilizing agent in various bioprocesses and as substituent of antibiotics, after thorough toxicological study.
AbstractList Gradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of physiological pH with potential antibacterial action.BACKGROUNDGradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of physiological pH with potential antibacterial action.Cu(II) oxide NP was synthesized by reduction-oxidation of CuCl2, using polyvinyl alcohol as stabilizer. Characteristics and antibacterial activity of the particles were investigated by techniques like UV-Vis spectrophotometry, DLS, AFM, TEM, EDS, FTIR, AAS, agar plating, FACS, gel electrophoresis and XPS.METHODSCu(II) oxide NP was synthesized by reduction-oxidation of CuCl2, using polyvinyl alcohol as stabilizer. Characteristics and antibacterial activity of the particles were investigated by techniques like UV-Vis spectrophotometry, DLS, AFM, TEM, EDS, FTIR, AAS, agar plating, FACS, gel electrophoresis and XPS.The NPs were about 50 nm in size and cubic in shape with two surface plasmon peaks at 266 and 370 nm and had semi-conducting behavior with a band gap of 3.40 and 3.96 eV. About 80% of precursor CuCl2 was converted to NP. The minimum inhibitory and the minimum bactericidal concentrations of CuO-NP were respectively 120 and 160 μg/mL for Escherichia coli and 180 and 195 μg/mL for Staphylococcus aureus in Luria-Bertani medium. In growth media, the NPs got modified by media organics with displacement of the stabilizer PVA molecules. This modified NP (around 240 nm) killed cells by generating ROS, which finally caused membrane lipid per-oxidation and chromosomal DNA degradation in NP-treated cells.RESULTSThe NPs were about 50 nm in size and cubic in shape with two surface plasmon peaks at 266 and 370 nm and had semi-conducting behavior with a band gap of 3.40 and 3.96 eV. About 80% of precursor CuCl2 was converted to NP. The minimum inhibitory and the minimum bactericidal concentrations of CuO-NP were respectively 120 and 160 μg/mL for Escherichia coli and 180 and 195 μg/mL for Staphylococcus aureus in Luria-Bertani medium. In growth media, the NPs got modified by media organics with displacement of the stabilizer PVA molecules. This modified NP (around 240 nm) killed cells by generating ROS, which finally caused membrane lipid per-oxidation and chromosomal DNA degradation in NP-treated cells.Reports indicate that we are among the few who had prepared CuO-NP in colloidal form. The antibacterial potency of our particle in growth media was much promising than other reports. Our findings demonstrated that 'particle-specific' effect, not 'ion-specific' one, was responsible for the NP action.CONCLUSIONReports indicate that we are among the few who had prepared CuO-NP in colloidal form. The antibacterial potency of our particle in growth media was much promising than other reports. Our findings demonstrated that 'particle-specific' effect, not 'ion-specific' one, was responsible for the NP action.The NP may be used as a sterilizing agent in various bioprocesses and as substituent of antibiotics, after thorough toxicological study.GENERAL SIGNIFICANCEThe NP may be used as a sterilizing agent in various bioprocesses and as substituent of antibiotics, after thorough toxicological study.
Gradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of physiological pH with potential antibacterial action. Cu(II) oxide NP was synthesized by reduction-oxidation of CuCl2, using polyvinyl alcohol as stabilizer. Characteristics and antibacterial activity of the particles were investigated by techniques like UV-Vis spectrophotometry, DLS, AFM, TEM, EDS, FTIR, AAS, agar plating, FACS, gel electrophoresis and XPS. The NPs were about 50 nm in size and cubic in shape with two surface plasmon peaks at 266 and 370 nm and had semi-conducting behavior with a band gap of 3.40 and 3.96 eV. About 80% of precursor CuCl2 was converted to NP. The minimum inhibitory and the minimum bactericidal concentrations of CuO-NP were respectively 120 and 160 μg/mL for Escherichia coli and 180 and 195 μg/mL for Staphylococcus aureus in Luria-Bertani medium. In growth media, the NPs got modified by media organics with displacement of the stabilizer PVA molecules. This modified NP (around 240 nm) killed cells by generating ROS, which finally caused membrane lipid per-oxidation and chromosomal DNA degradation in NP-treated cells. Reports indicate that we are among the few who had prepared CuO-NP in colloidal form. The antibacterial potency of our particle in growth media was much promising than other reports. Our findings demonstrated that 'particle-specific' effect, not 'ion-specific' one, was responsible for the NP action. The NP may be used as a sterilizing agent in various bioprocesses and as substituent of antibiotics, after thorough toxicological study.
Gradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of physiological pH with potential antibacterial action.Cu(II) oxide NP was synthesized by reduction–oxidation of CuCl2, using polyvinyl alcohol as stabilizer. Characteristics and antibacterial activity of the particles were investigated by techniques like UV–Vis spectrophotometry, DLS, AFM, TEM, EDS, FTIR, AAS, agar plating, FACS, gel electrophoresis and XPS.The NPs were about 50nm in size and cubic in shape with two surface plasmon peaks at 266 and 370nm and had semi-conducting behavior with a band gap of 3.40 and 3.96eV. About 80% of precursor CuCl2 was converted to NP. The minimum inhibitory and the minimum bactericidal concentrations of CuO-NP were respectively 120 and 160μg/mL for Escherichia coli and 180 and 195μg/mL for Staphylococcus aureus in Luria–Bertani medium. In growth media, the NPs got modified by media organics with displacement of the stabilizer PVA molecules. This modified NP (around 240nm) killed cells by generating ROS, which finally caused membrane lipid per-oxidation and chromosomal DNA degradation in NP-treated cells.Reports indicate that we are among the few who had prepared CuO-NP in colloidal form. The antibacterial potency of our particle in growth media was much promising than other reports. Our findings demonstrated that ‘particle-specific’ effect, not ‘ion-specific’ one, was responsible for the NP action.The NP may be used as a sterilizing agent in various bioprocesses and as substituent of antibiotics, after thorough toxicological study.
Author Sarkar, Raj Kumar
Chattopadhyay, Asoke Prasun
Basu, Tarakdas
Manju, Unnikrishnan
Chakraborty, Ruchira
Chatterjee, Arijit Kumar
Author_xml – sequence: 1
  givenname: Ruchira
  surname: Chakraborty
  fullname: Chakraborty, Ruchira
– sequence: 2
  givenname: Raj Kumar
  surname: Sarkar
  fullname: Sarkar, Raj Kumar
– sequence: 3
  givenname: Arijit Kumar
  surname: Chatterjee
  fullname: Chatterjee, Arijit Kumar
– sequence: 4
  givenname: Unnikrishnan
  surname: Manju
  fullname: Manju, Unnikrishnan
– sequence: 5
  givenname: Asoke Prasun
  surname: Chattopadhyay
  fullname: Chattopadhyay, Asoke Prasun
– sequence: 6
  givenname: Tarakdas
  surname: Basu
  fullname: Basu, Tarakdas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25637716$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v3CAQhjmkyvc_qCqOPdTbwdjYzS2K-iVF6iU5IzwedlnZ4Bo2zf6q_sXi3eTSQ4tGQiOeeYeZ94Kd-OCJsbcCVgKE-rhddZ1Zk1-VIOoViBz1CTsHCVVRCVWfsYsYt5BP_ak-ZWdlrWTTCHXOft_y6MZpoA_cmpi48T3HEFNB1hIm90R8pLQJPQ-Wx71PG4ouLgnuptkhD8-uJ-6ND5OZk8OB-C-XNnyaw-ii8-ssmVxnMNHszMCnkMjj_oY_-tk80bAQWZR3Lgxh7TAjhz9saDwkY-jp0C8ruOCv2BtrhkjXL_cle_zy-eHuW3H_4-v3u9v7AmUFqaiQpBJt3XRV34KCBo2VfSeVFNZihQaBDEqBIMtGlKVVNj-aviGQqrMgL9n7o26e4-eOYtJ5GqRhMJ7CLuoy77KEFsr2v2jev4JKtmJB372gu26kXucNjmbe61c_MnBzBHAOMc5kNbpklsHTbNygBejFcL3VR8P1YrgGkaPOxdVfxa_6_yz7A5FvtxU
CitedBy_id crossref_primary_10_1007_s10876_019_01558_z
crossref_primary_10_2174_1381612825666191022163237
crossref_primary_10_1016_j_msec_2018_11_029
crossref_primary_10_1007_s12034_018_1613_3
crossref_primary_10_1016_j_surfin_2024_105587
crossref_primary_10_1049_nbt2_12100
crossref_primary_10_1021_acsanm_1c04518
crossref_primary_10_1093_femsre_fux003
crossref_primary_10_1038_s41598_019_51906_2
crossref_primary_10_1515_ntrev_2017_0159
crossref_primary_10_1007_s00339_023_06530_3
crossref_primary_10_1016_j_msec_2020_110669
crossref_primary_10_1016_j_clay_2018_08_021
crossref_primary_10_1038_s41598_022_24514_w
crossref_primary_10_1155_2017_1064918
crossref_primary_10_1016_j_micpath_2024_107002
crossref_primary_10_1039_C6CS00691D
crossref_primary_10_1089_mdr_2020_0131
crossref_primary_10_1186_s12917_023_03643_y
crossref_primary_10_1039_D0NA00179A
crossref_primary_10_1080_24701556_2021_2025103
crossref_primary_10_1088_1361_6528_aac372
crossref_primary_10_3233_MGC_210152
crossref_primary_10_1051_matecconf_20164302002
crossref_primary_10_1007_s12668_023_01274_z
crossref_primary_10_2478_am_2023_0001
crossref_primary_10_1016_j_heliyon_2023_e22105
crossref_primary_10_1016_j_colsurfb_2016_07_045
crossref_primary_10_3389_fmicb_2018_01441
crossref_primary_10_1016_j_semcancer_2021_06_020
crossref_primary_10_1016_j_envint_2019_03_072
crossref_primary_10_1016_j_envpol_2016_11_066
crossref_primary_10_1021_acsami_6b16373
crossref_primary_10_4012_dmj_2017_195
crossref_primary_10_1039_D0EN00949K
Cites_doi 10.1016/j.matlet.2013.02.024
10.1016/j.matlet.2009.05.061
10.1021/nn300934k
10.1016/j.actbio.2007.11.006
10.1063/1.2736285
10.1016/j.jlumin.2014.02.015
10.1016/j.powtec.2012.02.008
10.1039/C3DT52522H
10.1021/cm000166z
10.1016/0891-5849(90)90131-2
10.1016/j.ijantimicag.2008.12.004
10.1016/j.tsf.2004.08.071
10.1021/cg060480r
10.1088/0957-4484/23/8/085103
10.1016/0003-2697(76)90527-3
10.1016/0040-6090(92)90286-K
10.1063/1.466786
10.1007/s11051-011-0709-0
10.1007/s10853-009-4158-4
10.1016/j.jcrysgro.2005.11.111
10.1016/j.apsusc.2011.11.025
10.1002/smll.201200772
10.1016/j.biocel.2004.05.012
10.1016/j.colsurfb.2012.07.002
10.1007/PL00010877
10.1295/polymj.27.300
10.1088/0957-4484/25/13/135101
10.1088/0957-4484/19/8/085707
10.1103/PhysRevB.61.11093
10.1006/jssc.1999.8409
10.1021/nn2020248
10.1016/j.apsusc.2009.06.056
10.1016/S0022-0248(02)01571-3
10.1016/j.envpol.2012.05.009
ContentType Journal Article
Copyright Copyright © 2015 Elsevier B.V. All rights reserved.
Copyright_xml – notice: Copyright © 2015 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2015.01.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EndPage 856
ExternalDocumentID 25637716
10_1016_j_bbagen_2015_01_015
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CITATION
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c340t-4ce361857b4d80607caf3db3631ffc4cac0eac31c0327122f6fb36ad7e036bf03
ISSN 0304-4165
0006-3002
IngestDate Tue Aug 05 10:53:13 EDT 2025
Thu Jul 10 18:32:23 EDT 2025
Mon Jul 21 06:05:04 EDT 2025
Thu Apr 24 22:54:42 EDT 2025
Tue Jul 01 00:22:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Antibacterial action
Cupric oxide nanoparticle
ROS generation
Modification of Cu(II) oxide NP
Colloidal suspension
Growth media organics
Language English
License Copyright © 2015 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-4ce361857b4d80607caf3db3631ffc4cac0eac31c0327122f6fb36ad7e036bf03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25637716
PQID 1656043818
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2000208028
proquest_miscellaneous_1656043818
pubmed_primary_25637716
crossref_citationtrail_10_1016_j_bbagen_2015_01_015
crossref_primary_10_1016_j_bbagen_2015_01_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2015
References Yu (10.1016/j.bbagen.2015.01.015_bb0130) 2009; 63
Liu (10.1016/j.bbagen.2015.01.015_bb0170) 2007; 7
Wang (10.1016/j.bbagen.2015.01.015_bb0060) 2002; 244
Banik (10.1016/j.bbagen.2015.01.015_bb0080) 2014; 43
Bai (10.1016/j.bbagen.2015.01.015_bb0120) 2012; 227
Shenoy (10.1016/j.bbagen.2015.01.015_bb0125) 2013; 3
Kavita (10.1016/j.bbagen.2015.01.015_bb0050) 2000; 61
Bondarenko (10.1016/j.bbagen.2015.01.015_bb0140) 2012; 169
Das (10.1016/j.bbagen.2015.01.015_bb0010) 2013; 101
Applerot (10.1016/j.bbagen.2015.01.015_bb0015) 2012; 8
Xu (10.1016/j.bbagen.2015.01.015_bb0045) 2009; 147
Santra (10.1016/j.bbagen.2015.01.015_bb0155) 1992; 213
Chowdhury (10.1016/j.bbagen.2015.01.015_bb0115) 2013; 98
Du (10.1016/j.bbagen.2015.01.015_bb0185) 2004; 36
Inoue (10.1016/j.bbagen.2015.01.015_bb0205) 1995; 27
Kumar (10.1016/j.bbagen.2015.01.015_bb0055) 2000; 12
Bakalova (10.1016/j.bbagen.2015.01.015_bb0190) 2004; 22
VanBogelen (10.1016/j.bbagen.2015.01.015_bb0105) 1999
Eliseev (10.1016/j.bbagen.2015.01.015_bb0065) 2000; 3
Gandhi (10.1016/j.bbagen.2015.01.015_bb0150) 2010; 45
Li (10.1016/j.bbagen.2015.01.015_bb0180) 2012; 6
Gunawan (10.1016/j.bbagen.2015.01.015_bb0030) 2011; 9
Lanje (10.1016/j.bbagen.2015.01.015_bb0145) 2010; 1
Ruparelia (10.1016/j.bbagen.2015.01.015_bb0040) 2008; 4
Wilson (10.1016/j.bbagen.2015.01.015_bb0095) 1994
Son (10.1016/j.bbagen.2015.01.015_bb0070) 2009; 255
Pandey (10.1016/j.bbagen.2015.01.015_bb0025) 2012; 14
Kaur (10.1016/j.bbagen.2015.01.015_bb0165) 2006; 289
Bozack (10.1016/j.bbagen.2015.01.015_bb0210) 1994; 100
Dagher (10.1016/j.bbagen.2015.01.015_bb0075) 2014; 151
Chen (10.1016/j.bbagen.2015.01.015_bb0135) 2007; 90
Chatterjee (10.1016/j.bbagen.2015.01.015_bb0005) 2014; 25
Bradford (10.1016/j.bbagen.2015.01.015_bb0090) 1976; 72
El-Trass (10.1016/j.bbagen.2015.01.015_bb0195) 2012; 258
Manju (10.1016/j.bbagen.2015.01.015_bb0110) 2013; 105
Morales (10.1016/j.bbagen.2015.01.015_bb0160) 2005; 474
Rogojanu (10.1016/j.bbagen.2015.01.015_bb0200) 2011; 6
Ren (10.1016/j.bbagen.2015.01.015_bb0035) 2009; 33
Du (10.1016/j.bbagen.2015.01.015_bb0175) 2008; 19
Janero (10.1016/j.bbagen.2015.01.015_bb0085) 1990; 9
Chatterjee (10.1016/j.bbagen.2015.01.015_bb0020) 2012; 23
Sambrook (10.1016/j.bbagen.2015.01.015_bb0100) 2001
References_xml – volume: 98
  start-page: 26
  year: 2013
  ident: 10.1016/j.bbagen.2015.01.015_bb0115
  article-title: Synthesis of copper nanoparticles and their antimicrobial performances in natural fibres
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.02.024
– volume: 63
  start-page: 1840
  year: 2009
  ident: 10.1016/j.bbagen.2015.01.015_bb0130
  article-title: Solution-phase synthesis of rose-like CuO
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2009.05.061
– volume: 6
  start-page: 5164
  year: 2012
  ident: 10.1016/j.bbagen.2015.01.015_bb0180
  article-title: Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/nn300934k
– volume: 105
  start-page: 1056
  year: 2013
  ident: 10.1016/j.bbagen.2015.01.015_bb0110
  article-title: Multi-technique photoelectron spectrometer for micro-area spectroscopy and imaging
  publication-title: Curr. Sci.
– volume: 4
  start-page: 707
  year: 2008
  ident: 10.1016/j.bbagen.2015.01.015_bb0040
  article-title: Strain specificity in antimicrobial activity of silver and copper nanoparticles
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2007.11.006
– start-page: 21
  year: 1999
  ident: 10.1016/j.bbagen.2015.01.015_bb0105
  article-title: Preparation of Escherichia coli samples for 2-D gel analysis
– volume: 90
  year: 2007
  ident: 10.1016/j.bbagen.2015.01.015_bb0135
  article-title: Shape-induced ultraviolet absorption of CuO shuttlelike nanoparticles
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2736285
– volume: 151
  start-page: 149
  year: 2014
  ident: 10.1016/j.bbagen.2015.01.015_bb0075
  article-title: Synthesis and optical properties of colloidal CuO nanoparticles
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2014.02.015
– volume: 227
  start-page: 35
  year: 2012
  ident: 10.1016/j.bbagen.2015.01.015_bb0120
  article-title: Shape control mechanism of cuprous oxide nanoparticles in aqueous colloidal solutions
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.02.008
– volume: 43
  start-page: 3244
  year: 2014
  ident: 10.1016/j.bbagen.2015.01.015_bb0080
  article-title: Calcium phosphate nanoparticles: a study of their synthesis, characterization and mode of interaction with salmon testis DNA
  publication-title: Dalton Trans.
  doi: 10.1039/C3DT52522H
– volume: 12
  start-page: 2301
  year: 2000
  ident: 10.1016/j.bbagen.2015.01.015_bb0055
  article-title: Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates
  publication-title: Chem. Mater.
  doi: 10.1021/cm000166z
– volume: 9
  start-page: 515
  year: 1990
  ident: 10.1016/j.bbagen.2015.01.015_bb0085
  article-title: Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/0891-5849(90)90131-2
– volume: 33
  start-page: 587
  year: 2009
  ident: 10.1016/j.bbagen.2015.01.015_bb0035
  article-title: Characterisation of copper oxide nanoparticles for antimicrobial applications
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2008.12.004
– volume: 474
  start-page: 133
  year: 2005
  ident: 10.1016/j.bbagen.2015.01.015_bb0160
  article-title: Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2004.08.071
– volume: 7
  start-page: 467
  year: 2007
  ident: 10.1016/j.bbagen.2015.01.015_bb0170
  article-title: Anion-controlled construction of CuO honeycombs and flowerlike assemblies on copper foils
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg060480r
– volume: 23
  year: 2012
  ident: 10.1016/j.bbagen.2015.01.015_bb0020
  article-title: A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/8/085103
– volume: 72
  start-page: 248
  year: 1976
  ident: 10.1016/j.bbagen.2015.01.015_bb0090
  article-title: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye-binding
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(76)90527-3
– volume: 213
  start-page: 226
  year: 1992
  ident: 10.1016/j.bbagen.2015.01.015_bb0155
  article-title: Copper oxide thin films grown by plasma evaporation method
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(92)90286-K
– volume: 100
  start-page: 8392
  year: 1994
  ident: 10.1016/j.bbagen.2015.01.015_bb0210
  article-title: Structural modifications in the amino-acid lysine induced by soft-X-ray irradiation
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466786
– volume: 14
  year: 2012
  ident: 10.1016/j.bbagen.2015.01.015_bb0025
  article-title: Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria
  publication-title: J. Nanoparticle Res.
  doi: 10.1007/s11051-011-0709-0
– volume: 45
  start-page: 1688
  year: 2010
  ident: 10.1016/j.bbagen.2015.01.015_bb0150
  article-title: Ultrasound assisted one pot synthesis of nano-sized CuO and its nanocomposite with poly(vinyl alcohol)
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-4158-4
– volume: 3
  year: 2013
  ident: 10.1016/j.bbagen.2015.01.015_bb0125
  article-title: A facile one step solution route to synthesize cuprous oxide nanofluid
  publication-title: Nanosci. Nanotechnol.
– volume: 289
  start-page: 670
  year: 2006
  ident: 10.1016/j.bbagen.2015.01.015_bb0165
  article-title: Growth and branching of CuO nanowires by thermal oxidation of copper
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2005.11.111
– volume: 258
  start-page: 2997
  year: 2012
  ident: 10.1016/j.bbagen.2015.01.015_bb0195
  article-title: CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.11.025
– volume: 8
  start-page: 3326
  year: 2012
  ident: 10.1016/j.bbagen.2015.01.015_bb0015
  article-title: Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress
  publication-title: Small
  doi: 10.1002/smll.201200772
– volume: 36
  start-page: 2334
  year: 2004
  ident: 10.1016/j.bbagen.2015.01.015_bb0185
  article-title: Proteins are major initial cell targets of hydroxyl free radicals
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2004.05.012
– volume: 22
  start-page: 1360
  year: 2004
  ident: 10.1016/j.bbagen.2015.01.015_bb0190
  article-title: Quantum dots as photosensitizers?
  publication-title: Nature
– volume: 101
  start-page: 430
  year: 2013
  ident: 10.1016/j.bbagen.2015.01.015_bb0010
  article-title: Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2012.07.002
– volume: 3
  start-page: 308
  year: 2000
  ident: 10.1016/j.bbagen.2015.01.015_bb0065
  article-title: Complexes of Cu(II) with polyvinyl alcohol as precursors for the preparation of CuO/SiO2 nanocomposites
  publication-title: Mater. Res. Innov.
  doi: 10.1007/PL00010877
– volume: 27
  start-page: 300
  year: 1995
  ident: 10.1016/j.bbagen.2015.01.015_bb0205
  article-title: Simulation of XPS of poly(vinyl alcohol), poly(acrylic acid), poly(vinyl acetate), and poly(methyl methacrylate) polymers by an ab initio mo method using the model molecules
  publication-title: Polym. J.
  doi: 10.1295/polymj.27.300
– volume: 25
  year: 2014
  ident: 10.1016/j.bbagen.2015.01.015_bb0005
  article-title: Mechanism of antibacterial activity of copper nanoparticle
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/13/135101
– volume: 19
  year: 2008
  ident: 10.1016/j.bbagen.2015.01.015_bb0175
  article-title: Preparation, characterization and antibacterial properties against E. coli K88 of chitosan nanoparticle loaded copper ions
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/8/085707
– volume: 61
  start-page: 11093
  year: 2000
  ident: 10.1016/j.bbagen.2015.01.015_bb0050
  article-title: Quantum size effects in CuO nanoparticles
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.11093
– volume: 147
  start-page: 516
  year: 2009
  ident: 10.1016/j.bbagen.2015.01.015_bb0045
  article-title: Preparation and characterization of CuO nanocrystals
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1999.8409
– start-page: 2.4.1
  year: 1994
  ident: 10.1016/j.bbagen.2015.01.015_bb0095
– volume: 9
  start-page: 7214
  year: 2011
  ident: 10.1016/j.bbagen.2015.01.015_bb0030
  article-title: Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts
  publication-title: ACS Nano
  doi: 10.1021/nn2020248
– volume: 255
  start-page: 8794
  year: 2009
  ident: 10.1016/j.bbagen.2015.01.015_bb0070
  article-title: Structural, optical, and electronic properties of colloidal CuO nanoparticles formed by using a colloid-thermal synthesis process
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.06.056
– volume: 1
  start-page: 36
  year: 2010
  ident: 10.1016/j.bbagen.2015.01.015_bb0145
  article-title: Synthesis and optical characterization of copper oxide nanoparticles
  publication-title: Adv. Appl. Sci. Res.
– volume: 244
  start-page: 88
  year: 2002
  ident: 10.1016/j.bbagen.2015.01.015_bb0060
  article-title: Preparation of CuO nanoparticles by microwave irradiation
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(02)01571-3
– volume: 169
  start-page: 81
  year: 2012
  ident: 10.1016/j.bbagen.2015.01.015_bb0140
  article-title: Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2012.05.009
– volume: 6
  start-page: 809
  year: 2011
  ident: 10.1016/j.bbagen.2015.01.015_bb0200
  article-title: Development and characterization of poly(vinyl alcohol) matrix for drug release
  publication-title: Dig. J. Nanomater. Bios.
– start-page: 5.10
  year: 2001
  ident: 10.1016/j.bbagen.2015.01.015_bb0100
SSID ssj0000595
ssj0025309
Score 2.324383
Snippet Gradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 845
SubjectTerms agar
Anti-Bacterial Agents - chemical synthesis
Anti-Bacterial Agents - pharmacology
antibacterial properties
antibiotic resistance
antibiotics
atomic force microscopy
Colloids
Copper - pharmacology
cost effectiveness
Cost-Benefit Analysis
Culture Media
cupric oxide
DNA
energy-dispersive X-ray analysis
Escherichia coli
Fourier transform infrared spectroscopy
gel electrophoresis
lipids
mechanism of action
Metal Nanoparticles
minimum inhibitory concentration
nanoparticles
polyvinyl alcohol
Reactive Oxygen Species - metabolism
Staphylococcus aureus
sterilizing
transmission electron microscopy
Title A simple, fast and cost-effective method of synthesis of cupric oxide nanoparticle with promising antibacterial potency: Unraveling the biological and chemical modes of action
URI https://www.ncbi.nlm.nih.gov/pubmed/25637716
https://www.proquest.com/docview/1656043818
https://www.proquest.com/docview/2000208028
Volume 1850
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5RAFJ70ElNfjNZbvTRj4tvKBhhu69um0TQ29UG7sW9kZoAU2kCzQGJ98C_5Fz2HM7CLtWpNNmQXhhmW8zFzZvjOdxh7rWHcENKWVpBIZXk6ca2ZrTIrEJ5ypZuG4QzjnY8_BocL78Opf7qxubPGWmobNdXffhtX8j9WhX1gV4ySvYVlh0phB3wH-8IWLAzbf7LxfFLnqO6L9ymTdWOC1OrGIpoGsoIoRTT6hPVVCd6eESDR7SVy6KuveZJOSlnC3Jnqp5VZ6FcBABTA2OSKJJ0xaKtCH7tTiVqUmLnoog-3IjWnQXtA90IEmGqna5EiKEYvkfNKn-VYbJI2WAEts0gsKqe9IvakbhUuFg3Ov2EiwLyBAILpXJbD6PJZLs8NaVwWk45BvnYixi4VxD2aL_Mib8YljmVZtHhwUZb5OfR_Z6V5eszCiOOv8WlMQBjsAH_TH3f2pHNrYO2t9d0R6Vr2bgDpnV8bYWixo5gqBaVQQNch3VfHX42oPYvgl4F2oD_2zLoiplpirCW2Hfj4m2zbhRkPjjHT7yu2EnjBPr0Qo__UR4F2VMXr1zL2sm6YOnUu1Ml9ds_MfficgPaAbaTlLrtD2VCvdtnOQZ988CH7MecE7Tccgc0BUnwMbE7A5lXGB2DjDwI274DN14HNEdh8ADYfAZsbYL_lK1hzqJSvYE3XYGDNO1hjewTrR2zx_t3JwaFlcotYWnh2A71SKgLUQVNeEtmBHWqZiUSJQDhZpj0ttQ0uiXC0LdzQcd0syOCgTMIUXD6V2eIx2yqrMn3KuJ2Kji3oaBl4mZ0qbzbTbup5MhKRyII9JnpbxNoI72P-l4v4TzjYY9Zw1iUJz_yl_KvezDHcR3ztJ8u0auu409dCJb_o5jJuR0mIYLKxx54QRoZWYVIkwtAJnt3yip6zu6vH8gXbapZt-hI8-Ebtd9jeZ9vzo09fjn4CHgL8oQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple%2C+fast+and+cost-effective+method+of+synthesis+of+cupric+oxide+nanoparticle+with+promising+antibacterial+potency%3A+Unraveling+the+biological+and+chemical+modes+of+action&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Chakraborty%2C+Ruchira&rft.au=Sarkar%2C+Raj+Kumar&rft.au=Chatterjee%2C+Arijit+Kumar&rft.au=Manju%2C+Unnikrishnan&rft.date=2015-04-01&rft.issn=0304-4165&rft.volume=1850&rft.issue=4&rft.spage=845&rft.epage=856&rft_id=info:doi/10.1016%2Fj.bbagen.2015.01.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2015_01_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon