Vegetable oil based polyurethane coatings – A sustainable approach: A review
[Display omitted] •The utilization of vegetable oil for polyurethane synthesis has been researched and documented in the past decade.•Derivatives of vegetable oil are also known to be an excellent feedstock for polyurethane coatings.•Challenges continue to remain in terms of properties, performance...
Saved in:
Published in | Progress in organic coatings Vol. 156; p. 106267 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.07.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0300-9440 1873-331X |
DOI | 10.1016/j.porgcoat.2021.106267 |
Cover
Loading…
Abstract | [Display omitted]
•The utilization of vegetable oil for polyurethane synthesis has been researched and documented in the past decade.•Derivatives of vegetable oil are also known to be an excellent feedstock for polyurethane coatings.•Challenges continue to remain in terms of properties, performance and reaction conditions of polyurethane.•The review focuses on various synthesis routes that transform triglycerides and derivatives into polyurethane precursors.•Different types of polyurethane coatings have also been studied in this review.
The scientific community has been pooling all its resources, for the past decade, towards the development of “sustainable development” to usher into an eternally green and sustainable tomorrow. As part of this endeavor, the conventional petroleum-based polyurethane (PU) coatings have been replaced by their green counterparts, i.e., bio-based polyurethane coatings. These green alternatives provide a suitable replacement for the coating industry due to their easy availability, biodegradability, low cost, and lesser environmental impact. The production of such green PU coatings is further facilitated by the utilization of bio-based materials, including vegetable oils and their derivatives such as methyl ester, fatty acid, and other bio-renewable sources. This review discusses the different chemical modifications used to convert these bio-based precursors into desired polyols and isocyanates. Furthermore, the formulation of different PU coatings and their subsequent potential applications are also elaborated on in this review. The coatings sector has already been introduced to the notion of eco-friendly technologies such as UV-curable, less or zero solvent, waterborne, hyperbranched, and high solids coatings, complemented by the incorporation of renewable feedstock in monomer synthesis. The review examines the future hurdles that hinder the utilization of these materials in a wide range of applications and presents technologies that facilitate potential solutions and mention key players in the coating sectors that are at the forefront of bringing these revolutionary changes. |
---|---|
AbstractList | [Display omitted]
•The utilization of vegetable oil for polyurethane synthesis has been researched and documented in the past decade.•Derivatives of vegetable oil are also known to be an excellent feedstock for polyurethane coatings.•Challenges continue to remain in terms of properties, performance and reaction conditions of polyurethane.•The review focuses on various synthesis routes that transform triglycerides and derivatives into polyurethane precursors.•Different types of polyurethane coatings have also been studied in this review.
The scientific community has been pooling all its resources, for the past decade, towards the development of “sustainable development” to usher into an eternally green and sustainable tomorrow. As part of this endeavor, the conventional petroleum-based polyurethane (PU) coatings have been replaced by their green counterparts, i.e., bio-based polyurethane coatings. These green alternatives provide a suitable replacement for the coating industry due to their easy availability, biodegradability, low cost, and lesser environmental impact. The production of such green PU coatings is further facilitated by the utilization of bio-based materials, including vegetable oils and their derivatives such as methyl ester, fatty acid, and other bio-renewable sources. This review discusses the different chemical modifications used to convert these bio-based precursors into desired polyols and isocyanates. Furthermore, the formulation of different PU coatings and their subsequent potential applications are also elaborated on in this review. The coatings sector has already been introduced to the notion of eco-friendly technologies such as UV-curable, less or zero solvent, waterborne, hyperbranched, and high solids coatings, complemented by the incorporation of renewable feedstock in monomer synthesis. The review examines the future hurdles that hinder the utilization of these materials in a wide range of applications and presents technologies that facilitate potential solutions and mention key players in the coating sectors that are at the forefront of bringing these revolutionary changes. The scientific community has been pooling all its resources, for the past decade, towards the development of "sustainable development" to usher into an eternally green and sustainable tomorrow. As part of this endeavor, the conventional petroleum-based polyurethane (PU) coatings have been replaced by their green counterparts, i.e., bio-based polyurethane coatings. These green alternatives provide a suitable replacement for the coating industry due to their easy availability, biodegradability, low cost, and lesser environmental impact. The production of such green PU coatings is further facilitated by the utilization of bio-based materials, including vegetable oils and their derivatives such as methyl ester, fatty acid, and other bio-renewable sources. This review discusses the different chemical modifications used to convert these bio-based precursors into desired polyols and isocyanates. Furthermore, the formulation of different PU coatings and their subsequent potential applications are also elaborated on in this review. The coatings sector has already been introduced to the notion of eco-friendly technologies such as UV-curable, less or zero solvent, waterborne, hyperbranched, and high solids coatings, complemented by the incorporation of renewable feedstock in monomer synthesis. The review examines the future hurdles that hinder the utilization of these materials in a wide range of applications and presents technologies that facilitate potential solutions and mention key players in the coating sectors that are at the forefront of bringing these revolutionary changes. |
ArticleNumber | 106267 |
Author | Paraskar, Pavan M. Prabhudesai, Mayur S. Hatkar, Vinod M. Kulkarni, Ravindra D. |
Author_xml | – sequence: 1 givenname: Pavan M. surname: Paraskar fullname: Paraskar, Pavan M. – sequence: 2 givenname: Mayur S. orcidid: 0000-0002-7556-2978 surname: Prabhudesai fullname: Prabhudesai, Mayur S. – sequence: 3 givenname: Vinod M. surname: Hatkar fullname: Hatkar, Vinod M. – sequence: 4 givenname: Ravindra D. orcidid: 0000-0003-2185-5780 surname: Kulkarni fullname: Kulkarni, Ravindra D. email: rd.kulkarni@ictmumbai.edu.in |
BookMark | eNqFkEtOwzAQhi1UJMrjCigS65TxI3GKWIAQLwnBBhA7y3GmrasQB9sFdccduCEnwaWwYcNqpNF8_8x822TQuQ4J2acwokDLw_mod35qnI4jBoymZslKuUGGtJI855w-DcgQOEA-FgK2yHYIcwAoOR8Pye0jTjHqusXM2TardcAm6127XHiMM91htgq23TRkn-8f2WkWFiFq230Tuu-902Z2lPoeXy2-7ZLNiW4D7v3UHfJwcX5_dpXf3F1en53e5IYLiDlHKUxdiKKoDWMGdaWlFOWYc9mYdFeBnDOQtNSmkFzLGqmoa4YTAaYxk4rvkIN1bjrgZYEhqrlb-C6tVKwooapAMEhTx-sp410IHifK2Ji-cV302raKgloZVHP1a1CtDKq1wYSXf_De22ftl_-DJ2sQk4KkxatgLHYGG-vRRNU4-1_EF7H0kiY |
CitedBy_id | crossref_primary_10_1002_bip_23568 crossref_primary_10_1007_s10965_024_04139_5 crossref_primary_10_1002_app_56079 crossref_primary_10_1007_s13726_024_01310_z crossref_primary_10_1016_j_porgcoat_2024_108671 crossref_primary_10_1002_slct_202400885 crossref_primary_10_3390_macromol2030019 crossref_primary_10_1039_D3SU00374D crossref_primary_10_1016_j_jclepro_2024_143153 crossref_primary_10_1016_j_dyepig_2024_112347 crossref_primary_10_1002_pc_28191 crossref_primary_10_1021_acsomega_1c06959 crossref_primary_10_1007_s00289_024_05494_5 crossref_primary_10_1016_j_scp_2022_100935 crossref_primary_10_3390_nano12223978 crossref_primary_10_1021_acspolymersau_4c00068 crossref_primary_10_3389_fbioe_2022_1104041 crossref_primary_10_3390_ijms25137300 crossref_primary_10_1016_j_jclepro_2023_136454 crossref_primary_10_3390_polym14163295 crossref_primary_10_1007_s10311_023_01592_4 crossref_primary_10_1002_app_56005 crossref_primary_10_1007_s42247_022_00362_2 crossref_primary_10_3390_coatings13010044 crossref_primary_10_1007_s00289_024_05569_3 crossref_primary_10_1007_s00107_024_02175_y crossref_primary_10_1016_j_polymertesting_2023_108193 crossref_primary_10_1007_s11998_021_00604_8 crossref_primary_10_1080_17518253_2023_2283439 crossref_primary_10_1039_D2CS00509C crossref_primary_10_1080_01694243_2023_2240587 crossref_primary_10_15407_polymerj_46_02_119 crossref_primary_10_1002_app_55712 crossref_primary_10_1016_j_indcrop_2024_118475 crossref_primary_10_3390_coatings15010061 crossref_primary_10_1016_j_jcat_2024_115903 crossref_primary_10_1016_j_compscitech_2022_109664 crossref_primary_10_3390_ma15062308 crossref_primary_10_1016_j_indcrop_2023_117274 crossref_primary_10_3390_su16114587 crossref_primary_10_1039_D4NJ03560G crossref_primary_10_1016_j_porgcoat_2023_107763 crossref_primary_10_3390_polym16020214 crossref_primary_10_2139_ssrn_4008099 crossref_primary_10_1021_acssusresmgt_4c00392 crossref_primary_10_3390_nano12071143 crossref_primary_10_1021_acsomega_4c07673 crossref_primary_10_1016_j_reactfunctpolym_2022_105496 crossref_primary_10_1021_acssuschemeng_4c01381 crossref_primary_10_1021_acs_biomac_3c00805 crossref_primary_10_1039_D2GC04644J crossref_primary_10_1016_j_molstruc_2024_139187 crossref_primary_10_1680_jgrma_24_00083 crossref_primary_10_7759_s44388_025_03297_6 crossref_primary_10_3390_polym16111613 crossref_primary_10_1002_mame_202200662 crossref_primary_10_1080_1023666X_2023_2244823 crossref_primary_10_1002_pat_6087 crossref_primary_10_1016_j_coco_2024_101961 crossref_primary_10_1016_j_gresc_2024_08_001 crossref_primary_10_3390_coatings14060678 crossref_primary_10_1002_app_54809 crossref_primary_10_3390_polym14112201 crossref_primary_10_36664_bt_2022_v69i1_172531 crossref_primary_10_1021_acs_iecr_1c04673 crossref_primary_10_3390_polym17030368 crossref_primary_10_1007_s00289_024_05293_y crossref_primary_10_1007_s10924_025_03515_6 crossref_primary_10_1007_s40725_023_00195_0 crossref_primary_10_1002_slct_202300833 crossref_primary_10_1016_j_eurpolymj_2023_112387 crossref_primary_10_1021_acs_iecr_3c01562 crossref_primary_10_1016_j_porgcoat_2025_109167 crossref_primary_10_1177_07316844231221656 crossref_primary_10_1002_app_52990 crossref_primary_10_3390_ma17051013 crossref_primary_10_1021_acsapm_3c02869 crossref_primary_10_3390_polym16152155 crossref_primary_10_1007_s11998_024_01046_8 crossref_primary_10_1007_s10924_024_03216_6 crossref_primary_10_3390_fire8020064 crossref_primary_10_1002_admi_202101775 crossref_primary_10_3390_polym15153313 crossref_primary_10_1002_ejlt_202100171 crossref_primary_10_1021_acsaenm_3c00148 crossref_primary_10_5650_jos_ess21374 crossref_primary_10_1002_app_56715 crossref_primary_10_1007_s10924_023_02968_x crossref_primary_10_1002_pol_20220690 crossref_primary_10_1021_acsomega_3c03422 crossref_primary_10_51582_interconf_19_20_06_2024_031 crossref_primary_10_1007_s10965_022_02964_0 crossref_primary_10_1039_D3MA00464C crossref_primary_10_1007_s10924_023_03161_w crossref_primary_10_1007_s10965_023_03703_9 crossref_primary_10_1039_D3RA08684D crossref_primary_10_1002_app_53290 crossref_primary_10_56038_ejrnd_v4i4_571 crossref_primary_10_3390_molecules26185455 crossref_primary_10_1002_cssc_202402451 crossref_primary_10_1021_acspolymersau_5c00001 crossref_primary_10_1016_j_cej_2023_142060 crossref_primary_10_3390_pr12030558 crossref_primary_10_35812_CelluloseChemTechnol_2022_56_29 crossref_primary_10_1007_s13726_022_01066_4 crossref_primary_10_20935_AcadMatSci7571 crossref_primary_10_1007_s10965_025_04288_1 crossref_primary_10_1039_D4PY00851K crossref_primary_10_3390_appliedchem3010011 crossref_primary_10_1007_s10924_023_02836_8 crossref_primary_10_1039_D3GC04294D crossref_primary_10_3390_polym15234588 crossref_primary_10_1007_s10965_022_03343_5 crossref_primary_10_4028_p_49uIMX crossref_primary_10_1002_app_53623 crossref_primary_10_2174_2666145417666230721120925 crossref_primary_10_1002_pi_6468 crossref_primary_10_1007_s10965_023_03534_8 crossref_primary_10_1177_20412479221109909 crossref_primary_10_3390_app13148258 crossref_primary_10_1002_marc_202400408 crossref_primary_10_1007_s10965_022_02922_w crossref_primary_10_3390_coatings14091183 crossref_primary_10_3389_fpls_2024_1488332 crossref_primary_10_1002_app_55654 |
Cites_doi | 10.1016/j.indcrop.2013.10.002 10.1016/j.eurpolymj.2016.03.003 10.1080/10601325.2018.1526638 10.1016/j.indcrop.2018.02.053 10.1002/ejlt.201900387 10.1016/j.ejpe.2011.06.009 10.1002/app.29898 10.1002/app.49050 10.1680/gmat.12.00001 10.1016/j.ejpe.2016.02.002 10.1016/j.porgcoat.2004.02.007 10.1016/j.porgcoat.2014.01.024 10.1016/j.porgcoat.2016.05.012 10.1002/app.29302 10.1108/PRT-07-2016-0071 10.4028/www.scientific.net/KEM.336-338.2218 10.1021/acssuschemeng.7b00327 10.1021/jf050731o 10.1155/2015/529235 10.1016/j.porgcoat.2012.12.005 10.1007/s11746-015-2592-9 10.1016/j.jclepro.2018.01.193 10.1016/j.porgcoat.2020.105588 10.1016/j.porgcoat.2013.08.002 10.1016/j.progpolymsci.2006.05.003 10.1016/j.eurpolymj.2018.03.030 10.1007/s10924-012-0560-0 10.1016/j.indcrop.2013.08.018 10.1021/acsami.0c10620 10.1002/pat.3522 10.1021/bm801411w 10.1016/j.indcrop.2015.08.054 10.1016/j.porgcoat.2017.07.002 10.1007/s11746-004-0930-7 10.1080/10643389.2018.1537741 10.1002/cssc.201000378 10.1007/s11746-010-1694-7 10.1016/j.eurpolymj.2008.05.037 10.1007/s10856-008-3572-5 10.1016/j.porgcoat.2012.12.011 10.1051/ocl/2016031 10.1016/j.porgcoat.2020.105942 10.1007/s11746-006-1021-5 10.1021/acssuschemeng.8b02423 10.1016/j.tsf.2006.02.032 10.1039/C4PY00339J 10.1016/j.porgcoat.2014.12.004 10.4028/www.scientific.net/MSF.894.109 10.1021/acssuschemeng.9b04713 10.1016/j.porgcoat.2015.05.030 10.2298/CICEQ150702014J 10.1016/j.indcrop.2012.11.028 10.1002/ejlt.200900087 10.1002/macp.201200582 10.1155/2018/6107656 10.1016/j.porgcoat.2015.05.014 10.1016/j.indcrop.2018.05.079 10.1108/PRT-02-2012-0017 10.1007/s10853-014-8244-x 10.1021/acssuschemeng.6b01756 10.1039/C7MH00488E 10.1016/j.porgcoat.2018.04.020 10.1021/acssuschemeng.5b00029 10.1016/j.cclet.2011.05.043 10.1088/1757-899X/536/1/012037 10.1021/acssuschemeng.8b03474 10.1007/s11998-018-0128-6 10.1021/acssuschemeng.9b01873 10.1016/j.indcrop.2019.111585 10.1016/j.indcrop.2018.06.006 10.1007/s11998-008-9154-0 10.1016/j.porgcoat.2006.01.007 10.1016/j.porgcoat.2015.08.015 10.1016/j.porgcoat.2019.04.030 10.1002/pola.24114 10.1016/j.eurpolymj.2014.10.012 10.1016/j.porgcoat.2020.105946 10.1002/ejlt.201500196 10.1007/s10853-013-7633-x 10.1016/j.porgcoat.2012.10.007 10.1016/j.porgcoat.2019.01.061 10.1007/s11998-008-9110-z 10.1002/app.38215 10.1007/s11746-015-2642-3 10.1007/s11746-005-1124-z 10.1016/j.colsurfa.2017.02.061 10.1007/s11998-018-0120-1 10.1016/j.jclepro.2018.11.047 10.1016/j.jnoncrysol.2011.08.024 10.1016/j.porgcoat.2019.03.042 10.1016/j.indcrop.2017.10.015 10.1016/j.porgcoat.2018.02.006 10.1080/15583724.2011.640443 10.1021/bm801030g 10.1002/slct.201801452 10.1021/acs.iecr.8b05936 10.1016/j.indcrop.2013.06.006 10.3390/polym10111235 10.1016/j.polymer.2014.01.014 10.1016/j.ijbiomac.2014.03.021 10.1016/j.porgcoat.2019.02.014 10.1080/03602559.2016.1275681 10.1016/j.eurpolymj.2016.07.007 10.1039/C8GC02267D 10.1016/j.eurpolymj.2017.06.003 10.1002/app.27783 10.1016/j.porgcoat.2005.01.003 10.1021/acssuschemeng.7b03309 10.1039/C5RA20356B 10.1016/j.porgcoat.2012.06.001 10.1002/clen.200800066 10.1080/1539445X.2018.1474117 10.1023/A:1021022123733 10.1002/pi.5627 10.3390/polym11061026 10.1016/j.porgcoat.2013.07.020 10.1007/s12034-015-0995-8 10.3390/polym12051165 10.1002/app.1414 10.1016/j.reactfunctpolym.2020.104734 10.1002/pen.20601 10.1007/s10924-011-0328-y 10.1021/bm049451s 10.1007/s11998-006-0018-1 10.1016/j.indcrop.2015.06.022 10.1016/j.eurpolymj.2012.12.013 10.1002/app.36232 10.1007/s11998-017-9948-z 10.1039/C8GC03560A 10.1016/j.porgcoat.2020.105880 10.1021/acs.macromol.5b02467 10.1080/10601320802637375 10.1007/s11998-011-9338-x 10.1007/s11746-998-0094-8 10.1016/S0300-9440(96)00671-6 10.1039/c2gc16230j 10.1016/j.porgcoat.2014.04.030 10.1021/acsomega.9b01174 10.1021/acs.chemrev.5b00355 10.1007/s10924-012-0467-9 10.1039/C4RA00587B 10.1016/j.porgcoat.2006.01.005 10.1007/s11998-018-0118-8 10.1021/ie501804p 10.1007/s42452-020-2527-4 10.1021/acs.macromol.6b01485 10.1007/s00289-017-1965-7 10.1002/app.20049 10.1002/pi.2340 10.1007/s10853-006-0310-6 10.1016/j.eurpolymj.2009.02.007 10.1016/j.indcrop.2016.04.027 10.1016/j.porgcoat.2012.09.001 10.3390/coatings5030527 10.1016/j.porgcoat.2016.04.014 10.1039/C4RA07519F 10.1016/j.porgcoat.2009.07.005 10.1016/S0960-8524(02)00203-1 10.1155/2015/745217 10.3390/molecules24234332 10.1002/jctb.5149 10.1007/BF02699641 10.1080/15583720701834224 10.1021/ie401237s 10.1039/C3BM60170F 10.1016/j.porgcoat.2018.11.020 10.1177/0731684408096949 10.1039/D0NJ00322K 10.1007/s10965-020-02170-w 10.1002/app.46722 10.1016/j.porgcoat.2013.03.019 10.1016/j.porgcoat.2016.11.024 10.1515/gps-2016-0144 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Jul 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Jul 2021 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.porgcoat.2021.106267 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-331X |
ExternalDocumentID | 10_1016_j_porgcoat_2021_106267 S0300944021001387 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M24 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCE SDF SDG SES SEW SMS SPC SPCBC SSG SSM SSZ T5K UHS WH7 WUQ ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c340t-3e74cb5455bc22cea8a77469337dc3395e3320716ac573a7be14bb2ef40cdcf83 |
IEDL.DBID | .~1 |
ISSN | 0300-9440 |
IngestDate | Fri Jul 25 03:19:11 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 Tue Jul 01 02:27:53 EDT 2025 Fri Feb 23 02:41:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vegetable oil Environment friendly Polyurethane coating Bio-based materials |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-3e74cb5455bc22cea8a77469337dc3395e3320716ac573a7be14bb2ef40cdcf83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2185-5780 0000-0002-7556-2978 |
PQID | 2560880420 |
PQPubID | 2045410 |
ParticipantIDs | proquest_journals_2560880420 crossref_citationtrail_10_1016_j_porgcoat_2021_106267 crossref_primary_10_1016_j_porgcoat_2021_106267 elsevier_sciencedirect_doi_10_1016_j_porgcoat_2021_106267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Progress in organic coatings |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Alam, Alandis (bib0120) 2011; 19 Narine, Yue, Kong (bib0515) 2007; 84 Wu, Cai, Chen, Qu (bib0900) 2018; 119 Panda, Panda, Mohanty, Nayak (bib0295) 2017; 6 Kashif, Ahmad (bib0850) 2014; 4 Madhi, Shirkavand Hadavand (bib0830) 2020; 2 Wei, Liao, Yong, Wang, Li, Huang, Pang (bib0615) 2019; 16 Marathe, Tatiya, Chaudhari, Lee, Mahulikar, Sohn, Gite (bib0095) 2015; 77 Lligadas (bib0010) 2013; 214 Patil, Rajput, Marathe, Kulkarni, Phadnis, Sohn, Mahulikar, Gite (bib0020) 2017; 106 Alagi, Choi, Hong (bib0025) 2016; 78 Su, Zhang, Zhou, Yang, Yuan (bib0745) 2020; 148 Yunus, Fakhru’I-Razi, Ooi, Biak, Iyuke (bib0370) 2004; 81 Zafar, Ghosal, Sharmin, Chaturvedi, Nishat (bib0775) 2019; 131 Chen, Zhang, Kessler (bib0645) 2014; 4 Yin, Zeng, Li, Hou, Gao (bib0690) 2011; 8 Liu, Zheng, Guo, Luo, Yuan, Liu (bib0670) 2014; 53 Li, Zhou, Gu, Wu (bib0805) 2006; 46 Cheng, Li, Yan, Liao, Zhang, Yu, Yi, Xu (bib0050) 2019; 127 Desroches, Escouvois, Auvergne, Caillol, Boutevin (bib0070) 2012; 52 Gaikwad, Gite, Mahulikar, Hundiwale, Yemul (bib0100) 2015; 86 Das, Konwar, Mandal, Karak (bib0400) 2013; 44 Bhosale, Shaik, Mandal (bib0275) 2015; 5 Błażek, Datta (bib0860) 2019; 49 Liu, Lu, Zhang, Liang, Liang, Jiang, Lu, Quirino, Zhang (bib0230) 2019; 21 Petrović, Guo, Javni, Cvetković, Hong (bib0490) 2008; 57 Bähr, Mülhaupt (bib0885) 2012; 14 Gite, Kulkarni, Hundiwale, Kapadi (bib0155) 2006; 89 Can, Küsefoğlu, Wool (bib0390) 2001; 81 Alam, Alandis (bib0475) 2012; 75 Hu, Shang, Bo, Jia, Feng, Zhang, Liu, Zhou (bib0730) 2019; 4 Gómez-Jiménez-Aberasturi, Ochoa-Gómez (bib0055) 2017; 92 Ghosh, Karak (bib0630) 2020; 44 Chaudhari, Tatiya, Hedaoo, Kulkarni, Gite (bib0445) 2013; 52 Mahapatra, Karak (bib0595) 2009; 46 Gultekin, Atalay-Oral, Erkal, Sahin, Karastova, Tantekin-Ersolmaz, Guner (bib0035) 2009; 20 Rajput, Hundiwale, Mahulikar, Gite (bib0435) 2014; 77 Gaddam, Kutcherlapati, Palanisamy (bib0115) 2017; 5 Sung, Comer, Forster, Hu, Floryancic, Brickweg, Fernando (bib0795) 2008; 5 Zhang, Tang, Zhang (bib0345) 2015; 2015 Nam, Seo, Seo, Khan, Han (bib0760) 2015; 85 Gurunathan, Chung (bib0820) 2017; 522 Nguyen-Tri, Tran, Plamondon, Tuduri, Vo, Nanda, Mishra, Chao, Bajpai (bib0770) 2019; 132 Yeh, Yao, Hsieh, Lin, Chen, Wu, Yang, Wu (bib0815) 2008; 44 Biswas, Adhvaryu, Gordon, Erhan, Willett (bib0305) 2005; 53 Thakur, Karak (bib0395) 2013; 76 Panda, Panda, Nayak, Mohanty (bib0150) 2018; 57 Paraskar, Prabhudesai, Deshpande, Kulkarni (bib0300) 2020; 27 Shaik, Baidya, Nehete, Shyamroy (bib0285) 2019; 16 Li, Wang, Zhao, Hou, Liu, Feng, Li, Zheng, Zhao, Wei (bib0355) 2021; 151 Palanisamy, Karuna, Satyavani, Kumar (bib0135) 2011; 88 Rodrigues, Murawski, Beckler, Lopes, Paterno, Quirino, Sales (bib0180) 2017 Li, Bouzidi, Narine (bib0205) 2017; 93 de Haro, Allegretti, Smit, Turri, D’Arrigo, Griffini (bib0005) 2019; 7 Yu, Jiang, Li, Ma, Wei, Ruan, Kong, Han (bib0320) 2015; 6 Liang, Lu, Liu, Ou, Wang, Quirino, Luo, Zhang (bib0170) 2020 Saetung, Somjit, Thongkapsri, Tulyapitak (bib0130) 2016; 23 Poussard, Mariage, Grignard, Detrembleur, Jérôme, Calberg, Heinrichs, De Winter, Gerbaux, Raquez, Bonnaud, Dubois (bib0895) 2016; 49 Guo, Zhang, Petrovic (bib0500) 2006; 41 Stirna, Fridrihsone, Lazdiņa, Misāne, Vilsone (bib0110) 2013; 21 Caillol, Desroches, Carlotti, Auvergne, Boutevin (bib0210) 2013; 1 Pfister, Xia, Larock (bib0125) 2011; 4 Campanella, Bonnaillie, Wool (bib0385) 2009; 112 Huang, Pang, Wang, Zhong, Zeng, Yang (bib0715) 2013; 76 Chattopadhyay, Raju (bib0600) 2007; 32 Xu, Pang, Shi (bib0675) 2006; 514 Mishra, Desai, Patel (bib0160) 2018; 111 Petrović, Cvetković, Hong, Wan, Zhang, Abraham, Malsam (bib0375) 2008; 108 Fu, Wang, Yu, Haroon, Haq, Shi, Wu, Wang (bib0695) 2019; 131 Chaudhari, Kulkarni, Mahulikar, Sohn, Gite (bib0415) 2015; 92 Liang, Wang, He, Wang, Liu, Lu, Zhang, Zhang (bib0660) 2018; 122 Peyrton, Chambaretaud, Avérous (bib0310) 2019; 24 Gite, Chaudhari, Kulkarni, Hundiwale (bib0410) 2013; 42 Madhi, Shirkavand, Amoozadeh (bib0840) 2018; 12 Black, Rawlins (bib0540) 2009; 45 Maisonneuve, Chollet, Grau, Cramail (bib0185) 2016; 23 Das, Mandal, Katiyar (bib0920) 2020; 137 Wang, Jang, Chen (bib0790) 2007; 336–338 Sardari, Sabbagh Alvani, Ghaffarian (bib0280) 2019; 133 Su, Lin, Zhang, Yang, Yuan (bib0700) 2020; 12 Kovács, Turczel, Szabó, Varga, Tóth, Anastas, Tuba (bib0045) 2017; 5 Raychura, Jauhari, Dholakiya (bib0460) 2018; 16 Petrović, Cvetković, Milić, Hong, Javni (bib0505) 2012; 125 Kunwong, Sumanochitraporn, Kaewpirom (bib0735) 2011; 33 Hibert, Lamarzelle, Maisonneuve, Grau, Cramail (bib0905) 2016; 82 Petrović, Cvetković, Hong, Wan, Zhang, Abraham, Malsam (bib0495) 2010; 112 Petrović, Zhang, Javni (bib0200) 2005; 6 Zaimahwati, Jalal, Rihayat, Zhafiri (bib0290) 2019; 536 Siyanbola, Sasidhar, Anjaneyulu, Kumar, Rao, Narayan, Olaofe, Akintayo, Raju (bib0455) 2013; 48 Javni, Hong, Petrović (bib0890) 2013; 128 Ionescu, Wan, Bilić, Petrović (bib0335) 2012; 20 Argyropoulos, Popa, Spilman, Bhattacharjee, Koonce (bib0510) 2009; 6 Maisonneuve, Lamarzelle, Rix, Grau, Cramail (bib0855) 2015; 115 Quirino, Silva, Payne, Lopes (bib0175) 2015; 5 Resetco, Hendriks, Badi, Du Prez (bib0535) 2017; 4 Chang, Chang, Lu (bib0405) 2018; 10 Prabhudesai, Paraskar, Kedar, Kulkarni (bib0080) 2020; 122 Ling, Ahmed Mohammed, Ghazali, Khairuddean (bib0420) 2014; 52 Lu, Larock (bib0635) 2008; 9 Zhang, Zhang, Wang, Dong, Zeng, Quirino, Lu, Wang, Zhang (bib0145) 2020; 142 More, Mhaske (bib0450) 2018; 47 Doley, Dolui (bib0875) 2018; 102 Charlon, Heinrich, Matter, Couzigné, Donnio, Avérous (bib0225) 2014; 61 Raychura, Dholakiya, Patel, Jauhari (bib0440) 2018; 3 Azemati, Khorasanizadeh, Shirkavand Hadavand, Sheikhzadeh (bib0835) 2017; 894 Hojabri, Kong, Narine (bib0555) 2010; 48 Tennebroek, van der Hoeven‐van Casteren, Swaans, van der Slot, Stals, Tuijtelaars, Koning (bib0650) 2019; 68 Silbert, Serum, LaScala, Sibi, Webster (bib0915) 2019; 7 Wang, Chen, Cui, Tian, He, Yang (bib0265) 2017; 5 Alagi, Choi, Seog, Hong (bib0625) 2016; 87 Rokicki, Parzuchowski, Mazurek (bib0220) 2015; 26 Shaik, Alam, Alandis (bib0240) 2015; 2015 Rajput, Mahulikar, Gite (bib0430) 2014; 77 Wang, Deng, Fan (bib0065) 2018; 2018 Li, Luo, Hu (bib0215) 2015 Mekewi, Ramadan, ElDarse, Abdel Rehim, Mosa, Ibrahim (bib0330) 2017; 26 Fu, Zheng, Yang, Chen, Shen (bib0550) 2014; 77 Schmidt, Ritter, Kratzert, Bruchmann, Mülhaupt (bib0870) 2016; 49 Yang, Liu, Han (bib0800) 2005; 53 Wunschik, Ingenbosch, Zähres, Horst, Mayer, Jäger, Strehmel, Dornbusch, Hoffmann-Jacobsen (bib0930) 2018; 20 Khanderay, Gite (bib0015) 2017 Chandra, Karak (bib0665) 2018; 6 Ismail, Motawie, Sadek (bib0425) 2011; 20 Pramanik, Konwarh, Sagar, Konwar, Karak (bib0620) 2013; 76 Liang, Feng, Lu, Liu, Yang, Luo, Zhang, Zhang (bib0030) 2018; 122 Hussain, Bonnia, Ismail, Ramli, Surip (bib0350) 2020 Dai, Liu, Ma, Wang, Shen, You, Zhu (bib0085) 2016; 97 Kulkarni, Deshpande, Mahajan, Mahulikar (bib0140) 2013; 49 Pathak, Kathalewar, Wazarkar, Sabnis (bib0910) 2015; 89 Vanbésien, Monflier, Hapiot (bib0190) 2016; 118 Liang, Zhao, Li, Huang, Yang, Yuan (bib0740) 2019; 138 Garrison, Kessler, Larock (bib0255) 2014; 55 Paraskar, Hatkar, Kulkarni (bib0685) 2020; 149 More, Lebarbé, Maisonneuve, Gadenne, Alfos, Cramail (bib0565) 2013; 49 Christopher, Kulandainathan, Harichandran (bib0780) 2016; 99 He, Xu, Wan, Bo, Yan (bib0925) 2019; 11 Hojabri, Kong, Narine (bib0560) 2009; 10 Paraskar, Kulkarni (bib0040) 2020 Akram, Sharmin, Ahmad (bib0765) 2014; 77 Hu, Feng, Shang, Bo, Jia, Liu, Xu, Zhou (bib0705) 2019; 16 Bhabhe, Athawale (bib0575) 1997; 30 Petrovic (bib0340) 2008; 48 Lokhande, Chambhare, Jagtap (bib0640) 2017; 74 Baştürk, İnan, Güngör (bib0325) 2013; 76 Chuayjuljit, Maungchareon, Saravari (bib0360) 2010; 29 Pramanik, Konwarh, Barua, Buragohain, Karak (bib0755) 2014; 2 Jankovic, Sinadinovic-Fiser, Govedarica, Pavlicevic, Budinski-Simendic (bib0315) 2017; 23 Wang, Zhou (bib0545) 2018; 6 Paraskar, Prabhudesai, Kulkarni (bib0165) 2020; 156 Jia, Gong, Ji, Kan (bib0195) 2011; 22 Alam, Alandis, Zafar, Sharmin, Al-Mohammadi (bib0845) 2018; 55 Kong, Liu, Qi, Curtis (bib0580) 2013; 76 Patil, Jirimali, Jagtap (bib0825) 2020 Zhang, Liu, Huang, Wang, Quirino, Zhang, Zhang (bib0245) 2020; 12 Deka, Karak (bib0605) 2009; 66 Benecke, Vijayendran, Garbark, Mitchell (bib0525) 2008; 36 Alam, Sharmin, Ashraf, Ahmad (bib0480) 2004; 50 Gryglewicz, Piechocki, Gryglewicz (bib0380) 2003; 87 Chaudhari, Gite, Rajput, Mahulikar, Kulkarni (bib0470) 2013; 50 Uosukainen, Linko, Lämsä, Tervakangas, Linko (bib0365) 1998; 75 Tran, Graiver, Narayan (bib0520) 2005; 82 Zhang, Wang, Zeng, Zhou (bib0570) 2019; 58 Huang, Weng, Lin, Yu, Yeh (bib0810) 2009; 112 Dai, Ma, Wu, Zhu, Liu (bib0235) 2015; 87 Ibrahim, Ahmad, Mohamed (bib0105) 2015; 38 Bakhshi, Yeganeh, Yari, Nezhad (bib0270) 2014; 49 Lowe (bib0530) 2014; 5 Guo, Demydov, Zhang, Petrovic (bib0485) 2002; 10 Li, Xiao, Wang, Zhao (bib0720) 2018; 180 Somani, Kansara, Parmar, Patel (bib0585) 2004; 53 Gogoi, Gogoi, Karak (bib0655) 2017; 112 Chang, Oyang, Hwang, Chen, Cheng (bib0680) 2012; 358 Sharmin, Zafar, Akram, Alam, Ahmad (bib0075) 2015; 76 Liang, Zhang, Zhang, Liu, Liang, Quirino, Chen, Liu, Lu, Zhang (bib0260) 2018; 210 Raychura, Jauhari, Patel, Dholakiya (bib0465) 2018; 135 Hu, Shang, Tang, Wang, Zhang, Jia, Feng, Wu, Liu, Hu, Lei, Zhou (bib0750) 2018; 117 Yu, Wang, Shi, Jiang, Zhao, Dong (bib0785) 2006; 55 Arniza, Hoong, Idris, Yeong, Hassan, Din, Choo (bib0090) 2015; 92 Johns, Gibbons, Smith, Edwards, Quirino (bib0865) 2016 Hu, Liu, Shang, Zhou (bib0250) 2018; 15 Zuber, Shah, Jamil, Asghar (bib0060) 2014; 67 Liu, Zhang, Zhu, Liu, Wang, Yan (bib0725) 2015; 3 Tamami, Sohn, Wilkes (bib0880) 2004; 92 Bat, Gündüz, Kısakürek, Akhmedov (bib0610) 2006; 55 Mannari, Massingill (bib0590) 2006; 3 Liu, Wang, Hu, Zhang, Shang, Lei, Zhou, Cai (bib0710) 2018; 121 Panda (10.1016/j.porgcoat.2021.106267_bib0150) 2018; 57 Guo (10.1016/j.porgcoat.2021.106267_bib0500) 2006; 41 Benecke (10.1016/j.porgcoat.2021.106267_bib0525) 2008; 36 Kashif (10.1016/j.porgcoat.2021.106267_bib0850) 2014; 4 Li (10.1016/j.porgcoat.2021.106267_bib0215) 2015 Bat (10.1016/j.porgcoat.2021.106267_bib0610) 2006; 55 Hu (10.1016/j.porgcoat.2021.106267_bib0250) 2018; 15 Nam (10.1016/j.porgcoat.2021.106267_bib0760) 2015; 85 Madhi (10.1016/j.porgcoat.2021.106267_bib0840) 2018; 12 Charlon (10.1016/j.porgcoat.2021.106267_bib0225) 2014; 61 Wang (10.1016/j.porgcoat.2021.106267_bib0065) 2018; 2018 Hu (10.1016/j.porgcoat.2021.106267_bib0730) 2019; 4 Liang (10.1016/j.porgcoat.2021.106267_bib0260) 2018; 210 Błażek (10.1016/j.porgcoat.2021.106267_bib0860) 2019; 49 Yin (10.1016/j.porgcoat.2021.106267_bib0690) 2011; 8 Baştürk (10.1016/j.porgcoat.2021.106267_bib0325) 2013; 76 Hu (10.1016/j.porgcoat.2021.106267_bib0750) 2018; 117 Yeh (10.1016/j.porgcoat.2021.106267_bib0815) 2008; 44 Wang (10.1016/j.porgcoat.2021.106267_bib0265) 2017; 5 Rajput (10.1016/j.porgcoat.2021.106267_bib0430) 2014; 77 Campanella (10.1016/j.porgcoat.2021.106267_bib0385) 2009; 112 Ibrahim (10.1016/j.porgcoat.2021.106267_bib0105) 2015; 38 Doley (10.1016/j.porgcoat.2021.106267_bib0875) 2018; 102 Li (10.1016/j.porgcoat.2021.106267_bib0205) 2017; 93 Wunschik (10.1016/j.porgcoat.2021.106267_bib0930) 2018; 20 Narine (10.1016/j.porgcoat.2021.106267_bib0515) 2007; 84 Cheng (10.1016/j.porgcoat.2021.106267_bib0050) 2019; 127 Tennebroek (10.1016/j.porgcoat.2021.106267_bib0650) 2019; 68 Mishra (10.1016/j.porgcoat.2021.106267_bib0160) 2018; 111 Deka (10.1016/j.porgcoat.2021.106267_bib0605) 2009; 66 Fu (10.1016/j.porgcoat.2021.106267_bib0695) 2019; 131 Petrović (10.1016/j.porgcoat.2021.106267_bib0505) 2012; 125 Alagi (10.1016/j.porgcoat.2021.106267_bib0025) 2016; 78 Gómez-Jiménez-Aberasturi (10.1016/j.porgcoat.2021.106267_bib0055) 2017; 92 Zaimahwati (10.1016/j.porgcoat.2021.106267_bib0290) 2019; 536 Zafar (10.1016/j.porgcoat.2021.106267_bib0775) 2019; 131 Prabhudesai (10.1016/j.porgcoat.2021.106267_bib0080) 2020; 122 Biswas (10.1016/j.porgcoat.2021.106267_bib0305) 2005; 53 Ionescu (10.1016/j.porgcoat.2021.106267_bib0335) 2012; 20 Petrovic (10.1016/j.porgcoat.2021.106267_bib0340) 2008; 48 Petrović (10.1016/j.porgcoat.2021.106267_bib0200) 2005; 6 Poussard (10.1016/j.porgcoat.2021.106267_bib0895) 2016; 49 Resetco (10.1016/j.porgcoat.2021.106267_bib0535) 2017; 4 Liang (10.1016/j.porgcoat.2021.106267_bib0740) 2019; 138 Shaik (10.1016/j.porgcoat.2021.106267_bib0285) 2019; 16 Arniza (10.1016/j.porgcoat.2021.106267_bib0090) 2015; 92 Azemati (10.1016/j.porgcoat.2021.106267_bib0835) 2017; 894 Garrison (10.1016/j.porgcoat.2021.106267_bib0255) 2014; 55 Liu (10.1016/j.porgcoat.2021.106267_bib0710) 2018; 121 Sharmin (10.1016/j.porgcoat.2021.106267_bib0075) 2015; 76 Chang (10.1016/j.porgcoat.2021.106267_bib0405) 2018; 10 Stirna (10.1016/j.porgcoat.2021.106267_bib0110) 2013; 21 Gurunathan (10.1016/j.porgcoat.2021.106267_bib0820) 2017; 522 Patil (10.1016/j.porgcoat.2021.106267_bib0020) 2017; 106 Zhang (10.1016/j.porgcoat.2021.106267_bib0245) 2020; 12 Das (10.1016/j.porgcoat.2021.106267_bib0400) 2013; 44 Kovács (10.1016/j.porgcoat.2021.106267_bib0045) 2017; 5 Bhabhe (10.1016/j.porgcoat.2021.106267_bib0575) 1997; 30 Hojabri (10.1016/j.porgcoat.2021.106267_bib0560) 2009; 10 Dai (10.1016/j.porgcoat.2021.106267_bib0235) 2015; 87 Hibert (10.1016/j.porgcoat.2021.106267_bib0905) 2016; 82 Gaddam (10.1016/j.porgcoat.2021.106267_bib0115) 2017; 5 Mekewi (10.1016/j.porgcoat.2021.106267_bib0330) 2017; 26 Yunus (10.1016/j.porgcoat.2021.106267_bib0370) 2004; 81 Maisonneuve (10.1016/j.porgcoat.2021.106267_bib0855) 2015; 115 Christopher (10.1016/j.porgcoat.2021.106267_bib0780) 2016; 99 Rodrigues (10.1016/j.porgcoat.2021.106267_bib0180) 2017 Raychura (10.1016/j.porgcoat.2021.106267_bib0440) 2018; 3 Alam (10.1016/j.porgcoat.2021.106267_bib0475) 2012; 75 Khanderay (10.1016/j.porgcoat.2021.106267_bib0015) 2017 Vanbésien (10.1016/j.porgcoat.2021.106267_bib0190) 2016; 118 Akram (10.1016/j.porgcoat.2021.106267_bib0765) 2014; 77 Liu (10.1016/j.porgcoat.2021.106267_bib0670) 2014; 53 Liang (10.1016/j.porgcoat.2021.106267_bib0660) 2018; 122 Thakur (10.1016/j.porgcoat.2021.106267_bib0395) 2013; 76 Hojabri (10.1016/j.porgcoat.2021.106267_bib0555) 2010; 48 Wei (10.1016/j.porgcoat.2021.106267_bib0615) 2019; 16 Wu (10.1016/j.porgcoat.2021.106267_bib0900) 2018; 119 Fu (10.1016/j.porgcoat.2021.106267_bib0550) 2014; 77 de Haro (10.1016/j.porgcoat.2021.106267_bib0005) 2019; 7 Liang (10.1016/j.porgcoat.2021.106267_bib0030) 2018; 122 Gite (10.1016/j.porgcoat.2021.106267_bib0155) 2006; 89 Chaudhari (10.1016/j.porgcoat.2021.106267_bib0415) 2015; 92 Petrović (10.1016/j.porgcoat.2021.106267_bib0490) 2008; 57 Liang (10.1016/j.porgcoat.2021.106267_bib0170) 2020 Jankovic (10.1016/j.porgcoat.2021.106267_bib0315) 2017; 23 Yang (10.1016/j.porgcoat.2021.106267_bib0800) 2005; 53 Raychura (10.1016/j.porgcoat.2021.106267_bib0465) 2018; 135 Mannari (10.1016/j.porgcoat.2021.106267_bib0590) 2006; 3 Petrović (10.1016/j.porgcoat.2021.106267_bib0495) 2010; 112 Somani (10.1016/j.porgcoat.2021.106267_bib0585) 2004; 53 Ghosh (10.1016/j.porgcoat.2021.106267_bib0630) 2020; 44 Tamami (10.1016/j.porgcoat.2021.106267_bib0880) 2004; 92 Caillol (10.1016/j.porgcoat.2021.106267_bib0210) 2013; 1 More (10.1016/j.porgcoat.2021.106267_bib0450) 2018; 47 Yu (10.1016/j.porgcoat.2021.106267_bib0785) 2006; 55 Kunwong (10.1016/j.porgcoat.2021.106267_bib0735) 2011; 33 Wang (10.1016/j.porgcoat.2021.106267_bib0790) 2007; 336–338 Xu (10.1016/j.porgcoat.2021.106267_bib0675) 2006; 514 Li (10.1016/j.porgcoat.2021.106267_bib0805) 2006; 46 Pramanik (10.1016/j.porgcoat.2021.106267_bib0620) 2013; 76 Chuayjuljit (10.1016/j.porgcoat.2021.106267_bib0360) 2010; 29 Das (10.1016/j.porgcoat.2021.106267_bib0920) 2020; 137 Li (10.1016/j.porgcoat.2021.106267_bib0355) 2021; 151 Ling (10.1016/j.porgcoat.2021.106267_bib0420) 2014; 52 Lowe (10.1016/j.porgcoat.2021.106267_bib0530) 2014; 5 Kong (10.1016/j.porgcoat.2021.106267_bib0580) 2013; 76 Jia (10.1016/j.porgcoat.2021.106267_bib0195) 2011; 22 Guo (10.1016/j.porgcoat.2021.106267_bib0485) 2002; 10 Patil (10.1016/j.porgcoat.2021.106267_bib0825) 2020 Alam (10.1016/j.porgcoat.2021.106267_bib0845) 2018; 55 Gite (10.1016/j.porgcoat.2021.106267_bib0410) 2013; 42 Mahapatra (10.1016/j.porgcoat.2021.106267_bib0595) 2009; 46 Gaikwad (10.1016/j.porgcoat.2021.106267_bib0100) 2015; 86 Zhang (10.1016/j.porgcoat.2021.106267_bib0145) 2020; 142 Chen (10.1016/j.porgcoat.2021.106267_bib0645) 2014; 4 Panda (10.1016/j.porgcoat.2021.106267_bib0295) 2017; 6 Chaudhari (10.1016/j.porgcoat.2021.106267_bib0445) 2013; 52 Petrović (10.1016/j.porgcoat.2021.106267_bib0375) 2008; 108 Can (10.1016/j.porgcoat.2021.106267_bib0390) 2001; 81 Huang (10.1016/j.porgcoat.2021.106267_bib0715) 2013; 76 Paraskar (10.1016/j.porgcoat.2021.106267_bib0685) 2020; 149 Shaik (10.1016/j.porgcoat.2021.106267_bib0240) 2015; 2015 Javni (10.1016/j.porgcoat.2021.106267_bib0890) 2013; 128 Zuber (10.1016/j.porgcoat.2021.106267_bib0060) 2014; 67 Li (10.1016/j.porgcoat.2021.106267_bib0720) 2018; 180 Liu (10.1016/j.porgcoat.2021.106267_bib0230) 2019; 21 Hu (10.1016/j.porgcoat.2021.106267_bib0705) 2019; 16 Lu (10.1016/j.porgcoat.2021.106267_bib0635) 2008; 9 Palanisamy (10.1016/j.porgcoat.2021.106267_bib0135) 2011; 88 Su (10.1016/j.porgcoat.2021.106267_bib0700) 2020; 12 He (10.1016/j.porgcoat.2021.106267_bib0925) 2019; 11 Yu (10.1016/j.porgcoat.2021.106267_bib0320) 2015; 6 Pathak (10.1016/j.porgcoat.2021.106267_bib0910) 2015; 89 Lligadas (10.1016/j.porgcoat.2021.106267_bib0010) 2013; 214 Kulkarni (10.1016/j.porgcoat.2021.106267_bib0140) 2013; 49 Uosukainen (10.1016/j.porgcoat.2021.106267_bib0365) 1998; 75 Ismail (10.1016/j.porgcoat.2021.106267_bib0425) 2011; 20 Dai (10.1016/j.porgcoat.2021.106267_bib0085) 2016; 97 Argyropoulos (10.1016/j.porgcoat.2021.106267_bib0510) 2009; 6 Raychura (10.1016/j.porgcoat.2021.106267_bib0460) 2018; 16 Silbert (10.1016/j.porgcoat.2021.106267_bib0915) 2019; 7 Liu (10.1016/j.porgcoat.2021.106267_bib0725) 2015; 3 Nguyen-Tri (10.1016/j.porgcoat.2021.106267_bib0770) 2019; 132 Alam (10.1016/j.porgcoat.2021.106267_bib0120) 2011; 19 Bähr (10.1016/j.porgcoat.2021.106267_bib0885) 2012; 14 Peyrton (10.1016/j.porgcoat.2021.106267_bib0310) 2019; 24 Wang (10.1016/j.porgcoat.2021.106267_bib0545) 2018; 6 Desroches (10.1016/j.porgcoat.2021.106267_bib0070) 2012; 52 Paraskar (10.1016/j.porgcoat.2021.106267_bib0165) 2020; 156 Su (10.1016/j.porgcoat.2021.106267_bib0745) 2020; 148 Quirino (10.1016/j.porgcoat.2021.106267_bib0175) 2015; 5 Madhi (10.1016/j.porgcoat.2021.106267_bib0830) 2020; 2 Gultekin (10.1016/j.porgcoat.2021.106267_bib0035) 2009; 20 Saetung (10.1016/j.porgcoat.2021.106267_bib0130) 2016; 23 Chandra (10.1016/j.porgcoat.2021.106267_bib0665) 2018; 6 Bhosale (10.1016/j.porgcoat.2021.106267_bib0275) 2015; 5 Johns (10.1016/j.porgcoat.2021.106267_bib0865) 2016 Gryglewicz (10.1016/j.porgcoat.2021.106267_bib0380) 2003; 87 Schmidt (10.1016/j.porgcoat.2021.106267_bib0870) 2016; 49 Chaudhari (10.1016/j.porgcoat.2021.106267_bib0470) 2013; 50 Zhang (10.1016/j.porgcoat.2021.106267_bib0345) 2015; 2015 Lokhande (10.1016/j.porgcoat.2021.106267_bib0640) 2017; 74 Rajput (10.1016/j.porgcoat.2021.106267_bib0435) 2014; 77 Chattopadhyay (10.1016/j.porgcoat.2021.106267_bib0600) 2007; 32 Sung (10.1016/j.porgcoat.2021.106267_bib0795) 2008; 5 Gogoi (10.1016/j.porgcoat.2021.106267_bib0655) 2017; 112 Marathe (10.1016/j.porgcoat.2021.106267_bib0095) 2015; 77 Chang (10.1016/j.porgcoat.2021.106267_bib0680) 2012; 358 Sardari (10.1016/j.porgcoat.2021.106267_bib0280) 2019; 133 Tran (10.1016/j.porgcoat.2021.106267_bib0520) 2005; 82 Bakhshi (10.1016/j.porgcoat.2021.106267_bib0270) 2014; 49 Pramanik (10.1016/j.porgcoat.2021.106267_bib0755) 2014; 2 Hussain (10.1016/j.porgcoat.2021.106267_bib0350) 2020 More (10.1016/j.porgcoat.2021.106267_bib0565) 2013; 49 Siyanbola (10.1016/j.porgcoat.2021.106267_bib0455) 2013; 48 Zhang (10.1016/j.porgcoat.2021.106267_bib0570) 2019; 58 Paraskar (10.1016/j.porgcoat.2021.106267_bib0300) 2020; 27 Rokicki (10.1016/j.porgcoat.2021.106267_bib0220) 2015; 2 |
References_xml | – volume: 77 start-page: 239 year: 2015 end-page: 250 ident: bib0095 article-title: Neem acetylated polyester polyol-Renewable source based smart PU coatings containing quinoline (corrosion inhibitor) encapsulated polyurea microcapsules for enhance anticorrosive property publication-title: Ind. Crops Prod. – volume: 23 start-page: 1 year: 2016 end-page: 10 ident: bib0130 article-title: Modified rubber seed oil based polyurethane foams publication-title: J. Polym. Res. – volume: 49 start-page: 823 year: 2013 end-page: 833 ident: bib0565 article-title: Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes publication-title: Eur. Polym. J. – volume: 118 start-page: 26 year: 2016 end-page: 35 ident: bib0190 article-title: Hydroformylation of vegetable oils: more than 50 years of technical innovation, successful research, and development publication-title: Eur. J. Lipid Sci. Technol. – volume: 137 start-page: 1 year: 2020 end-page: 12 ident: bib0920 article-title: Environment-friendly synthesis of sustainable chitosan-based nonisocyanate polyurethane: a biobased polymeric film publication-title: J. Appl. Polym. Sci. – volume: 30 start-page: 207 year: 1997 end-page: 211 ident: bib0575 article-title: Chemoenzymatic synthesis of oil-modified acrylic monomers as reactive diluents for high solids coatings publication-title: Prog. Org. Coatings. – volume: 89 start-page: 160 year: 2015 end-page: 169 ident: bib0910 article-title: Non-isocyanate polyurethane (NIPU) from tris-2-hydroxy ethyl isocyanurate modified fatty acid for coating applications publication-title: Prog. Org. Coatings. – volume: 135 start-page: 46722 year: 2018 ident: bib0465 article-title: A renewable approach toward the development of mahua oil-based wood protective polyurethane coatings: synthesis and performance evaluation publication-title: J. Appl. Polym. Sci. – volume: 5 start-page: 6447 year: 2017 end-page: 6455 ident: bib0115 article-title: Self-cross-Linkable anionic waterborne polyurethane–Silanol dispersions from cottonseed-oil-Based phosphorylated polyol as ionic Soft segment publication-title: ACS Sustainable. Chem. Eng. – volume: 76 start-page: 985 year: 2013 end-page: 992 ident: bib0325 article-title: Flame retardant UV-curable acrylated epoxidized soybean oil based organic–inorganic hybrid coating publication-title: Prog. Org. Coatings. – volume: 4 start-page: 35476 year: 2014 end-page: 35483 ident: bib0645 article-title: Anionic waterborne polyurethane dispersion from a bio-based ionic segment publication-title: RSC Adv. – volume: 12 start-page: 1165 year: 2020 ident: bib0700 article-title: One-step synthesis of novel renewable vegetable oil-based acrylate prepolymers and their application in UV-Curable coatings publication-title: Polymers – volume: 214 start-page: 415 year: 2013 end-page: 422 ident: bib0010 article-title: Renewable polyols for polyurethane synthesis via Thiol-ene/yne couplings of plant oils publication-title: Macromol. Chem. Phys. – volume: 20 start-page: 1 year: 2011 end-page: 8 ident: bib0425 article-title: Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols publication-title: Egypt. J. Pet. – volume: 5 start-page: 376 year: 2017 end-page: 381 ident: bib0265 article-title: Castor oil based Biothiol as a highly stable and self-initiated oligomer for photoinitiator-free UV coatings publication-title: ACS Sustain. Chem. Eng. – volume: 48 start-page: 8215 year: 2013 end-page: 8227 ident: bib0455 article-title: Anti-microbial and anti-corrosive poly (ester amide urethane) siloxane modified ZnO hybrid coatings from Thevetia peruviana seed oil publication-title: J. Mater. Sci. – volume: 6 start-page: 137 year: 2015 end-page: 155 ident: bib0320 article-title: Synthesis and characterization of polyurethanes from oleic, erucic and 10-Undecenoic acids publication-title: Polym. from Renew. Resour. – volume: 41 start-page: 4914 year: 2006 end-page: 4920 ident: bib0500 article-title: Structure–property relationships in polyurethanes derived from soybean oil publication-title: J. Mater. Sci. – volume: 4 start-page: 12505 year: 2019 end-page: 12511 ident: bib0730 article-title: Synthesis and properties of UV-Curable polyfunctional polyurethane acrylate resins from cardanol publication-title: ACS Omega – volume: 122 start-page: 1900387 year: 2020 ident: bib0080 article-title: Sea buckthorn oil tocopherol extraction’s by‐product utilization in green synthesis of polyurethane coating publication-title: Eur. J. Lipid Sci. Technol. – volume: 20 start-page: 4738 year: 2018 end-page: 4745 ident: bib0930 article-title: Biocatalytic and solvent-free synthesis of a bio-based biscyclocarbonate publication-title: Green Chem. – volume: 122 start-page: 182 year: 2018 end-page: 189 ident: bib0660 article-title: Aqueous anionic polyurethane dispersions from castor oil publication-title: Ind. Crops Prod. – volume: 894 start-page: 109 year: 2017 end-page: 112 ident: bib0835 article-title: Study on radiation properties of Polyurethane/Nano zirconium oxide nanocomposite coatings publication-title: Mater. Sci. Forum. – volume: 92 start-page: 243 year: 2015 end-page: 255 ident: bib0090 article-title: Synthesis of transesterified palm olein-based polyol and rigid polyurethanes from this polyol publication-title: J. Am. Oil Chem. Soc. – volume: 16 start-page: 415 year: 2019 end-page: 428 ident: bib0615 article-title: Castor oil-based waterborne hyperbranched polyurethane acrylate emulsion for UV-curable coatings with excellent chemical resistance and high hardness publication-title: J. Coatings Technol. Res. – volume: 23 start-page: 97 year: 2017 end-page: 111 ident: bib0315 article-title: Kinetics of soybean oil epoxidation with peracetic acid formed in situ in the presence of an ion exchange resin: pseudo-homogeneous model publication-title: Chem. Ind. Chem. Eng. Q. – volume: 6 start-page: 16412 year: 2018 end-page: 16423 ident: bib0665 article-title: Environmentally friendly polyurethane dispersion derived from dimer acid and citric acid publication-title: ACS Sustain. Chem. Eng. – volume: 92 start-page: 883 year: 2004 end-page: 891 ident: bib0880 article-title: Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks publication-title: J. Appl. Polym. Sci. – volume: 10 start-page: 884 year: 2009 end-page: 891 ident: bib0560 article-title: Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization publication-title: Biomacromolecules – volume: 3 start-page: 151 year: 2006 end-page: 157 ident: bib0590 article-title: Two-component high-solid polyurethane coating systems based on soy polyols publication-title: J. Coatings Technol. Res. – volume: 55 start-page: 330 year: 2006 end-page: 336 ident: bib0610 article-title: Synthesis and characterization of hyperbranched and air drying fatty acid based resins publication-title: Prog. Org. Coatings. – volume: 47 start-page: 154 year: 2018 end-page: 163 ident: bib0450 article-title: Synthesis of polyurethane dispersion from polyesteramide polyol publication-title: Pigment Resin Technol. – volume: 97 start-page: 210 year: 2016 end-page: 215 ident: bib0085 article-title: Soybean oil-based UV-curable coatings strengthened by crosslink agent derived from itaconic acid together with 2-hydroxyethyl methacrylate phosphate publication-title: Prog. Org. Coatings. – volume: 89 start-page: 117 year: 2006 end-page: 122 ident: bib0155 article-title: Synthesis and characterisation of polyurethane coatings based on trimer of isophorone diisocyanate (IPDI) and monoglycerides of oils publication-title: Surf. Coatings Int. Part B Coatings Trans. – volume: 26 start-page: 707 year: 2015 end-page: 761 ident: bib0220 article-title: Non-isocyanate polyurethanes: synthesis, properties, and applications publication-title: Polym. Adv. Technol. – volume: 76 start-page: 689 year: 2013 end-page: 697 ident: bib0620 article-title: Bio-degradable vegetable oil based hyperbranched poly(ester amide) as an advanced surface coating material publication-title: Prog. Org. Coatings. – volume: 67 start-page: 254 year: 2014 end-page: 259 ident: bib0060 article-title: Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer publication-title: Int. J. Biol. Macromol. – volume: 57 start-page: 500 year: 2018 end-page: 522 ident: bib0150 article-title: A review on waterborne thermosetting polyurethane coatings based on Castor oil: synthesis, characterization, and application publication-title: Polym. Technol. Eng. – volume: 6 start-page: 713 year: 2005 end-page: 719 ident: bib0200 article-title: Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis publication-title: Biomacromolecules – start-page: 55 year: 2016 end-page: 71 ident: bib0865 article-title: Plant oil-based polyhydroxyurethanes publication-title: Bio-Based Plant Oil Polymers and Composites – volume: 61 start-page: 197 year: 2014 end-page: 205 ident: bib0225 article-title: Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols publication-title: Eur. Polym. J. – volume: 38 start-page: 1155 year: 2015 end-page: 1161 ident: bib0105 article-title: Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes publication-title: Bull. Mater. Sci. – volume: 112 start-page: 57 year: 2017 end-page: 65 ident: bib0655 article-title: Dimer acid based waterborne hyperbranched poly(ester amide) thermoset as a sustainable coating material publication-title: Prog. Org. Coatings. – volume: 5 start-page: 527 year: 2015 end-page: 544 ident: bib0175 article-title: Synthesis and thermomechanical properties of polyurethanes and biocomposites derived from macauba oil and coconut husk fibers publication-title: Coatings – volume: 45 start-page: 1433 year: 2009 end-page: 1441 ident: bib0540 article-title: Thiol–ene UV-curable coatings using vegetable oil macromonomers publication-title: Eur. Polym. J. – volume: 5 start-page: 103625 year: 2015 end-page: 103635 ident: bib0275 article-title: Synthesis and characterization of castor oil based hybrid polymers and their polyurethane–urea/silica coatings publication-title: RSC Adv. – volume: 77 start-page: 38 year: 2014 end-page: 46 ident: bib0430 article-title: Biobased dimer fatty acid containing two pack polyurethane for wood finished coatings publication-title: Prog. Org. Coatings. – volume: 93 start-page: 232 year: 2017 end-page: 245 ident: bib0205 article-title: Polyols from self-metathesis-generated oligomers of soybean oil and their polyurethane foams publication-title: Eur. Polym. J. – volume: 12 start-page: 37607 year: 2020 end-page: 37618 ident: bib0245 article-title: Eco-Friendly Castor Oil-Based Delivery System with Sustained Pesticide Release and Enhanced Retention publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 1004 year: 2014 end-page: 1011 ident: bib0255 article-title: Effects of unsaturation and different ring-opening methods on the properties of vegetable oil-based polyurethane coatings publication-title: Polymer – volume: 111 start-page: 165 year: 2018 end-page: 178 ident: bib0160 article-title: (UV/Oxidative) dual curing polyurethane dispersion from cardanol based polyol: synthesis and characterization publication-title: Ind. Crops Prod. – volume: 156 start-page: 104734 year: 2020 ident: bib0165 article-title: Synthesis and characterizations of air-cured polyurethane coatings from vegetable oils and itaconic acid publication-title: React. Funct. Polym. – volume: 127 start-page: 194 year: 2019 end-page: 201 ident: bib0050 article-title: Design and synthesis of novel aminosiloxane crosslinked linseed oil-based waterborne polyurethane composites and its physicochemical properties publication-title: Prog. Org. Coatings. – volume: 81 start-page: 497 year: 2004 end-page: 503 ident: bib0370 article-title: Kinetics of transesterification of palm-based methyl esters with trimethylolpropane publication-title: J. Am. Oil Chem. Soc. – volume: 52 start-page: 10189 year: 2013 end-page: 10197 ident: bib0445 article-title: Polyurethane prepared from neem oil polyesteramides for self-healing anticorrosive coatings publication-title: Ind. Eng. Chem. Res. – volume: 4 start-page: 20984 year: 2014 end-page: 20999 ident: bib0850 article-title: Polyorthotoluidine dispersed castor oil polyurethane anticorrosive nanocomposite coatings publication-title: RSC Adv. – volume: 66 start-page: 192 year: 2009 end-page: 198 ident: bib0605 article-title: Bio-based hyperbranched polyurethanes for surface coating applications publication-title: Prog. Org. Coatings. – volume: 336–338 start-page: 2218 year: 2007 end-page: 2220 ident: bib0790 article-title: Effects of nanosized Iron oxide with different morphology on nanomechanical properties of nanocomposite coating publication-title: Key Eng. Mater. – volume: 5 start-page: 419 year: 2008 end-page: 430 ident: bib0795 article-title: Scratch behavior of nano-alumina/polyurethane coatings publication-title: J. Coatings Technol. Res. – volume: 55 start-page: 698 year: 2018 end-page: 708 ident: bib0845 article-title: Polyurethane-TiO 2 nanocomposite coatings from sunflower- oil-based amide diol as soft segment publication-title: J. Macromol. Sci. Part A. – volume: 92 start-page: 733 year: 2015 end-page: 741 ident: bib0415 article-title: Development of PU Coatings from Neem Oil Based Alkyds Prepared by the Monoglyceride Route publication-title: J. Am. Oil Chem. Soc. – volume: 16 start-page: 499 year: 2019 end-page: 509 ident: bib0705 article-title: Bio-based reactive diluent derived from cardanol and its application in polyurethane acrylate (PUA) coatings with high performance publication-title: J. Coatings Technol. Res. – volume: 131 start-page: 259 year: 2019 end-page: 275 ident: bib0775 article-title: A review on cleaner production of polymeric and nanocomposite coatings based on waterborne polyurethane dispersions from seed oils publication-title: Prog. Org. Coatings. – volume: 112 start-page: 97 year: 2010 end-page: 102 ident: bib0495 article-title: Vegetable oil-based triols from hydroformylated fatty acids and polyurethane elastomers publication-title: Eur. J. Lipid Sci. Technol. – volume: 87 start-page: 197 year: 2015 end-page: 203 ident: bib0235 article-title: High bio-based content waterborne UV-curable coatings with excellent adhesion and flexibility publication-title: Prog. Org. Coatings. – volume: 77 start-page: 1360 year: 2014 end-page: 1368 ident: bib0435 article-title: Fatty acids based transparent polyurethane films and coatings publication-title: Prog. Org. Coatings. – volume: 75 start-page: 527 year: 2012 end-page: 536 ident: bib0475 article-title: Microwave assisted synthesis and characterization of olive oil based polyetheramide as anticorrosive polymeric coatings publication-title: Prog. Org. Coatings. – volume: 2 start-page: 192 year: 2014 end-page: 202 ident: bib0755 article-title: Bio-based hyperbranched poly(ester amide)–MWCNT nanocomposites: multimodalities at the biointerface publication-title: Biomater. Sci. – volume: 57 start-page: 275 year: 2008 end-page: 281 ident: bib0490 article-title: Polyurethane networks from polyols obtained by hydroformylation of soybean oil publication-title: Polym. Int. – volume: 15 start-page: 77 year: 2018 end-page: 85 ident: bib0250 article-title: Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate publication-title: J. Coatings Technol. Res. – volume: 151 start-page: 105942 year: 2021 ident: bib0355 article-title: UV LED curable epoxy soybean-oil-based waterborne PUA resin for wood coatings publication-title: Prog. Org. Coatings. – volume: 16 start-page: 209 year: 2018 end-page: 219 ident: bib0460 article-title: Development of wood protective polyurethane coatings from mahua oil-based polyetheramide polyol: a renewable approach publication-title: Soft Mater. – volume: 21 start-page: 526 year: 2019 end-page: 537 ident: bib0230 article-title: Thermosetting polyurethanes prepared with the aid of a fully bio-based emulsifier with high bio-content, high solid content, and superior mechanical properties publication-title: Green Chem. – volume: 2 start-page: 724 year: 2020 ident: bib0830 article-title: Bio-based UV-curable urethane acrylate graphene nanocomposites: synthesis and properties publication-title: SN Appl. Sci. – start-page: 127774 year: 2020 ident: bib0170 article-title: UV absorption, anticorrosion, and long-term antibacterial performance of vegetable oil based cationic waterborne polyurethanes enabled by amino acids publication-title: Chem. Eng. J. – volume: 24 start-page: 4332 year: 2019 ident: bib0310 article-title: New insight on the study of the kinetic of biobased polyurethanes synthesis based on oleo-chemistry publication-title: Molecules – volume: 77 start-page: 957 year: 2014 end-page: 964 ident: bib0765 article-title: Linseed polyurethane/tetraethoxyorthosilane/fumed silica hybrid nanocomposite coatings: physico-mechanical and potentiodynamic polarization measurements studies publication-title: Prog. Org. Coatings. – volume: 77 start-page: 53 year: 2014 end-page: 60 ident: bib0550 article-title: A fully bio-based waterborne polyurethane dispersion from vegetable oils: from synthesis of precursors by thiol-ene reaction to study of final material publication-title: Prog. Org. Coatings. – volume: 19 start-page: 784 year: 2011 end-page: 792 ident: bib0120 article-title: Microwave assisted synthesis of urethane modified polyesteramide coatings from Jatropha seed oil publication-title: J. Polym. Environ. – volume: 10 start-page: 49 year: 2002 end-page: 52 ident: bib0485 article-title: Polyols and polyurethanes from hydroformylation of soybean oil publication-title: J. Polym. Environ. – volume: 53 start-page: 9485 year: 2005 end-page: 9490 ident: bib0305 article-title: Synthesis of diethylamine-functionalized soybean oil publication-title: J. Agric. Food Chem. – volume: 180 start-page: 272 year: 2018 end-page: 279 ident: bib0720 article-title: Development of green waterborne UV-curable vegetable oil-based urethane acrylate pigment prints adhesive: preparation and application publication-title: J. Clean. Prod. – volume: 5 start-page: 11215 year: 2017 end-page: 11220 ident: bib0045 article-title: Synthesis of 1,6-Hexandiol, polyurethane monomer derivatives via isomerization metathesis of methyl linolenate publication-title: ACS Sustain. Chem. Eng. – volume: 108 start-page: 1184 year: 2008 end-page: 1190 ident: bib0375 article-title: Polyester polyols and polyurethanes from ricinoleic acid publication-title: J. Appl. Polym. Sci. – volume: 7 start-page: 11700 year: 2019 end-page: 11711 ident: bib0005 article-title: Biobased polyurethane coatings with high biomass content: tailored properties by lignin selection publication-title: ACS Sustain. Chem. Eng. – volume: 9 start-page: 3332 year: 2008 end-page: 3340 ident: bib0635 article-title: Soybean-oil-Based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties publication-title: Biomacromolecules – volume: 358 start-page: 72 year: 2012 end-page: 76 ident: bib0680 article-title: Preparation of polymer/silica hybrid hard coatings with enhanced hydrophobicity on plastic substrates publication-title: J. Non. Solids – volume: 88 start-page: 541 year: 2011 end-page: 549 ident: bib0135 article-title: Development and characterization of water-blown polyurethane foams from Diethanolamides of Karanja oil publication-title: J. Am. Oil Chem. Soc. – volume: 26 start-page: 9 year: 2017 end-page: 15 ident: bib0330 article-title: Preparation and characterization of polyurethane plasticizer for flexible packaging applications: natural oils affirmed access publication-title: Egypt. J. Pet. – volume: 2015 start-page: 1 year: 2015 end-page: 8 ident: bib0345 article-title: Polyols prepared from ring-opening epoxidized soybean oil by a Castor oil-Based fatty diol publication-title: Int. J. Polym. Sci. – volume: 112 start-page: 2567 year: 2009 end-page: 2578 ident: bib0385 article-title: Polyurethane foams from soyoil-based polyols publication-title: J. Appl. Polym. Sci. – volume: 82 start-page: 653 year: 2005 end-page: 659 ident: bib0520 article-title: Ozone-mediated polyol synthesis from soybean oil publication-title: J. Am. Oil Chem. Soc. – volume: 58 start-page: 5195 year: 2019 end-page: 5201 ident: bib0570 article-title: High biobased carbon content polyurethane dispersions synthesized from fatty acid-based isocyanate publication-title: Ind. Eng. Chem. Res. – volume: 115 start-page: 12407 year: 2015 end-page: 12439 ident: bib0855 article-title: Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s publication-title: Chem. Rev. – volume: 133 start-page: 198 year: 2019 end-page: 205 ident: bib0280 article-title: Castor oil-derived water-based polyurethane coatings: structure manipulation for property enhancement publication-title: Prog. Org. Coatings. – volume: 87 start-page: 35 year: 2003 end-page: 39 ident: bib0380 article-title: Preparation of polyol esters based on vegetable and animal fats publication-title: Bioresour. Technol. – volume: 50 start-page: 224 year: 2004 end-page: 230 ident: bib0480 article-title: Newly developed urethane modified polyetheramide-based anticorrosive coatings from a sustainable resource publication-title: Prog. Org. Coatings. – volume: 36 start-page: 694 year: 2008 end-page: 699 ident: bib0525 article-title: Low cost and highly reactive biobased polyols: a co-product of the emerging biorefinery economy publication-title: Clean - Soil, Air, Water. – year: 2020 ident: bib0040 article-title: Synthesis of isostearic Acid/Dimer fatty acid-based polyesteramide polyol for the development of green polyurethane coatings publication-title: J. Polym. Environ. – volume: 53 start-page: 10835 year: 2014 end-page: 10840 ident: bib0670 article-title: Synthesis of new biobased antibacterial methacrylates derived from tannic acid and their application in UV-Cured coatings publication-title: Ind. Eng. Chem. Res. – volume: 117 start-page: 295 year: 2018 end-page: 302 ident: bib0750 article-title: Use of cardanol-based acrylate as reactive diluent in UV-curable castor oil-based polyurethane acrylate resins publication-title: Ind. Crops Prod. – volume: 44 start-page: 396 year: 2013 end-page: 404 ident: bib0400 article-title: Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material publication-title: Ind. Crops Prod. – volume: 42 start-page: 353 year: 2013 end-page: 361 ident: bib0410 article-title: Renewable source-based polyurethane coatings by using monoglycerides of vegetable oils and its modification by nano TiO 2 publication-title: Pigment Resin Technol. – start-page: 15 year: 2015 end-page: 43 ident: bib0215 article-title: Polyols and polyurethanes from vegetable oils and their derivatives publication-title: Bio-based Polyols and Polyurethanes – volume: 92 start-page: 705 year: 2017 end-page: 711 ident: bib0055 article-title: New approaches to producing polyols from biomass publication-title: J. Chem. Technol. Biotechnol. – volume: 14 start-page: 483 year: 2012 ident: bib0885 article-title: Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion publication-title: Green Chem. – volume: 3 start-page: 10837 year: 2018 end-page: 10842 ident: bib0440 article-title: Development of non-traditional vegetable-oil-Based two-pack polyurethane for wood-finished coating: an alternative approach publication-title: ChemistrySelect. – volume: 3 start-page: 1313 year: 2015 end-page: 1320 ident: bib0725 article-title: UV-curable coatings from multiarmed cardanol-based acrylate oligomers publication-title: ACS Sustain. Chem. Eng. – volume: 86 start-page: 164 year: 2015 end-page: 172 ident: bib0100 article-title: Eco-friendly polyurethane coatings from cottonseed and karanja oil publication-title: Prog. Org. Coatings. – volume: 8 start-page: 577 year: 2011 end-page: 584 ident: bib0690 article-title: Synthesis, photopolymerization kinetics, and thermal properties of UV-curable waterborne hyperbranched polyurethane acrylate dispersions publication-title: J. Coatings Technol. Res. – volume: 99 start-page: 91 year: 2016 end-page: 102 ident: bib0780 article-title: Biopolymers nanocomposite for material protection: enhancement of corrosion protection using waterborne polyurethane nanocomposite coatings publication-title: Prog. Org. Coatings. – volume: 82 start-page: 114 year: 2016 end-page: 121 ident: bib0905 article-title: Bio-based aliphatic primary amines from alcohols through the ‘Nitrile route’ towards non-isocyanate polyurethanes publication-title: Eur. Polym. J. – volume: 84 start-page: 173 year: 2007 end-page: 179 ident: bib0515 article-title: Production of polyols from canola oil and their chemical identification and physical properties publication-title: J. Am. Oil Chem. Soc. – volume: 76 start-page: 215 year: 2015 end-page: 229 ident: bib0075 article-title: Recent advances in vegetable oils based environment friendly coatings: a review publication-title: Ind. Crops Prod. – volume: 32 start-page: 352 year: 2007 end-page: 418 ident: bib0600 article-title: Structural engineering of polyurethane coatings for high performance applications publication-title: Prog. Polym. Sci. – volume: 16 start-page: 387 year: 2019 end-page: 400 ident: bib0285 article-title: Synthesis and characterization of castor oil-based branched polyols from renewable resources and their polyurethane-urea coatings publication-title: J. Coatings Technol. Res. – volume: 48 start-page: 3302 year: 2010 end-page: 3310 ident: bib0555 article-title: Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane publication-title: J. Polym. Sci. Part A Polym. Chem. – start-page: 1 year: 2020 end-page: 9 ident: bib0825 article-title: Study of coating performance of bio-based hyperbranched polyester polyol/graphene oxide composites in PU-coating publication-title: J. Macromol. Sci. Part A. – volume: 53 start-page: 283 year: 2004 end-page: 293 ident: bib0585 article-title: High solids polyurethane coatings from castor-oil-based polyester-polyols publication-title: Int. J. Polym. Mater. – volume: 121 start-page: 236 year: 2018 end-page: 246 ident: bib0710 article-title: Castor oil-based polyfunctional acrylate monomers: synthesis and utilization in UV-curable materials publication-title: Prog. Org. Coatings. – volume: 76 start-page: 1151 year: 2013 end-page: 1160 ident: bib0580 article-title: Preparation and characterization of high-solid polyurethane coating systems based on vegetable oil derived polyols publication-title: Prog. Org. Coatings. – volume: 52 start-page: 38 year: 2012 end-page: 79 ident: bib0070 article-title: From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products publication-title: Polym. Rev. – volume: 27 start-page: 242 year: 2020 ident: bib0300 article-title: Utilization of oleic acid in synthesis of epoxidized soybean oil based green polyurethane coating and its comparative study with petrochemical based polyurethane publication-title: J. Polym. Res. – volume: 138 start-page: 111585 year: 2019 ident: bib0740 article-title: Facile synthesis and characterization of novel multi-functional bio-based acrylate prepolymers derived from tung oil and its application in UV-curable coatings publication-title: Ind. Crops Prod. – volume: 148 start-page: 105880 year: 2020 ident: bib0745 article-title: A novel multi-functional bio-based reactive diluent derived from cardanol for high bio-content UV-curable coatings application publication-title: Prog. Org. Coatings. – volume: 49 start-page: 173 year: 2019 end-page: 211 ident: bib0860 article-title: Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 2018 start-page: 1 year: 2018 end-page: 8 ident: bib0065 article-title: Preparation of soy-based adhesive enhanced by waterborne polyurethane: optimization by response surface methodology publication-title: Adv. Mater. Sci. Eng. – volume: 6 start-page: 501 year: 2009 end-page: 508 ident: bib0510 article-title: Seed oil based polyester polyols for coatings publication-title: J. Coatings Technol. Res. – volume: 76 start-page: 654 year: 2013 end-page: 661 ident: bib0715 article-title: Synthesis and properties of UV-curable tung oil based resins via modification of Diels–Alder reaction, nonisocyanate polyurethane and acrylates publication-title: Prog. Org. Coatings. – start-page: 1 year: 2017 end-page: 14 ident: bib0015 article-title: Vegetable oil-based polyurethane coatings: recent developments in India publication-title: Green Mater. – volume: 6 start-page: 12088 year: 2018 end-page: 12095 ident: bib0545 article-title: Synthesis of cardanol-based polyols via Thiol-ene/Thiol-epoxy dual click-reactions and thermosetting polyurethanes therefrom publication-title: ACS Sustain. Chem. Eng. – volume: 119 start-page: 116 year: 2018 end-page: 122 ident: bib0900 article-title: Synthesis and properties of ambient-curable non-isocyanate polyurethanes publication-title: Prog. Org. Coatings. – volume: 2015 start-page: 1 year: 2015 end-page: 10 ident: bib0240 article-title: Development of Castor oil based poly(urethane-esteramide)/TiO 2 nanocomposites as anticorrosive and antimicrobial coatings publication-title: J. Nanomater. – volume: 112 start-page: 1933 year: 2009 end-page: 1942 ident: bib0810 article-title: Preparation and anticorrosive properties of hybrid coatings based on epoxy-silica hybrid materials publication-title: J. Appl. Polym. Sci. – volume: 48 start-page: 109 year: 2008 end-page: 155 ident: bib0340 article-title: Polyurethanes from vegetable oils publication-title: Polym. Rev. – volume: 49 start-page: 586 year: 2013 end-page: 592 ident: bib0140 article-title: Epoxidation of mustard oil and ring opening with 2-ethylhexanol for biolubricants with enhanced thermo-oxidative and cold flow characteristics publication-title: Ind. Crops Prod. – volume: 33 start-page: 201 year: 2011 end-page: 207 ident: bib0735 article-title: Curing behavior of a UV-curable coating based on urethane acrylate oligomer: the influence of reactive monomers publication-title: Songklanakarin J. Sci. Technol. – volume: 122 start-page: 448 year: 2018 end-page: 455 ident: bib0030 article-title: Bio-based cationic waterborne polyurethanes dispersions prepared from di ff erent vegetable oils publication-title: Ind. Crop. Prod. – volume: 46 start-page: 296 year: 2009 end-page: 303 ident: bib0595 article-title: Hyperbranched Polyamine/Cu nanoparticles for epoxy thermoset publication-title: J. Macromol. Sci. Part A. – volume: 49 start-page: 7268 year: 2016 end-page: 7276 ident: bib0870 article-title: Isocyanate-free route to poly(carbohydrate–urethane) thermosets and 100% bio-based coatings derived from glycerol feedstock publication-title: Macromolecules – volume: 132 start-page: 235 year: 2019 end-page: 256 ident: bib0770 article-title: Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: a review publication-title: Prog. Org. Coatings. – volume: 78 start-page: 46 year: 2016 end-page: 60 ident: bib0025 article-title: Preparation of vegetable oil-based polyols with controlled hydroxyl functionalities for thermoplastic polyurethane publication-title: Eur. Polym. J. – volume: 125 start-page: 2920 year: 2012 end-page: 2928 ident: bib0505 article-title: Hyperbranched polyols from hydroformylated methyl soyate publication-title: J. Appl. Polym. Sci. – start-page: 125 year: 2017 end-page: 143 ident: bib0180 article-title: Bio-based polyurethanes and composites from passion fruit oil methyl esters and coconut husk fibers publication-title: Biocomposites: Properties, Performance, and Applications – volume: 536 start-page: 012037 year: 2019 ident: bib0290 article-title: Synthesis and characterization thermal of Polyurethane/MMT from Castor oil polyols for coating publication-title: IOP Conf. Ser. Mater. Sci. Eng. – volume: 149 start-page: 105946 year: 2020 ident: bib0685 article-title: Facile synthesis and characterization of renewable dimer acid-based urethane acrylate oligomer and its utilization in UV-curable coatings publication-title: Prog. Org. Coatings. – volume: 55 start-page: 296 year: 2006 end-page: 300 ident: bib0785 article-title: Study on nano-CaCO3 modified epoxy powder coatings publication-title: Prog. Org. Coatings. – volume: 75 start-page: 1557 year: 1998 end-page: 1563 ident: bib0365 article-title: Transesterification of trimethylolpropane and rapeseed oil methyl ester to environmentally acceptable lubricants publication-title: J. Am. Oil Chem. Soc. – volume: 12 start-page: 91 year: 2018 end-page: 98 ident: bib0840 article-title: Synthesis, characterization and study on thermal stability, mechanical properties and thermal conductivity of UV-curable urethane acrylate-Clay (MMT) nanocomposites publication-title: J. Appl. Chem. – volume: 21 start-page: 952 year: 2013 end-page: 962 ident: bib0110 article-title: Biobased polyurethanes from rapeseed oil polyols: structure, mechanical and thermal properties publication-title: J. Polym. Environ. – volume: 85 start-page: 22 year: 2015 end-page: 30 ident: bib0760 article-title: Ultraviolet-curable polyurethane acrylate nanocomposite coatings based on surface-modified calcium carbonate publication-title: Prog. Org. Coatings. – volume: 102 start-page: 161 year: 2018 end-page: 168 ident: bib0875 article-title: Solvent and catalyst-free synthesis of sunflower oil based polyurethane through non-isocyanate route and its coatings properties publication-title: Eur. Polym. J. – volume: 50 start-page: 550 year: 2013 end-page: 556 ident: bib0470 article-title: Development of eco-friendly polyurethane coatings based on neem oil polyetheramide publication-title: Ind. Crops Prod. – volume: 11 start-page: 1026 year: 2019 ident: bib0925 article-title: Solvent- and catalyst-free synthesis, hybridization and characterization of biobased nonisocyanate polyurethane (NIPU) publication-title: Polymers (Basel) – volume: 23 start-page: 1 year: 2016 end-page: 10 ident: bib0185 article-title: Vegetable oils: a source of polyols for polyurethane materials publication-title: OCL – volume: 52 start-page: 74 year: 2014 end-page: 84 ident: bib0420 article-title: Novel poly (alkyd-urethane)s from vegetable oils: synthesis and properties publication-title: Ind. Crops Prod. – volume: 68 start-page: 832 year: 2019 end-page: 842 ident: bib0650 article-title: Water‐based polyurethane dispersions publication-title: Polym. Int. – volume: 131 start-page: 82 year: 2019 end-page: 99 ident: bib0695 article-title: Research progress of UV-curable polyurethane acrylate-based hardening coatings publication-title: Prog. Org. Coatings. – volume: 106 start-page: 87 year: 2017 end-page: 95 ident: bib0020 article-title: Synthesis of bio-based polyurethane coatings from vegetable oil and dicarboxylic acids publication-title: Prog. Org. Coatings. – volume: 7 start-page: 19621 year: 2019 end-page: 19630 ident: bib0915 article-title: Biobased, nonisocyanate, 2K polyurethane coatings produced from polycarbamate and dialdehyde cross-linking publication-title: ACS Sustain. Chem. Eng. – volume: 522 start-page: 124 year: 2017 end-page: 132 ident: bib0820 article-title: Synthesis of aminosilane crosslinked cationomeric waterborne polyurethane nanocomposites and its physicochemical properties publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 29 start-page: 218 year: 2010 end-page: 225 ident: bib0360 article-title: Preparation and properties of palm oil-based rigid polyurethane nanocomposite foams publication-title: J. Reinf. Plast. Compos. – volume: 81 start-page: 69 year: 2001 end-page: 77 ident: bib0390 article-title: Rigid, thermosetting liquid molding resins from renewable resources. I. Synthesis and polymerization of soy oil monoglyceride maleates publication-title: J. Appl. Polym. Sci. – volume: 5 start-page: 4820 year: 2014 end-page: 4870 ident: bib0530 article-title: Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: a first update publication-title: Polym. Chem. – volume: 4 start-page: 1041 year: 2017 end-page: 1053 ident: bib0535 article-title: Thiol–ene chemistry for polymer coatings and surface modification – building in sustainability and performance publication-title: Mater. Horiz. – volume: 87 start-page: 78 year: 2016 end-page: 88 ident: bib0625 article-title: Efficient and quantitative chemical transformation of vegetable oils to polyols through a thiol-ene reaction for thermoplastic polyurethanes publication-title: Ind. Crops Prod. – volume: 44 start-page: 3046 year: 2008 end-page: 3056 ident: bib0815 article-title: Preparation, characterization and electrochemical corrosion studies on environmentally friendly waterborne polyurethane/Na+-MMT clay nanocomposite coatings publication-title: Eur. Polym. J. – volume: 10 start-page: 1235 year: 2018 ident: bib0405 article-title: Synthesis of linseed oil-based waterborne urethane oil wood coatings publication-title: Polymers – year: 2020 ident: bib0350 article-title: Physical properties of a soy-based polyol as polyurethane coatings publication-title: AIP Conf. Proc. – volume: 4 start-page: 703 year: 2011 end-page: 717 ident: bib0125 article-title: Recent advances in vegetable oil-based polyurethanes publication-title: ChemSusChem. – volume: 22 start-page: 1289 year: 2011 end-page: 1292 ident: bib0195 article-title: Synthesis of vegetable oil based polyol with cottonseed oil and sorbitol derived from natural source publication-title: Chin. Chem. Lett. – volume: 514 start-page: 69 year: 2006 end-page: 75 ident: bib0675 article-title: Synthesis of UV-curable organic–inorganic hybrid urethane acrylates and properties of cured films publication-title: Thin Solid Films – volume: 46 start-page: 1402 year: 2006 end-page: 1410 ident: bib0805 article-title: UV-curable coatings with nano-TiO2 publication-title: Polym. Eng. Sci. – volume: 210 start-page: 1207 year: 2018 end-page: 1215 ident: bib0260 article-title: Tunable thermo-physical performance of castor oil-based polyurethanes with tailored release of coated fertilizers publication-title: J. Clean. Prod. – volume: 49 start-page: 5365 year: 2014 end-page: 5377 ident: bib0270 article-title: Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties publication-title: J. Mater. Sci. – volume: 6 start-page: 341 year: 2017 end-page: 351 ident: bib0295 article-title: The castor oil based water borne polyurethane dispersion; effect of -NCO/OH content: synthesis, characterization and properties publication-title: Green Process. Synth. – volume: 20 start-page: 421 year: 2009 end-page: 431 ident: bib0035 article-title: Fatty acid-based polyurethane films for wound dressing applications publication-title: J. Mater. Sci. Mater. Med. – volume: 142 start-page: 105588 year: 2020 ident: bib0145 article-title: Waterborne polyurethanes from castor oil-based polyols for next generation of environmentally-friendly hair-styling agents publication-title: Prog. Org. Coatings. – volume: 20 start-page: 647 year: 2012 end-page: 658 ident: bib0335 article-title: Polyols and rigid polyurethane foams from cashew nut shell liquid publication-title: J. Polym. Environ. – volume: 1 start-page: 16 year: 2013 end-page: 26 ident: bib0210 article-title: Synthesis of new polyurethanes from vegetable oil by thiol-ene coupling publication-title: Green Mater. – volume: 53 start-page: 91 year: 2005 end-page: 98 ident: bib0800 article-title: Effects of P/B on the properties of anticorrosive coatings with different particle size publication-title: Prog. Org. Coatings. – volume: 76 start-page: 157 year: 2013 end-page: 164 ident: bib0395 article-title: Castor oil-based hyperbranched polyurethanes as advanced surface coating materials publication-title: Prog. Org. Coatings. – volume: 44 start-page: 5980 year: 2020 end-page: 5994 ident: bib0630 article-title: Mechanically robust hydrophobic interpenetrating polymer network-based nanocomposite of hyperbranched polyurethane and polystyrene as an effective anticorrosive coating publication-title: New J. Chem. – volume: 74 start-page: 4781 year: 2017 end-page: 4798 ident: bib0640 article-title: Anionic water-based polyurethane dispersions for antimicrobial coating application publication-title: Polym. Bull. – volume: 128 start-page: 566 year: 2013 end-page: 571 ident: bib0890 article-title: Polyurethanes from soybean oil, aromatic, and cycloaliphatic diamines by nonisocyanate route publication-title: J. Appl. Polym. Sci. – volume: 49 start-page: 2162 year: 2016 end-page: 2171 ident: bib0895 article-title: Non-isocyanate polyurethanes from carbonated soybean oil using monomeric or oligomeric diamines to achieve thermosets or thermoplastics publication-title: Macromolecules – volume: 52 start-page: 74 year: 2014 ident: 10.1016/j.porgcoat.2021.106267_bib0420 article-title: Novel poly (alkyd-urethane)s from vegetable oils: synthesis and properties publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2013.10.002 – volume: 78 start-page: 46 year: 2016 ident: 10.1016/j.porgcoat.2021.106267_bib0025 article-title: Preparation of vegetable oil-based polyols with controlled hydroxyl functionalities for thermoplastic polyurethane publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2016.03.003 – volume: 55 start-page: 698 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0845 article-title: Polyurethane-TiO 2 nanocomposite coatings from sunflower- oil-based amide diol as soft segment publication-title: J. Macromol. Sci. Part A. doi: 10.1080/10601325.2018.1526638 – volume: 117 start-page: 295 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0750 article-title: Use of cardanol-based acrylate as reactive diluent in UV-curable castor oil-based polyurethane acrylate resins publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2018.02.053 – volume: 122 start-page: 1900387 year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0080 article-title: Sea buckthorn oil tocopherol extraction’s by‐product utilization in green synthesis of polyurethane coating publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.201900387 – volume: 20 start-page: 1 year: 2011 ident: 10.1016/j.porgcoat.2021.106267_bib0425 article-title: Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols publication-title: Egypt. J. Pet. doi: 10.1016/j.ejpe.2011.06.009 – volume: 112 start-page: 2567 year: 2009 ident: 10.1016/j.porgcoat.2021.106267_bib0385 article-title: Polyurethane foams from soyoil-based polyols publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.29898 – volume: 137 start-page: 1 year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0920 article-title: Environment-friendly synthesis of sustainable chitosan-based nonisocyanate polyurethane: a biobased polymeric film publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.49050 – volume: 1 start-page: 16 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0210 article-title: Synthesis of new polyurethanes from vegetable oil by thiol-ene coupling publication-title: Green Mater. doi: 10.1680/gmat.12.00001 – volume: 26 start-page: 9 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0330 article-title: Preparation and characterization of polyurethane plasticizer for flexible packaging applications: natural oils affirmed access publication-title: Egypt. J. Pet. doi: 10.1016/j.ejpe.2016.02.002 – volume: 50 start-page: 224 year: 2004 ident: 10.1016/j.porgcoat.2021.106267_bib0480 article-title: Newly developed urethane modified polyetheramide-based anticorrosive coatings from a sustainable resource publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2004.02.007 – volume: 77 start-page: 957 year: 2014 ident: 10.1016/j.porgcoat.2021.106267_bib0765 article-title: Linseed polyurethane/tetraethoxyorthosilane/fumed silica hybrid nanocomposite coatings: physico-mechanical and potentiodynamic polarization measurements studies publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2014.01.024 – volume: 99 start-page: 91 year: 2016 ident: 10.1016/j.porgcoat.2021.106267_bib0780 article-title: Biopolymers nanocomposite for material protection: enhancement of corrosion protection using waterborne polyurethane nanocomposite coatings publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2016.05.012 – volume: 112 start-page: 1933 year: 2009 ident: 10.1016/j.porgcoat.2021.106267_bib0810 article-title: Preparation and anticorrosive properties of hybrid coatings based on epoxy-silica hybrid materials publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.29302 – volume: 47 start-page: 154 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0450 article-title: Synthesis of polyurethane dispersion from polyesteramide polyol publication-title: Pigment Resin Technol. doi: 10.1108/PRT-07-2016-0071 – volume: 336–338 start-page: 2218 year: 2007 ident: 10.1016/j.porgcoat.2021.106267_bib0790 article-title: Effects of nanosized Iron oxide with different morphology on nanomechanical properties of nanocomposite coating publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.336-338.2218 – volume: 5 start-page: 6447 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0115 article-title: Self-cross-Linkable anionic waterborne polyurethane–Silanol dispersions from cottonseed-oil-Based phosphorylated polyol as ionic Soft segment publication-title: ACS Sustainable. Chem. Eng. doi: 10.1021/acssuschemeng.7b00327 – volume: 53 start-page: 9485 year: 2005 ident: 10.1016/j.porgcoat.2021.106267_bib0305 article-title: Synthesis of diethylamine-functionalized soybean oil publication-title: J. Agric. Food Chem. doi: 10.1021/jf050731o – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0345 article-title: Polyols prepared from ring-opening epoxidized soybean oil by a Castor oil-Based fatty diol publication-title: Int. J. Polym. Sci. doi: 10.1155/2015/529235 – volume: 76 start-page: 654 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0715 article-title: Synthesis and properties of UV-curable tung oil based resins via modification of Diels–Alder reaction, nonisocyanate polyurethane and acrylates publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2012.12.005 – volume: 92 start-page: 243 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0090 article-title: Synthesis of transesterified palm olein-based polyol and rigid polyurethanes from this polyol publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-015-2592-9 – volume: 180 start-page: 272 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0720 article-title: Development of green waterborne UV-curable vegetable oil-based urethane acrylate pigment prints adhesive: preparation and application publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.01.193 – volume: 142 start-page: 105588 year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0145 article-title: Waterborne polyurethanes from castor oil-based polyols for next generation of environmentally-friendly hair-styling agents publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2020.105588 – volume: 77 start-page: 53 year: 2014 ident: 10.1016/j.porgcoat.2021.106267_bib0550 article-title: A fully bio-based waterborne polyurethane dispersion from vegetable oils: from synthesis of precursors by thiol-ene reaction to study of final material publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2013.08.002 – volume: 32 start-page: 352 year: 2007 ident: 10.1016/j.porgcoat.2021.106267_bib0600 article-title: Structural engineering of polyurethane coatings for high performance applications publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2006.05.003 – volume: 102 start-page: 161 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0875 article-title: Solvent and catalyst-free synthesis of sunflower oil based polyurethane through non-isocyanate route and its coatings properties publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.03.030 – volume: 21 start-page: 952 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0110 article-title: Biobased polyurethanes from rapeseed oil polyols: structure, mechanical and thermal properties publication-title: J. Polym. Environ. doi: 10.1007/s10924-012-0560-0 – volume: 50 start-page: 550 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0470 article-title: Development of eco-friendly polyurethane coatings based on neem oil polyetheramide publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2013.08.018 – volume: 12 start-page: 37607 year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0245 article-title: Eco-Friendly Castor Oil-Based Delivery System with Sustained Pesticide Release and Enhanced Retention publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10620 – volume: 26 start-page: 707 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0220 article-title: Non-isocyanate polyurethanes: synthesis, properties, and applications publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3522 – volume: 10 start-page: 884 year: 2009 ident: 10.1016/j.porgcoat.2021.106267_bib0560 article-title: Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization publication-title: Biomacromolecules doi: 10.1021/bm801411w – volume: 77 start-page: 239 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0095 article-title: Neem acetylated polyester polyol-Renewable source based smart PU coatings containing quinoline (corrosion inhibitor) encapsulated polyurea microcapsules for enhance anticorrosive property publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2015.08.054 – volume: 112 start-page: 57 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0655 article-title: Dimer acid based waterborne hyperbranched poly(ester amide) thermoset as a sustainable coating material publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2017.07.002 – volume: 81 start-page: 497 year: 2004 ident: 10.1016/j.porgcoat.2021.106267_bib0370 article-title: Kinetics of transesterification of palm-based methyl esters with trimethylolpropane publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-004-0930-7 – volume: 49 start-page: 173 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0860 article-title: Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2018.1537741 – volume: 4 start-page: 703 year: 2011 ident: 10.1016/j.porgcoat.2021.106267_bib0125 article-title: Recent advances in vegetable oil-based polyurethanes publication-title: ChemSusChem. doi: 10.1002/cssc.201000378 – volume: 88 start-page: 541 year: 2011 ident: 10.1016/j.porgcoat.2021.106267_bib0135 article-title: Development and characterization of water-blown polyurethane foams from Diethanolamides of Karanja oil publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-010-1694-7 – volume: 44 start-page: 3046 year: 2008 ident: 10.1016/j.porgcoat.2021.106267_bib0815 article-title: Preparation, characterization and electrochemical corrosion studies on environmentally friendly waterborne polyurethane/Na+-MMT clay nanocomposite coatings publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2008.05.037 – volume: 20 start-page: 421 year: 2009 ident: 10.1016/j.porgcoat.2021.106267_bib0035 article-title: Fatty acid-based polyurethane films for wound dressing applications publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-008-3572-5 – volume: 76 start-page: 689 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0620 article-title: Bio-degradable vegetable oil based hyperbranched poly(ester amide) as an advanced surface coating material publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2012.12.011 – volume: 23 start-page: 1 issue: 5 year: 2016 ident: 10.1016/j.porgcoat.2021.106267_bib0185 article-title: Vegetable oils: a source of polyols for polyurethane materials publication-title: OCL doi: 10.1051/ocl/2016031 – volume: 6 start-page: 137 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0320 article-title: Synthesis and characterization of polyurethanes from oleic, erucic and 10-Undecenoic acids publication-title: Polym. from Renew. Resour. – volume: 151 start-page: 105942 year: 2021 ident: 10.1016/j.porgcoat.2021.106267_bib0355 article-title: UV LED curable epoxy soybean-oil-based waterborne PUA resin for wood coatings publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2020.105942 – volume: 84 start-page: 173 year: 2007 ident: 10.1016/j.porgcoat.2021.106267_bib0515 article-title: Production of polyols from canola oil and their chemical identification and physical properties publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-006-1021-5 – volume: 6 start-page: 12088 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0545 article-title: Synthesis of cardanol-based polyols via Thiol-ene/Thiol-epoxy dual click-reactions and thermosetting polyurethanes therefrom publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02423 – volume: 514 start-page: 69 year: 2006 ident: 10.1016/j.porgcoat.2021.106267_bib0675 article-title: Synthesis of UV-curable organic–inorganic hybrid urethane acrylates and properties of cured films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.02.032 – volume: 5 start-page: 4820 year: 2014 ident: 10.1016/j.porgcoat.2021.106267_bib0530 article-title: Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: a first update publication-title: Polym. Chem. doi: 10.1039/C4PY00339J – volume: 85 start-page: 22 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0760 article-title: Ultraviolet-curable polyurethane acrylate nanocomposite coatings based on surface-modified calcium carbonate publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2014.12.004 – volume: 894 start-page: 109 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0835 article-title: Study on radiation properties of Polyurethane/Nano zirconium oxide nanocomposite coatings publication-title: Mater. Sci. Forum. doi: 10.4028/www.scientific.net/MSF.894.109 – volume: 7 start-page: 19621 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0915 article-title: Biobased, nonisocyanate, 2K polyurethane coatings produced from polycarbamate and dialdehyde cross-linking publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b04713 – volume: 87 start-page: 197 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0235 article-title: High bio-based content waterborne UV-curable coatings with excellent adhesion and flexibility publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2015.05.030 – volume: 23 start-page: 97 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0315 article-title: Kinetics of soybean oil epoxidation with peracetic acid formed in situ in the presence of an ion exchange resin: pseudo-homogeneous model publication-title: Chem. Ind. Chem. Eng. Q. doi: 10.2298/CICEQ150702014J – volume: 44 start-page: 396 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0400 article-title: Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2012.11.028 – volume: 112 start-page: 97 year: 2010 ident: 10.1016/j.porgcoat.2021.106267_bib0495 article-title: Vegetable oil-based triols from hydroformylated fatty acids and polyurethane elastomers publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.200900087 – volume: 214 start-page: 415 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0010 article-title: Renewable polyols for polyurethane synthesis via Thiol-ene/yne couplings of plant oils publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201200582 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0065 article-title: Preparation of soy-based adhesive enhanced by waterborne polyurethane: optimization by response surface methodology publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2018/6107656 – volume: 33 start-page: 201 year: 2011 ident: 10.1016/j.porgcoat.2021.106267_bib0735 article-title: Curing behavior of a UV-curable coating based on urethane acrylate oligomer: the influence of reactive monomers publication-title: Songklanakarin J. Sci. Technol. – volume: 86 start-page: 164 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0100 article-title: Eco-friendly polyurethane coatings from cottonseed and karanja oil publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2015.05.014 – volume: 122 start-page: 182 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0660 article-title: Aqueous anionic polyurethane dispersions from castor oil publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2018.05.079 – volume: 42 start-page: 353 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0410 article-title: Renewable source-based polyurethane coatings by using monoglycerides of vegetable oils and its modification by nano TiO 2 publication-title: Pigment Resin Technol. doi: 10.1108/PRT-02-2012-0017 – volume: 49 start-page: 5365 year: 2014 ident: 10.1016/j.porgcoat.2021.106267_bib0270 article-title: Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties publication-title: J. Mater. Sci. doi: 10.1007/s10853-014-8244-x – volume: 5 start-page: 376 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0265 article-title: Castor oil based Biothiol as a highly stable and self-initiated oligomer for photoinitiator-free UV coatings publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b01756 – volume: 4 start-page: 1041 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0535 article-title: Thiol–ene chemistry for polymer coatings and surface modification – building in sustainability and performance publication-title: Mater. Horiz. doi: 10.1039/C7MH00488E – volume: 121 start-page: 236 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0710 article-title: Castor oil-based polyfunctional acrylate monomers: synthesis and utilization in UV-curable materials publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2018.04.020 – volume: 3 start-page: 1313 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0725 article-title: UV-curable coatings from multiarmed cardanol-based acrylate oligomers publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00029 – volume: 22 start-page: 1289 year: 2011 ident: 10.1016/j.porgcoat.2021.106267_bib0195 article-title: Synthesis of vegetable oil based polyol with cottonseed oil and sorbitol derived from natural source publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2011.05.043 – volume: 536 start-page: 012037 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0290 article-title: Synthesis and characterization thermal of Polyurethane/MMT from Castor oil polyols for coating publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/536/1/012037 – year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0350 article-title: Physical properties of a soy-based polyol as polyurethane coatings publication-title: AIP Conf. Proc. – volume: 6 start-page: 16412 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0665 article-title: Environmentally friendly polyurethane dispersion derived from dimer acid and citric acid publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03474 – volume: 16 start-page: 499 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0705 article-title: Bio-based reactive diluent derived from cardanol and its application in polyurethane acrylate (PUA) coatings with high performance publication-title: J. Coatings Technol. Res. doi: 10.1007/s11998-018-0128-6 – volume: 7 start-page: 11700 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0005 article-title: Biobased polyurethane coatings with high biomass content: tailored properties by lignin selection publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b01873 – start-page: 125 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0180 article-title: Bio-based polyurethanes and composites from passion fruit oil methyl esters and coconut husk fibers – volume: 138 start-page: 111585 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0740 article-title: Facile synthesis and characterization of novel multi-functional bio-based acrylate prepolymers derived from tung oil and its application in UV-curable coatings publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2019.111585 – volume: 122 start-page: 448 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0030 article-title: Bio-based cationic waterborne polyurethanes dispersions prepared from di ff erent vegetable oils publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2018.06.006 – volume: 6 start-page: 501 year: 2009 ident: 10.1016/j.porgcoat.2021.106267_bib0510 article-title: Seed oil based polyester polyols for coatings publication-title: J. Coatings Technol. Res. doi: 10.1007/s11998-008-9154-0 – volume: 55 start-page: 296 year: 2006 ident: 10.1016/j.porgcoat.2021.106267_bib0785 article-title: Study on nano-CaCO3 modified epoxy powder coatings publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2006.01.007 – volume: 89 start-page: 160 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0910 article-title: Non-isocyanate polyurethane (NIPU) from tris-2-hydroxy ethyl isocyanurate modified fatty acid for coating applications publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2015.08.015 – volume: 133 start-page: 198 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0280 article-title: Castor oil-derived water-based polyurethane coatings: structure manipulation for property enhancement publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2019.04.030 – volume: 48 start-page: 3302 year: 2010 ident: 10.1016/j.porgcoat.2021.106267_bib0555 article-title: Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane publication-title: J. Polym. Sci. Part A Polym. Chem. doi: 10.1002/pola.24114 – volume: 61 start-page: 197 year: 2014 ident: 10.1016/j.porgcoat.2021.106267_bib0225 article-title: Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2014.10.012 – volume: 149 start-page: 105946 year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0685 article-title: Facile synthesis and characterization of renewable dimer acid-based urethane acrylate oligomer and its utilization in UV-curable coatings publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2020.105946 – volume: 118 start-page: 26 year: 2016 ident: 10.1016/j.porgcoat.2021.106267_bib0190 article-title: Hydroformylation of vegetable oils: more than 50 years of technical innovation, successful research, and development publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.201500196 – volume: 48 start-page: 8215 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0455 article-title: Anti-microbial and anti-corrosive poly (ester amide urethane) siloxane modified ZnO hybrid coatings from Thevetia peruviana seed oil publication-title: J. Mater. Sci. doi: 10.1007/s10853-013-7633-x – volume: 76 start-page: 985 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0325 article-title: Flame retardant UV-curable acrylated epoxidized soybean oil based organic–inorganic hybrid coating publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2012.10.007 – volume: 131 start-page: 82 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0695 article-title: Research progress of UV-curable polyurethane acrylate-based hardening coatings publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2019.01.061 – volume: 5 start-page: 419 year: 2008 ident: 10.1016/j.porgcoat.2021.106267_bib0795 article-title: Scratch behavior of nano-alumina/polyurethane coatings publication-title: J. Coatings Technol. Res. doi: 10.1007/s11998-008-9110-z – volume: 128 start-page: 566 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0890 article-title: Polyurethanes from soybean oil, aromatic, and cycloaliphatic diamines by nonisocyanate route publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.38215 – start-page: 1 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0015 article-title: Vegetable oil-based polyurethane coatings: recent developments in India publication-title: Green Mater. – volume: 92 start-page: 733 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0415 article-title: Development of PU Coatings from Neem Oil Based Alkyds Prepared by the Monoglyceride Route publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-015-2642-3 – volume: 82 start-page: 653 year: 2005 ident: 10.1016/j.porgcoat.2021.106267_bib0520 article-title: Ozone-mediated polyol synthesis from soybean oil publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-005-1124-z – volume: 522 start-page: 124 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0820 article-title: Synthesis of aminosilane crosslinked cationomeric waterborne polyurethane nanocomposites and its physicochemical properties publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2017.02.061 – volume: 16 start-page: 415 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0615 article-title: Castor oil-based waterborne hyperbranched polyurethane acrylate emulsion for UV-curable coatings with excellent chemical resistance and high hardness publication-title: J. Coatings Technol. Res. doi: 10.1007/s11998-018-0120-1 – volume: 210 start-page: 1207 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0260 article-title: Tunable thermo-physical performance of castor oil-based polyurethanes with tailored release of coated fertilizers publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.11.047 – volume: 12 start-page: 91 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0840 article-title: Synthesis, characterization and study on thermal stability, mechanical properties and thermal conductivity of UV-curable urethane acrylate-Clay (MMT) nanocomposites publication-title: J. Appl. Chem. – volume: 358 start-page: 72 year: 2012 ident: 10.1016/j.porgcoat.2021.106267_bib0680 article-title: Preparation of polymer/silica hybrid hard coatings with enhanced hydrophobicity on plastic substrates publication-title: J. Non. Solids doi: 10.1016/j.jnoncrysol.2011.08.024 – volume: 132 start-page: 235 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0770 article-title: Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: a review publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2019.03.042 – volume: 111 start-page: 165 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0160 article-title: (UV/Oxidative) dual curing polyurethane dispersion from cardanol based polyol: synthesis and characterization publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2017.10.015 – volume: 119 start-page: 116 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0900 article-title: Synthesis and properties of ambient-curable non-isocyanate polyurethanes publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2018.02.006 – volume: 52 start-page: 38 year: 2012 ident: 10.1016/j.porgcoat.2021.106267_bib0070 article-title: From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products publication-title: Polym. Rev. doi: 10.1080/15583724.2011.640443 – volume: 9 start-page: 3332 year: 2008 ident: 10.1016/j.porgcoat.2021.106267_bib0635 article-title: Soybean-oil-Based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties publication-title: Biomacromolecules doi: 10.1021/bm801030g – volume: 3 start-page: 10837 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0440 article-title: Development of non-traditional vegetable-oil-Based two-pack polyurethane for wood-finished coating: an alternative approach publication-title: ChemistrySelect. doi: 10.1002/slct.201801452 – volume: 58 start-page: 5195 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0570 article-title: High biobased carbon content polyurethane dispersions synthesized from fatty acid-based isocyanate publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b05936 – volume: 49 start-page: 586 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0140 article-title: Epoxidation of mustard oil and ring opening with 2-ethylhexanol for biolubricants with enhanced thermo-oxidative and cold flow characteristics publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2013.06.006 – start-page: 127774 year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0170 article-title: UV absorption, anticorrosion, and long-term antibacterial performance of vegetable oil based cationic waterborne polyurethanes enabled by amino acids publication-title: Chem. Eng. J. – volume: 10 start-page: 1235 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0405 article-title: Synthesis of linseed oil-based waterborne urethane oil wood coatings publication-title: Polymers doi: 10.3390/polym10111235 – volume: 55 start-page: 1004 year: 2014 ident: 10.1016/j.porgcoat.2021.106267_bib0255 article-title: Effects of unsaturation and different ring-opening methods on the properties of vegetable oil-based polyurethane coatings publication-title: Polymer doi: 10.1016/j.polymer.2014.01.014 – volume: 67 start-page: 254 year: 2014 ident: 10.1016/j.porgcoat.2021.106267_bib0060 article-title: Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2014.03.021 – volume: 131 start-page: 259 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0775 article-title: A review on cleaner production of polymeric and nanocomposite coatings based on waterborne polyurethane dispersions from seed oils publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2019.02.014 – volume: 57 start-page: 500 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0150 article-title: A review on waterborne thermosetting polyurethane coatings based on Castor oil: synthesis, characterization, and application publication-title: Polym. Technol. Eng. doi: 10.1080/03602559.2016.1275681 – start-page: 55 year: 2016 ident: 10.1016/j.porgcoat.2021.106267_bib0865 article-title: Plant oil-based polyhydroxyurethanes – volume: 82 start-page: 114 year: 2016 ident: 10.1016/j.porgcoat.2021.106267_bib0905 article-title: Bio-based aliphatic primary amines from alcohols through the ‘Nitrile route’ towards non-isocyanate polyurethanes publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2016.07.007 – volume: 20 start-page: 4738 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0930 article-title: Biocatalytic and solvent-free synthesis of a bio-based biscyclocarbonate publication-title: Green Chem. doi: 10.1039/C8GC02267D – volume: 93 start-page: 232 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0205 article-title: Polyols from self-metathesis-generated oligomers of soybean oil and their polyurethane foams publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2017.06.003 – volume: 108 start-page: 1184 year: 2008 ident: 10.1016/j.porgcoat.2021.106267_bib0375 article-title: Polyester polyols and polyurethanes from ricinoleic acid publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.27783 – volume: 53 start-page: 91 year: 2005 ident: 10.1016/j.porgcoat.2021.106267_bib0800 article-title: Effects of P/B on the properties of anticorrosive coatings with different particle size publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2005.01.003 – volume: 5 start-page: 11215 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0045 article-title: Synthesis of 1,6-Hexandiol, polyurethane monomer derivatives via isomerization metathesis of methyl linolenate publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b03309 – volume: 5 start-page: 103625 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0275 article-title: Synthesis and characterization of castor oil based hybrid polymers and their polyurethane–urea/silica coatings publication-title: RSC Adv. doi: 10.1039/C5RA20356B – volume: 75 start-page: 527 year: 2012 ident: 10.1016/j.porgcoat.2021.106267_bib0475 article-title: Microwave assisted synthesis and characterization of olive oil based polyetheramide as anticorrosive polymeric coatings publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2012.06.001 – volume: 36 start-page: 694 year: 2008 ident: 10.1016/j.porgcoat.2021.106267_bib0525 article-title: Low cost and highly reactive biobased polyols: a co-product of the emerging biorefinery economy publication-title: Clean - Soil, Air, Water. doi: 10.1002/clen.200800066 – volume: 16 start-page: 209 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0460 article-title: Development of wood protective polyurethane coatings from mahua oil-based polyetheramide polyol: a renewable approach publication-title: Soft Mater. doi: 10.1080/1539445X.2018.1474117 – volume: 10 start-page: 49 year: 2002 ident: 10.1016/j.porgcoat.2021.106267_bib0485 article-title: Polyols and polyurethanes from hydroformylation of soybean oil publication-title: J. Polym. Environ. doi: 10.1023/A:1021022123733 – volume: 68 start-page: 832 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0650 article-title: Water‐based polyurethane dispersions publication-title: Polym. Int. doi: 10.1002/pi.5627 – volume: 11 start-page: 1026 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0925 article-title: Solvent- and catalyst-free synthesis, hybridization and characterization of biobased nonisocyanate polyurethane (NIPU) publication-title: Polymers (Basel) doi: 10.3390/polym11061026 – volume: 77 start-page: 38 year: 2014 ident: 10.1016/j.porgcoat.2021.106267_bib0430 article-title: Biobased dimer fatty acid containing two pack polyurethane for wood finished coatings publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2013.07.020 – volume: 38 start-page: 1155 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0105 article-title: Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-015-0995-8 – volume: 12 start-page: 1165 year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0700 article-title: One-step synthesis of novel renewable vegetable oil-based acrylate prepolymers and their application in UV-Curable coatings publication-title: Polymers doi: 10.3390/polym12051165 – volume: 81 start-page: 69 year: 2001 ident: 10.1016/j.porgcoat.2021.106267_bib0390 article-title: Rigid, thermosetting liquid molding resins from renewable resources. I. Synthesis and polymerization of soy oil monoglyceride maleates publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1414 – volume: 156 start-page: 104734 year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0165 article-title: Synthesis and characterizations of air-cured polyurethane coatings from vegetable oils and itaconic acid publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2020.104734 – volume: 46 start-page: 1402 year: 2006 ident: 10.1016/j.porgcoat.2021.106267_bib0805 article-title: UV-curable coatings with nano-TiO2 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.20601 – volume: 19 start-page: 784 year: 2011 ident: 10.1016/j.porgcoat.2021.106267_bib0120 article-title: Microwave assisted synthesis of urethane modified polyesteramide coatings from Jatropha seed oil publication-title: J. Polym. Environ. doi: 10.1007/s10924-011-0328-y – volume: 6 start-page: 713 year: 2005 ident: 10.1016/j.porgcoat.2021.106267_bib0200 article-title: Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis publication-title: Biomacromolecules doi: 10.1021/bm049451s – volume: 3 start-page: 151 year: 2006 ident: 10.1016/j.porgcoat.2021.106267_bib0590 article-title: Two-component high-solid polyurethane coating systems based on soy polyols publication-title: J. Coatings Technol. Res. doi: 10.1007/s11998-006-0018-1 – volume: 76 start-page: 215 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0075 article-title: Recent advances in vegetable oils based environment friendly coatings: a review publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2015.06.022 – volume: 49 start-page: 823 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0565 article-title: Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2012.12.013 – year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0040 article-title: Synthesis of isostearic Acid/Dimer fatty acid-based polyesteramide polyol for the development of green polyurethane coatings publication-title: J. Polym. Environ. – volume: 125 start-page: 2920 year: 2012 ident: 10.1016/j.porgcoat.2021.106267_bib0505 article-title: Hyperbranched polyols from hydroformylated methyl soyate publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.36232 – volume: 15 start-page: 77 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0250 article-title: Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate publication-title: J. Coatings Technol. Res. doi: 10.1007/s11998-017-9948-z – volume: 21 start-page: 526 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0230 article-title: Thermosetting polyurethanes prepared with the aid of a fully bio-based emulsifier with high bio-content, high solid content, and superior mechanical properties publication-title: Green Chem. doi: 10.1039/C8GC03560A – volume: 148 start-page: 105880 year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0745 article-title: A novel multi-functional bio-based reactive diluent derived from cardanol for high bio-content UV-curable coatings application publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2020.105880 – volume: 49 start-page: 2162 year: 2016 ident: 10.1016/j.porgcoat.2021.106267_bib0895 article-title: Non-isocyanate polyurethanes from carbonated soybean oil using monomeric or oligomeric diamines to achieve thermosets or thermoplastics publication-title: Macromolecules doi: 10.1021/acs.macromol.5b02467 – volume: 46 start-page: 296 year: 2009 ident: 10.1016/j.porgcoat.2021.106267_bib0595 article-title: Hyperbranched Polyamine/Cu nanoparticles for epoxy thermoset publication-title: J. Macromol. Sci. Part A. doi: 10.1080/10601320802637375 – volume: 8 start-page: 577 year: 2011 ident: 10.1016/j.porgcoat.2021.106267_bib0690 article-title: Synthesis, photopolymerization kinetics, and thermal properties of UV-curable waterborne hyperbranched polyurethane acrylate dispersions publication-title: J. Coatings Technol. Res. doi: 10.1007/s11998-011-9338-x – volume: 75 start-page: 1557 year: 1998 ident: 10.1016/j.porgcoat.2021.106267_bib0365 article-title: Transesterification of trimethylolpropane and rapeseed oil methyl ester to environmentally acceptable lubricants publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-998-0094-8 – volume: 30 start-page: 207 year: 1997 ident: 10.1016/j.porgcoat.2021.106267_bib0575 article-title: Chemoenzymatic synthesis of oil-modified acrylic monomers as reactive diluents for high solids coatings publication-title: Prog. Org. Coatings. doi: 10.1016/S0300-9440(96)00671-6 – volume: 14 start-page: 483 year: 2012 ident: 10.1016/j.porgcoat.2021.106267_bib0885 article-title: Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion publication-title: Green Chem. doi: 10.1039/c2gc16230j – volume: 77 start-page: 1360 year: 2014 ident: 10.1016/j.porgcoat.2021.106267_bib0435 article-title: Fatty acids based transparent polyurethane films and coatings publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2014.04.030 – start-page: 1 year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0825 article-title: Study of coating performance of bio-based hyperbranched polyester polyol/graphene oxide composites in PU-coating publication-title: J. Macromol. Sci. Part A. – volume: 4 start-page: 12505 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0730 article-title: Synthesis and properties of UV-Curable polyfunctional polyurethane acrylate resins from cardanol publication-title: ACS Omega doi: 10.1021/acsomega.9b01174 – volume: 23 start-page: 1 issue: 58 year: 2016 ident: 10.1016/j.porgcoat.2021.106267_bib0130 article-title: Modified rubber seed oil based polyurethane foams publication-title: J. Polym. Res. – volume: 115 start-page: 12407 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0855 article-title: Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00355 – volume: 20 start-page: 647 year: 2012 ident: 10.1016/j.porgcoat.2021.106267_bib0335 article-title: Polyols and rigid polyurethane foams from cashew nut shell liquid publication-title: J. Polym. Environ. doi: 10.1007/s10924-012-0467-9 – volume: 4 start-page: 20984 year: 2014 ident: 10.1016/j.porgcoat.2021.106267_bib0850 article-title: Polyorthotoluidine dispersed castor oil polyurethane anticorrosive nanocomposite coatings publication-title: RSC Adv. doi: 10.1039/C4RA00587B – volume: 55 start-page: 330 year: 2006 ident: 10.1016/j.porgcoat.2021.106267_bib0610 article-title: Synthesis and characterization of hyperbranched and air drying fatty acid based resins publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2006.01.005 – volume: 16 start-page: 387 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0285 article-title: Synthesis and characterization of castor oil-based branched polyols from renewable resources and their polyurethane-urea coatings publication-title: J. Coatings Technol. Res. doi: 10.1007/s11998-018-0118-8 – volume: 53 start-page: 10835 year: 2014 ident: 10.1016/j.porgcoat.2021.106267_bib0670 article-title: Synthesis of new biobased antibacterial methacrylates derived from tannic acid and their application in UV-Cured coatings publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie501804p – volume: 2 start-page: 724 year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0830 article-title: Bio-based UV-curable urethane acrylate graphene nanocomposites: synthesis and properties publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-2527-4 – volume: 49 start-page: 7268 year: 2016 ident: 10.1016/j.porgcoat.2021.106267_bib0870 article-title: Isocyanate-free route to poly(carbohydrate–urethane) thermosets and 100% bio-based coatings derived from glycerol feedstock publication-title: Macromolecules doi: 10.1021/acs.macromol.6b01485 – volume: 74 start-page: 4781 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0640 article-title: Anionic water-based polyurethane dispersions for antimicrobial coating application publication-title: Polym. Bull. doi: 10.1007/s00289-017-1965-7 – volume: 92 start-page: 883 year: 2004 ident: 10.1016/j.porgcoat.2021.106267_bib0880 article-title: Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.20049 – volume: 57 start-page: 275 year: 2008 ident: 10.1016/j.porgcoat.2021.106267_bib0490 article-title: Polyurethane networks from polyols obtained by hydroformylation of soybean oil publication-title: Polym. Int. doi: 10.1002/pi.2340 – volume: 41 start-page: 4914 year: 2006 ident: 10.1016/j.porgcoat.2021.106267_bib0500 article-title: Structure–property relationships in polyurethanes derived from soybean oil publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-0310-6 – volume: 45 start-page: 1433 year: 2009 ident: 10.1016/j.porgcoat.2021.106267_bib0540 article-title: Thiol–ene UV-curable coatings using vegetable oil macromonomers publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2009.02.007 – volume: 87 start-page: 78 year: 2016 ident: 10.1016/j.porgcoat.2021.106267_bib0625 article-title: Efficient and quantitative chemical transformation of vegetable oils to polyols through a thiol-ene reaction for thermoplastic polyurethanes publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2016.04.027 – volume: 76 start-page: 157 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0395 article-title: Castor oil-based hyperbranched polyurethanes as advanced surface coating materials publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2012.09.001 – volume: 5 start-page: 527 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0175 article-title: Synthesis and thermomechanical properties of polyurethanes and biocomposites derived from macauba oil and coconut husk fibers publication-title: Coatings doi: 10.3390/coatings5030527 – volume: 97 start-page: 210 year: 2016 ident: 10.1016/j.porgcoat.2021.106267_bib0085 article-title: Soybean oil-based UV-curable coatings strengthened by crosslink agent derived from itaconic acid together with 2-hydroxyethyl methacrylate phosphate publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2016.04.014 – volume: 4 start-page: 35476 year: 2014 ident: 10.1016/j.porgcoat.2021.106267_bib0645 article-title: Anionic waterborne polyurethane dispersion from a bio-based ionic segment publication-title: RSC Adv. doi: 10.1039/C4RA07519F – volume: 66 start-page: 192 year: 2009 ident: 10.1016/j.porgcoat.2021.106267_bib0605 article-title: Bio-based hyperbranched polyurethanes for surface coating applications publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2009.07.005 – volume: 87 start-page: 35 year: 2003 ident: 10.1016/j.porgcoat.2021.106267_bib0380 article-title: Preparation of polyol esters based on vegetable and animal fats publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(02)00203-1 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0240 article-title: Development of Castor oil based poly(urethane-esteramide)/TiO 2 nanocomposites as anticorrosive and antimicrobial coatings publication-title: J. Nanomater. doi: 10.1155/2015/745217 – volume: 24 start-page: 4332 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0310 article-title: New insight on the study of the kinetic of biobased polyurethanes synthesis based on oleo-chemistry publication-title: Molecules doi: 10.3390/molecules24234332 – volume: 92 start-page: 705 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0055 article-title: New approaches to producing polyols from biomass publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5149 – volume: 89 start-page: 117 year: 2006 ident: 10.1016/j.porgcoat.2021.106267_bib0155 article-title: Synthesis and characterisation of polyurethane coatings based on trimer of isophorone diisocyanate (IPDI) and monoglycerides of oils publication-title: Surf. Coatings Int. Part B Coatings Trans. doi: 10.1007/BF02699641 – volume: 48 start-page: 109 year: 2008 ident: 10.1016/j.porgcoat.2021.106267_bib0340 article-title: Polyurethanes from vegetable oils publication-title: Polym. Rev. doi: 10.1080/15583720701834224 – volume: 52 start-page: 10189 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0445 article-title: Polyurethane prepared from neem oil polyesteramides for self-healing anticorrosive coatings publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie401237s – volume: 2 start-page: 192 year: 2014 ident: 10.1016/j.porgcoat.2021.106267_bib0755 article-title: Bio-based hyperbranched poly(ester amide)–MWCNT nanocomposites: multimodalities at the biointerface publication-title: Biomater. Sci. doi: 10.1039/C3BM60170F – volume: 127 start-page: 194 year: 2019 ident: 10.1016/j.porgcoat.2021.106267_bib0050 article-title: Design and synthesis of novel aminosiloxane crosslinked linseed oil-based waterborne polyurethane composites and its physicochemical properties publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2018.11.020 – volume: 29 start-page: 218 year: 2010 ident: 10.1016/j.porgcoat.2021.106267_bib0360 article-title: Preparation and properties of palm oil-based rigid polyurethane nanocomposite foams publication-title: J. Reinf. Plast. Compos. doi: 10.1177/0731684408096949 – volume: 44 start-page: 5980 year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0630 article-title: Mechanically robust hydrophobic interpenetrating polymer network-based nanocomposite of hyperbranched polyurethane and polystyrene as an effective anticorrosive coating publication-title: New J. Chem. doi: 10.1039/D0NJ00322K – volume: 27 start-page: 242 year: 2020 ident: 10.1016/j.porgcoat.2021.106267_bib0300 article-title: Utilization of oleic acid in synthesis of epoxidized soybean oil based green polyurethane coating and its comparative study with petrochemical based polyurethane publication-title: J. Polym. Res. doi: 10.1007/s10965-020-02170-w – volume: 135 start-page: 46722 year: 2018 ident: 10.1016/j.porgcoat.2021.106267_bib0465 article-title: A renewable approach toward the development of mahua oil-based wood protective polyurethane coatings: synthesis and performance evaluation publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.46722 – volume: 76 start-page: 1151 year: 2013 ident: 10.1016/j.porgcoat.2021.106267_bib0580 article-title: Preparation and characterization of high-solid polyurethane coating systems based on vegetable oil derived polyols publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2013.03.019 – start-page: 15 year: 2015 ident: 10.1016/j.porgcoat.2021.106267_bib0215 article-title: Polyols and polyurethanes from vegetable oils and their derivatives – volume: 106 start-page: 87 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0020 article-title: Synthesis of bio-based polyurethane coatings from vegetable oil and dicarboxylic acids publication-title: Prog. Org. Coatings. doi: 10.1016/j.porgcoat.2016.11.024 – volume: 53 start-page: 283 year: 2004 ident: 10.1016/j.porgcoat.2021.106267_bib0585 article-title: High solids polyurethane coatings from castor-oil-based polyester-polyols publication-title: Int. J. Polym. Mater. – volume: 6 start-page: 341 year: 2017 ident: 10.1016/j.porgcoat.2021.106267_bib0295 article-title: The castor oil based water borne polyurethane dispersion; effect of -NCO/OH content: synthesis, characterization and properties publication-title: Green Process. Synth. doi: 10.1515/gps-2016-0144 |
SSID | ssj0006339 |
Score | 2.6411688 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•The utilization of vegetable oil for polyurethane synthesis has been researched and documented in the past decade.•Derivatives of vegetable... The scientific community has been pooling all its resources, for the past decade, towards the development of "sustainable development" to usher into an... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106267 |
SubjectTerms | Bio-based materials Biodegradability Biological materials Coatings Environment friendly Environmental impact Fatty acids Isocyanates Polyols Polyurethane coating Polyurethane resins Sustainable development Ultraviolet radiation Vegetable oil Vegetable oils |
Title | Vegetable oil based polyurethane coatings – A sustainable approach: A review |
URI | https://dx.doi.org/10.1016/j.porgcoat.2021.106267 https://www.proquest.com/docview/2560880420 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4IHtSDUdSIIunB67KPdndZb4RIUCIHFeXWbB9LIIQlsBy8GP-D_9BfYmcfgiaGg6fNNtNNM-3OfG3nm0HoioiACFf6hi0Dy6DS9QwubWqE2hUQ6UqHEiAK3_e97oDeDd1hCbULLgyEVea2P7PpqbXOW8xcm-Z8PDYf9fLUexMKmxa4bgNGOaU-5M9vvK3DPDySVhMDYQOkN1jCk4aGuCMRhxBT6di6UaN7_y8H9ctUp_6nc4gOcuCIW9nYjlBJzSpot13Ua6ug_Y3Ugseo_6xGKgFeFI7HUwzOSuJ5PH1dLRSclisMI4Jjcvz5_oFbeLlmUuEi0fi1bs-4LSdo0Ll5aneNvHaCIQi1EoMonwqu4ZHLheMIFTZDDfS8gBBfCq0SVxHiaHjhhcL1SehzZVPOHRVRS0gRNckpKs_imTpDWEWWlo0sQYC1KkTAqd69RjLi3Gtyy64it1AYE3licahvMWVFBNmEFYpmoGiWKbqKzO9-8yy1xtYeQTEf7MciYdr-b-1bKyaQ5b_pkgHe0waMOtb5Pz59gfbgLQviraFyslipSw1VEl5P12Id7bRue90-PHsPL70vklTq9Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHNSDUdT4QN2D10rb3bbUGyEaUOEiGm6b7qMEQoAoHrz5H_yH_hJnaOsrMRy8bneazex05tvtfDMAZ1zHXAcmcjwTu44wQego4wknwVDATWB8wYko3OmGrXtx3Q_6K9AsuDCUVpn7_synL7x1PlLLtVmbDYe1OzRPPJsIOrTQ77ZoFcpUnQqNvdxo37S6nw455IuGYjTfIYFvROHROaLcgZ4mlFbpeziIAD_6K0b98taLEHS1BZs5dmSNbHnbsGInFVhrFi3bKrDxrbrgDnQf7MDOiRrFpsMxo3hl2Gw6fnl-tHRhbhmtiG7K2fvrG2uwpy8yFStqjV_geEZv2YX7q8tes-Xk7RMczYU7d7iNhFaIkAKlfV_bpJ4g1gtjziOjUSWB5dxHhBEmOoh4EinrCaV8mwpXG53W-R6UJtOJ3QdmUxfnpq7mRFzVOlYCD7CpSZUK68r1DiAoFCZ1XlucWlyMZZFENpKFoiUpWmaKPoDap9wsq66xVCIu9kP-sBOJIWCpbLXYQJl_qU-SIB_6MOG7h_949SmstXqdW3nb7t4cwTo9yXJ6q1CaPz7bY0Quc3WSW-YHQ1_sAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vegetable+oil+based+polyurethane+coatings+%E2%80%93+A+sustainable+approach%3A+A+review&rft.jtitle=Progress+in+organic+coatings&rft.au=Paraskar%2C+Pavan+M&rft.au=Prabhudesai%2C+Mayur+S&rft.au=Hatkar%2C+Vinod+M&rft.au=Kulkarni%2C+Ravindra+D&rft.date=2021-07-01&rft.pub=Elsevier+BV&rft.issn=0300-9440&rft.eissn=1873-331X&rft.volume=156&rft.spage=1&rft_id=info:doi/10.1016%2Fj.porgcoat.2021.106267&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-9440&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-9440&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-9440&client=summon |