CSB and SMARCAL1 compete for RPA32 at stalled forks and differentially control the fate of stalled forks in BRCA2-deficient cells

CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to st...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 52; no. 9; pp. 5067 - 5087
Main Authors Batenburg, Nicole L, Sowa, Dana J, Walker, John R, Andres, Sara N, Zhu, Xu-Dong
Format Journal Article
LanguageEnglish
Published England Oxford University Press 22.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to stalled forks, little is known about whether RPA32 also regulates CSB's association with stalled forks. Here, we report that CSB directly interacts with RPA, at least in part via a RPA32C-interacting motif within the N-terminal region of CSB. Modeling of the CSB-RPA32C interaction suggests that CSB binds the RPA32C surface previously shown to be important for binding of UNG2 and SMARCAL1. We show that this interaction is necessary for promoting fork slowing and fork degradation in BRCA2-deficient cells but dispensable for mediating restart of stalled forks. CSB competes with SMARCAL1 for RPA32 at stalled forks and acts non-redundantly with SMARCAL1 to restrain fork progression in response to mild replication stress. In contrast to CSB stimulated restart of stalled forks, SMARCAL1 inhibits restart of stalled forks in BRCA2-deficient cells, likely by suppressing BIR-mediated repair of collapsed forks. Loss of CSB leads to re-sensitization of SMARCAL1-depleted BRCA2-deficient cells to chemodrugs, underscoring a role of CSB in targeted cancer therapy.
AbstractList CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to stalled forks, little is known about whether RPA32 also regulates CSB's association with stalled forks. Here, we report that CSB directly interacts with RPA, at least in part via a RPA32C-interacting motif within the N-terminal region of CSB. Modeling of the CSB-RPA32C interaction suggests that CSB binds the RPA32C surface previously shown to be important for binding of UNG2 and SMARCAL1. We show that this interaction is necessary for promoting fork slowing and fork degradation in BRCA2-deficient cells but dispensable for mediating restart of stalled forks. CSB competes with SMARCAL1 for RPA32 at stalled forks and acts non-redundantly with SMARCAL1 to restrain fork progression in response to mild replication stress. In contrast to CSB stimulated restart of stalled forks, SMARCAL1 inhibits restart of stalled forks in BRCA2-deficient cells, likely by suppressing BIR-mediated repair of collapsed forks. Loss of CSB leads to re-sensitization of SMARCAL1-depleted BRCA2-deficient cells to chemodrugs, underscoring a role of CSB in targeted cancer therapy.
CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to stalled forks, little is known about whether RPA32 also regulates CSB’s association with stalled forks. Here, we report that CSB directly interacts with RPA, at least in part via a RPA32C-interacting motif within the N-terminal region of CSB. Modeling of the CSB-RPA32C interaction suggests that CSB binds the RPA32C surface previously shown to be important for binding of UNG2 and SMARCAL1. We show that this interaction is necessary for promoting fork slowing and fork degradation in BRCA2-deficient cells but dispensable for mediating restart of stalled forks. CSB competes with SMARCAL1 for RPA32 at stalled forks and acts non-redundantly with SMARCAL1 to restrain fork progression in response to mild replication stress. In contrast to CSB stimulated restart of stalled forks, SMARCAL1 inhibits restart of stalled forks in BRCA2-deficient cells, likely by suppressing BIR-mediated repair of collapsed forks. Loss of CSB leads to re-sensitization of SMARCAL1-depleted BRCA2-deficient cells to chemodrugs, underscoring a role of CSB in targeted cancer therapy. Graphical Abstract
Abstract CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to stalled forks, little is known about whether RPA32 also regulates CSB’s association with stalled forks. Here, we report that CSB directly interacts with RPA, at least in part via a RPA32C-interacting motif within the N-terminal region of CSB. Modeling of the CSB-RPA32C interaction suggests that CSB binds the RPA32C surface previously shown to be important for binding of UNG2 and SMARCAL1. We show that this interaction is necessary for promoting fork slowing and fork degradation in BRCA2-deficient cells but dispensable for mediating restart of stalled forks. CSB competes with SMARCAL1 for RPA32 at stalled forks and acts non-redundantly with SMARCAL1 to restrain fork progression in response to mild replication stress. In contrast to CSB stimulated restart of stalled forks, SMARCAL1 inhibits restart of stalled forks in BRCA2-deficient cells, likely by suppressing BIR-mediated repair of collapsed forks. Loss of CSB leads to re-sensitization of SMARCAL1-depleted BRCA2-deficient cells to chemodrugs, underscoring a role of CSB in targeted cancer therapy.
Author Walker, John R
Batenburg, Nicole L
Andres, Sara N
Zhu, Xu-Dong
Sowa, Dana J
Author_xml – sequence: 1
  givenname: Nicole L
  surname: Batenburg
  fullname: Batenburg, Nicole L
  organization: Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
– sequence: 2
  givenname: Dana J
  surname: Sowa
  fullname: Sowa, Dana J
  organization: Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
– sequence: 3
  givenname: John R
  surname: Walker
  fullname: Walker, John R
  organization: Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
– sequence: 4
  givenname: Sara N
  orcidid: 0000-0002-4795-2856
  surname: Andres
  fullname: Andres, Sara N
  organization: Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
– sequence: 5
  givenname: Xu-Dong
  orcidid: 0000-0003-1859-3134
  surname: Zhu
  fullname: Zhu, Xu-Dong
  organization: Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38416570$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtPAyEUhYnRaH2s3BuWJmYUhhmYrkxtfCUajY81YeCi6BQqTE1c-s-lWo26InC_c--5nHW07IMHhLYp2adkyA68igcPzwpoXS2hAWW8LKohL5fRgDBSF5RUzRpaT-mJEFplaBWtsaaivBZkgN7Ht0dYeYNvL0c349EFxTpMptADtiHim-sRK7HqcepV14GZPz6nT944ayGC712uvGWV72PocP-YlSrLg_0nch4f5QllYcA67bISa-i6tIlWrOoSbC3ODXR_cnw3Pisurk7Ps6NCs4r0BWvbmhumTd4POAMqBGlA5GtTacHa2lCrtGWi0cZqxYEYXgpLWSmMoaplG-jwq-901k7A6Gwgqk5Oo5uo-CaDcvJvxbtH-RBeJaX5m4eC5w67iw4xvMwg9XLi0nwH5SHMkiyHjFW8bsomo3tfqI4hpQj2Zw4lcp6azKnJRWqZ3vlt7Yf9jol9AKC1luM
Cites_doi 10.1101/gad.178459.111
10.1006/prep.2001.1603
10.15252/embj.2020104509
10.1126/science.1243211
10.1016/j.molcel.2020.04.031
10.1101/gad.214080.113
10.1101/gad.336446.120
10.1073/pnas.1508543112
10.1016/j.molcel.2012.05.024
10.1098/rsos.201932
10.1038/s41467-017-02114-x
10.1107/S0907444910007493
10.1016/j.molcel.2017.08.010
10.1006/prep.1998.1003
10.1038/s41467-017-01164-5
10.1101/gad.1832309
10.1101/pdb.prot087379
10.1016/j.molcel.2017.09.036
10.1242/jcs.234914
10.1038/nrm.2017.67
10.1016/j.molcel.2011.02.036
10.1016/j.celrep.2019.08.051
10.1101/gad.1215404
10.1016/S0092-8674(00)00136-7
10.1093/nar/gkp1249
10.1016/0092-8674(92)90390-X
10.1016/j.cell.2011.02.013
10.1038/nrm3935
10.1101/gad.1831509
10.1038/nature18325
10.1146/annurev-pathol-012414-040424
10.1093/nar/gks745
10.1371/journal.pgen.1000855
10.3390/ijms231810212
10.1038/nsmb1313
10.1158/0008-5472.CAN-20-1602
10.1083/jcb.201908192
10.1016/j.ccr.2012.05.015
10.1016/j.cell.2011.03.041
10.1093/nar/gkv621
10.1016/S0092-8674(00)80223-8
10.1093/nar/gkab1173
10.3390/ijms22073379
10.1038/s41467-021-26227-6
10.1038/ncb2918
10.1016/j.dnarep.2020.102947
10.1093/nar/gkz784
10.1038/nsmb916
10.1126/science.1140735
10.1038/s41467-018-06586-3
10.1038/s41586-021-03819-2
10.3390/ijms241512419
10.1038/nrc3916
10.1242/jcs.186098
10.1111/febs.12867
10.1016/j.molcel.2022.05.004
10.1016/j.molcel.2019.10.008
10.3390/cells10040866
10.1016/j.molcel.2019.10.026
10.1038/s41467-020-19570-7
10.1038/s41580-020-0257-5
10.1038/nsmb1286
10.1016/j.molcel.2012.05.025
10.15252/embj.201490041
10.1016/j.molcel.2021.09.013
10.1016/j.celrep.2013.05.002
10.1093/nar/gkl295
10.1093/nar/gkac583
10.1016/j.dnarep.2022.103354
10.1007/978-1-59745-196-3_7
10.1073/pnas.1510750112
10.1038/s41467-017-01180-5
10.1038/s41592-022-01488-1
10.1016/j.molcel.2017.07.001
10.1021/bi500252w
10.1016/j.mad.2008.08.004
10.3390/genes13122390
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/nar/gkae154
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 5087
ExternalDocumentID 10_1093_nar_gkae154
38416570
Genre Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: PJT180258
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-05490
– fundername: ;
  grantid: RGPIN-05490; RGPIN-05110
– fundername: ;
  grantid: PJT180258; PJT159793
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAVAP
ABEJV
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFRAH
AFULF
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
BAWUL
BAYMD
BCNDV
BTTYL
CAG
CGR
CIDKT
CS3
CUY
CVF
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
ECM
EIF
EMOBN
ESTFP
F5P
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
M~E
NPM
OAWHX
OBC
OBS
OEB
OES
OJQWA
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROX
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAYXX
CITATION
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c340t-3bb56d3cd362e63e17708e7d3684c73b5d1facf378cdfca6e0d627f1327dd1ab3
IEDL.DBID RPM
ISSN 0305-1048
IngestDate Tue Sep 17 21:28:28 EDT 2024
Sat Oct 26 05:02:20 EDT 2024
Wed Nov 13 12:40:03 EST 2024
Sat Nov 02 12:13:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-3bb56d3cd362e63e17708e7d3684c73b5d1facf378cdfca6e0d627f1327dd1ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1859-3134
0000-0002-4795-2856
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109976/
PMID 38416570
PQID 2933465828
PQPubID 23479
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11109976
proquest_miscellaneous_2933465828
crossref_primary_10_1093_nar_gkae154
pubmed_primary_38416570
PublicationCentury 2000
PublicationDate 2024-05-22
PublicationDateYYYYMMDD 2024-05-22
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-22
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Cui (2024052209482875100_B39) 2022; 116
Mer (2024052209482875100_B58) 2000; 103
Vallerga (2024052209482875100_B11) 2015; 112
Ray Chaudhuri (2024052209482875100_B69) 2016; 535
Bai (2024052209482875100_B47) 2020; 78
Wilson (2024052209482875100_B48) 2016; 129
Quinet (2024052209482875100_B10) 2020; 77
Rowbotham (2024052209482875100_B75) 2011; 42
Sheffield (2024052209482875100_B44) 1999; 15
Yuan (2024052209482875100_B72) 2012; 47
Taglialatela (2024052209482875100_B19) 2017; 68
van der Horst (2024052209482875100_B29) 1997; 89
Schlacher (2024052209482875100_B20) 2012; 22
Jumper (2024052209482875100_B51) 2021; 596
Couch (2024052209482875100_B62) 2013; 27
Saldivar (2024052209482875100_B8) 2017; 18
Alabert (2024052209482875100_B37) 2014; 16
Teng (2024052209482875100_B31) 2018; 9
Spyropoulou (2024052209482875100_B77) 2021; 10
Batenburg (2024052209482875100_B34) 2019; 47
Kang (2024052209482875100_B65) 2021; 12
Saxena (2024052209482875100_B5) 2022; 82
Piberger (2024052209482875100_B66) 2020; 11
Li (2024052209482875100_B67) 2021; 40
Feoktistova (2024052209482875100_B54) 2016; 2016
Conti (2024052209482875100_B7) 2020; 95
Kolinjivadi (2024052209482875100_B23) 2017; 67
Rickman (2024052209482875100_B26) 2020; 34
Batenburg (2024052209482875100_B33) 2017; 8
Wessel (2024052209482875100_B38) 2019; 28
Bétous (2024052209482875100_B15) 2012; 26
Macheret (2024052209482875100_B3) 2015; 10
Ciccia (2024052209482875100_B71) 2012; 47
Chappidi (2024052209482875100_B18) 2020; 77
Eschenfeldt (2024052209482875100_B45) 2009; 498
Duan (2024052209482875100_B25) 2020; 219
Bétous (2024052209482875100_B55) 2013; 3
Hanahan (2024052209482875100_B1) 2011; 144
Batenburg (2024052209482875100_B30) 2015; 34
Batenburg (2024052209482875100_B56) 2021; 22
Tirman (2024052209482875100_B64) 2021; 81
Xie (2024052209482875100_B60) 2014; 281
Flaus (2024052209482875100_B12) 2006; 34
Mijic (2024052209482875100_B21) 2017; 8
Batenburg (2024052209482875100_B40) 2012; 40
Batenburg (2024052209482875100_B36) 2023; 24
Poole (2024052209482875100_B63) 2015; 112
Stols (2024052209482875100_B46) 2002; 25
Neelsen (2024052209482875100_B9) 2015; 16
Halder (2024052209482875100_B16) 2022; 50
Halazonetis (2024052209482875100_B2) 2008; 319
Gaillard (2024052209482875100_B4) 2015; 15
Berti (2024052209482875100_B6) 2020; 21
Troelstra (2024052209482875100_B28) 1992; 71
Vujanovic (2024052209482875100_B70) 2017; 67
Arunkumar (2024052209482875100_B61) 2005; 12
Mirdita (2024052209482875100_B52) 2022; 19
Ciccia (2024052209482875100_B14) 2009; 23
Schlacher (2024052209482875100_B24) 2011; 145
Lemaçon (2024052209482875100_B22) 2017; 8
Costantino (2024052209482875100_B43) 2014; 343
Wu (2024052209482875100_B49) 2007; 14
Grimme (2024052209482875100_B59) 2010; 38
Keka (2024052209482875100_B68) 2015; 43
Rass (2024052209482875100_B76) 2022; 13
Feng (2024052209482875100_B32) 2020; 133
Yusufzai (2024052209482875100_B13) 2009; 23
Walker (2024052209482875100_B35) 2022; 23
Batenburg (2024052209482875100_B17) 2021; 49
Hanada (2024052209482875100_B57) 2007; 14
Emsley (2024052209482875100_B53) 2010; 66
Ye (2024052209482875100_B41) 2004; 18
Mocanu (2024052209482875100_B74) 2021; 8
Feldkamp (2024052209482875100_B73) 2014; 53
Panzarino (2024052209482875100_B27) 2021; 81
Fattah (2024052209482875100_B42) 2010; 6
Wu (2024052209482875100_B50) 2008; 129
References_xml – volume: 26
  start-page: 151
  year: 2012
  ident: 2024052209482875100_B15
  article-title: SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication
  publication-title: Genes Dev.
  doi: 10.1101/gad.178459.111
  contributor:
    fullname: Bétous
– volume: 25
  start-page: 8
  year: 2002
  ident: 2024052209482875100_B46
  article-title: A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site
  publication-title: Protein Expr. Purif.
  doi: 10.1006/prep.2001.1603
  contributor:
    fullname: Stols
– volume: 40
  start-page: e104509
  year: 2021
  ident: 2024052209482875100_B67
  article-title: PIF1 helicase promotes break-induced replication in mammalian cells
  publication-title: EMBO J.
  doi: 10.15252/embj.2020104509
  contributor:
    fullname: Li
– volume: 343
  start-page: 88
  year: 2014
  ident: 2024052209482875100_B43
  article-title: Break-induced replication repair of damaged forks induces genomic duplications in human cells
  publication-title: Science
  doi: 10.1126/science.1243211
  contributor:
    fullname: Costantino
– volume: 78
  start-page: 1237
  year: 2020
  ident: 2024052209482875100_B47
  article-title: HLTF promotes fork reversal, limiting replication stress resistance and preventing multiple mechanisms of unrestrained DNA synthesis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.04.031
  contributor:
    fullname: Bai
– volume: 27
  start-page: 1610
  year: 2013
  ident: 2024052209482875100_B62
  article-title: ATR phosphorylates SMARCAL1 to prevent replication fork collapse
  publication-title: Genes Dev.
  doi: 10.1101/gad.214080.113
  contributor:
    fullname: Couch
– volume: 34
  start-page: 832
  year: 2020
  ident: 2024052209482875100_B26
  article-title: Distinct role of BRCA2 in replication fork protection in response to hydroxyurea and DNA interstrand cross-links
  publication-title: Genes Dev.
  doi: 10.1101/gad.336446.120
  contributor:
    fullname: Rickman
– volume: 112
  start-page: E6624
  year: 2015
  ident: 2024052209482875100_B11
  article-title: Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1508543112
  contributor:
    fullname: Vallerga
– volume: 47
  start-page: 396
  year: 2012
  ident: 2024052209482875100_B71
  article-title: Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.024
  contributor:
    fullname: Ciccia
– volume: 8
  start-page: 201932
  year: 2021
  ident: 2024052209482875100_B74
  article-title: Mind the replication gap
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.201932
  contributor:
    fullname: Mocanu
– volume: 8
  start-page: 1921
  year: 2017
  ident: 2024052209482875100_B33
  article-title: ATM and CDK2 control chromatin remodeler CSB to inhibit RIF1 in DSB repair pathway choice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02114-x
  contributor:
    fullname: Batenburg
– volume: 66
  start-page: 486
  year: 2010
  ident: 2024052209482875100_B53
  article-title: Features and development of Coot
  publication-title: Acta. Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910007493
  contributor:
    fullname: Emsley
– volume: 67
  start-page: 882
  year: 2017
  ident: 2024052209482875100_B70
  article-title: Replication fork slowing and reversal upon DNA damage require PCNA polyubiquitination and ZRANB3 DNA translocase activity
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.08.010
  contributor:
    fullname: Vujanovic
– volume: 15
  start-page: 34
  year: 1999
  ident: 2024052209482875100_B44
  article-title: Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors
  publication-title: Protein Expr. Purif.
  doi: 10.1006/prep.1998.1003
  contributor:
    fullname: Sheffield
– volume: 8
  start-page: 859
  year: 2017
  ident: 2024052209482875100_B21
  article-title: Replication fork reversal triggers fork degradation in BRCA2-defective cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01164-5
  contributor:
    fullname: Mijic
– volume: 23
  start-page: 2415
  year: 2009
  ident: 2024052209482875100_B14
  article-title: The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart
  publication-title: Gene Dev.
  doi: 10.1101/gad.1832309
  contributor:
    fullname: Ciccia
– volume: 2016
  start-page: pdb prot087379
  year: 2016
  ident: 2024052209482875100_B54
  article-title: Crystal violet assay for determining viability of cultured cells
  publication-title: Cold Spring Harb. Protoc.
  doi: 10.1101/pdb.prot087379
  contributor:
    fullname: Feoktistova
– volume: 68
  start-page: 414
  year: 2017
  ident: 2024052209482875100_B19
  article-title: Restoration of replication fork stability in BRCA1- and BRCA2-deficient cells by inactivation of SNF2-family fork remodelers
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.09.036
  contributor:
    fullname: Taglialatela
– volume: 133
  start-page: jcs234914
  year: 2020
  ident: 2024052209482875100_B32
  article-title: CSB cooperates with SMARCAL1 to maintain telomere stability in ALT cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.234914
  contributor:
    fullname: Feng
– volume: 18
  start-page: 622
  year: 2017
  ident: 2024052209482875100_B8
  article-title: The essential kinase ATR: ensuring faithful duplication of a challenging genome
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.67
  contributor:
    fullname: Saldivar
– volume: 42
  start-page: 285
  year: 2011
  ident: 2024052209482875100_B75
  article-title: Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.02.036
  contributor:
    fullname: Rowbotham
– volume: 28
  start-page: 3497
  year: 2019
  ident: 2024052209482875100_B38
  article-title: Functional analysis of the replication fork proteome identifies BET proteins as PCNA regulators
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.08.051
  contributor:
    fullname: Wessel
– volume: 18
  start-page: 1649
  year: 2004
  ident: 2024052209482875100_B41
  article-title: POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex
  publication-title: Genes Dev.
  doi: 10.1101/gad.1215404
  contributor:
    fullname: Ye
– volume: 103
  start-page: 449
  year: 2000
  ident: 2024052209482875100_B58
  article-title: Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00136-7
  contributor:
    fullname: Mer
– volume: 38
  start-page: 2917
  year: 2010
  ident: 2024052209482875100_B59
  article-title: Human RAD52 binds and wraps single-stranded DNA and mediates annealing via two hRAD52-ssDNA complexes
  publication-title: Nucleic Acid Res.
  doi: 10.1093/nar/gkp1249
  contributor:
    fullname: Grimme
– volume: 71
  start-page: 939
  year: 1992
  ident: 2024052209482875100_B28
  article-title: ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90390-X
  contributor:
    fullname: Troelstra
– volume: 144
  start-page: 646
  year: 2011
  ident: 2024052209482875100_B1
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
  contributor:
    fullname: Hanahan
– volume: 16
  start-page: 207
  year: 2015
  ident: 2024052209482875100_B9
  article-title: Replication fork reversal in eukaryotes: from dead end to dynamic response
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3935
  contributor:
    fullname: Neelsen
– volume: 23
  start-page: 2400
  year: 2009
  ident: 2024052209482875100_B13
  article-title: The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA
  publication-title: Gene Dev.
  doi: 10.1101/gad.1831509
  contributor:
    fullname: Yusufzai
– volume: 535
  start-page: 382
  year: 2016
  ident: 2024052209482875100_B69
  article-title: Replication fork stability confers chemoresistance in BRCA-deficient cells
  publication-title: Nature
  doi: 10.1038/nature18325
  contributor:
    fullname: Ray Chaudhuri
– volume: 10
  start-page: 425
  year: 2015
  ident: 2024052209482875100_B3
  article-title: DNA replication stress as a hallmark of cancer
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-012414-040424
  contributor:
    fullname: Macheret
– volume: 40
  start-page: 9661
  year: 2012
  ident: 2024052209482875100_B40
  article-title: Cockayne Syndrome group B protein interacts with TRF2 and regulates telomere length and stability
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks745
  contributor:
    fullname: Batenburg
– volume: 6
  start-page: e1000855
  year: 2010
  ident: 2024052209482875100_B42
  article-title: Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000855
  contributor:
    fullname: Fattah
– volume: 23
  start-page: 10212
  year: 2022
  ident: 2024052209482875100_B35
  article-title: Role of Cockayne syndrome group B protein in replication stress: implications for cancer therapy
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms231810212
  contributor:
    fullname: Walker
– volume: 14
  start-page: 1096
  year: 2007
  ident: 2024052209482875100_B57
  article-title: The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks
  publication-title: Nat. Sruct. Mol. Biol.
  doi: 10.1038/nsmb1313
  contributor:
    fullname: Hanada
– volume: 81
  start-page: 1388
  year: 2021
  ident: 2024052209482875100_B27
  article-title: Replication gaps underlie BRCA deficiency and therapy response
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-20-1602
  contributor:
    fullname: Panzarino
– volume: 219
  start-page: e201908192
  year: 2020
  ident: 2024052209482875100_B25
  article-title: E3 ligase RFWD3 is a novel modulator of stalled fork stability in BRCA2-deficient cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201908192
  contributor:
    fullname: Duan
– volume: 22
  start-page: 106
  year: 2012
  ident: 2024052209482875100_B20
  article-title: A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.05.015
  contributor:
    fullname: Schlacher
– volume: 145
  start-page: 529
  year: 2011
  ident: 2024052209482875100_B24
  article-title: Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.041
  contributor:
    fullname: Schlacher
– volume: 43
  start-page: 6359
  year: 2015
  ident: 2024052209482875100_B68
  article-title: Smarcal1 promotes double-strand-break repair by nonhomologous end-joining
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv621
  contributor:
    fullname: Keka
– volume: 89
  start-page: 425
  year: 1997
  ident: 2024052209482875100_B29
  article-title: Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80223-8
  contributor:
    fullname: van der Horst
– volume: 49
  start-page: 12836
  year: 2021
  ident: 2024052209482875100_B17
  article-title: Cockayne syndrome group B protein regulates fork restart, fork progression, and MRE11-dependent fork degradation in BRCA1/2-deficient cells
  publication-title: Nucleic Acid Res.
  doi: 10.1093/nar/gkab1173
  contributor:
    fullname: Batenburg
– volume: 22
  start-page: 3379
  year: 2021
  ident: 2024052209482875100_B56
  article-title: The winged helix domain of CSB regulates RNAPII occupancy at promoter proximal pause sites
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22073379
  contributor:
    fullname: Batenburg
– volume: 12
  start-page: 5966
  year: 2021
  ident: 2024052209482875100_B65
  article-title: BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26227-6
  contributor:
    fullname: Kang
– volume: 16
  start-page: 281
  year: 2014
  ident: 2024052209482875100_B37
  article-title: Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2918
  contributor:
    fullname: Alabert
– volume: 95
  start-page: 102947
  year: 2020
  ident: 2024052209482875100_B7
  article-title: Mechanisms of direct replication restart at stressed replisomes
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2020.102947
  contributor:
    fullname: Conti
– volume: 47
  start-page: 10678
  year: 2019
  ident: 2024052209482875100_B34
  article-title: CSB interacts with BRCA1 in late S/G2 to promote MRN- and CtIP-mediated DNA end resection
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz784
  contributor:
    fullname: Batenburg
– volume: 12
  start-page: 332
  year: 2005
  ident: 2024052209482875100_B61
  article-title: Insights into hRPA32 C-terminal domain–mediated assembly of the simian virus 40 replisome
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb916
  contributor:
    fullname: Arunkumar
– volume: 319
  start-page: 1352
  year: 2008
  ident: 2024052209482875100_B2
  article-title: An oncogene-induced DNA damage model for cancer development
  publication-title: Science
  doi: 10.1126/science.1140735
  contributor:
    fullname: Halazonetis
– volume: 9
  start-page: 4115
  year: 2018
  ident: 2024052209482875100_B31
  article-title: ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06586-3
  contributor:
    fullname: Teng
– volume: 596
  start-page: 583
  year: 2021
  ident: 2024052209482875100_B51
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
  contributor:
    fullname: Jumper
– volume: 24
  start-page: 12419
  year: 2023
  ident: 2024052209482875100_B36
  article-title: CSB regulates pathway choice in response to DNA replication stress induced by camptothecin
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms241512419
  contributor:
    fullname: Batenburg
– volume: 15
  start-page: 276
  year: 2015
  ident: 2024052209482875100_B4
  article-title: Replication stress and cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3916
  contributor:
    fullname: Gaillard
– volume: 129
  start-page: 2559
  year: 2016
  ident: 2024052209482875100_B48
  article-title: Cdk-dependent phosphorylation regulates TRF1 recruitment to PML bodies and promotes C-circle production in ALT cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.186098
  contributor:
    fullname: Wilson
– volume: 281
  start-page: 3382
  year: 2014
  ident: 2024052209482875100_B60
  article-title: Structure of RPA32 bound to the N-terminus of SMARCAL1 redefines the binding interface between RPA32 and its interacting proteins
  publication-title: FEBS J.
  doi: 10.1111/febs.12867
  contributor:
    fullname: Xie
– volume: 82
  start-page: 2298
  year: 2022
  ident: 2024052209482875100_B5
  article-title: Hallmarks of DNA replication stress
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.05.004
  contributor:
    fullname: Saxena
– volume: 77
  start-page: 461
  year: 2020
  ident: 2024052209482875100_B10
  article-title: PRIMPOL-mediated adaptive response suppresses replication fork reversal in BRCA-deficient cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.10.008
  contributor:
    fullname: Quinet
– volume: 10
  start-page: 866
  year: 2021
  ident: 2024052209482875100_B77
  article-title: Cockayne Syndrome Group B (CSB): the regulatory framework governing the multifunctional protein and its plausible role in cancer
  publication-title: Cells
  doi: 10.3390/cells10040866
  contributor:
    fullname: Spyropoulou
– volume: 77
  start-page: 528
  year: 2020
  ident: 2024052209482875100_B18
  article-title: Fork cleavage-religation cycle and active transcription mediate replication restart after fork stalling at Co-transcriptional R-Loops
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.10.026
  contributor:
    fullname: Chappidi
– volume: 11
  start-page: 5863
  year: 2020
  ident: 2024052209482875100_B66
  article-title: PrimPol-dependent single-stranded gap formation mediates homologous recombination at bulky DNA adducts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19570-7
  contributor:
    fullname: Piberger
– volume: 21
  start-page: 633
  year: 2020
  ident: 2024052209482875100_B6
  article-title: The plasticity of DNA replication forks in response to clinically relevant genotoxic stress
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0257-5
  contributor:
    fullname: Berti
– volume: 14
  start-page: 832
  year: 2007
  ident: 2024052209482875100_B49
  article-title: MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1286
  contributor:
    fullname: Wu
– volume: 47
  start-page: 410
  year: 2012
  ident: 2024052209482875100_B72
  article-title: The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.025
  contributor:
    fullname: Yuan
– volume: 34
  start-page: 1399
  year: 2015
  ident: 2024052209482875100_B30
  article-title: Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation
  publication-title: EMBO J.
  doi: 10.15252/embj.201490041
  contributor:
    fullname: Batenburg
– volume: 81
  start-page: 4026
  year: 2021
  ident: 2024052209482875100_B64
  article-title: Temporally distinct post-replicative repair mechanisms fill PRIMPOL-dependent ssDNA gaps in human cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.09.013
  contributor:
    fullname: Tirman
– volume: 3
  start-page: 1958
  year: 2013
  ident: 2024052209482875100_B55
  article-title: Substrate-selective repair and restart of replication forks by DNA translocases
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.05.002
  contributor:
    fullname: Bétous
– volume: 34
  start-page: 2887
  year: 2006
  ident: 2024052209482875100_B12
  article-title: Identification of multiple distinct Snf2 subfamilies with conserved structural motifs
  publication-title: Nucleic Acid Res.
  doi: 10.1093/nar/gkl295
  contributor:
    fullname: Flaus
– volume: 50
  start-page: 8008
  year: 2022
  ident: 2024052209482875100_B16
  article-title: Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex
  publication-title: Nucleic Acid Res.
  doi: 10.1093/nar/gkac583
  contributor:
    fullname: Halder
– volume: 116
  start-page: 103354
  year: 2022
  ident: 2024052209482875100_B39
  article-title: Cockayne syndrome group B protein uses its DNA translocase activity to promote mitotic DNA synthesis
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2022.103354
  contributor:
    fullname: Cui
– volume: 498
  start-page: 105
  year: 2009
  ident: 2024052209482875100_B45
  article-title: A family of LIC vectors for high-throughput cloning and purification of proteins
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-196-3_7
  contributor:
    fullname: Eschenfeldt
– volume: 112
  start-page: 14864
  year: 2015
  ident: 2024052209482875100_B63
  article-title: SMARCAL1 maintains telomere integrity during DNA replication
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1510750112
  contributor:
    fullname: Poole
– volume: 8
  start-page: 860
  year: 2017
  ident: 2024052209482875100_B22
  article-title: MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01180-5
  contributor:
    fullname: Lemaçon
– volume: 19
  start-page: 679
  year: 2022
  ident: 2024052209482875100_B52
  article-title: ColabFold: making protein folding accessible to all
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01488-1
  contributor:
    fullname: Mirdita
– volume: 67
  start-page: 867
  year: 2017
  ident: 2024052209482875100_B23
  article-title: Smarcal1-mediated fork reversal triggers Mre11-dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.07.001
  contributor:
    fullname: Kolinjivadi
– volume: 53
  start-page: 3052
  year: 2014
  ident: 2024052209482875100_B73
  article-title: Structural analysis of replication protein A recruitment to the DNA damage response protein SMARCAL1
  publication-title: Biochemistry
  doi: 10.1021/bi500252w
  contributor:
    fullname: Feldkamp
– volume: 129
  start-page: 602
  year: 2008
  ident: 2024052209482875100_B50
  article-title: Human XPF controls TRF2 and telomere length maintenance through distinctive mechanisms
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2008.08.004
  contributor:
    fullname: Wu
– volume: 13
  start-page: 2390
  year: 2022
  ident: 2024052209482875100_B76
  article-title: 53BP1: keeping it under control, even at a distance from DNA damage
  publication-title: Genes (Basel)
  doi: 10.3390/genes13122390
  contributor:
    fullname: Rass
SSID ssj0014154
Score 2.5055146
Snippet CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA...
Abstract CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 5067
SubjectTerms BRCA2 Protein - genetics
BRCA2 Protein - metabolism
Cell Line, Tumor
DNA Helicases - genetics
DNA Helicases - metabolism
DNA Repair
DNA Repair Enzymes - genetics
DNA Repair Enzymes - metabolism
DNA Replication
Genome Integrity, Repair and
Humans
Poly-ADP-Ribose Binding Proteins - genetics
Poly-ADP-Ribose Binding Proteins - metabolism
Protein Binding
Replication Protein A - genetics
Replication Protein A - metabolism
Title CSB and SMARCAL1 compete for RPA32 at stalled forks and differentially control the fate of stalled forks in BRCA2-deficient cells
URI https://www.ncbi.nlm.nih.gov/pubmed/38416570
https://www.proquest.com/docview/2933465828
https://pubmed.ncbi.nlm.nih.gov/PMC11109976
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4Bh5ZL1UIf28fKlVBvIQ87sTmGCISqboWgSNwix4-yIutF7HLg2H_esRMjoLcek9iJ5Rllvsl8-QZgD2OczzvKxGvBJYhvTSKV4UlpWJlJwaQIvQ5nP6uTC_b9srzcgCr-CxNI-6qb77t-se_mV4FbebNQaeSJpaezJvcymRhH003YRA-NOfpYO8CQNIhGBY1NJsa_8jB1T528TX9fS4MjtuEF9SW30rcpfhyS_sGZz-mSj-LP8Wt4NQJHUg8LfAMbxu3Abu0waV7ck28kUDnDN_IdeNnENm678Kc5PyTSaXI-q8-a-kdO1ACVCcJVcnZa04LINUGQ2PdG-5PXqzA-tk7BV0Df35OR004QMBKLAJUs7bNJc0cO8QlFoo2XpcCZxJcFVm_h4vjoV3OSjH0XEkVZtk5o15WVpkpjcDMVNTnnmTAcDwVTnHalzq1UlnKhtFWyMpmuCm4xr-Va57Kj72DLLZ35AESVzFhRKittxjTPDkyn5YGwqkOoWNhqAntx69ubQV6jHcritEVjtaOxJvA1mqXF7fOLl84s71YtohXKKl_7m8D7wUwPN4r2nYB4YsCHAV5a--kV9LggsR097OP_T_0E2wUCIM80KIrPsLW-vTNfEMCsuyl6bXY0Den_NPjuX1vR80c
link.rule.ids 230,315,730,783,787,867,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VItFeCrRAl6eRKm7ZPOw8ekwjqgV2q6oP0Vvk-AGrzXqrbvZQbvxzxklctcsJjontxMmMM99kxt8AHKCNs35H7FkuOA_xrfK4UKkXKxYHPGM8a2sdTk6S0SX7ehVfbUDi9sK0Sfuimg5NPR-a6c82t_J6LnyXJ-afTorQ0mSiHfUfwWNcsAFzXnofPUCj1NFGtSybLOv35aHz7ht-4_-YcYU9tuEJtUG32BYqvm-U_kKa6wmT9yzQ8VP47ubeJZ7MhqumGopfa7SO__5wz2CnB6Uk79qfw4Yyu7CXG3TI57fkE2nTRNv_77uwVbgScXvwuzg_ItxIcj7Jz4p8HBLRwXCCUJicneY0IrwhCEDrWkl7crZs-7uyLPh5qetb0ufLEwSjRCP4JQu9NmhqyBHeIfKkspQXOJLYkMPyBVwef74oRl5f08ETlAWNR6sqTiQVEg2nSqgK0zTIVIqHGRMprWIZai40TTMhteCJCmQSpRp95lTKkFf0JWyahVH7QETMlM5iobkOmEyDQ1VJfphpUSEMjXQygAMn1PK6o-4ou5A7LVENyl4NBvDRCbzE12cnz41arJYlIiHKEhtXHMCrTgHuLuQ0ZwDZA9W462Bpux-2oMBb-m4n4Nf_P_QDbI0uJuNy_OXk2xvYjhBo2YyGKHoLm83NSr1DoNRU79tV8QeZ-hO9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BkUovPFoK4blIFTfHj_WrR9cQFWiqqKVSJQ7WPiGKs4ka51Bu_HNmbW_VhluPtnfttXfW843n8zcAB-jjbNyReFYLzkN8qzwmVOYlKk4Clscsb2sdjk_T44v422Vy2bMqVz2t0gg-HZp6PjTT3y23cjkXvuOJ-ZNxGVqZTPSj_lJq_yE8wkUbpC5S7zMI6Jg66ahWaTPO-3_zMID3Dbvyf82YwhY7sE1t4i2xxYpvO6b_0OYmafKWFxo9hZ9u_B35ZDZcN3wo_mxIO97vBp_Bkx6ckqJr8xweKLMLe4XBwHx-TT6Rli7afoffhcelKxW3B3_L8yPCjCTn4-KsLE5CIjo4ThASk7NJQSPCGoJAtK6VtDtnq7a9K8-Cr5m6viY9b54gKCUaQTBZ6I1OU0OO8AqRJ5WVvsCexKYeVi_gYvTlR3ns9bUdPEHjoPEo50kqqZDoQFVKVZhlQa4y3MxjkVGeyFAzoWmWC6kFS1Ug0yjTGDtnUoaM033YMgujXgERSax0ngjNdBDLLDhUXLLDXAuOcDTS6QAO3MRWy07Co-pS77RCU6h6UxjARzfpFT4-O3hm1GK9qhAR0Ti1-cUBvOyM4OZEznoGkN8xj5sGVr777hGc9FbG203y6_t3_QDbk8-j6uTr6fc3sBMh3rLEhih6C1vN1Vq9Q7zU8PftwvgHLssWPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSB+and+SMARCAL1+compete+for+RPA32+at+stalled+forks+and+differentially+control+the+fate+of+stalled+forks+in+BRCA2-deficient+cells&rft.jtitle=Nucleic+acids+research&rft.au=Batenburg%2C+Nicole+L&rft.au=Sowa%2C+Dana+J&rft.au=Walker%2C+John+R&rft.au=Andres%2C+Sara+N&rft.date=2024-05-22&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=52&rft.issue=9&rft.spage=5067&rft.epage=5087&rft_id=info:doi/10.1093%2Fnar%2Fgkae154&rft_id=info%3Apmid%2F38416570&rft.externalDBID=PMC11109976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon