Experimental study on cooling performance of solar cells with atmospheric plate thermosyphon

•Atmospheric plate thermosyphon (APT) cooling solar cells was first proposed.•APT can reduce the temperature of PV panels without parasitic energy consumption.•The maximum temperature difference was less than 6 °C.•The heat transfer resistance at the evaporator is between 0.00486 and 0.02368 K/W. Si...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 178; pp. 226 - 234
Main Authors Wang, Yiping, Hu, Guohao, Cui, Yong, Huang, Qunwu
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.12.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Atmospheric plate thermosyphon (APT) cooling solar cells was first proposed.•APT can reduce the temperature of PV panels without parasitic energy consumption.•The maximum temperature difference was less than 6 °C.•The heat transfer resistance at the evaporator is between 0.00486 and 0.02368 K/W. Since the heat pipe has no parasitic energy consumption, it is an important method for cooling the photovoltaic. In this paper, a novel type of atmospheric plate thermosyphon (APT) cooling system has been designed, which can be used for the heat dissipation of the single or low concentrated solar cells. In the experiments, the non-condensable gas (NCG) was collected by a gas reservoir. The coolant, ethanol, formed a liquid film on the porous medium and directly cooled the photovoltaic panel. The effect of various parameters such as heat flux density, tilt angle and inlet temperature have been studied. The results demonstrated that APT cooling system could effectively reduce the temperature of PV cells, and the higher heat flux density was, the shorter start-up time. The temperature of evaporator was uniform, and the larger inclined angle was, the greater surface temperature difference which maximumly was 5.6 °C. The thermal resistance at the evaporator was between 0.00486 and 0.02368 K/W.
AbstractList Since the heat pipe has no parasitic energy consumption, it is an important method for cooling the photovoltaic. In this paper, a novel type of atmospheric plate thermosyphon (APT) cooling system has been designed, which can be used for the heat dissipation of the single or low concentrated solar cells. In the experiments, the non-condensable gas (NCG) was collected by a gas reservoir. The coolant, ethanol, formed a liquid film on the porous medium and directly cooled the photovoltaic panel. The effect of various parameters such as heat flux density, tilt angle and inlet temperature have been studied. The results demonstrated that APT cooling system could effectively reduce the temperature of PV cells, and the higher heat flux density was, the shorter start-up time. The temperature of evaporator was uniform, and the larger inclined angle was, the greater surface temperature difference which maximumly was 5.6 °C. The thermal resistance at the evaporator was between 0.00486 and 0.02368 K/W.
•Atmospheric plate thermosyphon (APT) cooling solar cells was first proposed.•APT can reduce the temperature of PV panels without parasitic energy consumption.•The maximum temperature difference was less than 6 °C.•The heat transfer resistance at the evaporator is between 0.00486 and 0.02368 K/W. Since the heat pipe has no parasitic energy consumption, it is an important method for cooling the photovoltaic. In this paper, a novel type of atmospheric plate thermosyphon (APT) cooling system has been designed, which can be used for the heat dissipation of the single or low concentrated solar cells. In the experiments, the non-condensable gas (NCG) was collected by a gas reservoir. The coolant, ethanol, formed a liquid film on the porous medium and directly cooled the photovoltaic panel. The effect of various parameters such as heat flux density, tilt angle and inlet temperature have been studied. The results demonstrated that APT cooling system could effectively reduce the temperature of PV cells, and the higher heat flux density was, the shorter start-up time. The temperature of evaporator was uniform, and the larger inclined angle was, the greater surface temperature difference which maximumly was 5.6 °C. The thermal resistance at the evaporator was between 0.00486 and 0.02368 K/W.
Author Hu, Guohao
Cui, Yong
Wang, Yiping
Huang, Qunwu
Author_xml – sequence: 1
  givenname: Yiping
  surname: Wang
  fullname: Wang, Yiping
  organization: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 2
  givenname: Guohao
  surname: Hu
  fullname: Hu, Guohao
  organization: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Yong
  surname: Cui
  fullname: Cui, Yong
  organization: Tianjin Yizhong Science and Technology Limited Development Company, Tianjin 300072, China
– sequence: 4
  givenname: Qunwu
  orcidid: 0000-0001-7105-6923
  surname: Huang
  fullname: Huang, Qunwu
  email: huangqw@tju.edu.cn
  organization: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
BookMark eNqFUE1LAzEUDFLBtvoXJOB515dksx83pdQPKHjRmxBi9q3dsk3WJFX7702pnj093ryZeczMyMQ6i4RcMsgZsPJ6k6M1zm61zTmwOoE5iOaETFldNRnnvJqQKbCmzOoGijMyC2EDAEJCOSWvy-8Rfb9FG_VAQ9y1e-osNc4NvX2n6dY5n6wNUtfR4AbtqcFhCPSrj2uq49aFcZ0cDB0HHZHGtCRsP66dPSennR4CXvzOOXm5Wz4vHrLV0_3j4naVGVFAzIrKaChKlC1vNWihJRZatrUoSolCCHhDqGspuqphnNeIouskh67RgFWFTMzJ1dF39O5jhyGqjdt5m14qzmRRNpLXZWKVR5bxLgSPnRpTcO33ioE6NKk26q9JdWjygKcmk_DmKMSU4bNHr4LpExPb3qOJqnX9fxY_eZWDUg
CitedBy_id crossref_primary_10_1016_j_apenergy_2019_113805
crossref_primary_10_1016_j_enconman_2019_111990
crossref_primary_10_1007_s12667_023_00622_y
crossref_primary_10_1016_j_rineng_2024_102225
crossref_primary_10_1016_j_solener_2021_01_016
crossref_primary_10_1016_j_enbenv_2023_11_002
crossref_primary_10_1016_j_renene_2020_01_070
crossref_primary_10_1007_s10973_023_12767_0
crossref_primary_10_1016_j_enconman_2021_114039
crossref_primary_10_1016_j_solener_2023_112019
crossref_primary_10_1016_j_renene_2023_03_039
crossref_primary_10_1016_j_enconman_2019_02_085
crossref_primary_10_1016_j_etran_2020_100067
Cites_doi 10.1016/j.enconman.2016.11.059
10.1016/j.rser.2018.01.002
10.1016/j.egypro.2013.05.072
10.1016/j.enconman.2017.10.068
10.1016/j.enconman.2017.10.074
10.1002/pip.2978
10.1016/j.apenergy.2011.01.017
10.1016/j.enconman.2018.07.033
10.1016/S0038-092X(01)00096-2
10.1016/j.energy.2015.07.063
10.1016/j.enconman.2017.08.060
10.1016/j.enconman.2011.11.011
10.1016/j.energy.2013.07.050
10.1016/j.solener.2008.10.008
10.1364/OPTICA.1.000032
10.1016/j.applthermaleng.2004.02.013
10.1016/j.ijthermalsci.2013.05.009
10.1016/j.solmat.2004.01.011
10.1002/er.3907
10.1016/j.enconman.2016.01.025
10.1016/j.enconman.2015.12.069
10.1016/j.enconman.2018.02.008
10.1016/j.solener.2011.02.006
10.1016/j.enconman.2016.08.074
10.1016/j.enconman.2016.05.043
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier Science Ltd. Dec 15, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Dec 15, 2018
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
DOI 10.1016/j.enconman.2018.10.039
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
EndPage 234
ExternalDocumentID 10_1016_j_enconman_2018_10_039
S0196890418311403
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFFNX
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
ID FETCH-LOGICAL-c340t-47ca046e5d2da0a3a5e4a5d83465e3330be08853f791228ee3ff520f9a0e77e13
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Thu Oct 10 16:48:30 EDT 2024
Thu Sep 26 16:54:33 EDT 2024
Fri Feb 23 02:33:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parasitic energy
Heat transfer performance
Non-condensable gas
Atmospheric plate thermosyphon
Photovoltaics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-47ca046e5d2da0a3a5e4a5d83465e3330be08853f791228ee3ff520f9a0e77e13
ORCID 0000-0001-7105-6923
PQID 2154695286
PQPubID 2047472
PageCount 9
ParticipantIDs proquest_journals_2154695286
crossref_primary_10_1016_j_enconman_2018_10_039
elsevier_sciencedirect_doi_10_1016_j_enconman_2018_10_039
PublicationCentury 2000
PublicationDate 2018-12-15
PublicationDateYYYYMMDD 2018-12-15
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Jouhara, Milko, Danielewicz, Sayegh, Szulgowska-Zgrzywa, Ramos (b0110) 2016; 108
Chen, Yang (b0095) 2016; 121
Babu, Ponnambalam (b0010) 2017; 151
Chauhan, Tyagi, Anand (b0015) 2018; 163
Du (b0075) 2017; 134
Yang, Tao (b0130) 2006
Hong, Tang, Wang (b0065) 2018; 172
Dubey, Sarvaiya, Seshadri (b0040) 2013; 33
Li, Zhao, Ji (b0085) 2016; 126
Dube, Akbarzadeh, Andrews (b0125) 2004; 24
Teo, Lee, Hawlader (b0060) 2012; 90
Pei, Fu, Zhang, Ji (b0105) 2011; 85
Makki, Omer, Su, Sabir (b0115) 2016; 112
Zhu, Raman, Wang, Abou Anoma, Fan (b0030) 2014; 1
Pei, Fu, Ji, Chow, Zhang (b0100) 2012; 56
Ebaid, Ghrair, Al-Busoul (b0055) 2018; 155
Li, Zhang, He, Ji, Lv, Chen (b0090) 2016; 112
Bahaidarah, Subhan, Gandhidasan, Rehman (b0050) 2013; 59
Skoplaki, Palyvos (b0025) 2009; 83
Tripanagnostopoulos, Nousia, Souliotis, Yianoulis (b0035) 2002; 72
He, Lin, Bai, Miao, Zhang, Wang (b0140) 2013; 72
Pei, Zhang, Yu, Fu, Ji (b0120) 2011; 225
Zhang, Du, Shum, Cai, Le, Chen (b0080) 2016
Sun, Ling, Liao, Chu, Fan, Mo (b0070) 2018; 155
Krauter (b0045) 2004; 82
Holman (b0135) 2012
Green, Hishikawa, Dunlop, Levi, Hohl-Ebinger, Ho-Baillie (b0020) 2018; 26
Nasrin, Hasanuzzaman, Rahim (b0145) 2018; 42
Das, Kalita, Roy (b0005) 2018; 84
Skoplaki (10.1016/j.enconman.2018.10.039_b0025) 2009; 83
Tripanagnostopoulos (10.1016/j.enconman.2018.10.039_b0035) 2002; 72
Bahaidarah (10.1016/j.enconman.2018.10.039_b0050) 2013; 59
Das (10.1016/j.enconman.2018.10.039_b0005) 2018; 84
Du (10.1016/j.enconman.2018.10.039_b0075) 2017; 134
Chauhan (10.1016/j.enconman.2018.10.039_b0015) 2018; 163
Teo (10.1016/j.enconman.2018.10.039_b0060) 2012; 90
Pei (10.1016/j.enconman.2018.10.039_b0105) 2011; 85
Makki (10.1016/j.enconman.2018.10.039_b0115) 2016; 112
Krauter (10.1016/j.enconman.2018.10.039_b0045) 2004; 82
Ebaid (10.1016/j.enconman.2018.10.039_b0055) 2018; 155
Hong (10.1016/j.enconman.2018.10.039_b0065) 2018; 172
Pei (10.1016/j.enconman.2018.10.039_b0100) 2012; 56
Babu (10.1016/j.enconman.2018.10.039_b0010) 2017; 151
Li (10.1016/j.enconman.2018.10.039_b0085) 2016; 126
Green (10.1016/j.enconman.2018.10.039_b0020) 2018; 26
Dubey (10.1016/j.enconman.2018.10.039_b0040) 2013; 33
Chen (10.1016/j.enconman.2018.10.039_b0095) 2016; 121
Li (10.1016/j.enconman.2018.10.039_b0090) 2016; 112
Sun (10.1016/j.enconman.2018.10.039_b0070) 2018; 155
Jouhara (10.1016/j.enconman.2018.10.039_b0110) 2016; 108
Zhu (10.1016/j.enconman.2018.10.039_b0030) 2014; 1
Dube (10.1016/j.enconman.2018.10.039_b0125) 2004; 24
Yang (10.1016/j.enconman.2018.10.039_b0130) 2006
Holman (10.1016/j.enconman.2018.10.039_b0135) 2012
Nasrin (10.1016/j.enconman.2018.10.039_b0145) 2018; 42
Zhang (10.1016/j.enconman.2018.10.039_b0080) 2016
Pei (10.1016/j.enconman.2018.10.039_b0120) 2011; 225
He (10.1016/j.enconman.2018.10.039_b0140) 2013; 72
References_xml – volume: 134
  start-page: 70
  year: 2017
  end-page: 76
  ident: b0075
  article-title: Advanced thermal management of a solar cell by a nano-coated heat pipe plate: a thermal assessment
  publication-title: Energ Convers Manage
  contributor:
    fullname: Du
– volume: 126
  start-page: 935
  year: 2016
  end-page: 943
  ident: b0085
  article-title: Conceptual development of a novel photovoltaic-thermoelectric system and preliminary economic analysis
  publication-title: Energ Convers Manage
  contributor:
    fullname: Ji
– volume: 172
  start-page: 328
  year: 2018
  end-page: 342
  ident: b0065
  article-title: An investigation on optimal external cooling condition for an ultra-thin loop thermosyphon-based thermal management system
  publication-title: Energ Convers Manage
  contributor:
    fullname: Wang
– volume: 155
  start-page: 230
  year: 2018
  end-page: 242
  ident: b0070
  article-title: A thermoelectric cooler coupled with a gravity-assisted heat pipe: an analysis from heat pipe perspective
  publication-title: Energ Convers Manage
  contributor:
    fullname: Mo
– volume: 225
  start-page: 271
  year: 2011
  end-page: 278
  ident: b0120
  article-title: Comparative study of a novel heat pipe photovoltaic/thermal collector and a water thermosiphon photovoltaic/thermal collector
  publication-title: P I Mech Eng A – J Pow
  contributor:
    fullname: Ji
– volume: 163
  start-page: 314
  year: 2018
  end-page: 354
  ident: b0015
  article-title: Futuristic approach for thermal management in solar PV/thermal systems with possible applications
  publication-title: Energ Convers Manage
  contributor:
    fullname: Anand
– volume: 24
  start-page: 2439
  year: 2004
  end-page: 2451
  ident: b0125
  article-title: The effects of non-condensable gases on the performance of loop thermosyphon heat exchangers
  publication-title: Appl Therm Eng
  contributor:
    fullname: Andrews
– volume: 42
  start-page: 1115
  year: 2018
  end-page: 1131
  ident: b0145
  article-title: Effect of high irradiation on photovoltaic power and energy
  publication-title: Int J Energ Res
  contributor:
    fullname: Rahim
– volume: 155
  start-page: 324
  year: 2018
  end-page: 343
  ident: b0055
  article-title: Experimental investigation of cooling photovoltaic (PV) panels using (TiO
  publication-title: Energ Convers Manage
  contributor:
    fullname: Al-Busoul
– volume: 33
  start-page: 311
  year: 2013
  end-page: 321
  ident: b0040
  article-title: Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world – a review
  publication-title: Energy Procedia
  contributor:
    fullname: Seshadri
– volume: 56
  start-page: 8
  year: 2012
  end-page: 21
  ident: b0100
  article-title: Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production
  publication-title: Energ Convers Manage
  contributor:
    fullname: Zhang
– year: 2006
  ident: b0130
  article-title: Heat Transfer
  contributor:
    fullname: Tao
– volume: 59
  start-page: 445
  year: 2013
  end-page: 453
  ident: b0050
  article-title: Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions
  publication-title: Energy
  contributor:
    fullname: Rehman
– volume: 83
  start-page: 614
  year: 2009
  end-page: 624
  ident: b0025
  article-title: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations
  publication-title: Sol Energy
  contributor:
    fullname: Palyvos
– volume: 112
  start-page: 274
  year: 2016
  end-page: 287
  ident: b0115
  article-title: Numerical investigation of heat pipe-based photovoltaic-thermoelectric generator (HP-PV/TEG) hybrid system
  publication-title: Energ Convers Manage
  contributor:
    fullname: Sabir
– volume: 1
  start-page: 32
  year: 2014
  end-page: 38
  ident: b0030
  article-title: Radiative cooling of solar cells
  publication-title: Optica
  contributor:
    fullname: Fan
– volume: 72
  start-page: 217
  year: 2002
  end-page: 234
  ident: b0035
  article-title: Hybrid photovoltaic/thermal solar systems
  publication-title: Sol Energy
  contributor:
    fullname: Yianoulis
– volume: 82
  start-page: 131
  year: 2004
  end-page: 137
  ident: b0045
  article-title: Increased electrical yield via water flow over the front of photovoltaic panels
  publication-title: Sol Energ Mat Sol C
  contributor:
    fullname: Krauter
– volume: 121
  start-page: 297
  year: 2016
  end-page: 304
  ident: b0095
  article-title: Loop thermosyphon performance study for solar cells cooling
  publication-title: Energ Convers Manage
  contributor:
    fullname: Yang
– volume: 84
  start-page: 111
  year: 2018
  end-page: 130
  ident: b0005
  article-title: Flat plate hybrid photovoltaic-thermal (PV/T) system: a review on design and development
  publication-title: Renew Sust Energ Rev
  contributor:
    fullname: Roy
– volume: 26
  start-page: 3
  year: 2018
  end-page: 12
  ident: b0020
  article-title: Solar cell efficiency tables (version 51)
  publication-title: Prog Photovoltaics
  contributor:
    fullname: Ho-Baillie
– volume: 90
  start-page: 309
  year: 2012
  end-page: 315
  ident: b0060
  article-title: An active cooling system for photovoltaic modules
  publication-title: Appl Energ
  contributor:
    fullname: Hawlader
– volume: 112
  start-page: 191
  year: 2016
  end-page: 198
  ident: b0090
  article-title: Performance analysis on a solar concentrating thermoelectric generator using the micro-channel heat pipe array
  publication-title: Energ Convers Manage
  contributor:
    fullname: Chen
– volume: 85
  start-page: 911
  year: 2011
  end-page: 921
  ident: b0105
  article-title: A numerical and experimental study on a heat pipe PV/T system
  publication-title: Sol Energy
  contributor:
    fullname: Ji
– volume: 151
  start-page: 368
  year: 2017
  end-page: 385
  ident: b0010
  article-title: The role of thermoelectric generators in the hybrid PV/T systems: a review
  publication-title: Energ Convers Manage
  contributor:
    fullname: Ponnambalam
– start-page: 6
  year: 2016
  ident: b0080
  article-title: Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate
  publication-title: Sci Rep-UK
  contributor:
    fullname: Chen
– year: 2012
  ident: b0135
  article-title: Experimental methods for engineers
  contributor:
    fullname: Holman
– volume: 72
  start-page: 184
  year: 2013
  end-page: 194
  ident: b0140
  article-title: Effect of non-condensable gas on startup of a loop thermosyphon
  publication-title: Int J Therm Sci
  contributor:
    fullname: Wang
– volume: 108
  start-page: 148
  year: 2016
  end-page: 154
  ident: b0110
  article-title: The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material
  publication-title: Energy
  contributor:
    fullname: Ramos
– volume: 134
  start-page: 70
  year: 2017
  ident: 10.1016/j.enconman.2018.10.039_b0075
  article-title: Advanced thermal management of a solar cell by a nano-coated heat pipe plate: a thermal assessment
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2016.11.059
  contributor:
    fullname: Du
– volume: 84
  start-page: 111
  year: 2018
  ident: 10.1016/j.enconman.2018.10.039_b0005
  article-title: Flat plate hybrid photovoltaic-thermal (PV/T) system: a review on design and development
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2018.01.002
  contributor:
    fullname: Das
– volume: 33
  start-page: 311
  year: 2013
  ident: 10.1016/j.enconman.2018.10.039_b0040
  article-title: Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world – a review
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.05.072
  contributor:
    fullname: Dubey
– volume: 155
  start-page: 230
  year: 2018
  ident: 10.1016/j.enconman.2018.10.039_b0070
  article-title: A thermoelectric cooler coupled with a gravity-assisted heat pipe: an analysis from heat pipe perspective
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2017.10.068
  contributor:
    fullname: Sun
– volume: 155
  start-page: 324
  year: 2018
  ident: 10.1016/j.enconman.2018.10.039_b0055
  article-title: Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethylammonium bromide mixture
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2017.10.074
  contributor:
    fullname: Ebaid
– volume: 26
  start-page: 3
  year: 2018
  ident: 10.1016/j.enconman.2018.10.039_b0020
  article-title: Solar cell efficiency tables (version 51)
  publication-title: Prog Photovoltaics
  doi: 10.1002/pip.2978
  contributor:
    fullname: Green
– volume: 90
  start-page: 309
  year: 2012
  ident: 10.1016/j.enconman.2018.10.039_b0060
  article-title: An active cooling system for photovoltaic modules
  publication-title: Appl Energ
  doi: 10.1016/j.apenergy.2011.01.017
  contributor:
    fullname: Teo
– year: 2012
  ident: 10.1016/j.enconman.2018.10.039_b0135
  contributor:
    fullname: Holman
– volume: 172
  start-page: 328
  year: 2018
  ident: 10.1016/j.enconman.2018.10.039_b0065
  article-title: An investigation on optimal external cooling condition for an ultra-thin loop thermosyphon-based thermal management system
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2018.07.033
  contributor:
    fullname: Hong
– volume: 72
  start-page: 217
  year: 2002
  ident: 10.1016/j.enconman.2018.10.039_b0035
  article-title: Hybrid photovoltaic/thermal solar systems
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(01)00096-2
  contributor:
    fullname: Tripanagnostopoulos
– volume: 108
  start-page: 148
  year: 2016
  ident: 10.1016/j.enconman.2018.10.039_b0110
  article-title: The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.063
  contributor:
    fullname: Jouhara
– volume: 151
  start-page: 368
  year: 2017
  ident: 10.1016/j.enconman.2018.10.039_b0010
  article-title: The role of thermoelectric generators in the hybrid PV/T systems: a review
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2017.08.060
  contributor:
    fullname: Babu
– volume: 56
  start-page: 8
  year: 2012
  ident: 10.1016/j.enconman.2018.10.039_b0100
  article-title: Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2011.11.011
  contributor:
    fullname: Pei
– volume: 59
  start-page: 445
  year: 2013
  ident: 10.1016/j.enconman.2018.10.039_b0050
  article-title: Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2013.07.050
  contributor:
    fullname: Bahaidarah
– volume: 83
  start-page: 614
  year: 2009
  ident: 10.1016/j.enconman.2018.10.039_b0025
  article-title: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2008.10.008
  contributor:
    fullname: Skoplaki
– volume: 1
  start-page: 32
  year: 2014
  ident: 10.1016/j.enconman.2018.10.039_b0030
  article-title: Radiative cooling of solar cells
  publication-title: Optica
  doi: 10.1364/OPTICA.1.000032
  contributor:
    fullname: Zhu
– volume: 24
  start-page: 2439
  year: 2004
  ident: 10.1016/j.enconman.2018.10.039_b0125
  article-title: The effects of non-condensable gases on the performance of loop thermosyphon heat exchangers
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2004.02.013
  contributor:
    fullname: Dube
– year: 2006
  ident: 10.1016/j.enconman.2018.10.039_b0130
  contributor:
    fullname: Yang
– volume: 72
  start-page: 184
  year: 2013
  ident: 10.1016/j.enconman.2018.10.039_b0140
  article-title: Effect of non-condensable gas on startup of a loop thermosyphon
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2013.05.009
  contributor:
    fullname: He
– volume: 82
  start-page: 131
  year: 2004
  ident: 10.1016/j.enconman.2018.10.039_b0045
  article-title: Increased electrical yield via water flow over the front of photovoltaic panels
  publication-title: Sol Energ Mat Sol C
  doi: 10.1016/j.solmat.2004.01.011
  contributor:
    fullname: Krauter
– volume: 42
  start-page: 1115
  year: 2018
  ident: 10.1016/j.enconman.2018.10.039_b0145
  article-title: Effect of high irradiation on photovoltaic power and energy
  publication-title: Int J Energ Res
  doi: 10.1002/er.3907
  contributor:
    fullname: Nasrin
– start-page: 6
  year: 2016
  ident: 10.1016/j.enconman.2018.10.039_b0080
  article-title: Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate
  publication-title: Sci Rep-UK
  contributor:
    fullname: Zhang
– volume: 112
  start-page: 191
  year: 2016
  ident: 10.1016/j.enconman.2018.10.039_b0090
  article-title: Performance analysis on a solar concentrating thermoelectric generator using the micro-channel heat pipe array
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2016.01.025
  contributor:
    fullname: Li
– volume: 112
  start-page: 274
  year: 2016
  ident: 10.1016/j.enconman.2018.10.039_b0115
  article-title: Numerical investigation of heat pipe-based photovoltaic-thermoelectric generator (HP-PV/TEG) hybrid system
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2015.12.069
  contributor:
    fullname: Makki
– volume: 163
  start-page: 314
  year: 2018
  ident: 10.1016/j.enconman.2018.10.039_b0015
  article-title: Futuristic approach for thermal management in solar PV/thermal systems with possible applications
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2018.02.008
  contributor:
    fullname: Chauhan
– volume: 225
  start-page: 271
  year: 2011
  ident: 10.1016/j.enconman.2018.10.039_b0120
  article-title: Comparative study of a novel heat pipe photovoltaic/thermal collector and a water thermosiphon photovoltaic/thermal collector
  publication-title: P I Mech Eng A – J Pow
  contributor:
    fullname: Pei
– volume: 85
  start-page: 911
  year: 2011
  ident: 10.1016/j.enconman.2018.10.039_b0105
  article-title: A numerical and experimental study on a heat pipe PV/T system
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2011.02.006
  contributor:
    fullname: Pei
– volume: 126
  start-page: 935
  year: 2016
  ident: 10.1016/j.enconman.2018.10.039_b0085
  article-title: Conceptual development of a novel photovoltaic-thermoelectric system and preliminary economic analysis
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2016.08.074
  contributor:
    fullname: Li
– volume: 121
  start-page: 297
  year: 2016
  ident: 10.1016/j.enconman.2018.10.039_b0095
  article-title: Loop thermosyphon performance study for solar cells cooling
  publication-title: Energ Convers Manage
  doi: 10.1016/j.enconman.2016.05.043
  contributor:
    fullname: Chen
SSID ssj0003506
Score 2.3823268
Snippet •Atmospheric plate thermosyphon (APT) cooling solar cells was first proposed.•APT can reduce the temperature of PV panels without parasitic energy...
Since the heat pipe has no parasitic energy consumption, it is an important method for cooling the photovoltaic. In this paper, a novel type of atmospheric...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 226
SubjectTerms Atmospheric plate thermosyphon
Cooling
Cooling systems
Energy consumption
Ethanol
Evaporators
Flux density
Heat
Heat flux
Heat pipes
Heat transfer
Heat transfer performance
Inlet temperature
Non-condensable gas
Parasitic energy
Photovoltaic cells
Photovoltaics
Porous media
Solar cells
Temperature effects
Temperature gradients
Thermal resistance
Thermosyphons
Title Experimental study on cooling performance of solar cells with atmospheric plate thermosyphon
URI https://dx.doi.org/10.1016/j.enconman.2018.10.039
https://www.proquest.com/docview/2154695286
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWqssCA-BSFUnlgTePEduKMVdWqgOgClTogRY5jo1Y0iUgZWPjt-NJELQiJgTEnO4ruLu_O1t07hG40M9KinHKkDkOHUZE4CRXciQLgeyJGGQ_6nR-mwWTG7uZ83kLDphcGyipr7N9geoXWtcSttekWi4X7CMwuIiLMOqUHrHPQwW7Dn_Xp_ue2zIPyar4mLHZg9U6X8LIPXJHZSgIPqif6UOUFQ8N_D1A_oLqKP-MjdFgnjniw-bZj1NLZCTrYoRM8Rc-jHbp-XBHH4jzDKofBPC-42PYI4NzgEg61GC7uSwy3sViuV3kJLAMLhYtXm4NiSA6t7APq18_QbDx6Gk6cenqCoygja4eFStrDr-apn0oiqeSaSZ4KygKuKaUk0RZhODVh5Pm-0Joaw31iIkms2bRHz1E7yzN9gbCvhE5tZqVNypnPjFCMJlwlJJGe4irqILdRWVxsSDLipnpsGTdKjkHJILdK7qCo0Wz8zdyxRfI_93YbU8T1D1fGNnOxB33ui-DyH6--QvvwBOUqHu-i9vrtXV_bpGOd9Cqv6qG9we39ZPoF2R7ZXw
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELVKGYAB8SkKBTywpk1iO3FGVLUq0HahlTogWY5jo1Y0qWgYWPjt-NJEFITEwHqxo-jsPL-z7t4hdKOpkRbllCN1GDqU8NiJCWdOFIDek2uU8aDeeTgK-hN6P2XTGupUtTCQVlli_xrTC7QuLe3Sm-3lbNZ-BGUXHrnUbkoPVOe20DYFfmw3devjK8-DsKLBJox2YPhGmfC8BWKR6UKCEKrHW5DmBV3Dfz-hfmB1cQD1DtB-yRzx7frjDlFNp0dob0NP8Bg9dTf0-nGhHIuzFKsMOvM84-VXkQDODF5BVIvh5n6F4ToWy3yRrUBmYKbw8sWSUAzs0NreIYH9BE163XGn75TtExxFqJs7NFTSRr-aJX4iXUkk01SyhBMaME0IcWNtIYYRE0ae73OtiTHMd00kXbtu2iOnqJ5mqT5D2FdcJ5ZaaZMw6lPDFSUxU7EbS08xFTVQu3KZWK5VMkSVPjYXlZMFOBns1skNFFWeFd_WW1go_3Nus1oKUf5xK2Gpi430mc-D83-8-hrt9MfDgRjcjR4u0C48gdwVjzVRPX9905eWgeTxVbHDPgELL9r4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+on+cooling+performance+of+solar+cells+with+atmospheric+plate+thermosyphon&rft.jtitle=Energy+conversion+and+management&rft.au=Wang%2C+Yiping&rft.au=Hu%2C+Guohao&rft.au=Cui%2C+Yong&rft.au=Huang%2C+Qunwu&rft.date=2018-12-15&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=178&rft.spage=226&rft.epage=234&rft_id=info:doi/10.1016%2Fj.enconman.2018.10.039&rft.externalDocID=S0196890418311403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon