Vegetable oil based polyurethane coatings – A sustainable approach: A review

[Display omitted] •The utilization of vegetable oil for polyurethane synthesis has been researched and documented in the past decade.•Derivatives of vegetable oil are also known to be an excellent feedstock for polyurethane coatings.•Challenges continue to remain in terms of properties, performance...

Full description

Saved in:
Bibliographic Details
Published inProgress in organic coatings Vol. 156; p. 106267
Main Authors Paraskar, Pavan M., Prabhudesai, Mayur S., Hatkar, Vinod M., Kulkarni, Ravindra D.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.07.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0300-9440
1873-331X
DOI10.1016/j.porgcoat.2021.106267

Cover

Loading…
Abstract [Display omitted] •The utilization of vegetable oil for polyurethane synthesis has been researched and documented in the past decade.•Derivatives of vegetable oil are also known to be an excellent feedstock for polyurethane coatings.•Challenges continue to remain in terms of properties, performance and reaction conditions of polyurethane.•The review focuses on various synthesis routes that transform triglycerides and derivatives into polyurethane precursors.•Different types of polyurethane coatings have also been studied in this review. The scientific community has been pooling all its resources, for the past decade, towards the development of “sustainable development” to usher into an eternally green and sustainable tomorrow. As part of this endeavor, the conventional petroleum-based polyurethane (PU) coatings have been replaced by their green counterparts, i.e., bio-based polyurethane coatings. These green alternatives provide a suitable replacement for the coating industry due to their easy availability, biodegradability, low cost, and lesser environmental impact. The production of such green PU coatings is further facilitated by the utilization of bio-based materials, including vegetable oils and their derivatives such as methyl ester, fatty acid, and other bio-renewable sources. This review discusses the different chemical modifications used to convert these bio-based precursors into desired polyols and isocyanates. Furthermore, the formulation of different PU coatings and their subsequent potential applications are also elaborated on in this review. The coatings sector has already been introduced to the notion of eco-friendly technologies such as UV-curable, less or zero solvent, waterborne, hyperbranched, and high solids coatings, complemented by the incorporation of renewable feedstock in monomer synthesis. The review examines the future hurdles that hinder the utilization of these materials in a wide range of applications and presents technologies that facilitate potential solutions and mention key players in the coating sectors that are at the forefront of bringing these revolutionary changes.
AbstractList [Display omitted] •The utilization of vegetable oil for polyurethane synthesis has been researched and documented in the past decade.•Derivatives of vegetable oil are also known to be an excellent feedstock for polyurethane coatings.•Challenges continue to remain in terms of properties, performance and reaction conditions of polyurethane.•The review focuses on various synthesis routes that transform triglycerides and derivatives into polyurethane precursors.•Different types of polyurethane coatings have also been studied in this review. The scientific community has been pooling all its resources, for the past decade, towards the development of “sustainable development” to usher into an eternally green and sustainable tomorrow. As part of this endeavor, the conventional petroleum-based polyurethane (PU) coatings have been replaced by their green counterparts, i.e., bio-based polyurethane coatings. These green alternatives provide a suitable replacement for the coating industry due to their easy availability, biodegradability, low cost, and lesser environmental impact. The production of such green PU coatings is further facilitated by the utilization of bio-based materials, including vegetable oils and their derivatives such as methyl ester, fatty acid, and other bio-renewable sources. This review discusses the different chemical modifications used to convert these bio-based precursors into desired polyols and isocyanates. Furthermore, the formulation of different PU coatings and their subsequent potential applications are also elaborated on in this review. The coatings sector has already been introduced to the notion of eco-friendly technologies such as UV-curable, less or zero solvent, waterborne, hyperbranched, and high solids coatings, complemented by the incorporation of renewable feedstock in monomer synthesis. The review examines the future hurdles that hinder the utilization of these materials in a wide range of applications and presents technologies that facilitate potential solutions and mention key players in the coating sectors that are at the forefront of bringing these revolutionary changes.
The scientific community has been pooling all its resources, for the past decade, towards the development of "sustainable development" to usher into an eternally green and sustainable tomorrow. As part of this endeavor, the conventional petroleum-based polyurethane (PU) coatings have been replaced by their green counterparts, i.e., bio-based polyurethane coatings. These green alternatives provide a suitable replacement for the coating industry due to their easy availability, biodegradability, low cost, and lesser environmental impact. The production of such green PU coatings is further facilitated by the utilization of bio-based materials, including vegetable oils and their derivatives such as methyl ester, fatty acid, and other bio-renewable sources. This review discusses the different chemical modifications used to convert these bio-based precursors into desired polyols and isocyanates. Furthermore, the formulation of different PU coatings and their subsequent potential applications are also elaborated on in this review. The coatings sector has already been introduced to the notion of eco-friendly technologies such as UV-curable, less or zero solvent, waterborne, hyperbranched, and high solids coatings, complemented by the incorporation of renewable feedstock in monomer synthesis. The review examines the future hurdles that hinder the utilization of these materials in a wide range of applications and presents technologies that facilitate potential solutions and mention key players in the coating sectors that are at the forefront of bringing these revolutionary changes.
ArticleNumber 106267
Author Paraskar, Pavan M.
Prabhudesai, Mayur S.
Hatkar, Vinod M.
Kulkarni, Ravindra D.
Author_xml – sequence: 1
  givenname: Pavan M.
  surname: Paraskar
  fullname: Paraskar, Pavan M.
– sequence: 2
  givenname: Mayur S.
  orcidid: 0000-0002-7556-2978
  surname: Prabhudesai
  fullname: Prabhudesai, Mayur S.
– sequence: 3
  givenname: Vinod M.
  surname: Hatkar
  fullname: Hatkar, Vinod M.
– sequence: 4
  givenname: Ravindra D.
  orcidid: 0000-0003-2185-5780
  surname: Kulkarni
  fullname: Kulkarni, Ravindra D.
  email: rd.kulkarni@ictmumbai.edu.in
BookMark eNqFkEtOwzAQhi1UJMrjCigS65TxI3GKWIAQLwnBBhA7y3GmrasQB9sFdccduCEnwaWwYcNqpNF8_8x822TQuQ4J2acwokDLw_mod35qnI4jBoymZslKuUGGtJI855w-DcgQOEA-FgK2yHYIcwAoOR8Pye0jTjHqusXM2TardcAm6127XHiMM91htgq23TRkn-8f2WkWFiFq230Tuu-902Z2lPoeXy2-7ZLNiW4D7v3UHfJwcX5_dpXf3F1en53e5IYLiDlHKUxdiKKoDWMGdaWlFOWYc9mYdFeBnDOQtNSmkFzLGqmoa4YTAaYxk4rvkIN1bjrgZYEhqrlb-C6tVKwooapAMEhTx-sp410IHifK2Ji-cV302raKgloZVHP1a1CtDKq1wYSXf_De22ftl_-DJ2sQk4KkxatgLHYGG-vRRNU4-1_EF7H0kiY
CitedBy_id crossref_primary_10_1002_bip_23568
crossref_primary_10_1007_s10965_024_04139_5
crossref_primary_10_1002_app_56079
crossref_primary_10_1007_s13726_024_01310_z
crossref_primary_10_1016_j_porgcoat_2024_108671
crossref_primary_10_1002_slct_202400885
crossref_primary_10_3390_macromol2030019
crossref_primary_10_1039_D3SU00374D
crossref_primary_10_1016_j_jclepro_2024_143153
crossref_primary_10_1016_j_dyepig_2024_112347
crossref_primary_10_1002_pc_28191
crossref_primary_10_1021_acsomega_1c06959
crossref_primary_10_1007_s00289_024_05494_5
crossref_primary_10_1016_j_scp_2022_100935
crossref_primary_10_3390_nano12223978
crossref_primary_10_1021_acspolymersau_4c00068
crossref_primary_10_3389_fbioe_2022_1104041
crossref_primary_10_3390_ijms25137300
crossref_primary_10_1016_j_jclepro_2023_136454
crossref_primary_10_3390_polym14163295
crossref_primary_10_1007_s10311_023_01592_4
crossref_primary_10_1002_app_56005
crossref_primary_10_1007_s42247_022_00362_2
crossref_primary_10_3390_coatings13010044
crossref_primary_10_1007_s00289_024_05569_3
crossref_primary_10_1007_s00107_024_02175_y
crossref_primary_10_1016_j_polymertesting_2023_108193
crossref_primary_10_1007_s11998_021_00604_8
crossref_primary_10_1080_17518253_2023_2283439
crossref_primary_10_1039_D2CS00509C
crossref_primary_10_1080_01694243_2023_2240587
crossref_primary_10_15407_polymerj_46_02_119
crossref_primary_10_1002_app_55712
crossref_primary_10_1016_j_indcrop_2024_118475
crossref_primary_10_3390_coatings15010061
crossref_primary_10_1016_j_jcat_2024_115903
crossref_primary_10_1016_j_compscitech_2022_109664
crossref_primary_10_3390_ma15062308
crossref_primary_10_1016_j_indcrop_2023_117274
crossref_primary_10_3390_su16114587
crossref_primary_10_1039_D4NJ03560G
crossref_primary_10_1016_j_porgcoat_2023_107763
crossref_primary_10_3390_polym16020214
crossref_primary_10_2139_ssrn_4008099
crossref_primary_10_1021_acssusresmgt_4c00392
crossref_primary_10_3390_nano12071143
crossref_primary_10_1021_acsomega_4c07673
crossref_primary_10_1016_j_reactfunctpolym_2022_105496
crossref_primary_10_1021_acssuschemeng_4c01381
crossref_primary_10_1021_acs_biomac_3c00805
crossref_primary_10_1039_D2GC04644J
crossref_primary_10_1016_j_molstruc_2024_139187
crossref_primary_10_1680_jgrma_24_00083
crossref_primary_10_7759_s44388_025_03297_6
crossref_primary_10_3390_polym16111613
crossref_primary_10_1002_mame_202200662
crossref_primary_10_1080_1023666X_2023_2244823
crossref_primary_10_1002_pat_6087
crossref_primary_10_1016_j_coco_2024_101961
crossref_primary_10_1016_j_gresc_2024_08_001
crossref_primary_10_3390_coatings14060678
crossref_primary_10_1002_app_54809
crossref_primary_10_3390_polym14112201
crossref_primary_10_36664_bt_2022_v69i1_172531
crossref_primary_10_1021_acs_iecr_1c04673
crossref_primary_10_3390_polym17030368
crossref_primary_10_1007_s00289_024_05293_y
crossref_primary_10_1007_s10924_025_03515_6
crossref_primary_10_1007_s40725_023_00195_0
crossref_primary_10_1002_slct_202300833
crossref_primary_10_1016_j_eurpolymj_2023_112387
crossref_primary_10_1021_acs_iecr_3c01562
crossref_primary_10_1016_j_porgcoat_2025_109167
crossref_primary_10_1177_07316844231221656
crossref_primary_10_1002_app_52990
crossref_primary_10_3390_ma17051013
crossref_primary_10_1021_acsapm_3c02869
crossref_primary_10_3390_polym16152155
crossref_primary_10_1007_s11998_024_01046_8
crossref_primary_10_1007_s10924_024_03216_6
crossref_primary_10_3390_fire8020064
crossref_primary_10_1002_admi_202101775
crossref_primary_10_3390_polym15153313
crossref_primary_10_1002_ejlt_202100171
crossref_primary_10_1021_acsaenm_3c00148
crossref_primary_10_5650_jos_ess21374
crossref_primary_10_1002_app_56715
crossref_primary_10_1007_s10924_023_02968_x
crossref_primary_10_1002_pol_20220690
crossref_primary_10_1021_acsomega_3c03422
crossref_primary_10_51582_interconf_19_20_06_2024_031
crossref_primary_10_1007_s10965_022_02964_0
crossref_primary_10_1039_D3MA00464C
crossref_primary_10_1007_s10924_023_03161_w
crossref_primary_10_1007_s10965_023_03703_9
crossref_primary_10_1039_D3RA08684D
crossref_primary_10_1002_app_53290
crossref_primary_10_56038_ejrnd_v4i4_571
crossref_primary_10_3390_molecules26185455
crossref_primary_10_1002_cssc_202402451
crossref_primary_10_1021_acspolymersau_5c00001
crossref_primary_10_1016_j_cej_2023_142060
crossref_primary_10_3390_pr12030558
crossref_primary_10_35812_CelluloseChemTechnol_2022_56_29
crossref_primary_10_1007_s13726_022_01066_4
crossref_primary_10_20935_AcadMatSci7571
crossref_primary_10_1007_s10965_025_04288_1
crossref_primary_10_1039_D4PY00851K
crossref_primary_10_3390_appliedchem3010011
crossref_primary_10_1007_s10924_023_02836_8
crossref_primary_10_1039_D3GC04294D
crossref_primary_10_3390_polym15234588
crossref_primary_10_1007_s10965_022_03343_5
crossref_primary_10_4028_p_49uIMX
crossref_primary_10_1002_app_53623
crossref_primary_10_2174_2666145417666230721120925
crossref_primary_10_1002_pi_6468
crossref_primary_10_1007_s10965_023_03534_8
crossref_primary_10_1177_20412479221109909
crossref_primary_10_3390_app13148258
crossref_primary_10_1002_marc_202400408
crossref_primary_10_1007_s10965_022_02922_w
crossref_primary_10_3390_coatings14091183
crossref_primary_10_3389_fpls_2024_1488332
crossref_primary_10_1002_app_55654
Cites_doi 10.1016/j.indcrop.2013.10.002
10.1016/j.eurpolymj.2016.03.003
10.1080/10601325.2018.1526638
10.1016/j.indcrop.2018.02.053
10.1002/ejlt.201900387
10.1016/j.ejpe.2011.06.009
10.1002/app.29898
10.1002/app.49050
10.1680/gmat.12.00001
10.1016/j.ejpe.2016.02.002
10.1016/j.porgcoat.2004.02.007
10.1016/j.porgcoat.2014.01.024
10.1016/j.porgcoat.2016.05.012
10.1002/app.29302
10.1108/PRT-07-2016-0071
10.4028/www.scientific.net/KEM.336-338.2218
10.1021/acssuschemeng.7b00327
10.1021/jf050731o
10.1155/2015/529235
10.1016/j.porgcoat.2012.12.005
10.1007/s11746-015-2592-9
10.1016/j.jclepro.2018.01.193
10.1016/j.porgcoat.2020.105588
10.1016/j.porgcoat.2013.08.002
10.1016/j.progpolymsci.2006.05.003
10.1016/j.eurpolymj.2018.03.030
10.1007/s10924-012-0560-0
10.1016/j.indcrop.2013.08.018
10.1021/acsami.0c10620
10.1002/pat.3522
10.1021/bm801411w
10.1016/j.indcrop.2015.08.054
10.1016/j.porgcoat.2017.07.002
10.1007/s11746-004-0930-7
10.1080/10643389.2018.1537741
10.1002/cssc.201000378
10.1007/s11746-010-1694-7
10.1016/j.eurpolymj.2008.05.037
10.1007/s10856-008-3572-5
10.1016/j.porgcoat.2012.12.011
10.1051/ocl/2016031
10.1016/j.porgcoat.2020.105942
10.1007/s11746-006-1021-5
10.1021/acssuschemeng.8b02423
10.1016/j.tsf.2006.02.032
10.1039/C4PY00339J
10.1016/j.porgcoat.2014.12.004
10.4028/www.scientific.net/MSF.894.109
10.1021/acssuschemeng.9b04713
10.1016/j.porgcoat.2015.05.030
10.2298/CICEQ150702014J
10.1016/j.indcrop.2012.11.028
10.1002/ejlt.200900087
10.1002/macp.201200582
10.1155/2018/6107656
10.1016/j.porgcoat.2015.05.014
10.1016/j.indcrop.2018.05.079
10.1108/PRT-02-2012-0017
10.1007/s10853-014-8244-x
10.1021/acssuschemeng.6b01756
10.1039/C7MH00488E
10.1016/j.porgcoat.2018.04.020
10.1021/acssuschemeng.5b00029
10.1016/j.cclet.2011.05.043
10.1088/1757-899X/536/1/012037
10.1021/acssuschemeng.8b03474
10.1007/s11998-018-0128-6
10.1021/acssuschemeng.9b01873
10.1016/j.indcrop.2019.111585
10.1016/j.indcrop.2018.06.006
10.1007/s11998-008-9154-0
10.1016/j.porgcoat.2006.01.007
10.1016/j.porgcoat.2015.08.015
10.1016/j.porgcoat.2019.04.030
10.1002/pola.24114
10.1016/j.eurpolymj.2014.10.012
10.1016/j.porgcoat.2020.105946
10.1002/ejlt.201500196
10.1007/s10853-013-7633-x
10.1016/j.porgcoat.2012.10.007
10.1016/j.porgcoat.2019.01.061
10.1007/s11998-008-9110-z
10.1002/app.38215
10.1007/s11746-015-2642-3
10.1007/s11746-005-1124-z
10.1016/j.colsurfa.2017.02.061
10.1007/s11998-018-0120-1
10.1016/j.jclepro.2018.11.047
10.1016/j.jnoncrysol.2011.08.024
10.1016/j.porgcoat.2019.03.042
10.1016/j.indcrop.2017.10.015
10.1016/j.porgcoat.2018.02.006
10.1080/15583724.2011.640443
10.1021/bm801030g
10.1002/slct.201801452
10.1021/acs.iecr.8b05936
10.1016/j.indcrop.2013.06.006
10.3390/polym10111235
10.1016/j.polymer.2014.01.014
10.1016/j.ijbiomac.2014.03.021
10.1016/j.porgcoat.2019.02.014
10.1080/03602559.2016.1275681
10.1016/j.eurpolymj.2016.07.007
10.1039/C8GC02267D
10.1016/j.eurpolymj.2017.06.003
10.1002/app.27783
10.1016/j.porgcoat.2005.01.003
10.1021/acssuschemeng.7b03309
10.1039/C5RA20356B
10.1016/j.porgcoat.2012.06.001
10.1002/clen.200800066
10.1080/1539445X.2018.1474117
10.1023/A:1021022123733
10.1002/pi.5627
10.3390/polym11061026
10.1016/j.porgcoat.2013.07.020
10.1007/s12034-015-0995-8
10.3390/polym12051165
10.1002/app.1414
10.1016/j.reactfunctpolym.2020.104734
10.1002/pen.20601
10.1007/s10924-011-0328-y
10.1021/bm049451s
10.1007/s11998-006-0018-1
10.1016/j.indcrop.2015.06.022
10.1016/j.eurpolymj.2012.12.013
10.1002/app.36232
10.1007/s11998-017-9948-z
10.1039/C8GC03560A
10.1016/j.porgcoat.2020.105880
10.1021/acs.macromol.5b02467
10.1080/10601320802637375
10.1007/s11998-011-9338-x
10.1007/s11746-998-0094-8
10.1016/S0300-9440(96)00671-6
10.1039/c2gc16230j
10.1016/j.porgcoat.2014.04.030
10.1021/acsomega.9b01174
10.1021/acs.chemrev.5b00355
10.1007/s10924-012-0467-9
10.1039/C4RA00587B
10.1016/j.porgcoat.2006.01.005
10.1007/s11998-018-0118-8
10.1021/ie501804p
10.1007/s42452-020-2527-4
10.1021/acs.macromol.6b01485
10.1007/s00289-017-1965-7
10.1002/app.20049
10.1002/pi.2340
10.1007/s10853-006-0310-6
10.1016/j.eurpolymj.2009.02.007
10.1016/j.indcrop.2016.04.027
10.1016/j.porgcoat.2012.09.001
10.3390/coatings5030527
10.1016/j.porgcoat.2016.04.014
10.1039/C4RA07519F
10.1016/j.porgcoat.2009.07.005
10.1016/S0960-8524(02)00203-1
10.1155/2015/745217
10.3390/molecules24234332
10.1002/jctb.5149
10.1007/BF02699641
10.1080/15583720701834224
10.1021/ie401237s
10.1039/C3BM60170F
10.1016/j.porgcoat.2018.11.020
10.1177/0731684408096949
10.1039/D0NJ00322K
10.1007/s10965-020-02170-w
10.1002/app.46722
10.1016/j.porgcoat.2013.03.019
10.1016/j.porgcoat.2016.11.024
10.1515/gps-2016-0144
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Jul 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Jul 2021
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.porgcoat.2021.106267
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-331X
ExternalDocumentID 10_1016_j_porgcoat_2021_106267
S0300944021001387
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M24
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SSZ
T5K
UHS
WH7
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c340t-3e74cb5455bc22cea8a77469337dc3395e3320716ac573a7be14bb2ef40cdcf83
IEDL.DBID .~1
ISSN 0300-9440
IngestDate Fri Jul 25 03:19:11 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
Tue Jul 01 02:27:53 EDT 2025
Fri Feb 23 02:41:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Vegetable oil
Environment friendly
Polyurethane coating
Bio-based materials
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-3e74cb5455bc22cea8a77469337dc3395e3320716ac573a7be14bb2ef40cdcf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2185-5780
0000-0002-7556-2978
PQID 2560880420
PQPubID 2045410
ParticipantIDs proquest_journals_2560880420
crossref_citationtrail_10_1016_j_porgcoat_2021_106267
crossref_primary_10_1016_j_porgcoat_2021_106267
elsevier_sciencedirect_doi_10_1016_j_porgcoat_2021_106267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Progress in organic coatings
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Alam, Alandis (bib0120) 2011; 19
Narine, Yue, Kong (bib0515) 2007; 84
Wu, Cai, Chen, Qu (bib0900) 2018; 119
Panda, Panda, Mohanty, Nayak (bib0295) 2017; 6
Kashif, Ahmad (bib0850) 2014; 4
Madhi, Shirkavand Hadavand (bib0830) 2020; 2
Wei, Liao, Yong, Wang, Li, Huang, Pang (bib0615) 2019; 16
Marathe, Tatiya, Chaudhari, Lee, Mahulikar, Sohn, Gite (bib0095) 2015; 77
Lligadas (bib0010) 2013; 214
Patil, Rajput, Marathe, Kulkarni, Phadnis, Sohn, Mahulikar, Gite (bib0020) 2017; 106
Alagi, Choi, Hong (bib0025) 2016; 78
Su, Zhang, Zhou, Yang, Yuan (bib0745) 2020; 148
Yunus, Fakhru’I-Razi, Ooi, Biak, Iyuke (bib0370) 2004; 81
Zafar, Ghosal, Sharmin, Chaturvedi, Nishat (bib0775) 2019; 131
Chen, Zhang, Kessler (bib0645) 2014; 4
Yin, Zeng, Li, Hou, Gao (bib0690) 2011; 8
Liu, Zheng, Guo, Luo, Yuan, Liu (bib0670) 2014; 53
Li, Zhou, Gu, Wu (bib0805) 2006; 46
Cheng, Li, Yan, Liao, Zhang, Yu, Yi, Xu (bib0050) 2019; 127
Desroches, Escouvois, Auvergne, Caillol, Boutevin (bib0070) 2012; 52
Gaikwad, Gite, Mahulikar, Hundiwale, Yemul (bib0100) 2015; 86
Das, Konwar, Mandal, Karak (bib0400) 2013; 44
Bhosale, Shaik, Mandal (bib0275) 2015; 5
Błażek, Datta (bib0860) 2019; 49
Liu, Lu, Zhang, Liang, Liang, Jiang, Lu, Quirino, Zhang (bib0230) 2019; 21
Petrović, Guo, Javni, Cvetković, Hong (bib0490) 2008; 57
Bähr, Mülhaupt (bib0885) 2012; 14
Gite, Kulkarni, Hundiwale, Kapadi (bib0155) 2006; 89
Can, Küsefoğlu, Wool (bib0390) 2001; 81
Alam, Alandis (bib0475) 2012; 75
Hu, Shang, Bo, Jia, Feng, Zhang, Liu, Zhou (bib0730) 2019; 4
Gómez-Jiménez-Aberasturi, Ochoa-Gómez (bib0055) 2017; 92
Ghosh, Karak (bib0630) 2020; 44
Chaudhari, Tatiya, Hedaoo, Kulkarni, Gite (bib0445) 2013; 52
Mahapatra, Karak (bib0595) 2009; 46
Gultekin, Atalay-Oral, Erkal, Sahin, Karastova, Tantekin-Ersolmaz, Guner (bib0035) 2009; 20
Rajput, Hundiwale, Mahulikar, Gite (bib0435) 2014; 77
Gaddam, Kutcherlapati, Palanisamy (bib0115) 2017; 5
Sung, Comer, Forster, Hu, Floryancic, Brickweg, Fernando (bib0795) 2008; 5
Zhang, Tang, Zhang (bib0345) 2015; 2015
Nam, Seo, Seo, Khan, Han (bib0760) 2015; 85
Gurunathan, Chung (bib0820) 2017; 522
Nguyen-Tri, Tran, Plamondon, Tuduri, Vo, Nanda, Mishra, Chao, Bajpai (bib0770) 2019; 132
Yeh, Yao, Hsieh, Lin, Chen, Wu, Yang, Wu (bib0815) 2008; 44
Biswas, Adhvaryu, Gordon, Erhan, Willett (bib0305) 2005; 53
Thakur, Karak (bib0395) 2013; 76
Panda, Panda, Nayak, Mohanty (bib0150) 2018; 57
Paraskar, Prabhudesai, Deshpande, Kulkarni (bib0300) 2020; 27
Shaik, Baidya, Nehete, Shyamroy (bib0285) 2019; 16
Li, Wang, Zhao, Hou, Liu, Feng, Li, Zheng, Zhao, Wei (bib0355) 2021; 151
Palanisamy, Karuna, Satyavani, Kumar (bib0135) 2011; 88
Rodrigues, Murawski, Beckler, Lopes, Paterno, Quirino, Sales (bib0180) 2017
Li, Bouzidi, Narine (bib0205) 2017; 93
de Haro, Allegretti, Smit, Turri, D’Arrigo, Griffini (bib0005) 2019; 7
Yu, Jiang, Li, Ma, Wei, Ruan, Kong, Han (bib0320) 2015; 6
Liang, Lu, Liu, Ou, Wang, Quirino, Luo, Zhang (bib0170) 2020
Saetung, Somjit, Thongkapsri, Tulyapitak (bib0130) 2016; 23
Poussard, Mariage, Grignard, Detrembleur, Jérôme, Calberg, Heinrichs, De Winter, Gerbaux, Raquez, Bonnaud, Dubois (bib0895) 2016; 49
Guo, Zhang, Petrovic (bib0500) 2006; 41
Stirna, Fridrihsone, Lazdiņa, Misāne, Vilsone (bib0110) 2013; 21
Caillol, Desroches, Carlotti, Auvergne, Boutevin (bib0210) 2013; 1
Pfister, Xia, Larock (bib0125) 2011; 4
Campanella, Bonnaillie, Wool (bib0385) 2009; 112
Huang, Pang, Wang, Zhong, Zeng, Yang (bib0715) 2013; 76
Chattopadhyay, Raju (bib0600) 2007; 32
Xu, Pang, Shi (bib0675) 2006; 514
Mishra, Desai, Patel (bib0160) 2018; 111
Petrović, Cvetković, Hong, Wan, Zhang, Abraham, Malsam (bib0375) 2008; 108
Fu, Wang, Yu, Haroon, Haq, Shi, Wu, Wang (bib0695) 2019; 131
Chaudhari, Kulkarni, Mahulikar, Sohn, Gite (bib0415) 2015; 92
Liang, Wang, He, Wang, Liu, Lu, Zhang, Zhang (bib0660) 2018; 122
Peyrton, Chambaretaud, Avérous (bib0310) 2019; 24
Gite, Chaudhari, Kulkarni, Hundiwale (bib0410) 2013; 42
Madhi, Shirkavand, Amoozadeh (bib0840) 2018; 12
Black, Rawlins (bib0540) 2009; 45
Maisonneuve, Chollet, Grau, Cramail (bib0185) 2016; 23
Das, Mandal, Katiyar (bib0920) 2020; 137
Wang, Jang, Chen (bib0790) 2007; 336–338
Sardari, Sabbagh Alvani, Ghaffarian (bib0280) 2019; 133
Su, Lin, Zhang, Yang, Yuan (bib0700) 2020; 12
Kovács, Turczel, Szabó, Varga, Tóth, Anastas, Tuba (bib0045) 2017; 5
Raychura, Jauhari, Dholakiya (bib0460) 2018; 16
Petrović, Cvetković, Milić, Hong, Javni (bib0505) 2012; 125
Kunwong, Sumanochitraporn, Kaewpirom (bib0735) 2011; 33
Hibert, Lamarzelle, Maisonneuve, Grau, Cramail (bib0905) 2016; 82
Petrović, Cvetković, Hong, Wan, Zhang, Abraham, Malsam (bib0495) 2010; 112
Petrović, Zhang, Javni (bib0200) 2005; 6
Zaimahwati, Jalal, Rihayat, Zhafiri (bib0290) 2019; 536
Siyanbola, Sasidhar, Anjaneyulu, Kumar, Rao, Narayan, Olaofe, Akintayo, Raju (bib0455) 2013; 48
Javni, Hong, Petrović (bib0890) 2013; 128
Ionescu, Wan, Bilić, Petrović (bib0335) 2012; 20
Argyropoulos, Popa, Spilman, Bhattacharjee, Koonce (bib0510) 2009; 6
Maisonneuve, Lamarzelle, Rix, Grau, Cramail (bib0855) 2015; 115
Quirino, Silva, Payne, Lopes (bib0175) 2015; 5
Resetco, Hendriks, Badi, Du Prez (bib0535) 2017; 4
Chang, Chang, Lu (bib0405) 2018; 10
Prabhudesai, Paraskar, Kedar, Kulkarni (bib0080) 2020; 122
Ling, Ahmed Mohammed, Ghazali, Khairuddean (bib0420) 2014; 52
Lu, Larock (bib0635) 2008; 9
Zhang, Zhang, Wang, Dong, Zeng, Quirino, Lu, Wang, Zhang (bib0145) 2020; 142
More, Mhaske (bib0450) 2018; 47
Doley, Dolui (bib0875) 2018; 102
Charlon, Heinrich, Matter, Couzigné, Donnio, Avérous (bib0225) 2014; 61
Raychura, Dholakiya, Patel, Jauhari (bib0440) 2018; 3
Azemati, Khorasanizadeh, Shirkavand Hadavand, Sheikhzadeh (bib0835) 2017; 894
Hojabri, Kong, Narine (bib0555) 2010; 48
Tennebroek, van der Hoeven‐van Casteren, Swaans, van der Slot, Stals, Tuijtelaars, Koning (bib0650) 2019; 68
Silbert, Serum, LaScala, Sibi, Webster (bib0915) 2019; 7
Wang, Chen, Cui, Tian, He, Yang (bib0265) 2017; 5
Alagi, Choi, Seog, Hong (bib0625) 2016; 87
Rokicki, Parzuchowski, Mazurek (bib0220) 2015; 26
Shaik, Alam, Alandis (bib0240) 2015; 2015
Rajput, Mahulikar, Gite (bib0430) 2014; 77
Wang, Deng, Fan (bib0065) 2018; 2018
Li, Luo, Hu (bib0215) 2015
Mekewi, Ramadan, ElDarse, Abdel Rehim, Mosa, Ibrahim (bib0330) 2017; 26
Fu, Zheng, Yang, Chen, Shen (bib0550) 2014; 77
Schmidt, Ritter, Kratzert, Bruchmann, Mülhaupt (bib0870) 2016; 49
Yang, Liu, Han (bib0800) 2005; 53
Wunschik, Ingenbosch, Zähres, Horst, Mayer, Jäger, Strehmel, Dornbusch, Hoffmann-Jacobsen (bib0930) 2018; 20
Khanderay, Gite (bib0015) 2017
Chandra, Karak (bib0665) 2018; 6
Ismail, Motawie, Sadek (bib0425) 2011; 20
Pramanik, Konwarh, Sagar, Konwar, Karak (bib0620) 2013; 76
Liang, Feng, Lu, Liu, Yang, Luo, Zhang, Zhang (bib0030) 2018; 122
Hussain, Bonnia, Ismail, Ramli, Surip (bib0350) 2020
Dai, Liu, Ma, Wang, Shen, You, Zhu (bib0085) 2016; 97
Kulkarni, Deshpande, Mahajan, Mahulikar (bib0140) 2013; 49
Pathak, Kathalewar, Wazarkar, Sabnis (bib0910) 2015; 89
Vanbésien, Monflier, Hapiot (bib0190) 2016; 118
Liang, Zhao, Li, Huang, Yang, Yuan (bib0740) 2019; 138
Garrison, Kessler, Larock (bib0255) 2014; 55
Paraskar, Hatkar, Kulkarni (bib0685) 2020; 149
More, Lebarbé, Maisonneuve, Gadenne, Alfos, Cramail (bib0565) 2013; 49
Christopher, Kulandainathan, Harichandran (bib0780) 2016; 99
He, Xu, Wan, Bo, Yan (bib0925) 2019; 11
Hojabri, Kong, Narine (bib0560) 2009; 10
Paraskar, Kulkarni (bib0040) 2020
Akram, Sharmin, Ahmad (bib0765) 2014; 77
Hu, Feng, Shang, Bo, Jia, Liu, Xu, Zhou (bib0705) 2019; 16
Bhabhe, Athawale (bib0575) 1997; 30
Petrovic (bib0340) 2008; 48
Lokhande, Chambhare, Jagtap (bib0640) 2017; 74
Baştürk, İnan, Güngör (bib0325) 2013; 76
Chuayjuljit, Maungchareon, Saravari (bib0360) 2010; 29
Pramanik, Konwarh, Barua, Buragohain, Karak (bib0755) 2014; 2
Jankovic, Sinadinovic-Fiser, Govedarica, Pavlicevic, Budinski-Simendic (bib0315) 2017; 23
Wang, Zhou (bib0545) 2018; 6
Paraskar, Prabhudesai, Kulkarni (bib0165) 2020; 156
Jia, Gong, Ji, Kan (bib0195) 2011; 22
Alam, Alandis, Zafar, Sharmin, Al-Mohammadi (bib0845) 2018; 55
Kong, Liu, Qi, Curtis (bib0580) 2013; 76
Patil, Jirimali, Jagtap (bib0825) 2020
Zhang, Liu, Huang, Wang, Quirino, Zhang, Zhang (bib0245) 2020; 12
Deka, Karak (bib0605) 2009; 66
Benecke, Vijayendran, Garbark, Mitchell (bib0525) 2008; 36
Alam, Sharmin, Ashraf, Ahmad (bib0480) 2004; 50
Gryglewicz, Piechocki, Gryglewicz (bib0380) 2003; 87
Chaudhari, Gite, Rajput, Mahulikar, Kulkarni (bib0470) 2013; 50
Uosukainen, Linko, Lämsä, Tervakangas, Linko (bib0365) 1998; 75
Tran, Graiver, Narayan (bib0520) 2005; 82
Zhang, Wang, Zeng, Zhou (bib0570) 2019; 58
Huang, Weng, Lin, Yu, Yeh (bib0810) 2009; 112
Dai, Ma, Wu, Zhu, Liu (bib0235) 2015; 87
Ibrahim, Ahmad, Mohamed (bib0105) 2015; 38
Bakhshi, Yeganeh, Yari, Nezhad (bib0270) 2014; 49
Lowe (bib0530) 2014; 5
Guo, Demydov, Zhang, Petrovic (bib0485) 2002; 10
Li, Xiao, Wang, Zhao (bib0720) 2018; 180
Somani, Kansara, Parmar, Patel (bib0585) 2004; 53
Gogoi, Gogoi, Karak (bib0655) 2017; 112
Chang, Oyang, Hwang, Chen, Cheng (bib0680) 2012; 358
Sharmin, Zafar, Akram, Alam, Ahmad (bib0075) 2015; 76
Liang, Zhang, Zhang, Liu, Liang, Quirino, Chen, Liu, Lu, Zhang (bib0260) 2018; 210
Raychura, Jauhari, Patel, Dholakiya (bib0465) 2018; 135
Hu, Shang, Tang, Wang, Zhang, Jia, Feng, Wu, Liu, Hu, Lei, Zhou (bib0750) 2018; 117
Yu, Wang, Shi, Jiang, Zhao, Dong (bib0785) 2006; 55
Arniza, Hoong, Idris, Yeong, Hassan, Din, Choo (bib0090) 2015; 92
Johns, Gibbons, Smith, Edwards, Quirino (bib0865) 2016
Hu, Liu, Shang, Zhou (bib0250) 2018; 15
Zuber, Shah, Jamil, Asghar (bib0060) 2014; 67
Liu, Zhang, Zhu, Liu, Wang, Yan (bib0725) 2015; 3
Tamami, Sohn, Wilkes (bib0880) 2004; 92
Bat, Gündüz, Kısakürek, Akhmedov (bib0610) 2006; 55
Mannari, Massingill (bib0590) 2006; 3
Liu, Wang, Hu, Zhang, Shang, Lei, Zhou, Cai (bib0710) 2018; 121
Panda (10.1016/j.porgcoat.2021.106267_bib0150) 2018; 57
Guo (10.1016/j.porgcoat.2021.106267_bib0500) 2006; 41
Benecke (10.1016/j.porgcoat.2021.106267_bib0525) 2008; 36
Kashif (10.1016/j.porgcoat.2021.106267_bib0850) 2014; 4
Li (10.1016/j.porgcoat.2021.106267_bib0215) 2015
Bat (10.1016/j.porgcoat.2021.106267_bib0610) 2006; 55
Hu (10.1016/j.porgcoat.2021.106267_bib0250) 2018; 15
Nam (10.1016/j.porgcoat.2021.106267_bib0760) 2015; 85
Madhi (10.1016/j.porgcoat.2021.106267_bib0840) 2018; 12
Charlon (10.1016/j.porgcoat.2021.106267_bib0225) 2014; 61
Wang (10.1016/j.porgcoat.2021.106267_bib0065) 2018; 2018
Hu (10.1016/j.porgcoat.2021.106267_bib0730) 2019; 4
Liang (10.1016/j.porgcoat.2021.106267_bib0260) 2018; 210
Błażek (10.1016/j.porgcoat.2021.106267_bib0860) 2019; 49
Yin (10.1016/j.porgcoat.2021.106267_bib0690) 2011; 8
Baştürk (10.1016/j.porgcoat.2021.106267_bib0325) 2013; 76
Hu (10.1016/j.porgcoat.2021.106267_bib0750) 2018; 117
Yeh (10.1016/j.porgcoat.2021.106267_bib0815) 2008; 44
Wang (10.1016/j.porgcoat.2021.106267_bib0265) 2017; 5
Rajput (10.1016/j.porgcoat.2021.106267_bib0430) 2014; 77
Campanella (10.1016/j.porgcoat.2021.106267_bib0385) 2009; 112
Ibrahim (10.1016/j.porgcoat.2021.106267_bib0105) 2015; 38
Doley (10.1016/j.porgcoat.2021.106267_bib0875) 2018; 102
Li (10.1016/j.porgcoat.2021.106267_bib0205) 2017; 93
Wunschik (10.1016/j.porgcoat.2021.106267_bib0930) 2018; 20
Narine (10.1016/j.porgcoat.2021.106267_bib0515) 2007; 84
Cheng (10.1016/j.porgcoat.2021.106267_bib0050) 2019; 127
Tennebroek (10.1016/j.porgcoat.2021.106267_bib0650) 2019; 68
Mishra (10.1016/j.porgcoat.2021.106267_bib0160) 2018; 111
Deka (10.1016/j.porgcoat.2021.106267_bib0605) 2009; 66
Fu (10.1016/j.porgcoat.2021.106267_bib0695) 2019; 131
Petrović (10.1016/j.porgcoat.2021.106267_bib0505) 2012; 125
Alagi (10.1016/j.porgcoat.2021.106267_bib0025) 2016; 78
Gómez-Jiménez-Aberasturi (10.1016/j.porgcoat.2021.106267_bib0055) 2017; 92
Zaimahwati (10.1016/j.porgcoat.2021.106267_bib0290) 2019; 536
Zafar (10.1016/j.porgcoat.2021.106267_bib0775) 2019; 131
Prabhudesai (10.1016/j.porgcoat.2021.106267_bib0080) 2020; 122
Biswas (10.1016/j.porgcoat.2021.106267_bib0305) 2005; 53
Ionescu (10.1016/j.porgcoat.2021.106267_bib0335) 2012; 20
Petrovic (10.1016/j.porgcoat.2021.106267_bib0340) 2008; 48
Petrović (10.1016/j.porgcoat.2021.106267_bib0200) 2005; 6
Poussard (10.1016/j.porgcoat.2021.106267_bib0895) 2016; 49
Resetco (10.1016/j.porgcoat.2021.106267_bib0535) 2017; 4
Liang (10.1016/j.porgcoat.2021.106267_bib0740) 2019; 138
Shaik (10.1016/j.porgcoat.2021.106267_bib0285) 2019; 16
Arniza (10.1016/j.porgcoat.2021.106267_bib0090) 2015; 92
Azemati (10.1016/j.porgcoat.2021.106267_bib0835) 2017; 894
Garrison (10.1016/j.porgcoat.2021.106267_bib0255) 2014; 55
Liu (10.1016/j.porgcoat.2021.106267_bib0710) 2018; 121
Sharmin (10.1016/j.porgcoat.2021.106267_bib0075) 2015; 76
Chang (10.1016/j.porgcoat.2021.106267_bib0405) 2018; 10
Stirna (10.1016/j.porgcoat.2021.106267_bib0110) 2013; 21
Gurunathan (10.1016/j.porgcoat.2021.106267_bib0820) 2017; 522
Patil (10.1016/j.porgcoat.2021.106267_bib0020) 2017; 106
Zhang (10.1016/j.porgcoat.2021.106267_bib0245) 2020; 12
Das (10.1016/j.porgcoat.2021.106267_bib0400) 2013; 44
Kovács (10.1016/j.porgcoat.2021.106267_bib0045) 2017; 5
Bhabhe (10.1016/j.porgcoat.2021.106267_bib0575) 1997; 30
Hojabri (10.1016/j.porgcoat.2021.106267_bib0560) 2009; 10
Dai (10.1016/j.porgcoat.2021.106267_bib0235) 2015; 87
Hibert (10.1016/j.porgcoat.2021.106267_bib0905) 2016; 82
Gaddam (10.1016/j.porgcoat.2021.106267_bib0115) 2017; 5
Mekewi (10.1016/j.porgcoat.2021.106267_bib0330) 2017; 26
Yunus (10.1016/j.porgcoat.2021.106267_bib0370) 2004; 81
Maisonneuve (10.1016/j.porgcoat.2021.106267_bib0855) 2015; 115
Christopher (10.1016/j.porgcoat.2021.106267_bib0780) 2016; 99
Rodrigues (10.1016/j.porgcoat.2021.106267_bib0180) 2017
Raychura (10.1016/j.porgcoat.2021.106267_bib0440) 2018; 3
Alam (10.1016/j.porgcoat.2021.106267_bib0475) 2012; 75
Khanderay (10.1016/j.porgcoat.2021.106267_bib0015) 2017
Vanbésien (10.1016/j.porgcoat.2021.106267_bib0190) 2016; 118
Akram (10.1016/j.porgcoat.2021.106267_bib0765) 2014; 77
Liu (10.1016/j.porgcoat.2021.106267_bib0670) 2014; 53
Liang (10.1016/j.porgcoat.2021.106267_bib0660) 2018; 122
Thakur (10.1016/j.porgcoat.2021.106267_bib0395) 2013; 76
Hojabri (10.1016/j.porgcoat.2021.106267_bib0555) 2010; 48
Wei (10.1016/j.porgcoat.2021.106267_bib0615) 2019; 16
Wu (10.1016/j.porgcoat.2021.106267_bib0900) 2018; 119
Fu (10.1016/j.porgcoat.2021.106267_bib0550) 2014; 77
de Haro (10.1016/j.porgcoat.2021.106267_bib0005) 2019; 7
Liang (10.1016/j.porgcoat.2021.106267_bib0030) 2018; 122
Gite (10.1016/j.porgcoat.2021.106267_bib0155) 2006; 89
Chaudhari (10.1016/j.porgcoat.2021.106267_bib0415) 2015; 92
Petrović (10.1016/j.porgcoat.2021.106267_bib0490) 2008; 57
Liang (10.1016/j.porgcoat.2021.106267_bib0170) 2020
Jankovic (10.1016/j.porgcoat.2021.106267_bib0315) 2017; 23
Yang (10.1016/j.porgcoat.2021.106267_bib0800) 2005; 53
Raychura (10.1016/j.porgcoat.2021.106267_bib0465) 2018; 135
Mannari (10.1016/j.porgcoat.2021.106267_bib0590) 2006; 3
Petrović (10.1016/j.porgcoat.2021.106267_bib0495) 2010; 112
Somani (10.1016/j.porgcoat.2021.106267_bib0585) 2004; 53
Ghosh (10.1016/j.porgcoat.2021.106267_bib0630) 2020; 44
Tamami (10.1016/j.porgcoat.2021.106267_bib0880) 2004; 92
Caillol (10.1016/j.porgcoat.2021.106267_bib0210) 2013; 1
More (10.1016/j.porgcoat.2021.106267_bib0450) 2018; 47
Yu (10.1016/j.porgcoat.2021.106267_bib0785) 2006; 55
Kunwong (10.1016/j.porgcoat.2021.106267_bib0735) 2011; 33
Wang (10.1016/j.porgcoat.2021.106267_bib0790) 2007; 336–338
Xu (10.1016/j.porgcoat.2021.106267_bib0675) 2006; 514
Li (10.1016/j.porgcoat.2021.106267_bib0805) 2006; 46
Pramanik (10.1016/j.porgcoat.2021.106267_bib0620) 2013; 76
Chuayjuljit (10.1016/j.porgcoat.2021.106267_bib0360) 2010; 29
Das (10.1016/j.porgcoat.2021.106267_bib0920) 2020; 137
Li (10.1016/j.porgcoat.2021.106267_bib0355) 2021; 151
Ling (10.1016/j.porgcoat.2021.106267_bib0420) 2014; 52
Lowe (10.1016/j.porgcoat.2021.106267_bib0530) 2014; 5
Kong (10.1016/j.porgcoat.2021.106267_bib0580) 2013; 76
Jia (10.1016/j.porgcoat.2021.106267_bib0195) 2011; 22
Guo (10.1016/j.porgcoat.2021.106267_bib0485) 2002; 10
Patil (10.1016/j.porgcoat.2021.106267_bib0825) 2020
Alam (10.1016/j.porgcoat.2021.106267_bib0845) 2018; 55
Gite (10.1016/j.porgcoat.2021.106267_bib0410) 2013; 42
Mahapatra (10.1016/j.porgcoat.2021.106267_bib0595) 2009; 46
Gaikwad (10.1016/j.porgcoat.2021.106267_bib0100) 2015; 86
Zhang (10.1016/j.porgcoat.2021.106267_bib0145) 2020; 142
Chen (10.1016/j.porgcoat.2021.106267_bib0645) 2014; 4
Panda (10.1016/j.porgcoat.2021.106267_bib0295) 2017; 6
Chaudhari (10.1016/j.porgcoat.2021.106267_bib0445) 2013; 52
Petrović (10.1016/j.porgcoat.2021.106267_bib0375) 2008; 108
Can (10.1016/j.porgcoat.2021.106267_bib0390) 2001; 81
Huang (10.1016/j.porgcoat.2021.106267_bib0715) 2013; 76
Paraskar (10.1016/j.porgcoat.2021.106267_bib0685) 2020; 149
Shaik (10.1016/j.porgcoat.2021.106267_bib0240) 2015; 2015
Javni (10.1016/j.porgcoat.2021.106267_bib0890) 2013; 128
Zuber (10.1016/j.porgcoat.2021.106267_bib0060) 2014; 67
Li (10.1016/j.porgcoat.2021.106267_bib0720) 2018; 180
Liu (10.1016/j.porgcoat.2021.106267_bib0230) 2019; 21
Hu (10.1016/j.porgcoat.2021.106267_bib0705) 2019; 16
Lu (10.1016/j.porgcoat.2021.106267_bib0635) 2008; 9
Palanisamy (10.1016/j.porgcoat.2021.106267_bib0135) 2011; 88
Su (10.1016/j.porgcoat.2021.106267_bib0700) 2020; 12
He (10.1016/j.porgcoat.2021.106267_bib0925) 2019; 11
Yu (10.1016/j.porgcoat.2021.106267_bib0320) 2015; 6
Pathak (10.1016/j.porgcoat.2021.106267_bib0910) 2015; 89
Lligadas (10.1016/j.porgcoat.2021.106267_bib0010) 2013; 214
Kulkarni (10.1016/j.porgcoat.2021.106267_bib0140) 2013; 49
Uosukainen (10.1016/j.porgcoat.2021.106267_bib0365) 1998; 75
Ismail (10.1016/j.porgcoat.2021.106267_bib0425) 2011; 20
Dai (10.1016/j.porgcoat.2021.106267_bib0085) 2016; 97
Argyropoulos (10.1016/j.porgcoat.2021.106267_bib0510) 2009; 6
Raychura (10.1016/j.porgcoat.2021.106267_bib0460) 2018; 16
Silbert (10.1016/j.porgcoat.2021.106267_bib0915) 2019; 7
Liu (10.1016/j.porgcoat.2021.106267_bib0725) 2015; 3
Nguyen-Tri (10.1016/j.porgcoat.2021.106267_bib0770) 2019; 132
Alam (10.1016/j.porgcoat.2021.106267_bib0120) 2011; 19
Bähr (10.1016/j.porgcoat.2021.106267_bib0885) 2012; 14
Peyrton (10.1016/j.porgcoat.2021.106267_bib0310) 2019; 24
Wang (10.1016/j.porgcoat.2021.106267_bib0545) 2018; 6
Desroches (10.1016/j.porgcoat.2021.106267_bib0070) 2012; 52
Paraskar (10.1016/j.porgcoat.2021.106267_bib0165) 2020; 156
Su (10.1016/j.porgcoat.2021.106267_bib0745) 2020; 148
Quirino (10.1016/j.porgcoat.2021.106267_bib0175) 2015; 5
Madhi (10.1016/j.porgcoat.2021.106267_bib0830) 2020; 2
Gultekin (10.1016/j.porgcoat.2021.106267_bib0035) 2009; 20
Saetung (10.1016/j.porgcoat.2021.106267_bib0130) 2016; 23
Chandra (10.1016/j.porgcoat.2021.106267_bib0665) 2018; 6
Bhosale (10.1016/j.porgcoat.2021.106267_bib0275) 2015; 5
Johns (10.1016/j.porgcoat.2021.106267_bib0865) 2016
Gryglewicz (10.1016/j.porgcoat.2021.106267_bib0380) 2003; 87
Schmidt (10.1016/j.porgcoat.2021.106267_bib0870) 2016; 49
Chaudhari (10.1016/j.porgcoat.2021.106267_bib0470) 2013; 50
Zhang (10.1016/j.porgcoat.2021.106267_bib0345) 2015; 2015
Lokhande (10.1016/j.porgcoat.2021.106267_bib0640) 2017; 74
Rajput (10.1016/j.porgcoat.2021.106267_bib0435) 2014; 77
Chattopadhyay (10.1016/j.porgcoat.2021.106267_bib0600) 2007; 32
Sung (10.1016/j.porgcoat.2021.106267_bib0795) 2008; 5
Gogoi (10.1016/j.porgcoat.2021.106267_bib0655) 2017; 112
Marathe (10.1016/j.porgcoat.2021.106267_bib0095) 2015; 77
Chang (10.1016/j.porgcoat.2021.106267_bib0680) 2012; 358
Sardari (10.1016/j.porgcoat.2021.106267_bib0280) 2019; 133
Tran (10.1016/j.porgcoat.2021.106267_bib0520) 2005; 82
Bakhshi (10.1016/j.porgcoat.2021.106267_bib0270) 2014; 49
Pramanik (10.1016/j.porgcoat.2021.106267_bib0755) 2014; 2
Hussain (10.1016/j.porgcoat.2021.106267_bib0350) 2020
More (10.1016/j.porgcoat.2021.106267_bib0565) 2013; 49
Siyanbola (10.1016/j.porgcoat.2021.106267_bib0455) 2013; 48
Zhang (10.1016/j.porgcoat.2021.106267_bib0570) 2019; 58
Paraskar (10.1016/j.porgcoat.2021.106267_bib0300) 2020; 27
Rokicki (10.1016/j.porgcoat.2021.106267_bib0220) 2015; 2
References_xml – volume: 77
  start-page: 239
  year: 2015
  end-page: 250
  ident: bib0095
  article-title: Neem acetylated polyester polyol-Renewable source based smart PU coatings containing quinoline (corrosion inhibitor) encapsulated polyurea microcapsules for enhance anticorrosive property
  publication-title: Ind. Crops Prod.
– volume: 23
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib0130
  article-title: Modified rubber seed oil based polyurethane foams
  publication-title: J. Polym. Res.
– volume: 49
  start-page: 823
  year: 2013
  end-page: 833
  ident: bib0565
  article-title: Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes
  publication-title: Eur. Polym. J.
– volume: 118
  start-page: 26
  year: 2016
  end-page: 35
  ident: bib0190
  article-title: Hydroformylation of vegetable oils: more than 50 years of technical innovation, successful research, and development
  publication-title: Eur. J. Lipid Sci. Technol.
– volume: 137
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib0920
  article-title: Environment-friendly synthesis of sustainable chitosan-based nonisocyanate polyurethane: a biobased polymeric film
  publication-title: J. Appl. Polym. Sci.
– volume: 30
  start-page: 207
  year: 1997
  end-page: 211
  ident: bib0575
  article-title: Chemoenzymatic synthesis of oil-modified acrylic monomers as reactive diluents for high solids coatings
  publication-title: Prog. Org. Coatings.
– volume: 89
  start-page: 160
  year: 2015
  end-page: 169
  ident: bib0910
  article-title: Non-isocyanate polyurethane (NIPU) from tris-2-hydroxy ethyl isocyanurate modified fatty acid for coating applications
  publication-title: Prog. Org. Coatings.
– volume: 135
  start-page: 46722
  year: 2018
  ident: bib0465
  article-title: A renewable approach toward the development of mahua oil-based wood protective polyurethane coatings: synthesis and performance evaluation
  publication-title: J. Appl. Polym. Sci.
– volume: 5
  start-page: 6447
  year: 2017
  end-page: 6455
  ident: bib0115
  article-title: Self-cross-Linkable anionic waterborne polyurethane–Silanol dispersions from cottonseed-oil-Based phosphorylated polyol as ionic Soft segment
  publication-title: ACS Sustainable. Chem. Eng.
– volume: 76
  start-page: 985
  year: 2013
  end-page: 992
  ident: bib0325
  article-title: Flame retardant UV-curable acrylated epoxidized soybean oil based organic–inorganic hybrid coating
  publication-title: Prog. Org. Coatings.
– volume: 4
  start-page: 35476
  year: 2014
  end-page: 35483
  ident: bib0645
  article-title: Anionic waterborne polyurethane dispersion from a bio-based ionic segment
  publication-title: RSC Adv.
– volume: 12
  start-page: 1165
  year: 2020
  ident: bib0700
  article-title: One-step synthesis of novel renewable vegetable oil-based acrylate prepolymers and their application in UV-Curable coatings
  publication-title: Polymers
– volume: 214
  start-page: 415
  year: 2013
  end-page: 422
  ident: bib0010
  article-title: Renewable polyols for polyurethane synthesis via Thiol-ene/yne couplings of plant oils
  publication-title: Macromol. Chem. Phys.
– volume: 20
  start-page: 1
  year: 2011
  end-page: 8
  ident: bib0425
  article-title: Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols
  publication-title: Egypt. J. Pet.
– volume: 5
  start-page: 376
  year: 2017
  end-page: 381
  ident: bib0265
  article-title: Castor oil based Biothiol as a highly stable and self-initiated oligomer for photoinitiator-free UV coatings
  publication-title: ACS Sustain. Chem. Eng.
– volume: 48
  start-page: 8215
  year: 2013
  end-page: 8227
  ident: bib0455
  article-title: Anti-microbial and anti-corrosive poly (ester amide urethane) siloxane modified ZnO hybrid coatings from Thevetia peruviana seed oil
  publication-title: J. Mater. Sci.
– volume: 6
  start-page: 137
  year: 2015
  end-page: 155
  ident: bib0320
  article-title: Synthesis and characterization of polyurethanes from oleic, erucic and 10-Undecenoic acids
  publication-title: Polym. from Renew. Resour.
– volume: 41
  start-page: 4914
  year: 2006
  end-page: 4920
  ident: bib0500
  article-title: Structure–property relationships in polyurethanes derived from soybean oil
  publication-title: J. Mater. Sci.
– volume: 4
  start-page: 12505
  year: 2019
  end-page: 12511
  ident: bib0730
  article-title: Synthesis and properties of UV-Curable polyfunctional polyurethane acrylate resins from cardanol
  publication-title: ACS Omega
– volume: 122
  start-page: 1900387
  year: 2020
  ident: bib0080
  article-title: Sea buckthorn oil tocopherol extraction’s by‐product utilization in green synthesis of polyurethane coating
  publication-title: Eur. J. Lipid Sci. Technol.
– volume: 20
  start-page: 4738
  year: 2018
  end-page: 4745
  ident: bib0930
  article-title: Biocatalytic and solvent-free synthesis of a bio-based biscyclocarbonate
  publication-title: Green Chem.
– volume: 122
  start-page: 182
  year: 2018
  end-page: 189
  ident: bib0660
  article-title: Aqueous anionic polyurethane dispersions from castor oil
  publication-title: Ind. Crops Prod.
– volume: 894
  start-page: 109
  year: 2017
  end-page: 112
  ident: bib0835
  article-title: Study on radiation properties of Polyurethane/Nano zirconium oxide nanocomposite coatings
  publication-title: Mater. Sci. Forum.
– volume: 92
  start-page: 243
  year: 2015
  end-page: 255
  ident: bib0090
  article-title: Synthesis of transesterified palm olein-based polyol and rigid polyurethanes from this polyol
  publication-title: J. Am. Oil Chem. Soc.
– volume: 16
  start-page: 415
  year: 2019
  end-page: 428
  ident: bib0615
  article-title: Castor oil-based waterborne hyperbranched polyurethane acrylate emulsion for UV-curable coatings with excellent chemical resistance and high hardness
  publication-title: J. Coatings Technol. Res.
– volume: 23
  start-page: 97
  year: 2017
  end-page: 111
  ident: bib0315
  article-title: Kinetics of soybean oil epoxidation with peracetic acid formed in situ in the presence of an ion exchange resin: pseudo-homogeneous model
  publication-title: Chem. Ind. Chem. Eng. Q.
– volume: 6
  start-page: 16412
  year: 2018
  end-page: 16423
  ident: bib0665
  article-title: Environmentally friendly polyurethane dispersion derived from dimer acid and citric acid
  publication-title: ACS Sustain. Chem. Eng.
– volume: 92
  start-page: 883
  year: 2004
  end-page: 891
  ident: bib0880
  article-title: Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks
  publication-title: J. Appl. Polym. Sci.
– volume: 10
  start-page: 884
  year: 2009
  end-page: 891
  ident: bib0560
  article-title: Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization
  publication-title: Biomacromolecules
– volume: 3
  start-page: 151
  year: 2006
  end-page: 157
  ident: bib0590
  article-title: Two-component high-solid polyurethane coating systems based on soy polyols
  publication-title: J. Coatings Technol. Res.
– volume: 55
  start-page: 330
  year: 2006
  end-page: 336
  ident: bib0610
  article-title: Synthesis and characterization of hyperbranched and air drying fatty acid based resins
  publication-title: Prog. Org. Coatings.
– volume: 47
  start-page: 154
  year: 2018
  end-page: 163
  ident: bib0450
  article-title: Synthesis of polyurethane dispersion from polyesteramide polyol
  publication-title: Pigment Resin Technol.
– volume: 97
  start-page: 210
  year: 2016
  end-page: 215
  ident: bib0085
  article-title: Soybean oil-based UV-curable coatings strengthened by crosslink agent derived from itaconic acid together with 2-hydroxyethyl methacrylate phosphate
  publication-title: Prog. Org. Coatings.
– volume: 89
  start-page: 117
  year: 2006
  end-page: 122
  ident: bib0155
  article-title: Synthesis and characterisation of polyurethane coatings based on trimer of isophorone diisocyanate (IPDI) and monoglycerides of oils
  publication-title: Surf. Coatings Int. Part B Coatings Trans.
– volume: 26
  start-page: 707
  year: 2015
  end-page: 761
  ident: bib0220
  article-title: Non-isocyanate polyurethanes: synthesis, properties, and applications
  publication-title: Polym. Adv. Technol.
– volume: 76
  start-page: 689
  year: 2013
  end-page: 697
  ident: bib0620
  article-title: Bio-degradable vegetable oil based hyperbranched poly(ester amide) as an advanced surface coating material
  publication-title: Prog. Org. Coatings.
– volume: 67
  start-page: 254
  year: 2014
  end-page: 259
  ident: bib0060
  article-title: Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer
  publication-title: Int. J. Biol. Macromol.
– volume: 57
  start-page: 500
  year: 2018
  end-page: 522
  ident: bib0150
  article-title: A review on waterborne thermosetting polyurethane coatings based on Castor oil: synthesis, characterization, and application
  publication-title: Polym. Technol. Eng.
– volume: 6
  start-page: 713
  year: 2005
  end-page: 719
  ident: bib0200
  article-title: Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis
  publication-title: Biomacromolecules
– start-page: 55
  year: 2016
  end-page: 71
  ident: bib0865
  article-title: Plant oil-based polyhydroxyurethanes
  publication-title: Bio-Based Plant Oil Polymers and Composites
– volume: 61
  start-page: 197
  year: 2014
  end-page: 205
  ident: bib0225
  article-title: Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols
  publication-title: Eur. Polym. J.
– volume: 38
  start-page: 1155
  year: 2015
  end-page: 1161
  ident: bib0105
  article-title: Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes
  publication-title: Bull. Mater. Sci.
– volume: 112
  start-page: 57
  year: 2017
  end-page: 65
  ident: bib0655
  article-title: Dimer acid based waterborne hyperbranched poly(ester amide) thermoset as a sustainable coating material
  publication-title: Prog. Org. Coatings.
– volume: 5
  start-page: 527
  year: 2015
  end-page: 544
  ident: bib0175
  article-title: Synthesis and thermomechanical properties of polyurethanes and biocomposites derived from macauba oil and coconut husk fibers
  publication-title: Coatings
– volume: 45
  start-page: 1433
  year: 2009
  end-page: 1441
  ident: bib0540
  article-title: Thiol–ene UV-curable coatings using vegetable oil macromonomers
  publication-title: Eur. Polym. J.
– volume: 5
  start-page: 103625
  year: 2015
  end-page: 103635
  ident: bib0275
  article-title: Synthesis and characterization of castor oil based hybrid polymers and their polyurethane–urea/silica coatings
  publication-title: RSC Adv.
– volume: 77
  start-page: 38
  year: 2014
  end-page: 46
  ident: bib0430
  article-title: Biobased dimer fatty acid containing two pack polyurethane for wood finished coatings
  publication-title: Prog. Org. Coatings.
– volume: 93
  start-page: 232
  year: 2017
  end-page: 245
  ident: bib0205
  article-title: Polyols from self-metathesis-generated oligomers of soybean oil and their polyurethane foams
  publication-title: Eur. Polym. J.
– volume: 12
  start-page: 37607
  year: 2020
  end-page: 37618
  ident: bib0245
  article-title: Eco-Friendly Castor Oil-Based Delivery System with Sustained Pesticide Release and Enhanced Retention
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  start-page: 1004
  year: 2014
  end-page: 1011
  ident: bib0255
  article-title: Effects of unsaturation and different ring-opening methods on the properties of vegetable oil-based polyurethane coatings
  publication-title: Polymer
– volume: 111
  start-page: 165
  year: 2018
  end-page: 178
  ident: bib0160
  article-title: (UV/Oxidative) dual curing polyurethane dispersion from cardanol based polyol: synthesis and characterization
  publication-title: Ind. Crops Prod.
– volume: 156
  start-page: 104734
  year: 2020
  ident: bib0165
  article-title: Synthesis and characterizations of air-cured polyurethane coatings from vegetable oils and itaconic acid
  publication-title: React. Funct. Polym.
– volume: 127
  start-page: 194
  year: 2019
  end-page: 201
  ident: bib0050
  article-title: Design and synthesis of novel aminosiloxane crosslinked linseed oil-based waterborne polyurethane composites and its physicochemical properties
  publication-title: Prog. Org. Coatings.
– volume: 81
  start-page: 497
  year: 2004
  end-page: 503
  ident: bib0370
  article-title: Kinetics of transesterification of palm-based methyl esters with trimethylolpropane
  publication-title: J. Am. Oil Chem. Soc.
– volume: 52
  start-page: 10189
  year: 2013
  end-page: 10197
  ident: bib0445
  article-title: Polyurethane prepared from neem oil polyesteramides for self-healing anticorrosive coatings
  publication-title: Ind. Eng. Chem. Res.
– volume: 4
  start-page: 20984
  year: 2014
  end-page: 20999
  ident: bib0850
  article-title: Polyorthotoluidine dispersed castor oil polyurethane anticorrosive nanocomposite coatings
  publication-title: RSC Adv.
– volume: 66
  start-page: 192
  year: 2009
  end-page: 198
  ident: bib0605
  article-title: Bio-based hyperbranched polyurethanes for surface coating applications
  publication-title: Prog. Org. Coatings.
– volume: 336–338
  start-page: 2218
  year: 2007
  end-page: 2220
  ident: bib0790
  article-title: Effects of nanosized Iron oxide with different morphology on nanomechanical properties of nanocomposite coating
  publication-title: Key Eng. Mater.
– volume: 5
  start-page: 419
  year: 2008
  end-page: 430
  ident: bib0795
  article-title: Scratch behavior of nano-alumina/polyurethane coatings
  publication-title: J. Coatings Technol. Res.
– volume: 55
  start-page: 698
  year: 2018
  end-page: 708
  ident: bib0845
  article-title: Polyurethane-TiO 2 nanocomposite coatings from sunflower- oil-based amide diol as soft segment
  publication-title: J. Macromol. Sci. Part A.
– volume: 92
  start-page: 733
  year: 2015
  end-page: 741
  ident: bib0415
  article-title: Development of PU Coatings from Neem Oil Based Alkyds Prepared by the Monoglyceride Route
  publication-title: J. Am. Oil Chem. Soc.
– volume: 16
  start-page: 499
  year: 2019
  end-page: 509
  ident: bib0705
  article-title: Bio-based reactive diluent derived from cardanol and its application in polyurethane acrylate (PUA) coatings with high performance
  publication-title: J. Coatings Technol. Res.
– volume: 131
  start-page: 259
  year: 2019
  end-page: 275
  ident: bib0775
  article-title: A review on cleaner production of polymeric and nanocomposite coatings based on waterborne polyurethane dispersions from seed oils
  publication-title: Prog. Org. Coatings.
– volume: 112
  start-page: 97
  year: 2010
  end-page: 102
  ident: bib0495
  article-title: Vegetable oil-based triols from hydroformylated fatty acids and polyurethane elastomers
  publication-title: Eur. J. Lipid Sci. Technol.
– volume: 87
  start-page: 197
  year: 2015
  end-page: 203
  ident: bib0235
  article-title: High bio-based content waterborne UV-curable coatings with excellent adhesion and flexibility
  publication-title: Prog. Org. Coatings.
– volume: 77
  start-page: 1360
  year: 2014
  end-page: 1368
  ident: bib0435
  article-title: Fatty acids based transparent polyurethane films and coatings
  publication-title: Prog. Org. Coatings.
– volume: 75
  start-page: 527
  year: 2012
  end-page: 536
  ident: bib0475
  article-title: Microwave assisted synthesis and characterization of olive oil based polyetheramide as anticorrosive polymeric coatings
  publication-title: Prog. Org. Coatings.
– volume: 2
  start-page: 192
  year: 2014
  end-page: 202
  ident: bib0755
  article-title: Bio-based hyperbranched poly(ester amide)–MWCNT nanocomposites: multimodalities at the biointerface
  publication-title: Biomater. Sci.
– volume: 57
  start-page: 275
  year: 2008
  end-page: 281
  ident: bib0490
  article-title: Polyurethane networks from polyols obtained by hydroformylation of soybean oil
  publication-title: Polym. Int.
– volume: 15
  start-page: 77
  year: 2018
  end-page: 85
  ident: bib0250
  article-title: Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate
  publication-title: J. Coatings Technol. Res.
– volume: 151
  start-page: 105942
  year: 2021
  ident: bib0355
  article-title: UV LED curable epoxy soybean-oil-based waterborne PUA resin for wood coatings
  publication-title: Prog. Org. Coatings.
– volume: 16
  start-page: 209
  year: 2018
  end-page: 219
  ident: bib0460
  article-title: Development of wood protective polyurethane coatings from mahua oil-based polyetheramide polyol: a renewable approach
  publication-title: Soft Mater.
– volume: 21
  start-page: 526
  year: 2019
  end-page: 537
  ident: bib0230
  article-title: Thermosetting polyurethanes prepared with the aid of a fully bio-based emulsifier with high bio-content, high solid content, and superior mechanical properties
  publication-title: Green Chem.
– volume: 2
  start-page: 724
  year: 2020
  ident: bib0830
  article-title: Bio-based UV-curable urethane acrylate graphene nanocomposites: synthesis and properties
  publication-title: SN Appl. Sci.
– start-page: 127774
  year: 2020
  ident: bib0170
  article-title: UV absorption, anticorrosion, and long-term antibacterial performance of vegetable oil based cationic waterborne polyurethanes enabled by amino acids
  publication-title: Chem. Eng. J.
– volume: 24
  start-page: 4332
  year: 2019
  ident: bib0310
  article-title: New insight on the study of the kinetic of biobased polyurethanes synthesis based on oleo-chemistry
  publication-title: Molecules
– volume: 77
  start-page: 957
  year: 2014
  end-page: 964
  ident: bib0765
  article-title: Linseed polyurethane/tetraethoxyorthosilane/fumed silica hybrid nanocomposite coatings: physico-mechanical and potentiodynamic polarization measurements studies
  publication-title: Prog. Org. Coatings.
– volume: 77
  start-page: 53
  year: 2014
  end-page: 60
  ident: bib0550
  article-title: A fully bio-based waterborne polyurethane dispersion from vegetable oils: from synthesis of precursors by thiol-ene reaction to study of final material
  publication-title: Prog. Org. Coatings.
– volume: 19
  start-page: 784
  year: 2011
  end-page: 792
  ident: bib0120
  article-title: Microwave assisted synthesis of urethane modified polyesteramide coatings from Jatropha seed oil
  publication-title: J. Polym. Environ.
– volume: 10
  start-page: 49
  year: 2002
  end-page: 52
  ident: bib0485
  article-title: Polyols and polyurethanes from hydroformylation of soybean oil
  publication-title: J. Polym. Environ.
– volume: 53
  start-page: 9485
  year: 2005
  end-page: 9490
  ident: bib0305
  article-title: Synthesis of diethylamine-functionalized soybean oil
  publication-title: J. Agric. Food Chem.
– volume: 180
  start-page: 272
  year: 2018
  end-page: 279
  ident: bib0720
  article-title: Development of green waterborne UV-curable vegetable oil-based urethane acrylate pigment prints adhesive: preparation and application
  publication-title: J. Clean. Prod.
– volume: 5
  start-page: 11215
  year: 2017
  end-page: 11220
  ident: bib0045
  article-title: Synthesis of 1,6-Hexandiol, polyurethane monomer derivatives via isomerization metathesis of methyl linolenate
  publication-title: ACS Sustain. Chem. Eng.
– volume: 108
  start-page: 1184
  year: 2008
  end-page: 1190
  ident: bib0375
  article-title: Polyester polyols and polyurethanes from ricinoleic acid
  publication-title: J. Appl. Polym. Sci.
– volume: 7
  start-page: 11700
  year: 2019
  end-page: 11711
  ident: bib0005
  article-title: Biobased polyurethane coatings with high biomass content: tailored properties by lignin selection
  publication-title: ACS Sustain. Chem. Eng.
– volume: 9
  start-page: 3332
  year: 2008
  end-page: 3340
  ident: bib0635
  article-title: Soybean-oil-Based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties
  publication-title: Biomacromolecules
– volume: 358
  start-page: 72
  year: 2012
  end-page: 76
  ident: bib0680
  article-title: Preparation of polymer/silica hybrid hard coatings with enhanced hydrophobicity on plastic substrates
  publication-title: J. Non. Solids
– volume: 88
  start-page: 541
  year: 2011
  end-page: 549
  ident: bib0135
  article-title: Development and characterization of water-blown polyurethane foams from Diethanolamides of Karanja oil
  publication-title: J. Am. Oil Chem. Soc.
– volume: 26
  start-page: 9
  year: 2017
  end-page: 15
  ident: bib0330
  article-title: Preparation and characterization of polyurethane plasticizer for flexible packaging applications: natural oils affirmed access
  publication-title: Egypt. J. Pet.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib0345
  article-title: Polyols prepared from ring-opening epoxidized soybean oil by a Castor oil-Based fatty diol
  publication-title: Int. J. Polym. Sci.
– volume: 112
  start-page: 2567
  year: 2009
  end-page: 2578
  ident: bib0385
  article-title: Polyurethane foams from soyoil-based polyols
  publication-title: J. Appl. Polym. Sci.
– volume: 82
  start-page: 653
  year: 2005
  end-page: 659
  ident: bib0520
  article-title: Ozone-mediated polyol synthesis from soybean oil
  publication-title: J. Am. Oil Chem. Soc.
– volume: 58
  start-page: 5195
  year: 2019
  end-page: 5201
  ident: bib0570
  article-title: High biobased carbon content polyurethane dispersions synthesized from fatty acid-based isocyanate
  publication-title: Ind. Eng. Chem. Res.
– volume: 115
  start-page: 12407
  year: 2015
  end-page: 12439
  ident: bib0855
  article-title: Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s
  publication-title: Chem. Rev.
– volume: 133
  start-page: 198
  year: 2019
  end-page: 205
  ident: bib0280
  article-title: Castor oil-derived water-based polyurethane coatings: structure manipulation for property enhancement
  publication-title: Prog. Org. Coatings.
– volume: 87
  start-page: 35
  year: 2003
  end-page: 39
  ident: bib0380
  article-title: Preparation of polyol esters based on vegetable and animal fats
  publication-title: Bioresour. Technol.
– volume: 50
  start-page: 224
  year: 2004
  end-page: 230
  ident: bib0480
  article-title: Newly developed urethane modified polyetheramide-based anticorrosive coatings from a sustainable resource
  publication-title: Prog. Org. Coatings.
– volume: 36
  start-page: 694
  year: 2008
  end-page: 699
  ident: bib0525
  article-title: Low cost and highly reactive biobased polyols: a co-product of the emerging biorefinery economy
  publication-title: Clean - Soil, Air, Water.
– year: 2020
  ident: bib0040
  article-title: Synthesis of isostearic Acid/Dimer fatty acid-based polyesteramide polyol for the development of green polyurethane coatings
  publication-title: J. Polym. Environ.
– volume: 53
  start-page: 10835
  year: 2014
  end-page: 10840
  ident: bib0670
  article-title: Synthesis of new biobased antibacterial methacrylates derived from tannic acid and their application in UV-Cured coatings
  publication-title: Ind. Eng. Chem. Res.
– volume: 117
  start-page: 295
  year: 2018
  end-page: 302
  ident: bib0750
  article-title: Use of cardanol-based acrylate as reactive diluent in UV-curable castor oil-based polyurethane acrylate resins
  publication-title: Ind. Crops Prod.
– volume: 44
  start-page: 396
  year: 2013
  end-page: 404
  ident: bib0400
  article-title: Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material
  publication-title: Ind. Crops Prod.
– volume: 42
  start-page: 353
  year: 2013
  end-page: 361
  ident: bib0410
  article-title: Renewable source-based polyurethane coatings by using monoglycerides of vegetable oils and its modification by nano TiO 2
  publication-title: Pigment Resin Technol.
– start-page: 15
  year: 2015
  end-page: 43
  ident: bib0215
  article-title: Polyols and polyurethanes from vegetable oils and their derivatives
  publication-title: Bio-based Polyols and Polyurethanes
– volume: 92
  start-page: 705
  year: 2017
  end-page: 711
  ident: bib0055
  article-title: New approaches to producing polyols from biomass
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 14
  start-page: 483
  year: 2012
  ident: bib0885
  article-title: Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion
  publication-title: Green Chem.
– volume: 3
  start-page: 10837
  year: 2018
  end-page: 10842
  ident: bib0440
  article-title: Development of non-traditional vegetable-oil-Based two-pack polyurethane for wood-finished coating: an alternative approach
  publication-title: ChemistrySelect.
– volume: 3
  start-page: 1313
  year: 2015
  end-page: 1320
  ident: bib0725
  article-title: UV-curable coatings from multiarmed cardanol-based acrylate oligomers
  publication-title: ACS Sustain. Chem. Eng.
– volume: 86
  start-page: 164
  year: 2015
  end-page: 172
  ident: bib0100
  article-title: Eco-friendly polyurethane coatings from cottonseed and karanja oil
  publication-title: Prog. Org. Coatings.
– volume: 8
  start-page: 577
  year: 2011
  end-page: 584
  ident: bib0690
  article-title: Synthesis, photopolymerization kinetics, and thermal properties of UV-curable waterborne hyperbranched polyurethane acrylate dispersions
  publication-title: J. Coatings Technol. Res.
– volume: 99
  start-page: 91
  year: 2016
  end-page: 102
  ident: bib0780
  article-title: Biopolymers nanocomposite for material protection: enhancement of corrosion protection using waterborne polyurethane nanocomposite coatings
  publication-title: Prog. Org. Coatings.
– volume: 82
  start-page: 114
  year: 2016
  end-page: 121
  ident: bib0905
  article-title: Bio-based aliphatic primary amines from alcohols through the ‘Nitrile route’ towards non-isocyanate polyurethanes
  publication-title: Eur. Polym. J.
– volume: 84
  start-page: 173
  year: 2007
  end-page: 179
  ident: bib0515
  article-title: Production of polyols from canola oil and their chemical identification and physical properties
  publication-title: J. Am. Oil Chem. Soc.
– volume: 76
  start-page: 215
  year: 2015
  end-page: 229
  ident: bib0075
  article-title: Recent advances in vegetable oils based environment friendly coatings: a review
  publication-title: Ind. Crops Prod.
– volume: 32
  start-page: 352
  year: 2007
  end-page: 418
  ident: bib0600
  article-title: Structural engineering of polyurethane coatings for high performance applications
  publication-title: Prog. Polym. Sci.
– volume: 16
  start-page: 387
  year: 2019
  end-page: 400
  ident: bib0285
  article-title: Synthesis and characterization of castor oil-based branched polyols from renewable resources and their polyurethane-urea coatings
  publication-title: J. Coatings Technol. Res.
– volume: 48
  start-page: 3302
  year: 2010
  end-page: 3310
  ident: bib0555
  article-title: Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane
  publication-title: J. Polym. Sci. Part A Polym. Chem.
– start-page: 1
  year: 2020
  end-page: 9
  ident: bib0825
  article-title: Study of coating performance of bio-based hyperbranched polyester polyol/graphene oxide composites in PU-coating
  publication-title: J. Macromol. Sci. Part A.
– volume: 53
  start-page: 283
  year: 2004
  end-page: 293
  ident: bib0585
  article-title: High solids polyurethane coatings from castor-oil-based polyester-polyols
  publication-title: Int. J. Polym. Mater.
– volume: 121
  start-page: 236
  year: 2018
  end-page: 246
  ident: bib0710
  article-title: Castor oil-based polyfunctional acrylate monomers: synthesis and utilization in UV-curable materials
  publication-title: Prog. Org. Coatings.
– volume: 76
  start-page: 1151
  year: 2013
  end-page: 1160
  ident: bib0580
  article-title: Preparation and characterization of high-solid polyurethane coating systems based on vegetable oil derived polyols
  publication-title: Prog. Org. Coatings.
– volume: 52
  start-page: 38
  year: 2012
  end-page: 79
  ident: bib0070
  article-title: From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products
  publication-title: Polym. Rev.
– volume: 27
  start-page: 242
  year: 2020
  ident: bib0300
  article-title: Utilization of oleic acid in synthesis of epoxidized soybean oil based green polyurethane coating and its comparative study with petrochemical based polyurethane
  publication-title: J. Polym. Res.
– volume: 138
  start-page: 111585
  year: 2019
  ident: bib0740
  article-title: Facile synthesis and characterization of novel multi-functional bio-based acrylate prepolymers derived from tung oil and its application in UV-curable coatings
  publication-title: Ind. Crops Prod.
– volume: 148
  start-page: 105880
  year: 2020
  ident: bib0745
  article-title: A novel multi-functional bio-based reactive diluent derived from cardanol for high bio-content UV-curable coatings application
  publication-title: Prog. Org. Coatings.
– volume: 49
  start-page: 173
  year: 2019
  end-page: 211
  ident: bib0860
  article-title: Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib0065
  article-title: Preparation of soy-based adhesive enhanced by waterborne polyurethane: optimization by response surface methodology
  publication-title: Adv. Mater. Sci. Eng.
– volume: 6
  start-page: 501
  year: 2009
  end-page: 508
  ident: bib0510
  article-title: Seed oil based polyester polyols for coatings
  publication-title: J. Coatings Technol. Res.
– volume: 76
  start-page: 654
  year: 2013
  end-page: 661
  ident: bib0715
  article-title: Synthesis and properties of UV-curable tung oil based resins via modification of Diels–Alder reaction, nonisocyanate polyurethane and acrylates
  publication-title: Prog. Org. Coatings.
– start-page: 1
  year: 2017
  end-page: 14
  ident: bib0015
  article-title: Vegetable oil-based polyurethane coatings: recent developments in India
  publication-title: Green Mater.
– volume: 6
  start-page: 12088
  year: 2018
  end-page: 12095
  ident: bib0545
  article-title: Synthesis of cardanol-based polyols via Thiol-ene/Thiol-epoxy dual click-reactions and thermosetting polyurethanes therefrom
  publication-title: ACS Sustain. Chem. Eng.
– volume: 119
  start-page: 116
  year: 2018
  end-page: 122
  ident: bib0900
  article-title: Synthesis and properties of ambient-curable non-isocyanate polyurethanes
  publication-title: Prog. Org. Coatings.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib0240
  article-title: Development of Castor oil based poly(urethane-esteramide)/TiO 2 nanocomposites as anticorrosive and antimicrobial coatings
  publication-title: J. Nanomater.
– volume: 112
  start-page: 1933
  year: 2009
  end-page: 1942
  ident: bib0810
  article-title: Preparation and anticorrosive properties of hybrid coatings based on epoxy-silica hybrid materials
  publication-title: J. Appl. Polym. Sci.
– volume: 48
  start-page: 109
  year: 2008
  end-page: 155
  ident: bib0340
  article-title: Polyurethanes from vegetable oils
  publication-title: Polym. Rev.
– volume: 49
  start-page: 586
  year: 2013
  end-page: 592
  ident: bib0140
  article-title: Epoxidation of mustard oil and ring opening with 2-ethylhexanol for biolubricants with enhanced thermo-oxidative and cold flow characteristics
  publication-title: Ind. Crops Prod.
– volume: 33
  start-page: 201
  year: 2011
  end-page: 207
  ident: bib0735
  article-title: Curing behavior of a UV-curable coating based on urethane acrylate oligomer: the influence of reactive monomers
  publication-title: Songklanakarin J. Sci. Technol.
– volume: 122
  start-page: 448
  year: 2018
  end-page: 455
  ident: bib0030
  article-title: Bio-based cationic waterborne polyurethanes dispersions prepared from di ff erent vegetable oils
  publication-title: Ind. Crop. Prod.
– volume: 46
  start-page: 296
  year: 2009
  end-page: 303
  ident: bib0595
  article-title: Hyperbranched Polyamine/Cu nanoparticles for epoxy thermoset
  publication-title: J. Macromol. Sci. Part A.
– volume: 49
  start-page: 7268
  year: 2016
  end-page: 7276
  ident: bib0870
  article-title: Isocyanate-free route to poly(carbohydrate–urethane) thermosets and 100% bio-based coatings derived from glycerol feedstock
  publication-title: Macromolecules
– volume: 132
  start-page: 235
  year: 2019
  end-page: 256
  ident: bib0770
  article-title: Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: a review
  publication-title: Prog. Org. Coatings.
– volume: 78
  start-page: 46
  year: 2016
  end-page: 60
  ident: bib0025
  article-title: Preparation of vegetable oil-based polyols with controlled hydroxyl functionalities for thermoplastic polyurethane
  publication-title: Eur. Polym. J.
– volume: 125
  start-page: 2920
  year: 2012
  end-page: 2928
  ident: bib0505
  article-title: Hyperbranched polyols from hydroformylated methyl soyate
  publication-title: J. Appl. Polym. Sci.
– start-page: 125
  year: 2017
  end-page: 143
  ident: bib0180
  article-title: Bio-based polyurethanes and composites from passion fruit oil methyl esters and coconut husk fibers
  publication-title: Biocomposites: Properties, Performance, and Applications
– volume: 536
  start-page: 012037
  year: 2019
  ident: bib0290
  article-title: Synthesis and characterization thermal of Polyurethane/MMT from Castor oil polyols for coating
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– volume: 149
  start-page: 105946
  year: 2020
  ident: bib0685
  article-title: Facile synthesis and characterization of renewable dimer acid-based urethane acrylate oligomer and its utilization in UV-curable coatings
  publication-title: Prog. Org. Coatings.
– volume: 55
  start-page: 296
  year: 2006
  end-page: 300
  ident: bib0785
  article-title: Study on nano-CaCO3 modified epoxy powder coatings
  publication-title: Prog. Org. Coatings.
– volume: 75
  start-page: 1557
  year: 1998
  end-page: 1563
  ident: bib0365
  article-title: Transesterification of trimethylolpropane and rapeseed oil methyl ester to environmentally acceptable lubricants
  publication-title: J. Am. Oil Chem. Soc.
– volume: 12
  start-page: 91
  year: 2018
  end-page: 98
  ident: bib0840
  article-title: Synthesis, characterization and study on thermal stability, mechanical properties and thermal conductivity of UV-curable urethane acrylate-Clay (MMT) nanocomposites
  publication-title: J. Appl. Chem.
– volume: 21
  start-page: 952
  year: 2013
  end-page: 962
  ident: bib0110
  article-title: Biobased polyurethanes from rapeseed oil polyols: structure, mechanical and thermal properties
  publication-title: J. Polym. Environ.
– volume: 85
  start-page: 22
  year: 2015
  end-page: 30
  ident: bib0760
  article-title: Ultraviolet-curable polyurethane acrylate nanocomposite coatings based on surface-modified calcium carbonate
  publication-title: Prog. Org. Coatings.
– volume: 102
  start-page: 161
  year: 2018
  end-page: 168
  ident: bib0875
  article-title: Solvent and catalyst-free synthesis of sunflower oil based polyurethane through non-isocyanate route and its coatings properties
  publication-title: Eur. Polym. J.
– volume: 50
  start-page: 550
  year: 2013
  end-page: 556
  ident: bib0470
  article-title: Development of eco-friendly polyurethane coatings based on neem oil polyetheramide
  publication-title: Ind. Crops Prod.
– volume: 11
  start-page: 1026
  year: 2019
  ident: bib0925
  article-title: Solvent- and catalyst-free synthesis, hybridization and characterization of biobased nonisocyanate polyurethane (NIPU)
  publication-title: Polymers (Basel)
– volume: 23
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib0185
  article-title: Vegetable oils: a source of polyols for polyurethane materials
  publication-title: OCL
– volume: 52
  start-page: 74
  year: 2014
  end-page: 84
  ident: bib0420
  article-title: Novel poly (alkyd-urethane)s from vegetable oils: synthesis and properties
  publication-title: Ind. Crops Prod.
– volume: 68
  start-page: 832
  year: 2019
  end-page: 842
  ident: bib0650
  article-title: Water‐based polyurethane dispersions
  publication-title: Polym. Int.
– volume: 131
  start-page: 82
  year: 2019
  end-page: 99
  ident: bib0695
  article-title: Research progress of UV-curable polyurethane acrylate-based hardening coatings
  publication-title: Prog. Org. Coatings.
– volume: 106
  start-page: 87
  year: 2017
  end-page: 95
  ident: bib0020
  article-title: Synthesis of bio-based polyurethane coatings from vegetable oil and dicarboxylic acids
  publication-title: Prog. Org. Coatings.
– volume: 7
  start-page: 19621
  year: 2019
  end-page: 19630
  ident: bib0915
  article-title: Biobased, nonisocyanate, 2K polyurethane coatings produced from polycarbamate and dialdehyde cross-linking
  publication-title: ACS Sustain. Chem. Eng.
– volume: 522
  start-page: 124
  year: 2017
  end-page: 132
  ident: bib0820
  article-title: Synthesis of aminosilane crosslinked cationomeric waterborne polyurethane nanocomposites and its physicochemical properties
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 29
  start-page: 218
  year: 2010
  end-page: 225
  ident: bib0360
  article-title: Preparation and properties of palm oil-based rigid polyurethane nanocomposite foams
  publication-title: J. Reinf. Plast. Compos.
– volume: 81
  start-page: 69
  year: 2001
  end-page: 77
  ident: bib0390
  article-title: Rigid, thermosetting liquid molding resins from renewable resources. I. Synthesis and polymerization of soy oil monoglyceride maleates
  publication-title: J. Appl. Polym. Sci.
– volume: 5
  start-page: 4820
  year: 2014
  end-page: 4870
  ident: bib0530
  article-title: Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: a first update
  publication-title: Polym. Chem.
– volume: 4
  start-page: 1041
  year: 2017
  end-page: 1053
  ident: bib0535
  article-title: Thiol–ene chemistry for polymer coatings and surface modification – building in sustainability and performance
  publication-title: Mater. Horiz.
– volume: 87
  start-page: 78
  year: 2016
  end-page: 88
  ident: bib0625
  article-title: Efficient and quantitative chemical transformation of vegetable oils to polyols through a thiol-ene reaction for thermoplastic polyurethanes
  publication-title: Ind. Crops Prod.
– volume: 44
  start-page: 3046
  year: 2008
  end-page: 3056
  ident: bib0815
  article-title: Preparation, characterization and electrochemical corrosion studies on environmentally friendly waterborne polyurethane/Na+-MMT clay nanocomposite coatings
  publication-title: Eur. Polym. J.
– volume: 10
  start-page: 1235
  year: 2018
  ident: bib0405
  article-title: Synthesis of linseed oil-based waterborne urethane oil wood coatings
  publication-title: Polymers
– year: 2020
  ident: bib0350
  article-title: Physical properties of a soy-based polyol as polyurethane coatings
  publication-title: AIP Conf. Proc.
– volume: 4
  start-page: 703
  year: 2011
  end-page: 717
  ident: bib0125
  article-title: Recent advances in vegetable oil-based polyurethanes
  publication-title: ChemSusChem.
– volume: 22
  start-page: 1289
  year: 2011
  end-page: 1292
  ident: bib0195
  article-title: Synthesis of vegetable oil based polyol with cottonseed oil and sorbitol derived from natural source
  publication-title: Chin. Chem. Lett.
– volume: 514
  start-page: 69
  year: 2006
  end-page: 75
  ident: bib0675
  article-title: Synthesis of UV-curable organic–inorganic hybrid urethane acrylates and properties of cured films
  publication-title: Thin Solid Films
– volume: 46
  start-page: 1402
  year: 2006
  end-page: 1410
  ident: bib0805
  article-title: UV-curable coatings with nano-TiO2
  publication-title: Polym. Eng. Sci.
– volume: 210
  start-page: 1207
  year: 2018
  end-page: 1215
  ident: bib0260
  article-title: Tunable thermo-physical performance of castor oil-based polyurethanes with tailored release of coated fertilizers
  publication-title: J. Clean. Prod.
– volume: 49
  start-page: 5365
  year: 2014
  end-page: 5377
  ident: bib0270
  article-title: Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties
  publication-title: J. Mater. Sci.
– volume: 6
  start-page: 341
  year: 2017
  end-page: 351
  ident: bib0295
  article-title: The castor oil based water borne polyurethane dispersion; effect of -NCO/OH content: synthesis, characterization and properties
  publication-title: Green Process. Synth.
– volume: 20
  start-page: 421
  year: 2009
  end-page: 431
  ident: bib0035
  article-title: Fatty acid-based polyurethane films for wound dressing applications
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 142
  start-page: 105588
  year: 2020
  ident: bib0145
  article-title: Waterborne polyurethanes from castor oil-based polyols for next generation of environmentally-friendly hair-styling agents
  publication-title: Prog. Org. Coatings.
– volume: 20
  start-page: 647
  year: 2012
  end-page: 658
  ident: bib0335
  article-title: Polyols and rigid polyurethane foams from cashew nut shell liquid
  publication-title: J. Polym. Environ.
– volume: 1
  start-page: 16
  year: 2013
  end-page: 26
  ident: bib0210
  article-title: Synthesis of new polyurethanes from vegetable oil by thiol-ene coupling
  publication-title: Green Mater.
– volume: 53
  start-page: 91
  year: 2005
  end-page: 98
  ident: bib0800
  article-title: Effects of P/B on the properties of anticorrosive coatings with different particle size
  publication-title: Prog. Org. Coatings.
– volume: 76
  start-page: 157
  year: 2013
  end-page: 164
  ident: bib0395
  article-title: Castor oil-based hyperbranched polyurethanes as advanced surface coating materials
  publication-title: Prog. Org. Coatings.
– volume: 44
  start-page: 5980
  year: 2020
  end-page: 5994
  ident: bib0630
  article-title: Mechanically robust hydrophobic interpenetrating polymer network-based nanocomposite of hyperbranched polyurethane and polystyrene as an effective anticorrosive coating
  publication-title: New J. Chem.
– volume: 74
  start-page: 4781
  year: 2017
  end-page: 4798
  ident: bib0640
  article-title: Anionic water-based polyurethane dispersions for antimicrobial coating application
  publication-title: Polym. Bull.
– volume: 128
  start-page: 566
  year: 2013
  end-page: 571
  ident: bib0890
  article-title: Polyurethanes from soybean oil, aromatic, and cycloaliphatic diamines by nonisocyanate route
  publication-title: J. Appl. Polym. Sci.
– volume: 49
  start-page: 2162
  year: 2016
  end-page: 2171
  ident: bib0895
  article-title: Non-isocyanate polyurethanes from carbonated soybean oil using monomeric or oligomeric diamines to achieve thermosets or thermoplastics
  publication-title: Macromolecules
– volume: 52
  start-page: 74
  year: 2014
  ident: 10.1016/j.porgcoat.2021.106267_bib0420
  article-title: Novel poly (alkyd-urethane)s from vegetable oils: synthesis and properties
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2013.10.002
– volume: 78
  start-page: 46
  year: 2016
  ident: 10.1016/j.porgcoat.2021.106267_bib0025
  article-title: Preparation of vegetable oil-based polyols with controlled hydroxyl functionalities for thermoplastic polyurethane
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2016.03.003
– volume: 55
  start-page: 698
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0845
  article-title: Polyurethane-TiO 2 nanocomposite coatings from sunflower- oil-based amide diol as soft segment
  publication-title: J. Macromol. Sci. Part A.
  doi: 10.1080/10601325.2018.1526638
– volume: 117
  start-page: 295
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0750
  article-title: Use of cardanol-based acrylate as reactive diluent in UV-curable castor oil-based polyurethane acrylate resins
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2018.02.053
– volume: 122
  start-page: 1900387
  year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0080
  article-title: Sea buckthorn oil tocopherol extraction’s by‐product utilization in green synthesis of polyurethane coating
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.201900387
– volume: 20
  start-page: 1
  year: 2011
  ident: 10.1016/j.porgcoat.2021.106267_bib0425
  article-title: Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols
  publication-title: Egypt. J. Pet.
  doi: 10.1016/j.ejpe.2011.06.009
– volume: 112
  start-page: 2567
  year: 2009
  ident: 10.1016/j.porgcoat.2021.106267_bib0385
  article-title: Polyurethane foams from soyoil-based polyols
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.29898
– volume: 137
  start-page: 1
  year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0920
  article-title: Environment-friendly synthesis of sustainable chitosan-based nonisocyanate polyurethane: a biobased polymeric film
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.49050
– volume: 1
  start-page: 16
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0210
  article-title: Synthesis of new polyurethanes from vegetable oil by thiol-ene coupling
  publication-title: Green Mater.
  doi: 10.1680/gmat.12.00001
– volume: 26
  start-page: 9
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0330
  article-title: Preparation and characterization of polyurethane plasticizer for flexible packaging applications: natural oils affirmed access
  publication-title: Egypt. J. Pet.
  doi: 10.1016/j.ejpe.2016.02.002
– volume: 50
  start-page: 224
  year: 2004
  ident: 10.1016/j.porgcoat.2021.106267_bib0480
  article-title: Newly developed urethane modified polyetheramide-based anticorrosive coatings from a sustainable resource
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2004.02.007
– volume: 77
  start-page: 957
  year: 2014
  ident: 10.1016/j.porgcoat.2021.106267_bib0765
  article-title: Linseed polyurethane/tetraethoxyorthosilane/fumed silica hybrid nanocomposite coatings: physico-mechanical and potentiodynamic polarization measurements studies
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2014.01.024
– volume: 99
  start-page: 91
  year: 2016
  ident: 10.1016/j.porgcoat.2021.106267_bib0780
  article-title: Biopolymers nanocomposite for material protection: enhancement of corrosion protection using waterborne polyurethane nanocomposite coatings
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2016.05.012
– volume: 112
  start-page: 1933
  year: 2009
  ident: 10.1016/j.porgcoat.2021.106267_bib0810
  article-title: Preparation and anticorrosive properties of hybrid coatings based on epoxy-silica hybrid materials
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.29302
– volume: 47
  start-page: 154
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0450
  article-title: Synthesis of polyurethane dispersion from polyesteramide polyol
  publication-title: Pigment Resin Technol.
  doi: 10.1108/PRT-07-2016-0071
– volume: 336–338
  start-page: 2218
  year: 2007
  ident: 10.1016/j.porgcoat.2021.106267_bib0790
  article-title: Effects of nanosized Iron oxide with different morphology on nanomechanical properties of nanocomposite coating
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.336-338.2218
– volume: 5
  start-page: 6447
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0115
  article-title: Self-cross-Linkable anionic waterborne polyurethane–Silanol dispersions from cottonseed-oil-Based phosphorylated polyol as ionic Soft segment
  publication-title: ACS Sustainable. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00327
– volume: 53
  start-page: 9485
  year: 2005
  ident: 10.1016/j.porgcoat.2021.106267_bib0305
  article-title: Synthesis of diethylamine-functionalized soybean oil
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf050731o
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0345
  article-title: Polyols prepared from ring-opening epoxidized soybean oil by a Castor oil-Based fatty diol
  publication-title: Int. J. Polym. Sci.
  doi: 10.1155/2015/529235
– volume: 76
  start-page: 654
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0715
  article-title: Synthesis and properties of UV-curable tung oil based resins via modification of Diels–Alder reaction, nonisocyanate polyurethane and acrylates
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2012.12.005
– volume: 92
  start-page: 243
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0090
  article-title: Synthesis of transesterified palm olein-based polyol and rigid polyurethanes from this polyol
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-015-2592-9
– volume: 180
  start-page: 272
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0720
  article-title: Development of green waterborne UV-curable vegetable oil-based urethane acrylate pigment prints adhesive: preparation and application
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.01.193
– volume: 142
  start-page: 105588
  year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0145
  article-title: Waterborne polyurethanes from castor oil-based polyols for next generation of environmentally-friendly hair-styling agents
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2020.105588
– volume: 77
  start-page: 53
  year: 2014
  ident: 10.1016/j.porgcoat.2021.106267_bib0550
  article-title: A fully bio-based waterborne polyurethane dispersion from vegetable oils: from synthesis of precursors by thiol-ene reaction to study of final material
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2013.08.002
– volume: 32
  start-page: 352
  year: 2007
  ident: 10.1016/j.porgcoat.2021.106267_bib0600
  article-title: Structural engineering of polyurethane coatings for high performance applications
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2006.05.003
– volume: 102
  start-page: 161
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0875
  article-title: Solvent and catalyst-free synthesis of sunflower oil based polyurethane through non-isocyanate route and its coatings properties
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.03.030
– volume: 21
  start-page: 952
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0110
  article-title: Biobased polyurethanes from rapeseed oil polyols: structure, mechanical and thermal properties
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-012-0560-0
– volume: 50
  start-page: 550
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0470
  article-title: Development of eco-friendly polyurethane coatings based on neem oil polyetheramide
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2013.08.018
– volume: 12
  start-page: 37607
  year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0245
  article-title: Eco-Friendly Castor Oil-Based Delivery System with Sustained Pesticide Release and Enhanced Retention
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10620
– volume: 26
  start-page: 707
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0220
  article-title: Non-isocyanate polyurethanes: synthesis, properties, and applications
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.3522
– volume: 10
  start-page: 884
  year: 2009
  ident: 10.1016/j.porgcoat.2021.106267_bib0560
  article-title: Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization
  publication-title: Biomacromolecules
  doi: 10.1021/bm801411w
– volume: 77
  start-page: 239
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0095
  article-title: Neem acetylated polyester polyol-Renewable source based smart PU coatings containing quinoline (corrosion inhibitor) encapsulated polyurea microcapsules for enhance anticorrosive property
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2015.08.054
– volume: 112
  start-page: 57
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0655
  article-title: Dimer acid based waterborne hyperbranched poly(ester amide) thermoset as a sustainable coating material
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2017.07.002
– volume: 81
  start-page: 497
  year: 2004
  ident: 10.1016/j.porgcoat.2021.106267_bib0370
  article-title: Kinetics of transesterification of palm-based methyl esters with trimethylolpropane
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-004-0930-7
– volume: 49
  start-page: 173
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0860
  article-title: Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2018.1537741
– volume: 4
  start-page: 703
  year: 2011
  ident: 10.1016/j.porgcoat.2021.106267_bib0125
  article-title: Recent advances in vegetable oil-based polyurethanes
  publication-title: ChemSusChem.
  doi: 10.1002/cssc.201000378
– volume: 88
  start-page: 541
  year: 2011
  ident: 10.1016/j.porgcoat.2021.106267_bib0135
  article-title: Development and characterization of water-blown polyurethane foams from Diethanolamides of Karanja oil
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-010-1694-7
– volume: 44
  start-page: 3046
  year: 2008
  ident: 10.1016/j.porgcoat.2021.106267_bib0815
  article-title: Preparation, characterization and electrochemical corrosion studies on environmentally friendly waterborne polyurethane/Na+-MMT clay nanocomposite coatings
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2008.05.037
– volume: 20
  start-page: 421
  year: 2009
  ident: 10.1016/j.porgcoat.2021.106267_bib0035
  article-title: Fatty acid-based polyurethane films for wound dressing applications
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-008-3572-5
– volume: 76
  start-page: 689
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0620
  article-title: Bio-degradable vegetable oil based hyperbranched poly(ester amide) as an advanced surface coating material
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2012.12.011
– volume: 23
  start-page: 1
  issue: 5
  year: 2016
  ident: 10.1016/j.porgcoat.2021.106267_bib0185
  article-title: Vegetable oils: a source of polyols for polyurethane materials
  publication-title: OCL
  doi: 10.1051/ocl/2016031
– volume: 6
  start-page: 137
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0320
  article-title: Synthesis and characterization of polyurethanes from oleic, erucic and 10-Undecenoic acids
  publication-title: Polym. from Renew. Resour.
– volume: 151
  start-page: 105942
  year: 2021
  ident: 10.1016/j.porgcoat.2021.106267_bib0355
  article-title: UV LED curable epoxy soybean-oil-based waterborne PUA resin for wood coatings
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2020.105942
– volume: 84
  start-page: 173
  year: 2007
  ident: 10.1016/j.porgcoat.2021.106267_bib0515
  article-title: Production of polyols from canola oil and their chemical identification and physical properties
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-006-1021-5
– volume: 6
  start-page: 12088
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0545
  article-title: Synthesis of cardanol-based polyols via Thiol-ene/Thiol-epoxy dual click-reactions and thermosetting polyurethanes therefrom
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02423
– volume: 514
  start-page: 69
  year: 2006
  ident: 10.1016/j.porgcoat.2021.106267_bib0675
  article-title: Synthesis of UV-curable organic–inorganic hybrid urethane acrylates and properties of cured films
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.02.032
– volume: 5
  start-page: 4820
  year: 2014
  ident: 10.1016/j.porgcoat.2021.106267_bib0530
  article-title: Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: a first update
  publication-title: Polym. Chem.
  doi: 10.1039/C4PY00339J
– volume: 85
  start-page: 22
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0760
  article-title: Ultraviolet-curable polyurethane acrylate nanocomposite coatings based on surface-modified calcium carbonate
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2014.12.004
– volume: 894
  start-page: 109
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0835
  article-title: Study on radiation properties of Polyurethane/Nano zirconium oxide nanocomposite coatings
  publication-title: Mater. Sci. Forum.
  doi: 10.4028/www.scientific.net/MSF.894.109
– volume: 7
  start-page: 19621
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0915
  article-title: Biobased, nonisocyanate, 2K polyurethane coatings produced from polycarbamate and dialdehyde cross-linking
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b04713
– volume: 87
  start-page: 197
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0235
  article-title: High bio-based content waterborne UV-curable coatings with excellent adhesion and flexibility
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2015.05.030
– volume: 23
  start-page: 97
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0315
  article-title: Kinetics of soybean oil epoxidation with peracetic acid formed in situ in the presence of an ion exchange resin: pseudo-homogeneous model
  publication-title: Chem. Ind. Chem. Eng. Q.
  doi: 10.2298/CICEQ150702014J
– volume: 44
  start-page: 396
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0400
  article-title: Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2012.11.028
– volume: 112
  start-page: 97
  year: 2010
  ident: 10.1016/j.porgcoat.2021.106267_bib0495
  article-title: Vegetable oil-based triols from hydroformylated fatty acids and polyurethane elastomers
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.200900087
– volume: 214
  start-page: 415
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0010
  article-title: Renewable polyols for polyurethane synthesis via Thiol-ene/yne couplings of plant oils
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201200582
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0065
  article-title: Preparation of soy-based adhesive enhanced by waterborne polyurethane: optimization by response surface methodology
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2018/6107656
– volume: 33
  start-page: 201
  year: 2011
  ident: 10.1016/j.porgcoat.2021.106267_bib0735
  article-title: Curing behavior of a UV-curable coating based on urethane acrylate oligomer: the influence of reactive monomers
  publication-title: Songklanakarin J. Sci. Technol.
– volume: 86
  start-page: 164
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0100
  article-title: Eco-friendly polyurethane coatings from cottonseed and karanja oil
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2015.05.014
– volume: 122
  start-page: 182
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0660
  article-title: Aqueous anionic polyurethane dispersions from castor oil
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2018.05.079
– volume: 42
  start-page: 353
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0410
  article-title: Renewable source-based polyurethane coatings by using monoglycerides of vegetable oils and its modification by nano TiO 2
  publication-title: Pigment Resin Technol.
  doi: 10.1108/PRT-02-2012-0017
– volume: 49
  start-page: 5365
  year: 2014
  ident: 10.1016/j.porgcoat.2021.106267_bib0270
  article-title: Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-014-8244-x
– volume: 5
  start-page: 376
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0265
  article-title: Castor oil based Biothiol as a highly stable and self-initiated oligomer for photoinitiator-free UV coatings
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01756
– volume: 4
  start-page: 1041
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0535
  article-title: Thiol–ene chemistry for polymer coatings and surface modification – building in sustainability and performance
  publication-title: Mater. Horiz.
  doi: 10.1039/C7MH00488E
– volume: 121
  start-page: 236
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0710
  article-title: Castor oil-based polyfunctional acrylate monomers: synthesis and utilization in UV-curable materials
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2018.04.020
– volume: 3
  start-page: 1313
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0725
  article-title: UV-curable coatings from multiarmed cardanol-based acrylate oligomers
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00029
– volume: 22
  start-page: 1289
  year: 2011
  ident: 10.1016/j.porgcoat.2021.106267_bib0195
  article-title: Synthesis of vegetable oil based polyol with cottonseed oil and sorbitol derived from natural source
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2011.05.043
– volume: 536
  start-page: 012037
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0290
  article-title: Synthesis and characterization thermal of Polyurethane/MMT from Castor oil polyols for coating
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/536/1/012037
– year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0350
  article-title: Physical properties of a soy-based polyol as polyurethane coatings
  publication-title: AIP Conf. Proc.
– volume: 6
  start-page: 16412
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0665
  article-title: Environmentally friendly polyurethane dispersion derived from dimer acid and citric acid
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03474
– volume: 16
  start-page: 499
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0705
  article-title: Bio-based reactive diluent derived from cardanol and its application in polyurethane acrylate (PUA) coatings with high performance
  publication-title: J. Coatings Technol. Res.
  doi: 10.1007/s11998-018-0128-6
– volume: 7
  start-page: 11700
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0005
  article-title: Biobased polyurethane coatings with high biomass content: tailored properties by lignin selection
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01873
– start-page: 125
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0180
  article-title: Bio-based polyurethanes and composites from passion fruit oil methyl esters and coconut husk fibers
– volume: 138
  start-page: 111585
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0740
  article-title: Facile synthesis and characterization of novel multi-functional bio-based acrylate prepolymers derived from tung oil and its application in UV-curable coatings
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2019.111585
– volume: 122
  start-page: 448
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0030
  article-title: Bio-based cationic waterborne polyurethanes dispersions prepared from di ff erent vegetable oils
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2018.06.006
– volume: 6
  start-page: 501
  year: 2009
  ident: 10.1016/j.porgcoat.2021.106267_bib0510
  article-title: Seed oil based polyester polyols for coatings
  publication-title: J. Coatings Technol. Res.
  doi: 10.1007/s11998-008-9154-0
– volume: 55
  start-page: 296
  year: 2006
  ident: 10.1016/j.porgcoat.2021.106267_bib0785
  article-title: Study on nano-CaCO3 modified epoxy powder coatings
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2006.01.007
– volume: 89
  start-page: 160
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0910
  article-title: Non-isocyanate polyurethane (NIPU) from tris-2-hydroxy ethyl isocyanurate modified fatty acid for coating applications
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2015.08.015
– volume: 133
  start-page: 198
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0280
  article-title: Castor oil-derived water-based polyurethane coatings: structure manipulation for property enhancement
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2019.04.030
– volume: 48
  start-page: 3302
  year: 2010
  ident: 10.1016/j.porgcoat.2021.106267_bib0555
  article-title: Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane
  publication-title: J. Polym. Sci. Part A Polym. Chem.
  doi: 10.1002/pola.24114
– volume: 61
  start-page: 197
  year: 2014
  ident: 10.1016/j.porgcoat.2021.106267_bib0225
  article-title: Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2014.10.012
– volume: 149
  start-page: 105946
  year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0685
  article-title: Facile synthesis and characterization of renewable dimer acid-based urethane acrylate oligomer and its utilization in UV-curable coatings
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2020.105946
– volume: 118
  start-page: 26
  year: 2016
  ident: 10.1016/j.porgcoat.2021.106267_bib0190
  article-title: Hydroformylation of vegetable oils: more than 50 years of technical innovation, successful research, and development
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.201500196
– volume: 48
  start-page: 8215
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0455
  article-title: Anti-microbial and anti-corrosive poly (ester amide urethane) siloxane modified ZnO hybrid coatings from Thevetia peruviana seed oil
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7633-x
– volume: 76
  start-page: 985
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0325
  article-title: Flame retardant UV-curable acrylated epoxidized soybean oil based organic–inorganic hybrid coating
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2012.10.007
– volume: 131
  start-page: 82
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0695
  article-title: Research progress of UV-curable polyurethane acrylate-based hardening coatings
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2019.01.061
– volume: 5
  start-page: 419
  year: 2008
  ident: 10.1016/j.porgcoat.2021.106267_bib0795
  article-title: Scratch behavior of nano-alumina/polyurethane coatings
  publication-title: J. Coatings Technol. Res.
  doi: 10.1007/s11998-008-9110-z
– volume: 128
  start-page: 566
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0890
  article-title: Polyurethanes from soybean oil, aromatic, and cycloaliphatic diamines by nonisocyanate route
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.38215
– start-page: 1
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0015
  article-title: Vegetable oil-based polyurethane coatings: recent developments in India
  publication-title: Green Mater.
– volume: 92
  start-page: 733
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0415
  article-title: Development of PU Coatings from Neem Oil Based Alkyds Prepared by the Monoglyceride Route
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-015-2642-3
– volume: 82
  start-page: 653
  year: 2005
  ident: 10.1016/j.porgcoat.2021.106267_bib0520
  article-title: Ozone-mediated polyol synthesis from soybean oil
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-005-1124-z
– volume: 522
  start-page: 124
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0820
  article-title: Synthesis of aminosilane crosslinked cationomeric waterborne polyurethane nanocomposites and its physicochemical properties
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2017.02.061
– volume: 16
  start-page: 415
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0615
  article-title: Castor oil-based waterborne hyperbranched polyurethane acrylate emulsion for UV-curable coatings with excellent chemical resistance and high hardness
  publication-title: J. Coatings Technol. Res.
  doi: 10.1007/s11998-018-0120-1
– volume: 210
  start-page: 1207
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0260
  article-title: Tunable thermo-physical performance of castor oil-based polyurethanes with tailored release of coated fertilizers
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.11.047
– volume: 12
  start-page: 91
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0840
  article-title: Synthesis, characterization and study on thermal stability, mechanical properties and thermal conductivity of UV-curable urethane acrylate-Clay (MMT) nanocomposites
  publication-title: J. Appl. Chem.
– volume: 358
  start-page: 72
  year: 2012
  ident: 10.1016/j.porgcoat.2021.106267_bib0680
  article-title: Preparation of polymer/silica hybrid hard coatings with enhanced hydrophobicity on plastic substrates
  publication-title: J. Non. Solids
  doi: 10.1016/j.jnoncrysol.2011.08.024
– volume: 132
  start-page: 235
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0770
  article-title: Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: a review
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2019.03.042
– volume: 111
  start-page: 165
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0160
  article-title: (UV/Oxidative) dual curing polyurethane dispersion from cardanol based polyol: synthesis and characterization
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2017.10.015
– volume: 119
  start-page: 116
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0900
  article-title: Synthesis and properties of ambient-curable non-isocyanate polyurethanes
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2018.02.006
– volume: 52
  start-page: 38
  year: 2012
  ident: 10.1016/j.porgcoat.2021.106267_bib0070
  article-title: From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products
  publication-title: Polym. Rev.
  doi: 10.1080/15583724.2011.640443
– volume: 9
  start-page: 3332
  year: 2008
  ident: 10.1016/j.porgcoat.2021.106267_bib0635
  article-title: Soybean-oil-Based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties
  publication-title: Biomacromolecules
  doi: 10.1021/bm801030g
– volume: 3
  start-page: 10837
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0440
  article-title: Development of non-traditional vegetable-oil-Based two-pack polyurethane for wood-finished coating: an alternative approach
  publication-title: ChemistrySelect.
  doi: 10.1002/slct.201801452
– volume: 58
  start-page: 5195
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0570
  article-title: High biobased carbon content polyurethane dispersions synthesized from fatty acid-based isocyanate
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b05936
– volume: 49
  start-page: 586
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0140
  article-title: Epoxidation of mustard oil and ring opening with 2-ethylhexanol for biolubricants with enhanced thermo-oxidative and cold flow characteristics
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2013.06.006
– start-page: 127774
  year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0170
  article-title: UV absorption, anticorrosion, and long-term antibacterial performance of vegetable oil based cationic waterborne polyurethanes enabled by amino acids
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 1235
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0405
  article-title: Synthesis of linseed oil-based waterborne urethane oil wood coatings
  publication-title: Polymers
  doi: 10.3390/polym10111235
– volume: 55
  start-page: 1004
  year: 2014
  ident: 10.1016/j.porgcoat.2021.106267_bib0255
  article-title: Effects of unsaturation and different ring-opening methods on the properties of vegetable oil-based polyurethane coatings
  publication-title: Polymer
  doi: 10.1016/j.polymer.2014.01.014
– volume: 67
  start-page: 254
  year: 2014
  ident: 10.1016/j.porgcoat.2021.106267_bib0060
  article-title: Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2014.03.021
– volume: 131
  start-page: 259
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0775
  article-title: A review on cleaner production of polymeric and nanocomposite coatings based on waterborne polyurethane dispersions from seed oils
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2019.02.014
– volume: 57
  start-page: 500
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0150
  article-title: A review on waterborne thermosetting polyurethane coatings based on Castor oil: synthesis, characterization, and application
  publication-title: Polym. Technol. Eng.
  doi: 10.1080/03602559.2016.1275681
– start-page: 55
  year: 2016
  ident: 10.1016/j.porgcoat.2021.106267_bib0865
  article-title: Plant oil-based polyhydroxyurethanes
– volume: 82
  start-page: 114
  year: 2016
  ident: 10.1016/j.porgcoat.2021.106267_bib0905
  article-title: Bio-based aliphatic primary amines from alcohols through the ‘Nitrile route’ towards non-isocyanate polyurethanes
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2016.07.007
– volume: 20
  start-page: 4738
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0930
  article-title: Biocatalytic and solvent-free synthesis of a bio-based biscyclocarbonate
  publication-title: Green Chem.
  doi: 10.1039/C8GC02267D
– volume: 93
  start-page: 232
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0205
  article-title: Polyols from self-metathesis-generated oligomers of soybean oil and their polyurethane foams
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2017.06.003
– volume: 108
  start-page: 1184
  year: 2008
  ident: 10.1016/j.porgcoat.2021.106267_bib0375
  article-title: Polyester polyols and polyurethanes from ricinoleic acid
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.27783
– volume: 53
  start-page: 91
  year: 2005
  ident: 10.1016/j.porgcoat.2021.106267_bib0800
  article-title: Effects of P/B on the properties of anticorrosive coatings with different particle size
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2005.01.003
– volume: 5
  start-page: 11215
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0045
  article-title: Synthesis of 1,6-Hexandiol, polyurethane monomer derivatives via isomerization metathesis of methyl linolenate
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b03309
– volume: 5
  start-page: 103625
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0275
  article-title: Synthesis and characterization of castor oil based hybrid polymers and their polyurethane–urea/silica coatings
  publication-title: RSC Adv.
  doi: 10.1039/C5RA20356B
– volume: 75
  start-page: 527
  year: 2012
  ident: 10.1016/j.porgcoat.2021.106267_bib0475
  article-title: Microwave assisted synthesis and characterization of olive oil based polyetheramide as anticorrosive polymeric coatings
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2012.06.001
– volume: 36
  start-page: 694
  year: 2008
  ident: 10.1016/j.porgcoat.2021.106267_bib0525
  article-title: Low cost and highly reactive biobased polyols: a co-product of the emerging biorefinery economy
  publication-title: Clean - Soil, Air, Water.
  doi: 10.1002/clen.200800066
– volume: 16
  start-page: 209
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0460
  article-title: Development of wood protective polyurethane coatings from mahua oil-based polyetheramide polyol: a renewable approach
  publication-title: Soft Mater.
  doi: 10.1080/1539445X.2018.1474117
– volume: 10
  start-page: 49
  year: 2002
  ident: 10.1016/j.porgcoat.2021.106267_bib0485
  article-title: Polyols and polyurethanes from hydroformylation of soybean oil
  publication-title: J. Polym. Environ.
  doi: 10.1023/A:1021022123733
– volume: 68
  start-page: 832
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0650
  article-title: Water‐based polyurethane dispersions
  publication-title: Polym. Int.
  doi: 10.1002/pi.5627
– volume: 11
  start-page: 1026
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0925
  article-title: Solvent- and catalyst-free synthesis, hybridization and characterization of biobased nonisocyanate polyurethane (NIPU)
  publication-title: Polymers (Basel)
  doi: 10.3390/polym11061026
– volume: 77
  start-page: 38
  year: 2014
  ident: 10.1016/j.porgcoat.2021.106267_bib0430
  article-title: Biobased dimer fatty acid containing two pack polyurethane for wood finished coatings
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2013.07.020
– volume: 38
  start-page: 1155
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0105
  article-title: Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-015-0995-8
– volume: 12
  start-page: 1165
  year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0700
  article-title: One-step synthesis of novel renewable vegetable oil-based acrylate prepolymers and their application in UV-Curable coatings
  publication-title: Polymers
  doi: 10.3390/polym12051165
– volume: 81
  start-page: 69
  year: 2001
  ident: 10.1016/j.porgcoat.2021.106267_bib0390
  article-title: Rigid, thermosetting liquid molding resins from renewable resources. I. Synthesis and polymerization of soy oil monoglyceride maleates
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1414
– volume: 156
  start-page: 104734
  year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0165
  article-title: Synthesis and characterizations of air-cured polyurethane coatings from vegetable oils and itaconic acid
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2020.104734
– volume: 46
  start-page: 1402
  year: 2006
  ident: 10.1016/j.porgcoat.2021.106267_bib0805
  article-title: UV-curable coatings with nano-TiO2
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.20601
– volume: 19
  start-page: 784
  year: 2011
  ident: 10.1016/j.porgcoat.2021.106267_bib0120
  article-title: Microwave assisted synthesis of urethane modified polyesteramide coatings from Jatropha seed oil
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-011-0328-y
– volume: 6
  start-page: 713
  year: 2005
  ident: 10.1016/j.porgcoat.2021.106267_bib0200
  article-title: Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis
  publication-title: Biomacromolecules
  doi: 10.1021/bm049451s
– volume: 3
  start-page: 151
  year: 2006
  ident: 10.1016/j.porgcoat.2021.106267_bib0590
  article-title: Two-component high-solid polyurethane coating systems based on soy polyols
  publication-title: J. Coatings Technol. Res.
  doi: 10.1007/s11998-006-0018-1
– volume: 76
  start-page: 215
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0075
  article-title: Recent advances in vegetable oils based environment friendly coatings: a review
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2015.06.022
– volume: 49
  start-page: 823
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0565
  article-title: Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2012.12.013
– year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0040
  article-title: Synthesis of isostearic Acid/Dimer fatty acid-based polyesteramide polyol for the development of green polyurethane coatings
  publication-title: J. Polym. Environ.
– volume: 125
  start-page: 2920
  year: 2012
  ident: 10.1016/j.porgcoat.2021.106267_bib0505
  article-title: Hyperbranched polyols from hydroformylated methyl soyate
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.36232
– volume: 15
  start-page: 77
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0250
  article-title: Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate
  publication-title: J. Coatings Technol. Res.
  doi: 10.1007/s11998-017-9948-z
– volume: 21
  start-page: 526
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0230
  article-title: Thermosetting polyurethanes prepared with the aid of a fully bio-based emulsifier with high bio-content, high solid content, and superior mechanical properties
  publication-title: Green Chem.
  doi: 10.1039/C8GC03560A
– volume: 148
  start-page: 105880
  year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0745
  article-title: A novel multi-functional bio-based reactive diluent derived from cardanol for high bio-content UV-curable coatings application
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2020.105880
– volume: 49
  start-page: 2162
  year: 2016
  ident: 10.1016/j.porgcoat.2021.106267_bib0895
  article-title: Non-isocyanate polyurethanes from carbonated soybean oil using monomeric or oligomeric diamines to achieve thermosets or thermoplastics
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b02467
– volume: 46
  start-page: 296
  year: 2009
  ident: 10.1016/j.porgcoat.2021.106267_bib0595
  article-title: Hyperbranched Polyamine/Cu nanoparticles for epoxy thermoset
  publication-title: J. Macromol. Sci. Part A.
  doi: 10.1080/10601320802637375
– volume: 8
  start-page: 577
  year: 2011
  ident: 10.1016/j.porgcoat.2021.106267_bib0690
  article-title: Synthesis, photopolymerization kinetics, and thermal properties of UV-curable waterborne hyperbranched polyurethane acrylate dispersions
  publication-title: J. Coatings Technol. Res.
  doi: 10.1007/s11998-011-9338-x
– volume: 75
  start-page: 1557
  year: 1998
  ident: 10.1016/j.porgcoat.2021.106267_bib0365
  article-title: Transesterification of trimethylolpropane and rapeseed oil methyl ester to environmentally acceptable lubricants
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-998-0094-8
– volume: 30
  start-page: 207
  year: 1997
  ident: 10.1016/j.porgcoat.2021.106267_bib0575
  article-title: Chemoenzymatic synthesis of oil-modified acrylic monomers as reactive diluents for high solids coatings
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/S0300-9440(96)00671-6
– volume: 14
  start-page: 483
  year: 2012
  ident: 10.1016/j.porgcoat.2021.106267_bib0885
  article-title: Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion
  publication-title: Green Chem.
  doi: 10.1039/c2gc16230j
– volume: 77
  start-page: 1360
  year: 2014
  ident: 10.1016/j.porgcoat.2021.106267_bib0435
  article-title: Fatty acids based transparent polyurethane films and coatings
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2014.04.030
– start-page: 1
  year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0825
  article-title: Study of coating performance of bio-based hyperbranched polyester polyol/graphene oxide composites in PU-coating
  publication-title: J. Macromol. Sci. Part A.
– volume: 4
  start-page: 12505
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0730
  article-title: Synthesis and properties of UV-Curable polyfunctional polyurethane acrylate resins from cardanol
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01174
– volume: 23
  start-page: 1
  issue: 58
  year: 2016
  ident: 10.1016/j.porgcoat.2021.106267_bib0130
  article-title: Modified rubber seed oil based polyurethane foams
  publication-title: J. Polym. Res.
– volume: 115
  start-page: 12407
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0855
  article-title: Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00355
– volume: 20
  start-page: 647
  year: 2012
  ident: 10.1016/j.porgcoat.2021.106267_bib0335
  article-title: Polyols and rigid polyurethane foams from cashew nut shell liquid
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-012-0467-9
– volume: 4
  start-page: 20984
  year: 2014
  ident: 10.1016/j.porgcoat.2021.106267_bib0850
  article-title: Polyorthotoluidine dispersed castor oil polyurethane anticorrosive nanocomposite coatings
  publication-title: RSC Adv.
  doi: 10.1039/C4RA00587B
– volume: 55
  start-page: 330
  year: 2006
  ident: 10.1016/j.porgcoat.2021.106267_bib0610
  article-title: Synthesis and characterization of hyperbranched and air drying fatty acid based resins
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2006.01.005
– volume: 16
  start-page: 387
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0285
  article-title: Synthesis and characterization of castor oil-based branched polyols from renewable resources and their polyurethane-urea coatings
  publication-title: J. Coatings Technol. Res.
  doi: 10.1007/s11998-018-0118-8
– volume: 53
  start-page: 10835
  year: 2014
  ident: 10.1016/j.porgcoat.2021.106267_bib0670
  article-title: Synthesis of new biobased antibacterial methacrylates derived from tannic acid and their application in UV-Cured coatings
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie501804p
– volume: 2
  start-page: 724
  year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0830
  article-title: Bio-based UV-curable urethane acrylate graphene nanocomposites: synthesis and properties
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-2527-4
– volume: 49
  start-page: 7268
  year: 2016
  ident: 10.1016/j.porgcoat.2021.106267_bib0870
  article-title: Isocyanate-free route to poly(carbohydrate–urethane) thermosets and 100% bio-based coatings derived from glycerol feedstock
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b01485
– volume: 74
  start-page: 4781
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0640
  article-title: Anionic water-based polyurethane dispersions for antimicrobial coating application
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-017-1965-7
– volume: 92
  start-page: 883
  year: 2004
  ident: 10.1016/j.porgcoat.2021.106267_bib0880
  article-title: Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.20049
– volume: 57
  start-page: 275
  year: 2008
  ident: 10.1016/j.porgcoat.2021.106267_bib0490
  article-title: Polyurethane networks from polyols obtained by hydroformylation of soybean oil
  publication-title: Polym. Int.
  doi: 10.1002/pi.2340
– volume: 41
  start-page: 4914
  year: 2006
  ident: 10.1016/j.porgcoat.2021.106267_bib0500
  article-title: Structure–property relationships in polyurethanes derived from soybean oil
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-0310-6
– volume: 45
  start-page: 1433
  year: 2009
  ident: 10.1016/j.porgcoat.2021.106267_bib0540
  article-title: Thiol–ene UV-curable coatings using vegetable oil macromonomers
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2009.02.007
– volume: 87
  start-page: 78
  year: 2016
  ident: 10.1016/j.porgcoat.2021.106267_bib0625
  article-title: Efficient and quantitative chemical transformation of vegetable oils to polyols through a thiol-ene reaction for thermoplastic polyurethanes
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2016.04.027
– volume: 76
  start-page: 157
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0395
  article-title: Castor oil-based hyperbranched polyurethanes as advanced surface coating materials
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2012.09.001
– volume: 5
  start-page: 527
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0175
  article-title: Synthesis and thermomechanical properties of polyurethanes and biocomposites derived from macauba oil and coconut husk fibers
  publication-title: Coatings
  doi: 10.3390/coatings5030527
– volume: 97
  start-page: 210
  year: 2016
  ident: 10.1016/j.porgcoat.2021.106267_bib0085
  article-title: Soybean oil-based UV-curable coatings strengthened by crosslink agent derived from itaconic acid together with 2-hydroxyethyl methacrylate phosphate
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2016.04.014
– volume: 4
  start-page: 35476
  year: 2014
  ident: 10.1016/j.porgcoat.2021.106267_bib0645
  article-title: Anionic waterborne polyurethane dispersion from a bio-based ionic segment
  publication-title: RSC Adv.
  doi: 10.1039/C4RA07519F
– volume: 66
  start-page: 192
  year: 2009
  ident: 10.1016/j.porgcoat.2021.106267_bib0605
  article-title: Bio-based hyperbranched polyurethanes for surface coating applications
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2009.07.005
– volume: 87
  start-page: 35
  year: 2003
  ident: 10.1016/j.porgcoat.2021.106267_bib0380
  article-title: Preparation of polyol esters based on vegetable and animal fats
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(02)00203-1
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0240
  article-title: Development of Castor oil based poly(urethane-esteramide)/TiO 2 nanocomposites as anticorrosive and antimicrobial coatings
  publication-title: J. Nanomater.
  doi: 10.1155/2015/745217
– volume: 24
  start-page: 4332
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0310
  article-title: New insight on the study of the kinetic of biobased polyurethanes synthesis based on oleo-chemistry
  publication-title: Molecules
  doi: 10.3390/molecules24234332
– volume: 92
  start-page: 705
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0055
  article-title: New approaches to producing polyols from biomass
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.5149
– volume: 89
  start-page: 117
  year: 2006
  ident: 10.1016/j.porgcoat.2021.106267_bib0155
  article-title: Synthesis and characterisation of polyurethane coatings based on trimer of isophorone diisocyanate (IPDI) and monoglycerides of oils
  publication-title: Surf. Coatings Int. Part B Coatings Trans.
  doi: 10.1007/BF02699641
– volume: 48
  start-page: 109
  year: 2008
  ident: 10.1016/j.porgcoat.2021.106267_bib0340
  article-title: Polyurethanes from vegetable oils
  publication-title: Polym. Rev.
  doi: 10.1080/15583720701834224
– volume: 52
  start-page: 10189
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0445
  article-title: Polyurethane prepared from neem oil polyesteramides for self-healing anticorrosive coatings
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie401237s
– volume: 2
  start-page: 192
  year: 2014
  ident: 10.1016/j.porgcoat.2021.106267_bib0755
  article-title: Bio-based hyperbranched poly(ester amide)–MWCNT nanocomposites: multimodalities at the biointerface
  publication-title: Biomater. Sci.
  doi: 10.1039/C3BM60170F
– volume: 127
  start-page: 194
  year: 2019
  ident: 10.1016/j.porgcoat.2021.106267_bib0050
  article-title: Design and synthesis of novel aminosiloxane crosslinked linseed oil-based waterborne polyurethane composites and its physicochemical properties
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2018.11.020
– volume: 29
  start-page: 218
  year: 2010
  ident: 10.1016/j.porgcoat.2021.106267_bib0360
  article-title: Preparation and properties of palm oil-based rigid polyurethane nanocomposite foams
  publication-title: J. Reinf. Plast. Compos.
  doi: 10.1177/0731684408096949
– volume: 44
  start-page: 5980
  year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0630
  article-title: Mechanically robust hydrophobic interpenetrating polymer network-based nanocomposite of hyperbranched polyurethane and polystyrene as an effective anticorrosive coating
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ00322K
– volume: 27
  start-page: 242
  year: 2020
  ident: 10.1016/j.porgcoat.2021.106267_bib0300
  article-title: Utilization of oleic acid in synthesis of epoxidized soybean oil based green polyurethane coating and its comparative study with petrochemical based polyurethane
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-020-02170-w
– volume: 135
  start-page: 46722
  year: 2018
  ident: 10.1016/j.porgcoat.2021.106267_bib0465
  article-title: A renewable approach toward the development of mahua oil-based wood protective polyurethane coatings: synthesis and performance evaluation
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.46722
– volume: 76
  start-page: 1151
  year: 2013
  ident: 10.1016/j.porgcoat.2021.106267_bib0580
  article-title: Preparation and characterization of high-solid polyurethane coating systems based on vegetable oil derived polyols
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2013.03.019
– start-page: 15
  year: 2015
  ident: 10.1016/j.porgcoat.2021.106267_bib0215
  article-title: Polyols and polyurethanes from vegetable oils and their derivatives
– volume: 106
  start-page: 87
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0020
  article-title: Synthesis of bio-based polyurethane coatings from vegetable oil and dicarboxylic acids
  publication-title: Prog. Org. Coatings.
  doi: 10.1016/j.porgcoat.2016.11.024
– volume: 53
  start-page: 283
  year: 2004
  ident: 10.1016/j.porgcoat.2021.106267_bib0585
  article-title: High solids polyurethane coatings from castor-oil-based polyester-polyols
  publication-title: Int. J. Polym. Mater.
– volume: 6
  start-page: 341
  year: 2017
  ident: 10.1016/j.porgcoat.2021.106267_bib0295
  article-title: The castor oil based water borne polyurethane dispersion; effect of -NCO/OH content: synthesis, characterization and properties
  publication-title: Green Process. Synth.
  doi: 10.1515/gps-2016-0144
SSID ssj0006339
Score 2.6411688
SecondaryResourceType review_article
Snippet [Display omitted] •The utilization of vegetable oil for polyurethane synthesis has been researched and documented in the past decade.•Derivatives of vegetable...
The scientific community has been pooling all its resources, for the past decade, towards the development of "sustainable development" to usher into an...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106267
SubjectTerms Bio-based materials
Biodegradability
Biological materials
Coatings
Environment friendly
Environmental impact
Fatty acids
Isocyanates
Polyols
Polyurethane coating
Polyurethane resins
Sustainable development
Ultraviolet radiation
Vegetable oil
Vegetable oils
Title Vegetable oil based polyurethane coatings – A sustainable approach: A review
URI https://dx.doi.org/10.1016/j.porgcoat.2021.106267
https://www.proquest.com/docview/2560880420
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4IHtSDUdSIIunB67KPdndZb4RIUCIHFeXWbB9LIIQlsBy8GP-D_9BfYmcfgiaGg6fNNtNNM-3OfG3nm0HoioiACFf6hi0Dy6DS9QwubWqE2hUQ6UqHEiAK3_e97oDeDd1hCbULLgyEVea2P7PpqbXOW8xcm-Z8PDYf9fLUexMKmxa4bgNGOaU-5M9vvK3DPDySVhMDYQOkN1jCk4aGuCMRhxBT6di6UaN7_y8H9ctUp_6nc4gOcuCIW9nYjlBJzSpot13Ua6ug_Y3Ugseo_6xGKgFeFI7HUwzOSuJ5PH1dLRSclisMI4Jjcvz5_oFbeLlmUuEi0fi1bs-4LSdo0Ll5aneNvHaCIQi1EoMonwqu4ZHLheMIFTZDDfS8gBBfCq0SVxHiaHjhhcL1SehzZVPOHRVRS0gRNckpKs_imTpDWEWWlo0sQYC1KkTAqd69RjLi3Gtyy64it1AYE3licahvMWVFBNmEFYpmoGiWKbqKzO9-8yy1xtYeQTEf7MciYdr-b-1bKyaQ5b_pkgHe0waMOtb5Pz59gfbgLQviraFyslipSw1VEl5P12Id7bRue90-PHsPL70vklTq9Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHNSDUdT4QN2D10rb3bbUGyEaUOEiGm6b7qMEQoAoHrz5H_yH_hJnaOsrMRy8bneazex05tvtfDMAZ1zHXAcmcjwTu44wQego4wknwVDATWB8wYko3OmGrXtx3Q_6K9AsuDCUVpn7_synL7x1PlLLtVmbDYe1OzRPPJsIOrTQ77ZoFcpUnQqNvdxo37S6nw455IuGYjTfIYFvROHROaLcgZ4mlFbpeziIAD_6K0b98taLEHS1BZs5dmSNbHnbsGInFVhrFi3bKrDxrbrgDnQf7MDOiRrFpsMxo3hl2Gw6fnl-tHRhbhmtiG7K2fvrG2uwpy8yFStqjV_geEZv2YX7q8tes-Xk7RMczYU7d7iNhFaIkAKlfV_bpJ4g1gtjziOjUSWB5dxHhBEmOoh4EinrCaV8mwpXG53W-R6UJtOJ3QdmUxfnpq7mRFzVOlYCD7CpSZUK68r1DiAoFCZ1XlucWlyMZZFENpKFoiUpWmaKPoDap9wsq66xVCIu9kP-sBOJIWCpbLXYQJl_qU-SIB_6MOG7h_949SmstXqdW3nb7t4cwTo9yXJ6q1CaPz7bY0Quc3WSW-YHQ1_sAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vegetable+oil+based+polyurethane+coatings+%E2%80%93+A+sustainable+approach%3A+A+review&rft.jtitle=Progress+in+organic+coatings&rft.au=Paraskar%2C+Pavan+M&rft.au=Prabhudesai%2C+Mayur+S&rft.au=Hatkar%2C+Vinod+M&rft.au=Kulkarni%2C+Ravindra+D&rft.date=2021-07-01&rft.pub=Elsevier+BV&rft.issn=0300-9440&rft.eissn=1873-331X&rft.volume=156&rft.spage=1&rft_id=info:doi/10.1016%2Fj.porgcoat.2021.106267&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-9440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-9440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-9440&client=summon