A finite element model for unbonded flexible pipe under combined axisymmetric and bending loads
Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural arrangement of unbonded flexible pipes is quite complex, encompassing several layers with polymeric, metallic and textile materials. Different topologi...
Saved in:
Published in | Marine structures Vol. 74; p. 102826 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.11.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural arrangement of unbonded flexible pipes is quite complex, encompassing several layers with polymeric, metallic and textile materials. Different topologies and a large amount of intricate nonlinear contact interactions between and within their components, especially because of the relative stick-slip mechanism during bending, makes numerical analysis challenging. This paper presents an alternative three-dimensional nonlinear finite element model that describes the response of flexible pipes subjected to combined axisymmetric and bending loads. To simulate the response of a flexible pipe under axial tension or compression combined with uniform curvature, an equivalent thermal loading is employed on the external sheath, which is modelled as an orthotropic thermal expansion material with temperature-independent mechanical properties. To assess the feasibility of the proposed model, the bending moment versus curvature of the finite element solution is compared with experimental results obtained in literature and good agreements are found between them. Detailed finite element results such as contact pressures, armour wire slip displacements and friction, normal and transverse bending stresses are also shown and compared with available analytical models.
•Alternative three-dimensional finite element model describes the response of flexible pipes subject to combined axisymmetric and bending loads.•To simulate the response of a flexible pipe under axial tension or compression and uniform curvature, an equivalent thermal loading is employed.•The bending moment versus curvature of the finite element model is compared with experimental results obtained in literature.•Contact pressures, armour wire slips and friction, normal and transverse bending stresses are shown and results compared with analytical models. |
---|---|
AbstractList | Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural arrangement of unbonded flexible pipes is quite complex, encompassing several layers with polymeric, metallic and textile materials. Different topologies and a large amount of intricate nonlinear contact interactions between and within their components, especially because of the relative stick-slip mechanism during bending, makes numerical analysis challenging. This paper presents an alternative three-dimensional nonlinear finite element model that describes the response of flexible pipes subjected to combined axisymmetric and bending loads. To simulate the response of a flexible pipe under axial tension or compression combined with uniform curvature, an equivalent thermal loading is employed on the external sheath, which is modelled as an orthotropic thermal expansion material with temperature-independent mechanical properties. To assess the feasibility of the proposed model, the bending moment versus curvature of the finite element solution is compared with experimental results obtained in literature and good agreements are found between them. Detailed finite element results such as contact pressures, armour wire slip displacements and friction, normal and transverse bending stresses are also shown and compared with available analytical models. Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural arrangement of unbonded flexible pipes is quite complex, encompassing several layers with polymeric, metallic and textile materials. Different topologies and a large amount of intricate nonlinear contact interactions between and within their components, especially because of the relative stick-slip mechanism during bending, makes numerical analysis challenging. This paper presents an alternative three-dimensional nonlinear finite element model that describes the response of flexible pipes subjected to combined axisymmetric and bending loads. To simulate the response of a flexible pipe under axial tension or compression combined with uniform curvature, an equivalent thermal loading is employed on the external sheath, which is modelled as an orthotropic thermal expansion material with temperature-independent mechanical properties. To assess the feasibility of the proposed model, the bending moment versus curvature of the finite element solution is compared with experimental results obtained in literature and good agreements are found between them. Detailed finite element results such as contact pressures, armour wire slip displacements and friction, normal and transverse bending stresses are also shown and compared with available analytical models. •Alternative three-dimensional finite element model describes the response of flexible pipes subject to combined axisymmetric and bending loads.•To simulate the response of a flexible pipe under axial tension or compression and uniform curvature, an equivalent thermal loading is employed.•The bending moment versus curvature of the finite element model is compared with experimental results obtained in literature.•Contact pressures, armour wire slips and friction, normal and transverse bending stresses are shown and results compared with analytical models. |
ArticleNumber | 102826 |
Author | Lu, Hailong Vaz, Murilo Augusto Caire, Marcelo |
Author_xml | – sequence: 1 givenname: Hailong orcidid: 0000-0002-5619-8664 surname: Lu fullname: Lu, Hailong – sequence: 2 givenname: Murilo Augusto orcidid: 0000-0002-3993-1529 surname: Vaz fullname: Vaz, Murilo Augusto email: murilo@oceanica.ufrj.br – sequence: 3 givenname: Marcelo surname: Caire fullname: Caire, Marcelo |
BookMark | eNqFkE1LAzEQhoNUsFb_ggQ8b83HfhU8WIpfUPCi57A7mUjKblKTVNp_75bVi5eeBt55nxl4LsnEeYeE3HA254yXd5t534SYwg7mgoljKGpRnpEpryuZ5bxiEzJli4JntZSLC3IZ44YxXnHOp0QtqbHOJqTYYY8u0d5r7Kjxge5c651GTU2He9t2SLd2i0OsMVDwfWvdsGz2Nh76HlOwQBunaYtOW_dJO9_oeEXOTdNFvP6dM_Lx9Pi-esnWb8-vq-U6A5mzlEkAjosSjNRQlK1mCwRjtKlzlKirKhes4tiYCk2LktUcmC5MDnVdCNlCK2fkdry7Df5rhzGpjd8FN7xUomBFJUrB66F1P7Yg-BgDGgU2Ncl6l0JjO8WZOipVG_WnVB2VqlHpgJf_8G2wQ_NwGnwYQRwUfFsMKoJFB6htQEhKe3vqxA_Pv5mF |
CitedBy_id | crossref_primary_10_1134_S1995080223050566 crossref_primary_10_1016_j_marstruc_2024_103627 crossref_primary_10_1080_17445302_2022_2075658 crossref_primary_10_1016_j_marstruc_2024_103705 crossref_primary_10_1016_j_oceaneng_2023_114730 crossref_primary_10_1016_j_petlm_2023_09_010 crossref_primary_10_1016_j_oceaneng_2025_120317 crossref_primary_10_1016_j_engstruct_2022_113849 crossref_primary_10_1016_j_engfailanal_2024_107962 crossref_primary_10_3390_jmse12091628 crossref_primary_10_1016_j_marstruc_2023_103396 crossref_primary_10_1007_s13344_022_0044_5 crossref_primary_10_1016_j_marstruc_2022_103275 crossref_primary_10_3390_su16072899 crossref_primary_10_1080_17445302_2024_2398145 crossref_primary_10_1016_j_marstruc_2023_103497 crossref_primary_10_1016_j_oceaneng_2022_112407 crossref_primary_10_1080_17445302_2024_2411384 crossref_primary_10_3390_jmse12122362 crossref_primary_10_1016_j_engstruct_2023_116606 crossref_primary_10_1007_s13344_022_0053_4 crossref_primary_10_1016_j_marstruc_2024_103661 crossref_primary_10_1016_j_oceaneng_2022_112719 crossref_primary_10_1016_j_oceaneng_2021_108766 crossref_primary_10_1016_j_marstruc_2021_103141 crossref_primary_10_1016_j_oceaneng_2024_118710 crossref_primary_10_1016_j_marstruc_2024_103622 crossref_primary_10_1016_j_prostr_2021_12_059 crossref_primary_10_1016_j_marstruc_2024_103763 |
Cites_doi | 10.1243/0309324011514458 10.1016/j.compstruct.2019.111560 10.1016/j.apor.2014.12.004 10.1016/j.engstruct.2010.04.003 10.1155/2012/246812 10.2516/ogst:2001044 10.1016/j.ijmecsci.2007.03.014 10.1016/j.ijnaoe.2018.09.006 10.1016/j.marstruc.2016.10.004 10.1115/1.2948956 10.1016/0045-7949(93)90187-I 10.1016/j.marstruc.2018.02.012 10.1016/j.compstruc.2011.08.008 10.1016/j.marstruc.2017.05.010 10.1016/0951-8339(92)90030-S 10.1115/1.3257019 10.1016/j.oceaneng.2015.10.057 10.1016/S0141-1187(02)00007-X 10.1016/j.marstruc.2019.102632 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Nov 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Nov 2020 |
DBID | AAYXX CITATION 7ST 7TB 7TN 8FD C1K F1W FR3 KR7 SOI |
DOI | 10.1016/j.marstruc.2020.102826 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Oceanic Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Military & Naval Science |
EISSN | 1873-4170 |
ExternalDocumentID | 10_1016_j_marstruc_2020_102826 S0951833920301209 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TB 7TN 8FD C1K EFKBS F1W FR3 KR7 SOI |
ID | FETCH-LOGICAL-c340t-3cc1e96cf3dc56bd09ecffdf84e3ed7742071eaf7efbe3081c0d5f4c88523bcb3 |
IEDL.DBID | .~1 |
ISSN | 0951-8339 |
IngestDate | Wed Aug 13 05:55:38 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 Tue Jul 01 02:36:55 EDT 2025 Fri Feb 23 02:47:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Flexible pipe Finite element model Bending stresses Friction behaviour Thermal loading |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-3cc1e96cf3dc56bd09ecffdf84e3ed7742071eaf7efbe3081c0d5f4c88523bcb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3993-1529 0000-0002-5619-8664 |
PQID | 2505726218 |
PQPubID | 2045436 |
ParticipantIDs | proquest_journals_2505726218 crossref_citationtrail_10_1016_j_marstruc_2020_102826 crossref_primary_10_1016_j_marstruc_2020_102826 elsevier_sciencedirect_doi_10_1016_j_marstruc_2020_102826 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Marine structures |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Tang, Yang, Yan, Yue (bib7) 2015; 50 Simulia (bib21) 2019 Custódio, Vaz (bib4) 2002; 24 Dai, Sævik, Ye (bib29) 2018; 59 Witz, Tan (bib2) 1992; 5 Dong, Qu, Zhang, Huang, Liu (bib8) 2019; 67 Kraincanic, Kebadze (bib33) 2001; 36 Lukassen, Glejbøl, Lyckegaard, Berggreen (bib23) 2016 Ghoreishi, Messager, Cartraud, Davies (bib3) 2007; 49 Chen, Fu (bib20) 2008; 130 Malta, Martins (bib18) 2014 Berge, Engseth, Fylling, Larsen, Leira, Nygaard (bib30) 2017 Tang, Lu, Yan, Yue (bib10) 2016; 111 Li H, Saevik S. Flexible Pipe Stress and Fatigue Analysis. Department of Marine Technology (MSc), NTNU, 2012. Ren, Liu, Song, Geng, Wu (bib12) 2019; 11 Ribeiro, de Sousa, Ellwanger, Lima (bib16) 2003 Sævik (bib13) 1993; 46 Lu, Bai (bib9) 2017 Bahtui, Alfano, Bahai, Hosseini-Kordkheili (bib19) 2010; 32 Leroy, Estrier (bib5) 2001; 56 Gomes (bib17) 2017 Sævik (bib15) 2011; 89 de Sousa, Pinho, Ellwanger, Lima (bib27) 2009 Tan, Quiggin, Sheldrake (bib25) 2007 Liu, Wang (bib11) 2019; 230 Féret, Bournazel (bib1) 1987; 109 Sævik (bib32) 1992 Skeie, Sødahl, Steinkjer (bib31) 2012 Perdrizet, Leroy, Barbin, Charliac, Estrier (bib22) 2011 SINTEF 1991. Structural damping in a wellstream pipe. FPS200/Flexible risers and pipes n.d.;STF71 F910. Zhou, Vaz (bib6) 2017; 51 Lyckegaard, Glejbøl, Berggreen, Gunnarsson, Lukassen, Krenk (bib24) 2018; 64 Dai, Sævik, Ye (bib28) 2017; 55 Kraincanic (10.1016/j.marstruc.2020.102826_bib33) 2001; 36 Malta (10.1016/j.marstruc.2020.102826_bib18) 2014 Bahtui (10.1016/j.marstruc.2020.102826_bib19) 2010; 32 Berge (10.1016/j.marstruc.2020.102826_bib30) 2017 Gomes (10.1016/j.marstruc.2020.102826_bib17) 2017 Simulia (10.1016/j.marstruc.2020.102826_bib21) 2019 Lyckegaard (10.1016/j.marstruc.2020.102826_bib24) 2018; 64 Witz (10.1016/j.marstruc.2020.102826_bib2) 1992; 5 Lu (10.1016/j.marstruc.2020.102826_bib9) 2017 Ren (10.1016/j.marstruc.2020.102826_bib12) 2019; 11 Ghoreishi (10.1016/j.marstruc.2020.102826_bib3) 2007; 49 Sævik (10.1016/j.marstruc.2020.102826_bib13) 1993; 46 Ribeiro (10.1016/j.marstruc.2020.102826_bib16) 2003 Chen (10.1016/j.marstruc.2020.102826_bib20) 2008; 130 Leroy (10.1016/j.marstruc.2020.102826_bib5) 2001; 56 Tang (10.1016/j.marstruc.2020.102826_bib7) 2015; 50 Perdrizet (10.1016/j.marstruc.2020.102826_bib22) 2011 Sævik (10.1016/j.marstruc.2020.102826_bib32) 1992 Custódio (10.1016/j.marstruc.2020.102826_bib4) 2002; 24 Skeie (10.1016/j.marstruc.2020.102826_bib31) 2012 Dong (10.1016/j.marstruc.2020.102826_bib8) 2019; 67 10.1016/j.marstruc.2020.102826_bib14 Tan (10.1016/j.marstruc.2020.102826_bib25) 2007 Zhou (10.1016/j.marstruc.2020.102826_bib6) 2017; 51 Liu (10.1016/j.marstruc.2020.102826_bib11) 2019; 230 Tang (10.1016/j.marstruc.2020.102826_bib10) 2016; 111 Lukassen (10.1016/j.marstruc.2020.102826_bib23) 2016 Sævik (10.1016/j.marstruc.2020.102826_bib15) 2011; 89 Féret (10.1016/j.marstruc.2020.102826_bib1) 1987; 109 10.1016/j.marstruc.2020.102826_bib26 Dai (10.1016/j.marstruc.2020.102826_bib28) 2017; 55 Dai (10.1016/j.marstruc.2020.102826_bib29) 2018; 59 de Sousa (10.1016/j.marstruc.2020.102826_bib27) 2009 |
References_xml | – reference: Li H, Saevik S. Flexible Pipe Stress and Fatigue Analysis. Department of Marine Technology (MSc), NTNU, 2012. – volume: 109 start-page: 263 year: 1987 ident: bib1 article-title: Calculation of stresses and slip in structural layers of unbonded flexible pipes publication-title: J Offshore Mech Arctic Eng – year: 2012 ident: bib31 article-title: Efficient fatigue analysis of helix elements in umbilicals and flexible risers: theory and applications publication-title: J Appl Math – volume: 56 start-page: 545 year: 2001 end-page: 554 ident: bib5 article-title: Calculation of stresses and slips in helical layers of dynamically bent flexible pipes publication-title: Oil & Gas Science and Technology – Rev IFP – volume: 67 start-page: 102632 year: 2019 ident: bib8 article-title: A general model to predict torsion and curvature increments of tensile armors in unbonded flexible pipes publication-title: Mar Struct – volume: 64 start-page: 401 year: 2018 end-page: 420 ident: bib24 article-title: Tension-bending analysis of flexible pipe by a repeated unit cell finite element model publication-title: Mar Struct – start-page: 8 year: 2003 ident: bib16 article-title: On the tension-compression behaviour of flexible risers publication-title: The Thirteenth International Offshore and Polar Engineering Conference – volume: 49 start-page: 1251 year: 2007 end-page: 1261 ident: bib3 article-title: Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model publication-title: Int J Mech Sci – year: 2019 ident: bib21 article-title: ABAQUS user manual, version 2018 – volume: 24 start-page: 21 year: 2002 end-page: 29 ident: bib4 article-title: A nonlinear formulation for the axisymmetric response of umbilical cables and flexible pipes publication-title: Appl Ocean Res – volume: 36 start-page: 265 year: 2001 end-page: 275 ident: bib33 article-title: Slip initiation and progression in helical armouring layers of unbonded flexible pipes and its effect on pipe bending behaviour publication-title: J Strain Anal Eng Des – volume: 32 start-page: 2287 year: 2010 end-page: 2299 ident: bib19 article-title: On the multi-scale computation of un-bonded flexible risers publication-title: Eng Struct – start-page: 829 year: 2009 end-page: 839 ident: bib27 article-title: Numerical analysis of a flexible pipe with damaged tensile armor wires publication-title: ASME 2009 28th international conference on ocean – start-page: 1 year: 2011 end-page: 14 ident: bib22 article-title: Stresses in armour layers of flexible pipes publication-title: Comparison of Abaqus models. SIMULIA customer conference – start-page: 307 year: 2007 end-page: 314 ident: bib25 article-title: Time domain simulation of the 3D bending hysteresis behaviour of an unbonded flexible riser publication-title: ASME 2007 26th international conference on offshore mechanics and arctic engineering – volume: 46 start-page: 219 year: 1993 end-page: 230 ident: bib13 article-title: A finite element model for predicting stresses and slip in flexible pipe armouring tendons publication-title: Comput Struct – reference: SINTEF 1991. Structural damping in a wellstream pipe. FPS200/Flexible risers and pipes n.d.;STF71 F910. – volume: 59 start-page: 423 year: 2018 end-page: 443 ident: bib29 article-title: An anisotropic friction model in non-bonded flexible risers publication-title: Mar Struct – volume: 111 start-page: 209 year: 2016 end-page: 217 ident: bib10 article-title: Buckling collapse study for the carcass layer of flexible pipes using a strain energy equivalence method publication-title: Ocean Eng – volume: 89 start-page: 2273 year: 2011 end-page: 2291 ident: bib15 article-title: Theoretical and experimental studies of stresses in flexible pipes publication-title: Comput Struct – year: 2017 ident: bib17 article-title: Finite element analysis of flexible pipes: bending combined with tensile load. Programa de Engenharia civil(MSc) publication-title: COPPE/UFRJ – volume: 50 start-page: 58 year: 2015 end-page: 68 ident: bib7 article-title: Validity and limitation of analytical models for the bending stress of a helical wire in unbonded flexible pipes publication-title: Appl Ocean Res – volume: 5 start-page: 229 year: 1992 end-page: 249 ident: bib2 article-title: On the flexural structural behaviour of flexible pipes, umbilicals and marine cables publication-title: Mar Struct – volume: 130 start-page: 41301 year: 2008 ident: bib20 article-title: A finite element analysis for unbonded flexible risers under bending loads publication-title: J Offshore Mech Arctic Eng – volume: 230 start-page: 111560 year: 2019 ident: bib11 article-title: An elastic stability-based method to predict the homogenized hoop elastic moduli of reinforced thermoplastic pipes ( RTPs ) publication-title: Compos Struct – year: 1992 ident: bib32 article-title: On stresses and fatigue in flexible pipes – year: 2017 ident: bib9 article-title: Research on cross-section mechanical model and fatigue life analysis of deepwater flexible risers – volume: 51 start-page: 152 year: 2017 end-page: 173 ident: bib6 article-title: A quasi-linear method for frictional model in helical layers of bent flexible risers publication-title: Mar Struct – start-page: 1 year: 2016 end-page: 8 ident: bib23 article-title: Comparison between stress obtained by numerical analysis and in-situ measurements on a flexible pipe subjected to in-plane bending test publication-title: Proceedings of the ASME 2016 35th international conference on ocean – volume: 55 start-page: 137 year: 2017 end-page: 161 ident: bib28 article-title: Friction models for evaluating dynamic stresses in non-bonded flexible risers publication-title: Mar Struct – year: 2017 ident: bib30 article-title: Handbook on design and operation of flexible pipes – start-page: 1 year: 2014 end-page: 11 ident: bib18 article-title: Finite element analysis of flexible pipes under compression. Proceedings of the ASME 2014 33th international conference on ocean publication-title: Offshore and Arctic Engineering – volume: 11 start-page: 521 year: 2019 end-page: 529 ident: bib12 article-title: Crushing study for interlocked armor layers of unbonded flexible risers with a modified equivalent stiffness method publication-title: International Journal of Naval Architecture and Ocean Engineering – start-page: 8 year: 2003 ident: 10.1016/j.marstruc.2020.102826_bib16 article-title: On the tension-compression behaviour of flexible risers publication-title: The Thirteenth International Offshore and Polar Engineering Conference – volume: 36 start-page: 265 year: 2001 ident: 10.1016/j.marstruc.2020.102826_bib33 article-title: Slip initiation and progression in helical armouring layers of unbonded flexible pipes and its effect on pipe bending behaviour publication-title: J Strain Anal Eng Des doi: 10.1243/0309324011514458 – volume: 230 start-page: 111560 year: 2019 ident: 10.1016/j.marstruc.2020.102826_bib11 article-title: An elastic stability-based method to predict the homogenized hoop elastic moduli of reinforced thermoplastic pipes ( RTPs ) publication-title: Compos Struct doi: 10.1016/j.compstruct.2019.111560 – volume: 50 start-page: 58 year: 2015 ident: 10.1016/j.marstruc.2020.102826_bib7 article-title: Validity and limitation of analytical models for the bending stress of a helical wire in unbonded flexible pipes publication-title: Appl Ocean Res doi: 10.1016/j.apor.2014.12.004 – year: 1992 ident: 10.1016/j.marstruc.2020.102826_bib32 – start-page: 1 year: 2014 ident: 10.1016/j.marstruc.2020.102826_bib18 article-title: Finite element analysis of flexible pipes under compression. Proceedings of the ASME 2014 33th international conference on ocean publication-title: Offshore and Arctic Engineering – volume: 32 start-page: 2287 year: 2010 ident: 10.1016/j.marstruc.2020.102826_bib19 article-title: On the multi-scale computation of un-bonded flexible risers publication-title: Eng Struct doi: 10.1016/j.engstruct.2010.04.003 – year: 2017 ident: 10.1016/j.marstruc.2020.102826_bib30 – year: 2012 ident: 10.1016/j.marstruc.2020.102826_bib31 article-title: Efficient fatigue analysis of helix elements in umbilicals and flexible risers: theory and applications publication-title: J Appl Math doi: 10.1155/2012/246812 – year: 2017 ident: 10.1016/j.marstruc.2020.102826_bib17 article-title: Finite element analysis of flexible pipes: bending combined with tensile load. Programa de Engenharia civil(MSc) publication-title: COPPE/UFRJ – ident: 10.1016/j.marstruc.2020.102826_bib14 – volume: 56 start-page: 545 year: 2001 ident: 10.1016/j.marstruc.2020.102826_bib5 article-title: Calculation of stresses and slips in helical layers of dynamically bent flexible pipes publication-title: Oil & Gas Science and Technology – Rev IFP doi: 10.2516/ogst:2001044 – volume: 49 start-page: 1251 year: 2007 ident: 10.1016/j.marstruc.2020.102826_bib3 article-title: Validity and limitations of linear analytical models for steel wire strands under axial loading, using a 3D FE model publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2007.03.014 – volume: 11 start-page: 521 year: 2019 ident: 10.1016/j.marstruc.2020.102826_bib12 article-title: Crushing study for interlocked armor layers of unbonded flexible risers with a modified equivalent stiffness method publication-title: International Journal of Naval Architecture and Ocean Engineering doi: 10.1016/j.ijnaoe.2018.09.006 – volume: 51 start-page: 152 year: 2017 ident: 10.1016/j.marstruc.2020.102826_bib6 article-title: A quasi-linear method for frictional model in helical layers of bent flexible risers publication-title: Mar Struct doi: 10.1016/j.marstruc.2016.10.004 – volume: 130 start-page: 41301 year: 2008 ident: 10.1016/j.marstruc.2020.102826_bib20 article-title: A finite element analysis for unbonded flexible risers under bending loads publication-title: J Offshore Mech Arctic Eng doi: 10.1115/1.2948956 – ident: 10.1016/j.marstruc.2020.102826_bib26 – volume: 46 start-page: 219 year: 1993 ident: 10.1016/j.marstruc.2020.102826_bib13 article-title: A finite element model for predicting stresses and slip in flexible pipe armouring tendons publication-title: Comput Struct doi: 10.1016/0045-7949(93)90187-I – year: 2019 ident: 10.1016/j.marstruc.2020.102826_bib21 – volume: 59 start-page: 423 year: 2018 ident: 10.1016/j.marstruc.2020.102826_bib29 article-title: An anisotropic friction model in non-bonded flexible risers publication-title: Mar Struct doi: 10.1016/j.marstruc.2018.02.012 – volume: 89 start-page: 2273 year: 2011 ident: 10.1016/j.marstruc.2020.102826_bib15 article-title: Theoretical and experimental studies of stresses in flexible pipes publication-title: Comput Struct doi: 10.1016/j.compstruc.2011.08.008 – start-page: 307 year: 2007 ident: 10.1016/j.marstruc.2020.102826_bib25 article-title: Time domain simulation of the 3D bending hysteresis behaviour of an unbonded flexible riser – volume: 55 start-page: 137 year: 2017 ident: 10.1016/j.marstruc.2020.102826_bib28 article-title: Friction models for evaluating dynamic stresses in non-bonded flexible risers publication-title: Mar Struct doi: 10.1016/j.marstruc.2017.05.010 – start-page: 829 year: 2009 ident: 10.1016/j.marstruc.2020.102826_bib27 article-title: Numerical analysis of a flexible pipe with damaged tensile armor wires – year: 2017 ident: 10.1016/j.marstruc.2020.102826_bib9 – volume: 5 start-page: 229 year: 1992 ident: 10.1016/j.marstruc.2020.102826_bib2 article-title: On the flexural structural behaviour of flexible pipes, umbilicals and marine cables publication-title: Mar Struct doi: 10.1016/0951-8339(92)90030-S – volume: 109 start-page: 263 year: 1987 ident: 10.1016/j.marstruc.2020.102826_bib1 article-title: Calculation of stresses and slip in structural layers of unbonded flexible pipes publication-title: J Offshore Mech Arctic Eng doi: 10.1115/1.3257019 – start-page: 1 year: 2016 ident: 10.1016/j.marstruc.2020.102826_bib23 article-title: Comparison between stress obtained by numerical analysis and in-situ measurements on a flexible pipe subjected to in-plane bending test – volume: 111 start-page: 209 year: 2016 ident: 10.1016/j.marstruc.2020.102826_bib10 article-title: Buckling collapse study for the carcass layer of flexible pipes using a strain energy equivalence method publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2015.10.057 – volume: 24 start-page: 21 year: 2002 ident: 10.1016/j.marstruc.2020.102826_bib4 article-title: A nonlinear formulation for the axisymmetric response of umbilical cables and flexible pipes publication-title: Appl Ocean Res doi: 10.1016/S0141-1187(02)00007-X – volume: 64 start-page: 401 year: 2018 ident: 10.1016/j.marstruc.2020.102826_bib24 article-title: Tension-bending analysis of flexible pipe by a repeated unit cell finite element model publication-title: Mar Struct – volume: 67 start-page: 102632 year: 2019 ident: 10.1016/j.marstruc.2020.102826_bib8 article-title: A general model to predict torsion and curvature increments of tensile armors in unbonded flexible pipes publication-title: Mar Struct doi: 10.1016/j.marstruc.2019.102632 – start-page: 1 year: 2011 ident: 10.1016/j.marstruc.2020.102826_bib22 article-title: Stresses in armour layers of flexible pipes |
SSID | ssj0017111 |
Score | 2.388444 |
Snippet | Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102826 |
SubjectTerms | Agreements Bending machines Bending moments Bending stresses Compression Computational fluid dynamics Contact pressure Curvature Deformation Feasibility studies Finite element method Finite element model Flexible pipe Flexible pipes Fluids Friction behaviour Gas production Loads (forces) Mathematical models Mechanical properties Numerical analysis Offshore Offshore engineering Oil and gas production Pipes Sheaths Slip Thermal expansion Thermal loading Topology |
Title | A finite element model for unbonded flexible pipe under combined axisymmetric and bending loads |
URI | https://dx.doi.org/10.1016/j.marstruc.2020.102826 https://www.proquest.com/docview/2505726218 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEIAX0YsX8YnVWuYg3mIeu03SYylKVexFBW_LPiGlTUtbwV787c5ukqIiePCYbDaE2dmZb8M8CLlElxGLhLIAWTQN0N-mQc8KiiAnM6Gy3GqfHv04Socv7P61-7pFBk0ujAurrG1_ZdO9ta7vhLU0w3lRhE8ODnKK_t1RfeKT-BjLnJZff2zCPOIs9j14fTt59_SXLOHx9RQPj65MK54TE1_FIHdFFn53UD9Mtfc_t_tkrwZH6FffdkC2THlITh99ke3FGq5gJFBpoN6rR4T3wRYOKMFUEeLgm94AQiq8lXLm_nyDdeUw5cTAvJgbcPlkC0BJ4GkZB8V7sVxPp67llgJRapDGp8DAZCb08pi83N48D4ZB3U0hUJRFq4AqFZteqizVqptKHfWMslbbnBlqNFJggrRhhM2MlYYiKahIdy1TeY5nVakkPSHb5aw0pwRiXE0dIbnlmWSILFIxYVDSFtkmETRukW4jQq7qUuOu48WENzFlY96InjvR80r0LRJu5s2rYht_zug1K8S_qQ1Hj_Dn3HazpLzeuEvuiDBLUgSfs3-8-pzsuqsqZ7FNtnHcXCC8rGTHa2eH7PTvHoajT2Qu8CU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT-MwEIAtVA5wQbCAgC3sHFbcQps4rx6rClQW2gsgcbP8lILatGpBWv49M46DFoTEYa9xJorG9sw3iWeGsd_oMmKZ8DRCFs0j9Ld5NHCSI8ipQuqidManR0-m-fgh_fOYPW6wUZsLQ8cqg-1vbLq31uFKL2izt6yq3h3BQcnRvxPVJ5TEt0nVqbIO2xxe34yn7z8Titi34fUd5Ungn0Thp4s5xo9UqRVDxcQXMiipzsLXPuqTtfYu6GqX7QR2hGHzentsw9Y_2NHE19levcI5TCWuGwjbdZ-JIbiKmBJsc0gcfN8bQE6Fl1ot6OM3OKqIqWYWltXSAqWUrQCVgQEzDsq_1fp1PqeuWxpkbUBZnwUDs4U06wP2cHV5PxpHoaFCpHnaf4641rEd5Npxo7Ncmf7AaueMK1PLrUEQTBA4rHSFdcpyhAXdN5lLdVliuKq04oesUy9qe8Qgxgk1fYS3slApUovSqbSoaYd4k0geH7OsVaHQodo4Nb2YifZY2ZNoVS9I9aJR_THrvcstm3ob30oM2hkSH1aOQKfwrWy3nVIR9u5aEBQWSY7sc_Ifj_7Ftsb3k1txez29-cm2aaRJYeyyDt5rT5FlntVZWKtvm27y1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+finite+element+model+for+unbonded+flexible+pipe+under+combined+axisymmetric+and+bending+loads&rft.jtitle=Marine+structures&rft.au=Lu%2C+Hailong&rft.au=Vaz%2C+Murilo+Augusto&rft.au=Caire%2C+Marcelo&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8339&rft.eissn=1873-4170&rft.volume=74&rft_id=info:doi/10.1016%2Fj.marstruc.2020.102826&rft.externalDocID=S0951833920301209 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8339&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8339&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8339&client=summon |