A finite element model for unbonded flexible pipe under combined axisymmetric and bending loads

Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural arrangement of unbonded flexible pipes is quite complex, encompassing several layers with polymeric, metallic and textile materials. Different topologi...

Full description

Saved in:
Bibliographic Details
Published inMarine structures Vol. 74; p. 102826
Main Authors Lu, Hailong, Vaz, Murilo Augusto, Caire, Marcelo
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.11.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural arrangement of unbonded flexible pipes is quite complex, encompassing several layers with polymeric, metallic and textile materials. Different topologies and a large amount of intricate nonlinear contact interactions between and within their components, especially because of the relative stick-slip mechanism during bending, makes numerical analysis challenging. This paper presents an alternative three-dimensional nonlinear finite element model that describes the response of flexible pipes subjected to combined axisymmetric and bending loads. To simulate the response of a flexible pipe under axial tension or compression combined with uniform curvature, an equivalent thermal loading is employed on the external sheath, which is modelled as an orthotropic thermal expansion material with temperature-independent mechanical properties. To assess the feasibility of the proposed model, the bending moment versus curvature of the finite element solution is compared with experimental results obtained in literature and good agreements are found between them. Detailed finite element results such as contact pressures, armour wire slip displacements and friction, normal and transverse bending stresses are also shown and compared with available analytical models. •Alternative three-dimensional finite element model describes the response of flexible pipes subject to combined axisymmetric and bending loads.•To simulate the response of a flexible pipe under axial tension or compression and uniform curvature, an equivalent thermal loading is employed.•The bending moment versus curvature of the finite element model is compared with experimental results obtained in literature.•Contact pressures, armour wire slips and friction, normal and transverse bending stresses are shown and results compared with analytical models.
AbstractList Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural arrangement of unbonded flexible pipes is quite complex, encompassing several layers with polymeric, metallic and textile materials. Different topologies and a large amount of intricate nonlinear contact interactions between and within their components, especially because of the relative stick-slip mechanism during bending, makes numerical analysis challenging. This paper presents an alternative three-dimensional nonlinear finite element model that describes the response of flexible pipes subjected to combined axisymmetric and bending loads. To simulate the response of a flexible pipe under axial tension or compression combined with uniform curvature, an equivalent thermal loading is employed on the external sheath, which is modelled as an orthotropic thermal expansion material with temperature-independent mechanical properties. To assess the feasibility of the proposed model, the bending moment versus curvature of the finite element solution is compared with experimental results obtained in literature and good agreements are found between them. Detailed finite element results such as contact pressures, armour wire slip displacements and friction, normal and transverse bending stresses are also shown and compared with available analytical models.
Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural arrangement of unbonded flexible pipes is quite complex, encompassing several layers with polymeric, metallic and textile materials. Different topologies and a large amount of intricate nonlinear contact interactions between and within their components, especially because of the relative stick-slip mechanism during bending, makes numerical analysis challenging. This paper presents an alternative three-dimensional nonlinear finite element model that describes the response of flexible pipes subjected to combined axisymmetric and bending loads. To simulate the response of a flexible pipe under axial tension or compression combined with uniform curvature, an equivalent thermal loading is employed on the external sheath, which is modelled as an orthotropic thermal expansion material with temperature-independent mechanical properties. To assess the feasibility of the proposed model, the bending moment versus curvature of the finite element solution is compared with experimental results obtained in literature and good agreements are found between them. Detailed finite element results such as contact pressures, armour wire slip displacements and friction, normal and transverse bending stresses are also shown and compared with available analytical models. •Alternative three-dimensional finite element model describes the response of flexible pipes subject to combined axisymmetric and bending loads.•To simulate the response of a flexible pipe under axial tension or compression and uniform curvature, an equivalent thermal loading is employed.•The bending moment versus curvature of the finite element model is compared with experimental results obtained in literature.•Contact pressures, armour wire slips and friction, normal and transverse bending stresses are shown and results compared with analytical models.
ArticleNumber 102826
Author Lu, Hailong
Vaz, Murilo Augusto
Caire, Marcelo
Author_xml – sequence: 1
  givenname: Hailong
  orcidid: 0000-0002-5619-8664
  surname: Lu
  fullname: Lu, Hailong
– sequence: 2
  givenname: Murilo Augusto
  orcidid: 0000-0002-3993-1529
  surname: Vaz
  fullname: Vaz, Murilo Augusto
  email: murilo@oceanica.ufrj.br
– sequence: 3
  givenname: Marcelo
  surname: Caire
  fullname: Caire, Marcelo
BookMark eNqFkE1LAzEQhoNUsFb_ggQ8b83HfhU8WIpfUPCi57A7mUjKblKTVNp_75bVi5eeBt55nxl4LsnEeYeE3HA254yXd5t534SYwg7mgoljKGpRnpEpryuZ5bxiEzJli4JntZSLC3IZ44YxXnHOp0QtqbHOJqTYYY8u0d5r7Kjxge5c651GTU2He9t2SLd2i0OsMVDwfWvdsGz2Nh76HlOwQBunaYtOW_dJO9_oeEXOTdNFvP6dM_Lx9Pi-esnWb8-vq-U6A5mzlEkAjosSjNRQlK1mCwRjtKlzlKirKhes4tiYCk2LktUcmC5MDnVdCNlCK2fkdry7Df5rhzGpjd8FN7xUomBFJUrB66F1P7Yg-BgDGgU2Ncl6l0JjO8WZOipVG_WnVB2VqlHpgJf_8G2wQ_NwGnwYQRwUfFsMKoJFB6htQEhKe3vqxA_Pv5mF
CitedBy_id crossref_primary_10_1134_S1995080223050566
crossref_primary_10_1016_j_marstruc_2024_103627
crossref_primary_10_1080_17445302_2022_2075658
crossref_primary_10_1016_j_marstruc_2024_103705
crossref_primary_10_1016_j_oceaneng_2023_114730
crossref_primary_10_1016_j_petlm_2023_09_010
crossref_primary_10_1016_j_oceaneng_2025_120317
crossref_primary_10_1016_j_engstruct_2022_113849
crossref_primary_10_1016_j_engfailanal_2024_107962
crossref_primary_10_3390_jmse12091628
crossref_primary_10_1016_j_marstruc_2023_103396
crossref_primary_10_1007_s13344_022_0044_5
crossref_primary_10_1016_j_marstruc_2022_103275
crossref_primary_10_3390_su16072899
crossref_primary_10_1080_17445302_2024_2398145
crossref_primary_10_1016_j_marstruc_2023_103497
crossref_primary_10_1016_j_oceaneng_2022_112407
crossref_primary_10_1080_17445302_2024_2411384
crossref_primary_10_3390_jmse12122362
crossref_primary_10_1016_j_engstruct_2023_116606
crossref_primary_10_1007_s13344_022_0053_4
crossref_primary_10_1016_j_marstruc_2024_103661
crossref_primary_10_1016_j_oceaneng_2022_112719
crossref_primary_10_1016_j_oceaneng_2021_108766
crossref_primary_10_1016_j_marstruc_2021_103141
crossref_primary_10_1016_j_oceaneng_2024_118710
crossref_primary_10_1016_j_marstruc_2024_103622
crossref_primary_10_1016_j_prostr_2021_12_059
crossref_primary_10_1016_j_marstruc_2024_103763
Cites_doi 10.1243/0309324011514458
10.1016/j.compstruct.2019.111560
10.1016/j.apor.2014.12.004
10.1016/j.engstruct.2010.04.003
10.1155/2012/246812
10.2516/ogst:2001044
10.1016/j.ijmecsci.2007.03.014
10.1016/j.ijnaoe.2018.09.006
10.1016/j.marstruc.2016.10.004
10.1115/1.2948956
10.1016/0045-7949(93)90187-I
10.1016/j.marstruc.2018.02.012
10.1016/j.compstruc.2011.08.008
10.1016/j.marstruc.2017.05.010
10.1016/0951-8339(92)90030-S
10.1115/1.3257019
10.1016/j.oceaneng.2015.10.057
10.1016/S0141-1187(02)00007-X
10.1016/j.marstruc.2019.102632
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Nov 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 2020
DBID AAYXX
CITATION
7ST
7TB
7TN
8FD
C1K
F1W
FR3
KR7
SOI
DOI 10.1016/j.marstruc.2020.102826
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
EISSN 1873-4170
ExternalDocumentID 10_1016_j_marstruc_2020_102826
S0951833920301209
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TB
7TN
8FD
C1K
EFKBS
F1W
FR3
KR7
SOI
ID FETCH-LOGICAL-c340t-3cc1e96cf3dc56bd09ecffdf84e3ed7742071eaf7efbe3081c0d5f4c88523bcb3
IEDL.DBID .~1
ISSN 0951-8339
IngestDate Wed Aug 13 05:55:38 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
Tue Jul 01 02:36:55 EDT 2025
Fri Feb 23 02:47:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Flexible pipe
Finite element model
Bending stresses
Friction behaviour
Thermal loading
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-3cc1e96cf3dc56bd09ecffdf84e3ed7742071eaf7efbe3081c0d5f4c88523bcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3993-1529
0000-0002-5619-8664
PQID 2505726218
PQPubID 2045436
ParticipantIDs proquest_journals_2505726218
crossref_citationtrail_10_1016_j_marstruc_2020_102826
crossref_primary_10_1016_j_marstruc_2020_102826
elsevier_sciencedirect_doi_10_1016_j_marstruc_2020_102826
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Marine structures
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Tang, Yang, Yan, Yue (bib7) 2015; 50
Simulia (bib21) 2019
Custódio, Vaz (bib4) 2002; 24
Dai, Sævik, Ye (bib29) 2018; 59
Witz, Tan (bib2) 1992; 5
Dong, Qu, Zhang, Huang, Liu (bib8) 2019; 67
Kraincanic, Kebadze (bib33) 2001; 36
Lukassen, Glejbøl, Lyckegaard, Berggreen (bib23) 2016
Ghoreishi, Messager, Cartraud, Davies (bib3) 2007; 49
Chen, Fu (bib20) 2008; 130
Malta, Martins (bib18) 2014
Berge, Engseth, Fylling, Larsen, Leira, Nygaard (bib30) 2017
Tang, Lu, Yan, Yue (bib10) 2016; 111
Li H, Saevik S. Flexible Pipe Stress and Fatigue Analysis. Department of Marine Technology (MSc), NTNU, 2012.
Ren, Liu, Song, Geng, Wu (bib12) 2019; 11
Ribeiro, de Sousa, Ellwanger, Lima (bib16) 2003
Sævik (bib13) 1993; 46
Lu, Bai (bib9) 2017
Bahtui, Alfano, Bahai, Hosseini-Kordkheili (bib19) 2010; 32
Leroy, Estrier (bib5) 2001; 56
Gomes (bib17) 2017
Sævik (bib15) 2011; 89
de Sousa, Pinho, Ellwanger, Lima (bib27) 2009
Tan, Quiggin, Sheldrake (bib25) 2007
Liu, Wang (bib11) 2019; 230
Féret, Bournazel (bib1) 1987; 109
Sævik (bib32) 1992
Skeie, Sødahl, Steinkjer (bib31) 2012
Perdrizet, Leroy, Barbin, Charliac, Estrier (bib22) 2011
SINTEF 1991. Structural damping in a wellstream pipe. FPS200/Flexible risers and pipes n.d.;STF71 F910.
Zhou, Vaz (bib6) 2017; 51
Lyckegaard, Glejbøl, Berggreen, Gunnarsson, Lukassen, Krenk (bib24) 2018; 64
Dai, Sævik, Ye (bib28) 2017; 55
Kraincanic (10.1016/j.marstruc.2020.102826_bib33) 2001; 36
Malta (10.1016/j.marstruc.2020.102826_bib18) 2014
Bahtui (10.1016/j.marstruc.2020.102826_bib19) 2010; 32
Berge (10.1016/j.marstruc.2020.102826_bib30) 2017
Gomes (10.1016/j.marstruc.2020.102826_bib17) 2017
Simulia (10.1016/j.marstruc.2020.102826_bib21) 2019
Lyckegaard (10.1016/j.marstruc.2020.102826_bib24) 2018; 64
Witz (10.1016/j.marstruc.2020.102826_bib2) 1992; 5
Lu (10.1016/j.marstruc.2020.102826_bib9) 2017
Ren (10.1016/j.marstruc.2020.102826_bib12) 2019; 11
Ghoreishi (10.1016/j.marstruc.2020.102826_bib3) 2007; 49
Sævik (10.1016/j.marstruc.2020.102826_bib13) 1993; 46
Ribeiro (10.1016/j.marstruc.2020.102826_bib16) 2003
Chen (10.1016/j.marstruc.2020.102826_bib20) 2008; 130
Leroy (10.1016/j.marstruc.2020.102826_bib5) 2001; 56
Tang (10.1016/j.marstruc.2020.102826_bib7) 2015; 50
Perdrizet (10.1016/j.marstruc.2020.102826_bib22) 2011
Sævik (10.1016/j.marstruc.2020.102826_bib32) 1992
Custódio (10.1016/j.marstruc.2020.102826_bib4) 2002; 24
Skeie (10.1016/j.marstruc.2020.102826_bib31) 2012
Dong (10.1016/j.marstruc.2020.102826_bib8) 2019; 67
10.1016/j.marstruc.2020.102826_bib14
Tan (10.1016/j.marstruc.2020.102826_bib25) 2007
Zhou (10.1016/j.marstruc.2020.102826_bib6) 2017; 51
Liu (10.1016/j.marstruc.2020.102826_bib11) 2019; 230
Tang (10.1016/j.marstruc.2020.102826_bib10) 2016; 111
Lukassen (10.1016/j.marstruc.2020.102826_bib23) 2016
Sævik (10.1016/j.marstruc.2020.102826_bib15) 2011; 89
Féret (10.1016/j.marstruc.2020.102826_bib1) 1987; 109
10.1016/j.marstruc.2020.102826_bib26
Dai (10.1016/j.marstruc.2020.102826_bib28) 2017; 55
Dai (10.1016/j.marstruc.2020.102826_bib29) 2018; 59
de Sousa (10.1016/j.marstruc.2020.102826_bib27) 2009
References_xml – reference: Li H, Saevik S. Flexible Pipe Stress and Fatigue Analysis. Department of Marine Technology (MSc), NTNU, 2012.
– volume: 109
  start-page: 263
  year: 1987
  ident: bib1
  article-title: Calculation of stresses and slip in structural layers of unbonded flexible pipes
  publication-title: J Offshore Mech Arctic Eng
– year: 2012
  ident: bib31
  article-title: Efficient fatigue analysis of helix elements in umbilicals and flexible risers: theory and applications
  publication-title: J Appl Math
– volume: 56
  start-page: 545
  year: 2001
  end-page: 554
  ident: bib5
  article-title: Calculation of stresses and slips in helical layers of dynamically bent flexible pipes
  publication-title: Oil & Gas Science and Technology – Rev IFP
– volume: 67
  start-page: 102632
  year: 2019
  ident: bib8
  article-title: A general model to predict torsion and curvature increments of tensile armors in unbonded flexible pipes
  publication-title: Mar Struct
– volume: 64
  start-page: 401
  year: 2018
  end-page: 420
  ident: bib24
  article-title: Tension-bending analysis of flexible pipe by a repeated unit cell finite element model
  publication-title: Mar Struct
– start-page: 8
  year: 2003
  ident: bib16
  article-title: On the tension-compression behaviour of flexible risers
  publication-title: The Thirteenth International Offshore and Polar Engineering Conference
– volume: 49
  start-page: 1251
  year: 2007
  end-page: 1261
  ident: bib3
  article-title: Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model
  publication-title: Int J Mech Sci
– year: 2019
  ident: bib21
  article-title: ABAQUS user manual, version 2018
– volume: 24
  start-page: 21
  year: 2002
  end-page: 29
  ident: bib4
  article-title: A nonlinear formulation for the axisymmetric response of umbilical cables and flexible pipes
  publication-title: Appl Ocean Res
– volume: 36
  start-page: 265
  year: 2001
  end-page: 275
  ident: bib33
  article-title: Slip initiation and progression in helical armouring layers of unbonded flexible pipes and its effect on pipe bending behaviour
  publication-title: J Strain Anal Eng Des
– volume: 32
  start-page: 2287
  year: 2010
  end-page: 2299
  ident: bib19
  article-title: On the multi-scale computation of un-bonded flexible risers
  publication-title: Eng Struct
– start-page: 829
  year: 2009
  end-page: 839
  ident: bib27
  article-title: Numerical analysis of a flexible pipe with damaged tensile armor wires
  publication-title: ASME 2009 28th international conference on ocean
– start-page: 1
  year: 2011
  end-page: 14
  ident: bib22
  article-title: Stresses in armour layers of flexible pipes
  publication-title: Comparison of Abaqus models. SIMULIA customer conference
– start-page: 307
  year: 2007
  end-page: 314
  ident: bib25
  article-title: Time domain simulation of the 3D bending hysteresis behaviour of an unbonded flexible riser
  publication-title: ASME 2007 26th international conference on offshore mechanics and arctic engineering
– volume: 46
  start-page: 219
  year: 1993
  end-page: 230
  ident: bib13
  article-title: A finite element model for predicting stresses and slip in flexible pipe armouring tendons
  publication-title: Comput Struct
– reference: SINTEF 1991. Structural damping in a wellstream pipe. FPS200/Flexible risers and pipes n.d.;STF71 F910.
– volume: 59
  start-page: 423
  year: 2018
  end-page: 443
  ident: bib29
  article-title: An anisotropic friction model in non-bonded flexible risers
  publication-title: Mar Struct
– volume: 111
  start-page: 209
  year: 2016
  end-page: 217
  ident: bib10
  article-title: Buckling collapse study for the carcass layer of flexible pipes using a strain energy equivalence method
  publication-title: Ocean Eng
– volume: 89
  start-page: 2273
  year: 2011
  end-page: 2291
  ident: bib15
  article-title: Theoretical and experimental studies of stresses in flexible pipes
  publication-title: Comput Struct
– year: 2017
  ident: bib17
  article-title: Finite element analysis of flexible pipes: bending combined with tensile load. Programa de Engenharia civil(MSc)
  publication-title: COPPE/UFRJ
– volume: 50
  start-page: 58
  year: 2015
  end-page: 68
  ident: bib7
  article-title: Validity and limitation of analytical models for the bending stress of a helical wire in unbonded flexible pipes
  publication-title: Appl Ocean Res
– volume: 5
  start-page: 229
  year: 1992
  end-page: 249
  ident: bib2
  article-title: On the flexural structural behaviour of flexible pipes, umbilicals and marine cables
  publication-title: Mar Struct
– volume: 130
  start-page: 41301
  year: 2008
  ident: bib20
  article-title: A finite element analysis for unbonded flexible risers under bending loads
  publication-title: J Offshore Mech Arctic Eng
– volume: 230
  start-page: 111560
  year: 2019
  ident: bib11
  article-title: An elastic stability-based method to predict the homogenized hoop elastic moduli of reinforced thermoplastic pipes ( RTPs )
  publication-title: Compos Struct
– year: 1992
  ident: bib32
  article-title: On stresses and fatigue in flexible pipes
– year: 2017
  ident: bib9
  article-title: Research on cross-section mechanical model and fatigue life analysis of deepwater flexible risers
– volume: 51
  start-page: 152
  year: 2017
  end-page: 173
  ident: bib6
  article-title: A quasi-linear method for frictional model in helical layers of bent flexible risers
  publication-title: Mar Struct
– start-page: 1
  year: 2016
  end-page: 8
  ident: bib23
  article-title: Comparison between stress obtained by numerical analysis and in-situ measurements on a flexible pipe subjected to in-plane bending test
  publication-title: Proceedings of the ASME 2016 35th international conference on ocean
– volume: 55
  start-page: 137
  year: 2017
  end-page: 161
  ident: bib28
  article-title: Friction models for evaluating dynamic stresses in non-bonded flexible risers
  publication-title: Mar Struct
– year: 2017
  ident: bib30
  article-title: Handbook on design and operation of flexible pipes
– start-page: 1
  year: 2014
  end-page: 11
  ident: bib18
  article-title: Finite element analysis of flexible pipes under compression. Proceedings of the ASME 2014 33th international conference on ocean
  publication-title: Offshore and Arctic Engineering
– volume: 11
  start-page: 521
  year: 2019
  end-page: 529
  ident: bib12
  article-title: Crushing study for interlocked armor layers of unbonded flexible risers with a modified equivalent stiffness method
  publication-title: International Journal of Naval Architecture and Ocean Engineering
– start-page: 8
  year: 2003
  ident: 10.1016/j.marstruc.2020.102826_bib16
  article-title: On the tension-compression behaviour of flexible risers
  publication-title: The Thirteenth International Offshore and Polar Engineering Conference
– volume: 36
  start-page: 265
  year: 2001
  ident: 10.1016/j.marstruc.2020.102826_bib33
  article-title: Slip initiation and progression in helical armouring layers of unbonded flexible pipes and its effect on pipe bending behaviour
  publication-title: J Strain Anal Eng Des
  doi: 10.1243/0309324011514458
– volume: 230
  start-page: 111560
  year: 2019
  ident: 10.1016/j.marstruc.2020.102826_bib11
  article-title: An elastic stability-based method to predict the homogenized hoop elastic moduli of reinforced thermoplastic pipes ( RTPs )
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2019.111560
– volume: 50
  start-page: 58
  year: 2015
  ident: 10.1016/j.marstruc.2020.102826_bib7
  article-title: Validity and limitation of analytical models for the bending stress of a helical wire in unbonded flexible pipes
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2014.12.004
– year: 1992
  ident: 10.1016/j.marstruc.2020.102826_bib32
– start-page: 1
  year: 2014
  ident: 10.1016/j.marstruc.2020.102826_bib18
  article-title: Finite element analysis of flexible pipes under compression. Proceedings of the ASME 2014 33th international conference on ocean
  publication-title: Offshore and Arctic Engineering
– volume: 32
  start-page: 2287
  year: 2010
  ident: 10.1016/j.marstruc.2020.102826_bib19
  article-title: On the multi-scale computation of un-bonded flexible risers
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2010.04.003
– year: 2017
  ident: 10.1016/j.marstruc.2020.102826_bib30
– year: 2012
  ident: 10.1016/j.marstruc.2020.102826_bib31
  article-title: Efficient fatigue analysis of helix elements in umbilicals and flexible risers: theory and applications
  publication-title: J Appl Math
  doi: 10.1155/2012/246812
– year: 2017
  ident: 10.1016/j.marstruc.2020.102826_bib17
  article-title: Finite element analysis of flexible pipes: bending combined with tensile load. Programa de Engenharia civil(MSc)
  publication-title: COPPE/UFRJ
– ident: 10.1016/j.marstruc.2020.102826_bib14
– volume: 56
  start-page: 545
  year: 2001
  ident: 10.1016/j.marstruc.2020.102826_bib5
  article-title: Calculation of stresses and slips in helical layers of dynamically bent flexible pipes
  publication-title: Oil & Gas Science and Technology – Rev IFP
  doi: 10.2516/ogst:2001044
– volume: 49
  start-page: 1251
  year: 2007
  ident: 10.1016/j.marstruc.2020.102826_bib3
  article-title: Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2007.03.014
– volume: 11
  start-page: 521
  year: 2019
  ident: 10.1016/j.marstruc.2020.102826_bib12
  article-title: Crushing study for interlocked armor layers of unbonded flexible risers with a modified equivalent stiffness method
  publication-title: International Journal of Naval Architecture and Ocean Engineering
  doi: 10.1016/j.ijnaoe.2018.09.006
– volume: 51
  start-page: 152
  year: 2017
  ident: 10.1016/j.marstruc.2020.102826_bib6
  article-title: A quasi-linear method for frictional model in helical layers of bent flexible risers
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2016.10.004
– volume: 130
  start-page: 41301
  year: 2008
  ident: 10.1016/j.marstruc.2020.102826_bib20
  article-title: A finite element analysis for unbonded flexible risers under bending loads
  publication-title: J Offshore Mech Arctic Eng
  doi: 10.1115/1.2948956
– ident: 10.1016/j.marstruc.2020.102826_bib26
– volume: 46
  start-page: 219
  year: 1993
  ident: 10.1016/j.marstruc.2020.102826_bib13
  article-title: A finite element model for predicting stresses and slip in flexible pipe armouring tendons
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(93)90187-I
– year: 2019
  ident: 10.1016/j.marstruc.2020.102826_bib21
– volume: 59
  start-page: 423
  year: 2018
  ident: 10.1016/j.marstruc.2020.102826_bib29
  article-title: An anisotropic friction model in non-bonded flexible risers
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2018.02.012
– volume: 89
  start-page: 2273
  year: 2011
  ident: 10.1016/j.marstruc.2020.102826_bib15
  article-title: Theoretical and experimental studies of stresses in flexible pipes
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2011.08.008
– start-page: 307
  year: 2007
  ident: 10.1016/j.marstruc.2020.102826_bib25
  article-title: Time domain simulation of the 3D bending hysteresis behaviour of an unbonded flexible riser
– volume: 55
  start-page: 137
  year: 2017
  ident: 10.1016/j.marstruc.2020.102826_bib28
  article-title: Friction models for evaluating dynamic stresses in non-bonded flexible risers
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2017.05.010
– start-page: 829
  year: 2009
  ident: 10.1016/j.marstruc.2020.102826_bib27
  article-title: Numerical analysis of a flexible pipe with damaged tensile armor wires
– year: 2017
  ident: 10.1016/j.marstruc.2020.102826_bib9
– volume: 5
  start-page: 229
  year: 1992
  ident: 10.1016/j.marstruc.2020.102826_bib2
  article-title: On the flexural structural behaviour of flexible pipes, umbilicals and marine cables
  publication-title: Mar Struct
  doi: 10.1016/0951-8339(92)90030-S
– volume: 109
  start-page: 263
  year: 1987
  ident: 10.1016/j.marstruc.2020.102826_bib1
  article-title: Calculation of stresses and slip in structural layers of unbonded flexible pipes
  publication-title: J Offshore Mech Arctic Eng
  doi: 10.1115/1.3257019
– start-page: 1
  year: 2016
  ident: 10.1016/j.marstruc.2020.102826_bib23
  article-title: Comparison between stress obtained by numerical analysis and in-situ measurements on a flexible pipe subjected to in-plane bending test
– volume: 111
  start-page: 209
  year: 2016
  ident: 10.1016/j.marstruc.2020.102826_bib10
  article-title: Buckling collapse study for the carcass layer of flexible pipes using a strain energy equivalence method
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2015.10.057
– volume: 24
  start-page: 21
  year: 2002
  ident: 10.1016/j.marstruc.2020.102826_bib4
  article-title: A nonlinear formulation for the axisymmetric response of umbilical cables and flexible pipes
  publication-title: Appl Ocean Res
  doi: 10.1016/S0141-1187(02)00007-X
– volume: 64
  start-page: 401
  year: 2018
  ident: 10.1016/j.marstruc.2020.102826_bib24
  article-title: Tension-bending analysis of flexible pipe by a repeated unit cell finite element model
  publication-title: Mar Struct
– volume: 67
  start-page: 102632
  year: 2019
  ident: 10.1016/j.marstruc.2020.102826_bib8
  article-title: A general model to predict torsion and curvature increments of tensile armors in unbonded flexible pipes
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2019.102632
– start-page: 1
  year: 2011
  ident: 10.1016/j.marstruc.2020.102826_bib22
  article-title: Stresses in armour layers of flexible pipes
SSID ssj0017111
Score 2.388444
Snippet Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102826
SubjectTerms Agreements
Bending machines
Bending moments
Bending stresses
Compression
Computational fluid dynamics
Contact pressure
Curvature
Deformation
Feasibility studies
Finite element method
Finite element model
Flexible pipe
Flexible pipes
Fluids
Friction behaviour
Gas production
Loads (forces)
Mathematical models
Mechanical properties
Numerical analysis
Offshore
Offshore engineering
Oil and gas production
Pipes
Sheaths
Slip
Thermal expansion
Thermal loading
Topology
Title A finite element model for unbonded flexible pipe under combined axisymmetric and bending loads
URI https://dx.doi.org/10.1016/j.marstruc.2020.102826
https://www.proquest.com/docview/2505726218
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEIAX0YsX8YnVWuYg3mIeu03SYylKVexFBW_LPiGlTUtbwV787c5ukqIiePCYbDaE2dmZb8M8CLlElxGLhLIAWTQN0N-mQc8KiiAnM6Gy3GqfHv04Socv7P61-7pFBk0ujAurrG1_ZdO9ta7vhLU0w3lRhE8ODnKK_t1RfeKT-BjLnJZff2zCPOIs9j14fTt59_SXLOHx9RQPj65MK54TE1_FIHdFFn53UD9Mtfc_t_tkrwZH6FffdkC2THlITh99ke3FGq5gJFBpoN6rR4T3wRYOKMFUEeLgm94AQiq8lXLm_nyDdeUw5cTAvJgbcPlkC0BJ4GkZB8V7sVxPp67llgJRapDGp8DAZCb08pi83N48D4ZB3U0hUJRFq4AqFZteqizVqptKHfWMslbbnBlqNFJggrRhhM2MlYYiKahIdy1TeY5nVakkPSHb5aw0pwRiXE0dIbnlmWSILFIxYVDSFtkmETRukW4jQq7qUuOu48WENzFlY96InjvR80r0LRJu5s2rYht_zug1K8S_qQ1Hj_Dn3HazpLzeuEvuiDBLUgSfs3-8-pzsuqsqZ7FNtnHcXCC8rGTHa2eH7PTvHoajT2Qu8CU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT-MwEIAtVA5wQbCAgC3sHFbcQps4rx6rClQW2gsgcbP8lILatGpBWv49M46DFoTEYa9xJorG9sw3iWeGsd_oMmKZ8DRCFs0j9Ld5NHCSI8ipQuqidManR0-m-fgh_fOYPW6wUZsLQ8cqg-1vbLq31uFKL2izt6yq3h3BQcnRvxPVJ5TEt0nVqbIO2xxe34yn7z8Titi34fUd5Ungn0Thp4s5xo9UqRVDxcQXMiipzsLXPuqTtfYu6GqX7QR2hGHzentsw9Y_2NHE19levcI5TCWuGwjbdZ-JIbiKmBJsc0gcfN8bQE6Fl1ot6OM3OKqIqWYWltXSAqWUrQCVgQEzDsq_1fp1PqeuWxpkbUBZnwUDs4U06wP2cHV5PxpHoaFCpHnaf4641rEd5Npxo7Ncmf7AaueMK1PLrUEQTBA4rHSFdcpyhAXdN5lLdVliuKq04oesUy9qe8Qgxgk1fYS3slApUovSqbSoaYd4k0geH7OsVaHQodo4Nb2YifZY2ZNoVS9I9aJR_THrvcstm3ob30oM2hkSH1aOQKfwrWy3nVIR9u5aEBQWSY7sc_Ifj_7Ftsb3k1txez29-cm2aaRJYeyyDt5rT5FlntVZWKtvm27y1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+finite+element+model+for+unbonded+flexible+pipe+under+combined+axisymmetric+and+bending+loads&rft.jtitle=Marine+structures&rft.au=Lu%2C+Hailong&rft.au=Vaz%2C+Murilo+Augusto&rft.au=Caire%2C+Marcelo&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8339&rft.eissn=1873-4170&rft.volume=74&rft_id=info:doi/10.1016%2Fj.marstruc.2020.102826&rft.externalDocID=S0951833920301209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8339&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8339&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8339&client=summon