CSB and SMARCAL1 compete for RPA32 at stalled forks and differentially control the fate of stalled forks in BRCA2-deficient cells
CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to st...
Saved in:
Published in | Nucleic acids research Vol. 52; no. 9; pp. 5067 - 5087 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
22.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to stalled forks, little is known about whether RPA32 also regulates CSB's association with stalled forks. Here, we report that CSB directly interacts with RPA, at least in part via a RPA32C-interacting motif within the N-terminal region of CSB. Modeling of the CSB-RPA32C interaction suggests that CSB binds the RPA32C surface previously shown to be important for binding of UNG2 and SMARCAL1. We show that this interaction is necessary for promoting fork slowing and fork degradation in BRCA2-deficient cells but dispensable for mediating restart of stalled forks. CSB competes with SMARCAL1 for RPA32 at stalled forks and acts non-redundantly with SMARCAL1 to restrain fork progression in response to mild replication stress. In contrast to CSB stimulated restart of stalled forks, SMARCAL1 inhibits restart of stalled forks in BRCA2-deficient cells, likely by suppressing BIR-mediated repair of collapsed forks. Loss of CSB leads to re-sensitization of SMARCAL1-depleted BRCA2-deficient cells to chemodrugs, underscoring a role of CSB in targeted cancer therapy. |
---|---|
AbstractList | CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to stalled forks, little is known about whether RPA32 also regulates CSB's association with stalled forks. Here, we report that CSB directly interacts with RPA, at least in part via a RPA32C-interacting motif within the N-terminal region of CSB. Modeling of the CSB-RPA32C interaction suggests that CSB binds the RPA32C surface previously shown to be important for binding of UNG2 and SMARCAL1. We show that this interaction is necessary for promoting fork slowing and fork degradation in BRCA2-deficient cells but dispensable for mediating restart of stalled forks. CSB competes with SMARCAL1 for RPA32 at stalled forks and acts non-redundantly with SMARCAL1 to restrain fork progression in response to mild replication stress. In contrast to CSB stimulated restart of stalled forks, SMARCAL1 inhibits restart of stalled forks in BRCA2-deficient cells, likely by suppressing BIR-mediated repair of collapsed forks. Loss of CSB leads to re-sensitization of SMARCAL1-depleted BRCA2-deficient cells to chemodrugs, underscoring a role of CSB in targeted cancer therapy. CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to stalled forks, little is known about whether RPA32 also regulates CSB’s association with stalled forks. Here, we report that CSB directly interacts with RPA, at least in part via a RPA32C-interacting motif within the N-terminal region of CSB. Modeling of the CSB-RPA32C interaction suggests that CSB binds the RPA32C surface previously shown to be important for binding of UNG2 and SMARCAL1. We show that this interaction is necessary for promoting fork slowing and fork degradation in BRCA2-deficient cells but dispensable for mediating restart of stalled forks. CSB competes with SMARCAL1 for RPA32 at stalled forks and acts non-redundantly with SMARCAL1 to restrain fork progression in response to mild replication stress. In contrast to CSB stimulated restart of stalled forks, SMARCAL1 inhibits restart of stalled forks in BRCA2-deficient cells, likely by suppressing BIR-mediated repair of collapsed forks. Loss of CSB leads to re-sensitization of SMARCAL1-depleted BRCA2-deficient cells to chemodrugs, underscoring a role of CSB in targeted cancer therapy. Graphical Abstract Abstract CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA translocases that belong to the SNF2 helicase family. They both are enriched at stalled replication forks. While SMARCAL1 is recruited by RPA32 to stalled forks, little is known about whether RPA32 also regulates CSB’s association with stalled forks. Here, we report that CSB directly interacts with RPA, at least in part via a RPA32C-interacting motif within the N-terminal region of CSB. Modeling of the CSB-RPA32C interaction suggests that CSB binds the RPA32C surface previously shown to be important for binding of UNG2 and SMARCAL1. We show that this interaction is necessary for promoting fork slowing and fork degradation in BRCA2-deficient cells but dispensable for mediating restart of stalled forks. CSB competes with SMARCAL1 for RPA32 at stalled forks and acts non-redundantly with SMARCAL1 to restrain fork progression in response to mild replication stress. In contrast to CSB stimulated restart of stalled forks, SMARCAL1 inhibits restart of stalled forks in BRCA2-deficient cells, likely by suppressing BIR-mediated repair of collapsed forks. Loss of CSB leads to re-sensitization of SMARCAL1-depleted BRCA2-deficient cells to chemodrugs, underscoring a role of CSB in targeted cancer therapy. |
Author | Walker, John R Batenburg, Nicole L Andres, Sara N Zhu, Xu-Dong Sowa, Dana J |
Author_xml | – sequence: 1 givenname: Nicole L surname: Batenburg fullname: Batenburg, Nicole L organization: Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada – sequence: 2 givenname: Dana J surname: Sowa fullname: Sowa, Dana J organization: Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada – sequence: 3 givenname: John R surname: Walker fullname: Walker, John R organization: Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada – sequence: 4 givenname: Sara N orcidid: 0000-0002-4795-2856 surname: Andres fullname: Andres, Sara N organization: Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada – sequence: 5 givenname: Xu-Dong orcidid: 0000-0003-1859-3134 surname: Zhu fullname: Zhu, Xu-Dong organization: Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38416570$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtPAyEUhYnRaH2s3BuWJmYUhhmYrkxtfCUajY81YeCi6BQqTE1c-s-lWo26InC_c--5nHW07IMHhLYp2adkyA68igcPzwpoXS2hAWW8LKohL5fRgDBSF5RUzRpaT-mJEFplaBWtsaaivBZkgN7Ht0dYeYNvL0c349EFxTpMptADtiHim-sRK7HqcepV14GZPz6nT944ayGC712uvGWV72PocP-YlSrLg_0nch4f5QllYcA67bISa-i6tIlWrOoSbC3ODXR_cnw3Pisurk7Ps6NCs4r0BWvbmhumTd4POAMqBGlA5GtTacHa2lCrtGWi0cZqxYEYXgpLWSmMoaplG-jwq-901k7A6Gwgqk5Oo5uo-CaDcvJvxbtH-RBeJaX5m4eC5w67iw4xvMwg9XLi0nwH5SHMkiyHjFW8bsomo3tfqI4hpQj2Zw4lcp6azKnJRWqZ3vlt7Yf9jol9AKC1luM |
Cites_doi | 10.1101/gad.178459.111 10.1006/prep.2001.1603 10.15252/embj.2020104509 10.1126/science.1243211 10.1016/j.molcel.2020.04.031 10.1101/gad.214080.113 10.1101/gad.336446.120 10.1073/pnas.1508543112 10.1016/j.molcel.2012.05.024 10.1098/rsos.201932 10.1038/s41467-017-02114-x 10.1107/S0907444910007493 10.1016/j.molcel.2017.08.010 10.1006/prep.1998.1003 10.1038/s41467-017-01164-5 10.1101/gad.1832309 10.1101/pdb.prot087379 10.1016/j.molcel.2017.09.036 10.1242/jcs.234914 10.1038/nrm.2017.67 10.1016/j.molcel.2011.02.036 10.1016/j.celrep.2019.08.051 10.1101/gad.1215404 10.1016/S0092-8674(00)00136-7 10.1093/nar/gkp1249 10.1016/0092-8674(92)90390-X 10.1016/j.cell.2011.02.013 10.1038/nrm3935 10.1101/gad.1831509 10.1038/nature18325 10.1146/annurev-pathol-012414-040424 10.1093/nar/gks745 10.1371/journal.pgen.1000855 10.3390/ijms231810212 10.1038/nsmb1313 10.1158/0008-5472.CAN-20-1602 10.1083/jcb.201908192 10.1016/j.ccr.2012.05.015 10.1016/j.cell.2011.03.041 10.1093/nar/gkv621 10.1016/S0092-8674(00)80223-8 10.1093/nar/gkab1173 10.3390/ijms22073379 10.1038/s41467-021-26227-6 10.1038/ncb2918 10.1016/j.dnarep.2020.102947 10.1093/nar/gkz784 10.1038/nsmb916 10.1126/science.1140735 10.1038/s41467-018-06586-3 10.1038/s41586-021-03819-2 10.3390/ijms241512419 10.1038/nrc3916 10.1242/jcs.186098 10.1111/febs.12867 10.1016/j.molcel.2022.05.004 10.1016/j.molcel.2019.10.008 10.3390/cells10040866 10.1016/j.molcel.2019.10.026 10.1038/s41467-020-19570-7 10.1038/s41580-020-0257-5 10.1038/nsmb1286 10.1016/j.molcel.2012.05.025 10.15252/embj.201490041 10.1016/j.molcel.2021.09.013 10.1016/j.celrep.2013.05.002 10.1093/nar/gkl295 10.1093/nar/gkac583 10.1016/j.dnarep.2022.103354 10.1007/978-1-59745-196-3_7 10.1073/pnas.1510750112 10.1038/s41467-017-01180-5 10.1038/s41592-022-01488-1 10.1016/j.molcel.2017.07.001 10.1021/bi500252w 10.1016/j.mad.2008.08.004 10.3390/genes13122390 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1093/nar/gkae154 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 5087 |
ExternalDocumentID | 10_1093_nar_gkae154 38416570 |
Genre | Journal Article |
GrantInformation_xml | – fundername: CIHR grantid: PJT180258 – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RGPIN-05490 – fundername: ; grantid: RGPIN-05490; RGPIN-05110 – fundername: ; grantid: PJT180258; PJT159793 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAVAP ABEJV ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFRAH AFULF AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AOIJS BAWUL BAYMD BCNDV BTTYL CAG CGR CIDKT CS3 CUY CVF CZ4 DIK DU5 D~K E3Z EBD EBS ECM EIF EMOBN ESTFP F5P GROUPED_DOAJ GX1 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI M~E NPM OAWHX OBC OBS OEB OES OJQWA P2P PEELM PQQKQ R44 RD5 RNS ROL ROX ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM AAYXX CITATION 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c340t-3bb56d3cd362e63e17708e7d3684c73b5d1facf378cdfca6e0d627f1327dd1ab3 |
IEDL.DBID | RPM |
ISSN | 0305-1048 |
IngestDate | Tue Sep 17 21:28:28 EDT 2024 Sat Oct 26 05:02:20 EDT 2024 Wed Nov 13 12:40:03 EST 2024 Sat Nov 02 12:13:50 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-3bb56d3cd362e63e17708e7d3684c73b5d1facf378cdfca6e0d627f1327dd1ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1859-3134 0000-0002-4795-2856 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109976/ |
PMID | 38416570 |
PQID | 2933465828 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11109976 proquest_miscellaneous_2933465828 crossref_primary_10_1093_nar_gkae154 pubmed_primary_38416570 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-22 |
PublicationDateYYYYMMDD | 2024-05-22 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Cui (2024052209482875100_B39) 2022; 116 Mer (2024052209482875100_B58) 2000; 103 Vallerga (2024052209482875100_B11) 2015; 112 Ray Chaudhuri (2024052209482875100_B69) 2016; 535 Bai (2024052209482875100_B47) 2020; 78 Wilson (2024052209482875100_B48) 2016; 129 Quinet (2024052209482875100_B10) 2020; 77 Rowbotham (2024052209482875100_B75) 2011; 42 Sheffield (2024052209482875100_B44) 1999; 15 Yuan (2024052209482875100_B72) 2012; 47 Taglialatela (2024052209482875100_B19) 2017; 68 van der Horst (2024052209482875100_B29) 1997; 89 Schlacher (2024052209482875100_B20) 2012; 22 Jumper (2024052209482875100_B51) 2021; 596 Couch (2024052209482875100_B62) 2013; 27 Saldivar (2024052209482875100_B8) 2017; 18 Alabert (2024052209482875100_B37) 2014; 16 Teng (2024052209482875100_B31) 2018; 9 Spyropoulou (2024052209482875100_B77) 2021; 10 Batenburg (2024052209482875100_B34) 2019; 47 Kang (2024052209482875100_B65) 2021; 12 Saxena (2024052209482875100_B5) 2022; 82 Piberger (2024052209482875100_B66) 2020; 11 Li (2024052209482875100_B67) 2021; 40 Feoktistova (2024052209482875100_B54) 2016; 2016 Conti (2024052209482875100_B7) 2020; 95 Kolinjivadi (2024052209482875100_B23) 2017; 67 Rickman (2024052209482875100_B26) 2020; 34 Batenburg (2024052209482875100_B33) 2017; 8 Wessel (2024052209482875100_B38) 2019; 28 Bétous (2024052209482875100_B15) 2012; 26 Macheret (2024052209482875100_B3) 2015; 10 Ciccia (2024052209482875100_B71) 2012; 47 Chappidi (2024052209482875100_B18) 2020; 77 Eschenfeldt (2024052209482875100_B45) 2009; 498 Duan (2024052209482875100_B25) 2020; 219 Bétous (2024052209482875100_B55) 2013; 3 Hanahan (2024052209482875100_B1) 2011; 144 Batenburg (2024052209482875100_B30) 2015; 34 Batenburg (2024052209482875100_B56) 2021; 22 Tirman (2024052209482875100_B64) 2021; 81 Xie (2024052209482875100_B60) 2014; 281 Flaus (2024052209482875100_B12) 2006; 34 Mijic (2024052209482875100_B21) 2017; 8 Batenburg (2024052209482875100_B40) 2012; 40 Batenburg (2024052209482875100_B36) 2023; 24 Poole (2024052209482875100_B63) 2015; 112 Stols (2024052209482875100_B46) 2002; 25 Neelsen (2024052209482875100_B9) 2015; 16 Halder (2024052209482875100_B16) 2022; 50 Halazonetis (2024052209482875100_B2) 2008; 319 Gaillard (2024052209482875100_B4) 2015; 15 Berti (2024052209482875100_B6) 2020; 21 Troelstra (2024052209482875100_B28) 1992; 71 Vujanovic (2024052209482875100_B70) 2017; 67 Arunkumar (2024052209482875100_B61) 2005; 12 Mirdita (2024052209482875100_B52) 2022; 19 Ciccia (2024052209482875100_B14) 2009; 23 Schlacher (2024052209482875100_B24) 2011; 145 Lemaçon (2024052209482875100_B22) 2017; 8 Costantino (2024052209482875100_B43) 2014; 343 Wu (2024052209482875100_B49) 2007; 14 Grimme (2024052209482875100_B59) 2010; 38 Keka (2024052209482875100_B68) 2015; 43 Rass (2024052209482875100_B76) 2022; 13 Feng (2024052209482875100_B32) 2020; 133 Yusufzai (2024052209482875100_B13) 2009; 23 Walker (2024052209482875100_B35) 2022; 23 Batenburg (2024052209482875100_B17) 2021; 49 Hanada (2024052209482875100_B57) 2007; 14 Emsley (2024052209482875100_B53) 2010; 66 Ye (2024052209482875100_B41) 2004; 18 Mocanu (2024052209482875100_B74) 2021; 8 Feldkamp (2024052209482875100_B73) 2014; 53 Panzarino (2024052209482875100_B27) 2021; 81 Fattah (2024052209482875100_B42) 2010; 6 Wu (2024052209482875100_B50) 2008; 129 |
References_xml | – volume: 26 start-page: 151 year: 2012 ident: 2024052209482875100_B15 article-title: SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication publication-title: Genes Dev. doi: 10.1101/gad.178459.111 contributor: fullname: Bétous – volume: 25 start-page: 8 year: 2002 ident: 2024052209482875100_B46 article-title: A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site publication-title: Protein Expr. Purif. doi: 10.1006/prep.2001.1603 contributor: fullname: Stols – volume: 40 start-page: e104509 year: 2021 ident: 2024052209482875100_B67 article-title: PIF1 helicase promotes break-induced replication in mammalian cells publication-title: EMBO J. doi: 10.15252/embj.2020104509 contributor: fullname: Li – volume: 343 start-page: 88 year: 2014 ident: 2024052209482875100_B43 article-title: Break-induced replication repair of damaged forks induces genomic duplications in human cells publication-title: Science doi: 10.1126/science.1243211 contributor: fullname: Costantino – volume: 78 start-page: 1237 year: 2020 ident: 2024052209482875100_B47 article-title: HLTF promotes fork reversal, limiting replication stress resistance and preventing multiple mechanisms of unrestrained DNA synthesis publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.04.031 contributor: fullname: Bai – volume: 27 start-page: 1610 year: 2013 ident: 2024052209482875100_B62 article-title: ATR phosphorylates SMARCAL1 to prevent replication fork collapse publication-title: Genes Dev. doi: 10.1101/gad.214080.113 contributor: fullname: Couch – volume: 34 start-page: 832 year: 2020 ident: 2024052209482875100_B26 article-title: Distinct role of BRCA2 in replication fork protection in response to hydroxyurea and DNA interstrand cross-links publication-title: Genes Dev. doi: 10.1101/gad.336446.120 contributor: fullname: Rickman – volume: 112 start-page: E6624 year: 2015 ident: 2024052209482875100_B11 article-title: Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1508543112 contributor: fullname: Vallerga – volume: 47 start-page: 396 year: 2012 ident: 2024052209482875100_B71 article-title: Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.024 contributor: fullname: Ciccia – volume: 8 start-page: 201932 year: 2021 ident: 2024052209482875100_B74 article-title: Mind the replication gap publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.201932 contributor: fullname: Mocanu – volume: 8 start-page: 1921 year: 2017 ident: 2024052209482875100_B33 article-title: ATM and CDK2 control chromatin remodeler CSB to inhibit RIF1 in DSB repair pathway choice publication-title: Nat. Commun. doi: 10.1038/s41467-017-02114-x contributor: fullname: Batenburg – volume: 66 start-page: 486 year: 2010 ident: 2024052209482875100_B53 article-title: Features and development of Coot publication-title: Acta. Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910007493 contributor: fullname: Emsley – volume: 67 start-page: 882 year: 2017 ident: 2024052209482875100_B70 article-title: Replication fork slowing and reversal upon DNA damage require PCNA polyubiquitination and ZRANB3 DNA translocase activity publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.08.010 contributor: fullname: Vujanovic – volume: 15 start-page: 34 year: 1999 ident: 2024052209482875100_B44 article-title: Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors publication-title: Protein Expr. Purif. doi: 10.1006/prep.1998.1003 contributor: fullname: Sheffield – volume: 8 start-page: 859 year: 2017 ident: 2024052209482875100_B21 article-title: Replication fork reversal triggers fork degradation in BRCA2-defective cells publication-title: Nat. Commun. doi: 10.1038/s41467-017-01164-5 contributor: fullname: Mijic – volume: 23 start-page: 2415 year: 2009 ident: 2024052209482875100_B14 article-title: The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart publication-title: Gene Dev. doi: 10.1101/gad.1832309 contributor: fullname: Ciccia – volume: 2016 start-page: pdb prot087379 year: 2016 ident: 2024052209482875100_B54 article-title: Crystal violet assay for determining viability of cultured cells publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot087379 contributor: fullname: Feoktistova – volume: 68 start-page: 414 year: 2017 ident: 2024052209482875100_B19 article-title: Restoration of replication fork stability in BRCA1- and BRCA2-deficient cells by inactivation of SNF2-family fork remodelers publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.09.036 contributor: fullname: Taglialatela – volume: 133 start-page: jcs234914 year: 2020 ident: 2024052209482875100_B32 article-title: CSB cooperates with SMARCAL1 to maintain telomere stability in ALT cells publication-title: J. Cell Sci. doi: 10.1242/jcs.234914 contributor: fullname: Feng – volume: 18 start-page: 622 year: 2017 ident: 2024052209482875100_B8 article-title: The essential kinase ATR: ensuring faithful duplication of a challenging genome publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.67 contributor: fullname: Saldivar – volume: 42 start-page: 285 year: 2011 ident: 2024052209482875100_B75 article-title: Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.02.036 contributor: fullname: Rowbotham – volume: 28 start-page: 3497 year: 2019 ident: 2024052209482875100_B38 article-title: Functional analysis of the replication fork proteome identifies BET proteins as PCNA regulators publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.08.051 contributor: fullname: Wessel – volume: 18 start-page: 1649 year: 2004 ident: 2024052209482875100_B41 article-title: POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex publication-title: Genes Dev. doi: 10.1101/gad.1215404 contributor: fullname: Ye – volume: 103 start-page: 449 year: 2000 ident: 2024052209482875100_B58 article-title: Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA publication-title: Cell doi: 10.1016/S0092-8674(00)00136-7 contributor: fullname: Mer – volume: 38 start-page: 2917 year: 2010 ident: 2024052209482875100_B59 article-title: Human RAD52 binds and wraps single-stranded DNA and mediates annealing via two hRAD52-ssDNA complexes publication-title: Nucleic Acid Res. doi: 10.1093/nar/gkp1249 contributor: fullname: Grimme – volume: 71 start-page: 939 year: 1992 ident: 2024052209482875100_B28 article-title: ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes publication-title: Cell doi: 10.1016/0092-8674(92)90390-X contributor: fullname: Troelstra – volume: 144 start-page: 646 year: 2011 ident: 2024052209482875100_B1 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 contributor: fullname: Hanahan – volume: 16 start-page: 207 year: 2015 ident: 2024052209482875100_B9 article-title: Replication fork reversal in eukaryotes: from dead end to dynamic response publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3935 contributor: fullname: Neelsen – volume: 23 start-page: 2400 year: 2009 ident: 2024052209482875100_B13 article-title: The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA publication-title: Gene Dev. doi: 10.1101/gad.1831509 contributor: fullname: Yusufzai – volume: 535 start-page: 382 year: 2016 ident: 2024052209482875100_B69 article-title: Replication fork stability confers chemoresistance in BRCA-deficient cells publication-title: Nature doi: 10.1038/nature18325 contributor: fullname: Ray Chaudhuri – volume: 10 start-page: 425 year: 2015 ident: 2024052209482875100_B3 article-title: DNA replication stress as a hallmark of cancer publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-012414-040424 contributor: fullname: Macheret – volume: 40 start-page: 9661 year: 2012 ident: 2024052209482875100_B40 article-title: Cockayne Syndrome group B protein interacts with TRF2 and regulates telomere length and stability publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks745 contributor: fullname: Batenburg – volume: 6 start-page: e1000855 year: 2010 ident: 2024052209482875100_B42 article-title: Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000855 contributor: fullname: Fattah – volume: 23 start-page: 10212 year: 2022 ident: 2024052209482875100_B35 article-title: Role of Cockayne syndrome group B protein in replication stress: implications for cancer therapy publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms231810212 contributor: fullname: Walker – volume: 14 start-page: 1096 year: 2007 ident: 2024052209482875100_B57 article-title: The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks publication-title: Nat. Sruct. Mol. Biol. doi: 10.1038/nsmb1313 contributor: fullname: Hanada – volume: 81 start-page: 1388 year: 2021 ident: 2024052209482875100_B27 article-title: Replication gaps underlie BRCA deficiency and therapy response publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-20-1602 contributor: fullname: Panzarino – volume: 219 start-page: e201908192 year: 2020 ident: 2024052209482875100_B25 article-title: E3 ligase RFWD3 is a novel modulator of stalled fork stability in BRCA2-deficient cells publication-title: J. Cell Biol. doi: 10.1083/jcb.201908192 contributor: fullname: Duan – volume: 22 start-page: 106 year: 2012 ident: 2024052209482875100_B20 article-title: A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2 publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.05.015 contributor: fullname: Schlacher – volume: 145 start-page: 529 year: 2011 ident: 2024052209482875100_B24 article-title: Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11 publication-title: Cell doi: 10.1016/j.cell.2011.03.041 contributor: fullname: Schlacher – volume: 43 start-page: 6359 year: 2015 ident: 2024052209482875100_B68 article-title: Smarcal1 promotes double-strand-break repair by nonhomologous end-joining publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv621 contributor: fullname: Keka – volume: 89 start-page: 425 year: 1997 ident: 2024052209482875100_B29 article-title: Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition publication-title: Cell doi: 10.1016/S0092-8674(00)80223-8 contributor: fullname: van der Horst – volume: 49 start-page: 12836 year: 2021 ident: 2024052209482875100_B17 article-title: Cockayne syndrome group B protein regulates fork restart, fork progression, and MRE11-dependent fork degradation in BRCA1/2-deficient cells publication-title: Nucleic Acid Res. doi: 10.1093/nar/gkab1173 contributor: fullname: Batenburg – volume: 22 start-page: 3379 year: 2021 ident: 2024052209482875100_B56 article-title: The winged helix domain of CSB regulates RNAPII occupancy at promoter proximal pause sites publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22073379 contributor: fullname: Batenburg – volume: 12 start-page: 5966 year: 2021 ident: 2024052209482875100_B65 article-title: BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage publication-title: Nat. Commun. doi: 10.1038/s41467-021-26227-6 contributor: fullname: Kang – volume: 16 start-page: 281 year: 2014 ident: 2024052209482875100_B37 article-title: Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components publication-title: Nat. Cell Biol. doi: 10.1038/ncb2918 contributor: fullname: Alabert – volume: 95 start-page: 102947 year: 2020 ident: 2024052209482875100_B7 article-title: Mechanisms of direct replication restart at stressed replisomes publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2020.102947 contributor: fullname: Conti – volume: 47 start-page: 10678 year: 2019 ident: 2024052209482875100_B34 article-title: CSB interacts with BRCA1 in late S/G2 to promote MRN- and CtIP-mediated DNA end resection publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz784 contributor: fullname: Batenburg – volume: 12 start-page: 332 year: 2005 ident: 2024052209482875100_B61 article-title: Insights into hRPA32 C-terminal domain–mediated assembly of the simian virus 40 replisome publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb916 contributor: fullname: Arunkumar – volume: 319 start-page: 1352 year: 2008 ident: 2024052209482875100_B2 article-title: An oncogene-induced DNA damage model for cancer development publication-title: Science doi: 10.1126/science.1140735 contributor: fullname: Halazonetis – volume: 9 start-page: 4115 year: 2018 ident: 2024052209482875100_B31 article-title: ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB publication-title: Nat. Commun. doi: 10.1038/s41467-018-06586-3 contributor: fullname: Teng – volume: 596 start-page: 583 year: 2021 ident: 2024052209482875100_B51 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 contributor: fullname: Jumper – volume: 24 start-page: 12419 year: 2023 ident: 2024052209482875100_B36 article-title: CSB regulates pathway choice in response to DNA replication stress induced by camptothecin publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms241512419 contributor: fullname: Batenburg – volume: 15 start-page: 276 year: 2015 ident: 2024052209482875100_B4 article-title: Replication stress and cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3916 contributor: fullname: Gaillard – volume: 129 start-page: 2559 year: 2016 ident: 2024052209482875100_B48 article-title: Cdk-dependent phosphorylation regulates TRF1 recruitment to PML bodies and promotes C-circle production in ALT cells publication-title: J. Cell Sci. doi: 10.1242/jcs.186098 contributor: fullname: Wilson – volume: 281 start-page: 3382 year: 2014 ident: 2024052209482875100_B60 article-title: Structure of RPA32 bound to the N-terminus of SMARCAL1 redefines the binding interface between RPA32 and its interacting proteins publication-title: FEBS J. doi: 10.1111/febs.12867 contributor: fullname: Xie – volume: 82 start-page: 2298 year: 2022 ident: 2024052209482875100_B5 article-title: Hallmarks of DNA replication stress publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.05.004 contributor: fullname: Saxena – volume: 77 start-page: 461 year: 2020 ident: 2024052209482875100_B10 article-title: PRIMPOL-mediated adaptive response suppresses replication fork reversal in BRCA-deficient cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.10.008 contributor: fullname: Quinet – volume: 10 start-page: 866 year: 2021 ident: 2024052209482875100_B77 article-title: Cockayne Syndrome Group B (CSB): the regulatory framework governing the multifunctional protein and its plausible role in cancer publication-title: Cells doi: 10.3390/cells10040866 contributor: fullname: Spyropoulou – volume: 77 start-page: 528 year: 2020 ident: 2024052209482875100_B18 article-title: Fork cleavage-religation cycle and active transcription mediate replication restart after fork stalling at Co-transcriptional R-Loops publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.10.026 contributor: fullname: Chappidi – volume: 11 start-page: 5863 year: 2020 ident: 2024052209482875100_B66 article-title: PrimPol-dependent single-stranded gap formation mediates homologous recombination at bulky DNA adducts publication-title: Nat. Commun. doi: 10.1038/s41467-020-19570-7 contributor: fullname: Piberger – volume: 21 start-page: 633 year: 2020 ident: 2024052209482875100_B6 article-title: The plasticity of DNA replication forks in response to clinically relevant genotoxic stress publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0257-5 contributor: fullname: Berti – volume: 14 start-page: 832 year: 2007 ident: 2024052209482875100_B49 article-title: MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1286 contributor: fullname: Wu – volume: 47 start-page: 410 year: 2012 ident: 2024052209482875100_B72 article-title: The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.025 contributor: fullname: Yuan – volume: 34 start-page: 1399 year: 2015 ident: 2024052209482875100_B30 article-title: Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation publication-title: EMBO J. doi: 10.15252/embj.201490041 contributor: fullname: Batenburg – volume: 81 start-page: 4026 year: 2021 ident: 2024052209482875100_B64 article-title: Temporally distinct post-replicative repair mechanisms fill PRIMPOL-dependent ssDNA gaps in human cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.09.013 contributor: fullname: Tirman – volume: 3 start-page: 1958 year: 2013 ident: 2024052209482875100_B55 article-title: Substrate-selective repair and restart of replication forks by DNA translocases publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.05.002 contributor: fullname: Bétous – volume: 34 start-page: 2887 year: 2006 ident: 2024052209482875100_B12 article-title: Identification of multiple distinct Snf2 subfamilies with conserved structural motifs publication-title: Nucleic Acid Res. doi: 10.1093/nar/gkl295 contributor: fullname: Flaus – volume: 50 start-page: 8008 year: 2022 ident: 2024052209482875100_B16 article-title: Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex publication-title: Nucleic Acid Res. doi: 10.1093/nar/gkac583 contributor: fullname: Halder – volume: 116 start-page: 103354 year: 2022 ident: 2024052209482875100_B39 article-title: Cockayne syndrome group B protein uses its DNA translocase activity to promote mitotic DNA synthesis publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2022.103354 contributor: fullname: Cui – volume: 498 start-page: 105 year: 2009 ident: 2024052209482875100_B45 article-title: A family of LIC vectors for high-throughput cloning and purification of proteins publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-196-3_7 contributor: fullname: Eschenfeldt – volume: 112 start-page: 14864 year: 2015 ident: 2024052209482875100_B63 article-title: SMARCAL1 maintains telomere integrity during DNA replication publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1510750112 contributor: fullname: Poole – volume: 8 start-page: 860 year: 2017 ident: 2024052209482875100_B22 article-title: MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells publication-title: Nat. Commun. doi: 10.1038/s41467-017-01180-5 contributor: fullname: Lemaçon – volume: 19 start-page: 679 year: 2022 ident: 2024052209482875100_B52 article-title: ColabFold: making protein folding accessible to all publication-title: Nat. Methods doi: 10.1038/s41592-022-01488-1 contributor: fullname: Mirdita – volume: 67 start-page: 867 year: 2017 ident: 2024052209482875100_B23 article-title: Smarcal1-mediated fork reversal triggers Mre11-dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.07.001 contributor: fullname: Kolinjivadi – volume: 53 start-page: 3052 year: 2014 ident: 2024052209482875100_B73 article-title: Structural analysis of replication protein A recruitment to the DNA damage response protein SMARCAL1 publication-title: Biochemistry doi: 10.1021/bi500252w contributor: fullname: Feldkamp – volume: 129 start-page: 602 year: 2008 ident: 2024052209482875100_B50 article-title: Human XPF controls TRF2 and telomere length maintenance through distinctive mechanisms publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2008.08.004 contributor: fullname: Wu – volume: 13 start-page: 2390 year: 2022 ident: 2024052209482875100_B76 article-title: 53BP1: keeping it under control, even at a distance from DNA damage publication-title: Genes (Basel) doi: 10.3390/genes13122390 contributor: fullname: Rass |
SSID | ssj0014154 |
Score | 2.5055146 |
Snippet | CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA... Abstract CSB (Cockayne syndrome group B) and SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent, regulator of chromatin, subfamily A-like 1) are DNA... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 5067 |
SubjectTerms | BRCA2 Protein - genetics BRCA2 Protein - metabolism Cell Line, Tumor DNA Helicases - genetics DNA Helicases - metabolism DNA Repair DNA Repair Enzymes - genetics DNA Repair Enzymes - metabolism DNA Replication Genome Integrity, Repair and Humans Poly-ADP-Ribose Binding Proteins - genetics Poly-ADP-Ribose Binding Proteins - metabolism Protein Binding Replication Protein A - genetics Replication Protein A - metabolism |
Title | CSB and SMARCAL1 compete for RPA32 at stalled forks and differentially control the fate of stalled forks in BRCA2-deficient cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38416570 https://www.proquest.com/docview/2933465828 https://pubmed.ncbi.nlm.nih.gov/PMC11109976 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4Bh5ZL1UIf28fKlVBvIQ87sTmGCISqboWgSNwix4-yIutF7HLg2H_esRMjoLcek9iJ5Rllvsl8-QZgD2OczzvKxGvBJYhvTSKV4UlpWJlJwaQIvQ5nP6uTC_b9srzcgCr-CxNI-6qb77t-se_mV4FbebNQaeSJpaezJvcymRhH003YRA-NOfpYO8CQNIhGBY1NJsa_8jB1T528TX9fS4MjtuEF9SW30rcpfhyS_sGZz-mSj-LP8Wt4NQJHUg8LfAMbxu3Abu0waV7ck28kUDnDN_IdeNnENm678Kc5PyTSaXI-q8-a-kdO1ACVCcJVcnZa04LINUGQ2PdG-5PXqzA-tk7BV0Df35OR004QMBKLAJUs7bNJc0cO8QlFoo2XpcCZxJcFVm_h4vjoV3OSjH0XEkVZtk5o15WVpkpjcDMVNTnnmTAcDwVTnHalzq1UlnKhtFWyMpmuCm4xr-Va57Kj72DLLZ35AESVzFhRKittxjTPDkyn5YGwqkOoWNhqAntx69ubQV6jHcritEVjtaOxJvA1mqXF7fOLl84s71YtohXKKl_7m8D7wUwPN4r2nYB4YsCHAV5a--kV9LggsR097OP_T_0E2wUCIM80KIrPsLW-vTNfEMCsuyl6bXY0Den_NPjuX1vR80c |
link.rule.ids | 230,315,730,783,787,867,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VItFeCrRAl6eRKm7ZPOw8ekwjqgV2q6oP0Vvk-AGrzXqrbvZQbvxzxklctcsJjontxMmMM99kxt8AHKCNs35H7FkuOA_xrfK4UKkXKxYHPGM8a2sdTk6S0SX7ehVfbUDi9sK0Sfuimg5NPR-a6c82t_J6LnyXJ-afTorQ0mSiHfUfwWNcsAFzXnofPUCj1NFGtSybLOv35aHz7ht-4_-YcYU9tuEJtUG32BYqvm-U_kKa6wmT9yzQ8VP47ubeJZ7MhqumGopfa7SO__5wz2CnB6Uk79qfw4Yyu7CXG3TI57fkE2nTRNv_77uwVbgScXvwuzg_ItxIcj7Jz4p8HBLRwXCCUJicneY0IrwhCEDrWkl7crZs-7uyLPh5qetb0ufLEwSjRCP4JQu9NmhqyBHeIfKkspQXOJLYkMPyBVwef74oRl5f08ETlAWNR6sqTiQVEg2nSqgK0zTIVIqHGRMprWIZai40TTMhteCJCmQSpRp95lTKkFf0JWyahVH7QETMlM5iobkOmEyDQ1VJfphpUSEMjXQygAMn1PK6o-4ou5A7LVENyl4NBvDRCbzE12cnz41arJYlIiHKEhtXHMCrTgHuLuQ0ZwDZA9W462Bpux-2oMBb-m4n4Nf_P_QDbI0uJuNy_OXk2xvYjhBo2YyGKHoLm83NSr1DoNRU79tV8QeZ-hO9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BkUovPFoK4blIFTfHj_WrR9cQFWiqqKVSJQ7WPiGKs4ka51Bu_HNmbW_VhluPtnfttXfW843n8zcAB-jjbNyReFYLzkN8qzwmVOYlKk4Clscsb2sdjk_T44v422Vy2bMqVz2t0gg-HZp6PjTT3y23cjkXvuOJ-ZNxGVqZTPSj_lJq_yE8wkUbpC5S7zMI6Jg66ahWaTPO-3_zMID3Dbvyf82YwhY7sE1t4i2xxYpvO6b_0OYmafKWFxo9hZ9u_B35ZDZcN3wo_mxIO97vBp_Bkx6ckqJr8xweKLMLe4XBwHx-TT6Rli7afoffhcelKxW3B3_L8yPCjCTn4-KsLE5CIjo4ThASk7NJQSPCGoJAtK6VtDtnq7a9K8-Cr5m6viY9b54gKCUaQTBZ6I1OU0OO8AqRJ5WVvsCexKYeVi_gYvTlR3ns9bUdPEHjoPEo50kqqZDoQFVKVZhlQa4y3MxjkVGeyFAzoWmWC6kFS1Ug0yjTGDtnUoaM033YMgujXgERSax0ngjNdBDLLDhUXLLDXAuOcDTS6QAO3MRWy07Co-pS77RCU6h6UxjARzfpFT4-O3hm1GK9qhAR0Ti1-cUBvOyM4OZEznoGkN8xj5sGVr777hGc9FbG203y6_t3_QDbk8-j6uTr6fc3sBMh3rLEhih6C1vN1Vq9Q7zU8PftwvgHLssWPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSB+and+SMARCAL1+compete+for+RPA32+at+stalled+forks+and+differentially+control+the+fate+of+stalled+forks+in+BRCA2-deficient+cells&rft.jtitle=Nucleic+acids+research&rft.au=Batenburg%2C+Nicole+L&rft.au=Sowa%2C+Dana+J&rft.au=Walker%2C+John+R&rft.au=Andres%2C+Sara+N&rft.date=2024-05-22&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=52&rft.issue=9&rft.spage=5067&rft.epage=5087&rft_id=info:doi/10.1093%2Fnar%2Fgkae154&rft_id=info%3Apmid%2F38416570&rft.externalDBID=PMC11109976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |