Demonstration of tunable Ag morphology from nanocolumns to discrete nanoislands using novel angle constrained glancing angle EB evaporation technique

In glancing angle electron beam evaporation technique, the deposition geometry has been engineered in a novel manner in this work to produce extensive tunablity of Ag morphology. A physical plate (collimator) parallel to the substrate has been suitably placed in order to constrain the angle of incom...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 375; pp. 363 - 369
Main Authors Haque, S. Maidul, De, Rajnarayan, Mitra, Arijit, Misal, J.S., Prathap, C., Satyam, Parlapalli V., Rao, K. Divakar
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.10.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In glancing angle electron beam evaporation technique, the deposition geometry has been engineered in a novel manner in this work to produce extensive tunablity of Ag morphology. A physical plate (collimator) parallel to the substrate has been suitably placed in order to constrain the angle of incoming deposition vapor flux. The distance between substrate and this collimator as well as the distance between substrate to crucible orifice has been optimized for maximum variation in Ag morphology which resulted in the discussed tunability. SEM images acquired across the sample surface on the best optimized sample show variation of Ag morphology from nearly continuous film to Ag nanocolumns (dia-135 nm) and then to Ag nanoislands of varying size (26–83 nm) with the variation in height from substrate bottom edge. Surface plasmon resonance (SPR) peak of this Ag nanostructure has been found to shift to longer wavelength and to broaden with the increase of thickness across the substrate surface. The estimated band gap values of the Ag nanostructure are non-zero which reveals its dielectric like dispersion behavior. Thickness and optical constants at various locations on the best optimized sample have been estimated through spectroscopic ellipsometry measurements and the obtained results have been validated with measured transmission spectrophotometry spectra. Three different ellipsometry models have been tried to fit the ellipsometry data of such grown ultrathin film consisting of Ag nanoislands/nanocolumns. An effective media consisting of the mixture of bulk Ag, dielectric media represented by Lorentz oscillator and air was found to be the best to describe the disperision behavior of the deposited Ag film. The dielectric like dispersion behavior of Ag ultrathin film has been ascribed to localized surface Plasmon resonance (LSPR) effect of Ag nanoislands in optical wavelength region. Due to the gradual variation of thickness and optical constants across the film, the optimized film exhibits variation in average optical transmittance (600–1000 nm) from 1.1% to 91% across 40 mm distance which demonstrates its potential for application as variable optical transmission attenuator. Finally, this novel deposition flux constrainment technique has been regarded as an effective method for fabrication of tunable Ag nano-morphologies for optical and surface plasmonic applications. •Novel modality for angle constrainment of evaporates in ebeam with GLAD geometry.•Demonstration of tunable Ag morphology from nanocolumns to discrete nanoislands.•Realization of LSPR effect of Ag nanostructures through optical characterization.•Application of such obtained tunable Ag morphology in optical devices.
AbstractList In glancing angle electron beam evaporation technique, the deposition geometry has been engineered in a novel manner in this work to produce extensive tunablity of Ag morphology. A physical plate (collimator) parallel to the substrate has been suitably placed in order to constrain the angle of incoming deposition vapor flux. The distance between substrate and this collimator as well as the distance between substrate to crucible orifice has been optimized for maximum variation in Ag morphology which resulted in the discussed tunability. SEM images acquired across the sample surface on the best optimized sample show variation of Ag morphology from nearly continuous film to Ag nanocolumns (dia-135 nm) and then to Ag nanoislands of varying size (26–83 nm) with the variation in height from substrate bottom edge. Surface plasmon resonance (SPR) peak of this Ag nanostructure has been found to shift to longer wavelength and to broaden with the increase of thickness across the substrate surface. The estimated band gap values of the Ag nanostructure are non-zero which reveals its dielectric like dispersion behavior. Thickness and optical constants at various locations on the best optimized sample have been estimated through spectroscopic ellipsometry measurements and the obtained results have been validated with measured transmission spectrophotometry spectra. Three different ellipsometry models have been tried to fit the ellipsometry data of such grown ultrathin film consisting of Ag nanoislands/nanocolumns. An effective media consisting of the mixture of bulk Ag, dielectric media represented by Lorentz oscillator and air was found to be the best to describe the disperision behavior of the deposited Ag film. The dielectric like dispersion behavior of Ag ultrathin film has been ascribed to localized surface Plasmon resonance (LSPR) effect of Ag nanoislands in optical wavelength region. Due to the gradual variation of thickness and optical constants across the film, the optimized film exhibits variation in average optical transmittance (600–1000 nm) from 1.1% to 91% across 40 mm distance which demonstrates its potential for application as variable optical transmission attenuator. Finally, this novel deposition flux constrainment technique has been regarded as an effective method for fabrication of tunable Ag nano-morphologies for optical and surface plasmonic applications.
In glancing angle electron beam evaporation technique, the deposition geometry has been engineered in a novel manner in this work to produce extensive tunablity of Ag morphology. A physical plate (collimator) parallel to the substrate has been suitably placed in order to constrain the angle of incoming deposition vapor flux. The distance between substrate and this collimator as well as the distance between substrate to crucible orifice has been optimized for maximum variation in Ag morphology which resulted in the discussed tunability. SEM images acquired across the sample surface on the best optimized sample show variation of Ag morphology from nearly continuous film to Ag nanocolumns (dia-135 nm) and then to Ag nanoislands of varying size (26–83 nm) with the variation in height from substrate bottom edge. Surface plasmon resonance (SPR) peak of this Ag nanostructure has been found to shift to longer wavelength and to broaden with the increase of thickness across the substrate surface. The estimated band gap values of the Ag nanostructure are non-zero which reveals its dielectric like dispersion behavior. Thickness and optical constants at various locations on the best optimized sample have been estimated through spectroscopic ellipsometry measurements and the obtained results have been validated with measured transmission spectrophotometry spectra. Three different ellipsometry models have been tried to fit the ellipsometry data of such grown ultrathin film consisting of Ag nanoislands/nanocolumns. An effective media consisting of the mixture of bulk Ag, dielectric media represented by Lorentz oscillator and air was found to be the best to describe the disperision behavior of the deposited Ag film. The dielectric like dispersion behavior of Ag ultrathin film has been ascribed to localized surface Plasmon resonance (LSPR) effect of Ag nanoislands in optical wavelength region. Due to the gradual variation of thickness and optical constants across the film, the optimized film exhibits variation in average optical transmittance (600–1000 nm) from 1.1% to 91% across 40 mm distance which demonstrates its potential for application as variable optical transmission attenuator. Finally, this novel deposition flux constrainment technique has been regarded as an effective method for fabrication of tunable Ag nano-morphologies for optical and surface plasmonic applications. •Novel modality for angle constrainment of evaporates in ebeam with GLAD geometry.•Demonstration of tunable Ag morphology from nanocolumns to discrete nanoislands.•Realization of LSPR effect of Ag nanostructures through optical characterization.•Application of such obtained tunable Ag morphology in optical devices.
Author Haque, S. Maidul
Misal, J.S.
Rao, K. Divakar
Satyam, Parlapalli V.
De, Rajnarayan
Prathap, C.
Mitra, Arijit
Author_xml – sequence: 1
  givenname: S. Maidul
  orcidid: 0000-0001-7569-6370
  surname: Haque
  fullname: Haque, S. Maidul
  email: skmaidulhaque@gmail.com, maidul@barc.gov.in
  organization: Photonics and Nanotechnology Section, Atomic and Molecular Physics Division, Bhabha Atomic Research Centre Facility, Visakhapatnam 531011, India
– sequence: 2
  givenname: Rajnarayan
  surname: De
  fullname: De, Rajnarayan
  organization: Photonics and Nanotechnology Section, Atomic and Molecular Physics Division, Bhabha Atomic Research Centre Facility, Visakhapatnam 531011, India
– sequence: 3
  givenname: Arijit
  surname: Mitra
  fullname: Mitra, Arijit
  organization: Indian Institute of Technology, Bhubaneswar 752050, Odisha, India
– sequence: 4
  givenname: J.S.
  surname: Misal
  fullname: Misal, J.S.
  organization: Photonics and Nanotechnology Section, Atomic and Molecular Physics Division, Bhabha Atomic Research Centre Facility, Visakhapatnam 531011, India
– sequence: 5
  givenname: C.
  surname: Prathap
  fullname: Prathap, C.
  organization: Photonics and Nanotechnology Section, Atomic and Molecular Physics Division, Bhabha Atomic Research Centre Facility, Visakhapatnam 531011, India
– sequence: 6
  givenname: Parlapalli V.
  surname: Satyam
  fullname: Satyam, Parlapalli V.
  organization: Homi Bhabha National Institute, Mumbai 400094, India
– sequence: 7
  givenname: K. Divakar
  surname: Rao
  fullname: Rao, K. Divakar
  organization: Photonics and Nanotechnology Section, Atomic and Molecular Physics Division, Bhabha Atomic Research Centre Facility, Visakhapatnam 531011, India
BookMark eNqFkclu2zAQhonCBWIneYWAQM9SuUiidWvipAsQoJf0TNDkSKEhcVySMuAH6ftWjtJzTwPM_AsG34asAgYg5I6zkjPefD6UaYqdRZNLwXhbMlWyWnwga75VbSFlpVZkzUStim2rxBXZpHRgjHHVVmvy5xFGDClHkz0Gih3NUzD7Aeh9T0eMx1ccsD_TLuJIgwlocZjGkGhG6nyyETK87X0aTHCJTsmHngY8wUBN6Ocgu-T7AI72s8heBMvp6YHCyRzxvT2DfQ3-9wQ35GNnhgS37_Oa_Pr69LL7Xjz__PZjd_9cWFmxXEjlpHAVuKYxHUDtZGWUba2SloFyvGtbyZ3pbC1UDfWe72tWV5XiptkKK1p5TT4tuceIc23K-oBTDHOlFpIpua1408yqZlHZiClF6PQx-tHEs-ZMXxDog_6HQF8QaKb0jGA2flmMMP9w8hB1sh6CBecj2Kwd-v9F_AV4FJl7
CitedBy_id crossref_primary_10_1016_j_optmat_2022_112942
crossref_primary_10_1088_1361_6528_abeb98
crossref_primary_10_1016_j_optcom_2023_129551
crossref_primary_10_1088_1361_648X_ab966d
Cites_doi 10.1016/j.matlet.2014.08.113
10.1016/j.vacuum.2004.12.019
10.1063/1.3559748
10.1016/j.apsusc.2015.06.077
10.1016/j.jpcs.2008.11.012
10.1186/1556-276X-6-96
10.1364/OME.7.004241
10.1063/1.1782121
10.1016/j.surfcoat.2017.03.056
10.1016/j.jallcom.2019.05.252
10.1016/S0040-6090(96)09123-7
10.1364/AO.37.005271
10.1080/18811248.1993.9734481
10.1016/j.apsusc.2011.10.129
10.1016/j.surfcoat.2006.01.002
10.1038/srep09279
10.1021/nl048965u
10.1016/j.spmi.2018.04.008
10.1116/1.1317914
10.1016/j.surfcoat.2017.09.039
10.1016/0040-6090(78)90272-9
10.1088/1674-1056/19/11/117310
10.1016/j.matlet.2013.11.112
10.1116/1.1310656
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Oct 15, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 15, 2019
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
JG9
DOI 10.1016/j.surfcoat.2019.07.052
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
EndPage 369
ExternalDocumentID 10_1016_j_surfcoat_2019_07_052
S0257897219307923
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AGHFR
AKRWK
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SEW
SMS
SPG
WUQ
7QQ
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c340t-37d32d4ed66afee5d34a7c9c73c0e7d1f9931dafc5275e5b1b5054471a682c293
IEDL.DBID AIKHN
ISSN 0257-8972
IngestDate Thu Oct 10 16:37:17 EDT 2024
Thu Sep 26 18:18:00 EDT 2024
Fri Feb 23 02:32:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variable transmission attenuator
Spectroscopic ellipsometry
Tunable morphology
LSPR
SEM
Nanoislands
Electron beam evaporation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-37d32d4ed66afee5d34a7c9c73c0e7d1f9931dafc5275e5b1b5054471a682c293
ORCID 0000-0001-7569-6370
PQID 2307384166
PQPubID 2045394
PageCount 7
ParticipantIDs proquest_journals_2307384166
crossref_primary_10_1016_j_surfcoat_2019_07_052
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2019_07_052
PublicationCentury 2000
PublicationDate 2019-10-15
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Nishimura, Kaburaki, Ohba, Shibata (bb0095) 1993; 30
Rivera, Ferri, Marega (bb0150) 1985
Lu, Liu, Lee (bb0005) 2005; 5
Li, Zhu, Zhou, Ni, Zhang (bb0030) 2012; 258
Iravani, Korbekandi, Mirmohammadi, Zolfaghari (bb0025) 2014; 9
Alvarez, Lopez-Santos, Parra-Barranco, Rico, Barranco, Cotrino, Gonzalez-Elipe, Palmero (bb0080) 2014; 32
Ohring (bb0065) 1991
Wang, Li, Zhou, Li, Liu, Yang (bb0115) 2010; 19
Liu, Cheng, Zhao, Zheng, Liang, Zhao, Zhang (bb0040) 2006; 201
Tauc (bb0135) 1974
Haque, Rao, Misal, Tokas, Shinde, Ramana, Rai, Sahoo (bb0035) 2015; 353
Maidul Haque, Divakar Rao, Tripathi, De, Shinde, Misal, Prathap, Kumar, Som, Deshpande, Sahoo (bb0060) 2017; 319
Fan, Boyd, Shelton (bb0075) 2000; 18
Brongersma, Kik (bb0015) 2007
Krajcar, Siegel, Slepička, Fitl, Švorčík, Krajcar, Siegel, Slepička, Fitl, Švorčík (bb0100) 2014; 117
Piot, Malaurie, Machet (bb0070) 1997; 293
Krajcar, Siegel, Lyutakov, Slepička, Švorčík (bb0105) 2014; 137
Siegel, Lyutakov, Rybka, Kolská, Švorčík (bb0120) 2011; 6
Carlberg, Pourcin, Margeat, Le Rouzo, Berginc, Sauvage, Ackermann, Escoubas (bb0145) 2017; 7
Raether (bb0010) 1988
Hassanien, Sharma (bb0140) 2019; 798
Graper (bb0085) 1973; 10
Rakic, Djurišic, Elazar, Majewski (bb0130) 1974; 37
Stenzel, Wilbrandt, Kaiser (bb0170) 2013
Doremus (bb0110) 1966; 37
National Institute of Standard and Technology (NIST) (bb0160) 2007
Palik (bb0155) 1985
Wei, Eilers (bb0020) 2009; 70
Jasch (bb0090) 1978; 54
Wang, Shao, Yi, Fan (bb0050) 2005; 78
Hong, Shao, Ji, Tao, Zhang (bb0175) 2018; 118
Garcia-Valenzuela, Alvarez, Rico, Cotrino, Gonzalez-Elipe, Palmero (bb0055) 2018; 343
Wakefield, Sit (bb0045) 2011; 109
Fujiwara (bb0125) 2003
Gong, Dai, Wang, Zhang (bb0165) 2015; 5
Alvarez (10.1016/j.surfcoat.2019.07.052_bb0080) 2014; 32
Jasch (10.1016/j.surfcoat.2019.07.052_bb0090) 1978; 54
Haque (10.1016/j.surfcoat.2019.07.052_bb0035) 2015; 353
Rakic (10.1016/j.surfcoat.2019.07.052_bb0130) 1974; 37
Raether (10.1016/j.surfcoat.2019.07.052_bb0010) 1988
Wang (10.1016/j.surfcoat.2019.07.052_bb0050) 2005; 78
Ohring (10.1016/j.surfcoat.2019.07.052_bb0065) 1991
Rivera (10.1016/j.surfcoat.2019.07.052_bb0150) 1985
Doremus (10.1016/j.surfcoat.2019.07.052_bb0110) 1966; 37
Fujiwara (10.1016/j.surfcoat.2019.07.052_bb0125) 2003
Graper (10.1016/j.surfcoat.2019.07.052_bb0085) 1973; 10
Garcia-Valenzuela (10.1016/j.surfcoat.2019.07.052_bb0055) 2018; 343
Piot (10.1016/j.surfcoat.2019.07.052_bb0070) 1997; 293
Krajcar (10.1016/j.surfcoat.2019.07.052_bb0105) 2014; 137
Brongersma (10.1016/j.surfcoat.2019.07.052_bb0015) 2007
Siegel (10.1016/j.surfcoat.2019.07.052_bb0120) 2011; 6
Hassanien (10.1016/j.surfcoat.2019.07.052_bb0140) 2019; 798
Li (10.1016/j.surfcoat.2019.07.052_bb0030) 2012; 258
Tauc (10.1016/j.surfcoat.2019.07.052_bb0135) 1974
Iravani (10.1016/j.surfcoat.2019.07.052_bb0025) 2014; 9
Maidul Haque (10.1016/j.surfcoat.2019.07.052_bb0060) 2017; 319
Hong (10.1016/j.surfcoat.2019.07.052_bb0175) 2018; 118
Carlberg (10.1016/j.surfcoat.2019.07.052_bb0145) 2017; 7
Stenzel (10.1016/j.surfcoat.2019.07.052_bb0170) 2013
Wei (10.1016/j.surfcoat.2019.07.052_bb0020) 2009; 70
Nishimura (10.1016/j.surfcoat.2019.07.052_bb0095) 1993; 30
Palik (10.1016/j.surfcoat.2019.07.052_bb0155) 1985
Lu (10.1016/j.surfcoat.2019.07.052_bb0005) 2005; 5
Liu (10.1016/j.surfcoat.2019.07.052_bb0040) 2006; 201
Fan (10.1016/j.surfcoat.2019.07.052_bb0075) 2000; 18
Krajcar (10.1016/j.surfcoat.2019.07.052_bb0100) 2014; 117
Wakefield (10.1016/j.surfcoat.2019.07.052_bb0045) 2011; 109
Wang (10.1016/j.surfcoat.2019.07.052_bb0115) 2010; 19
Gong (10.1016/j.surfcoat.2019.07.052_bb0165) 2015; 5
National Institute of Standard and Technology (NIST) (10.1016/j.surfcoat.2019.07.052_bb0160)
References_xml – volume: 30
  start-page: 270
  year: 1993
  ident: bb0095
  article-title: Angular distribution of gadolinium vapor produced by Electron beam heating
  publication-title: J. Nucl. Sci. Technol.
  contributor:
    fullname: Shibata
– volume: 258
  start-page: 2766
  year: 2012
  ident: bb0030
  article-title: Photocatalytic properties of TiO2 thin films obtained by glancing angle deposition
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Zhang
– start-page: 354
  year: 1985
  ident: bb0155
  article-title: Handbook of Optical Constants of Solids I
  contributor:
    fullname: Palik
– volume: 353
  start-page: 459
  year: 2015
  end-page: 468
  ident: bb0035
  article-title: Study of hafnium oxide thin films deposited by RF magnetronsputtering under glancing angle deposition at varying target to substrate distance
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Sahoo
– volume: 37
  start-page: 5271
  year: 1974
  ident: bb0130
  article-title: “Optical properties of metallic films for vertical-cavity optoelectronic devices”
  publication-title: Appl. Opt.
  contributor:
    fullname: Majewski
– volume: 319
  start-page: 61
  year: 2017
  ident: bb0060
  article-title: Glancing angle deposition of SiO2 thin films using a novel collimated magnetron sputtering technique
  publication-title: Surf. Coat. Technol.
  contributor:
    fullname: Sahoo
– volume: 137
  start-page: 72
  year: 2014
  end-page: 74
  ident: bb0105
  article-title: Optical response of anisotropic silver nanostructures on polarized light
  publication-title: Mater. Lett.
  contributor:
    fullname: Švorčík
– volume: 6
  start-page: 96
  year: 2011
  ident: bb0120
  article-title: Properties of gold nanostructures sputtered on glass
  publication-title: Nanoscale Res. Lett.
  contributor:
    fullname: Švorčík
– year: 1985
  ident: bb0150
  article-title: Localized Surface Plasmon Resonances: Noble Metal Nanoparticle Interaction with Rare-Earth Ions
  contributor:
    fullname: Marega
– volume: 201
  start-page: 938
  year: 2006
  ident: bb0040
  article-title: Controlled growth of Fe catalyst film for synthesis of vertically aligned carbon nanotubes by glancing angle deposition
  publication-title: Surf. Coat. Technol.
  contributor:
    fullname: Zhang
– volume: 109
  year: 2011
  ident: bb0045
  article-title: On the uniformity of films fabricated by glancing angle deposition
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Sit
– volume: 18
  start-page: 2937
  year: 2000
  ident: bb0075
  article-title: Monte Carlo modeling of electron beam physical vapor deposition of yttrium
  publication-title: J. Vac. Sci. Technol. A
  contributor:
    fullname: Shelton
– volume: 19
  year: 2010
  ident: bb0115
  article-title: Tunable surface-plasmon-resonance wavelength of silver island films
  publication-title: Chin. Phys. B
  contributor:
    fullname: Yang
– volume: 798
  start-page: 750
  year: 2019
  end-page: 763
  ident: bb0140
  article-title: Band-gap engineering, conduction and valence band positions of thermally evaporated amorphous Ge
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Sharma
– volume: 70
  start-page: 459
  year: 2009
  ident: bb0020
  article-title: From silver nanoparticles to thin films: evolution of microstructure and electrical conduction on glass substrates
  publication-title: J. Phys. Chem. Solids
  contributor:
    fullname: Eilers
– volume: 10
  start-page: 100
  year: 1973
  ident: bb0085
  article-title: Distribution and apparent source geometry of electron-beam-heated evaporation sources
  publication-title: J. Vac. Technol.
  contributor:
    fullname: Graper
– volume: 7
  start-page: 4241
  year: 2017
  ident: bb0145
  article-title: Spectroscopic ellipsometry study of silver nanospheres and nanocubes in thin film layers
  publication-title: Opt. Mater. Express
  contributor:
    fullname: Escoubas
– volume: 54
  start-page: 9
  year: 1978
  ident: bb0090
  article-title: Deposition by electron beam evaporation with rates of up to 50 μm s
  publication-title: Thin Solid Films
  contributor:
    fullname: Jasch
– year: 2007
  ident: bb0160
  article-title: Gaithersburg, MD 20899–1070, USA: NIST/SEMATECH e-Handbook of Statistical Methods
  contributor:
    fullname: National Institute of Standard and Technology (NIST)
– volume: 343
  start-page: 172
  year: 2018
  end-page: 177
  ident: bb0055
  article-title: Growth of nanocolumnar porous TiO2 thin films by magnetron sputtering using particle collimators
  publication-title: Surf. Coat. Technol.
  contributor:
    fullname: Palmero
– volume: 32
  year: 2014
  ident: bb0080
  article-title: Nanocolumnar growth of thin films deposited at oblique angles: beyond the tangent rule
  publication-title: J. Vac. Sci. Technol.
  contributor:
    fullname: Palmero
– year: 1974
  ident: bb0135
  article-title: Amorphous and Liquid Semiconductors
  contributor:
    fullname: Tauc
– volume: 5
  start-page: 5
  year: 2005
  ident: bb0005
  article-title: High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate
  publication-title: Nano Lett.
  contributor:
    fullname: Lee
– start-page: 4
  year: 1988
  end-page: 37
  ident: bb0010
  article-title: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracks in Modern Physics
  contributor:
    fullname: Raether
– volume: 78
  start-page: 107
  year: 2005
  ident: bb0050
  article-title: Layer uniformity of glancing angle deposition
  publication-title: Vacuum
  contributor:
    fullname: Fan
– volume: 293
  start-page: 124
  year: 1997
  ident: bb0070
  article-title: Experimental and theoretical studies of coating thickness distributions obtained from high rate electron beam evaporation sources
  publication-title: Thin Solid Films
  contributor:
    fullname: Machet
– start-page: 3
  year: 2007
  ident: bb0015
  article-title: Surface Plasmon Nanophotonics
  contributor:
    fullname: Kik
– start-page: 158
  year: 2003
  ident: bb0125
  article-title: Spectroscopic Ellipsometry: Principles and Applications
  contributor:
    fullname: Fujiwara
– volume: 5
  start-page: 9279
  year: 2015
  ident: bb0165
  article-title: Thickness dispersion of surface Plasmon of ag Nano-thin films: determination by Ellipsometry iterated with transmittance method
  publication-title: Sci. Rep.
  contributor:
    fullname: Zhang
– volume: 9
  start-page: 385
  year: 2014
  ident: bb0025
  article-title: Synthesis of silver nanoparticles: chemical, physical and biological methods
  publication-title: Res. Pharm. Sci.
  contributor:
    fullname: Zolfaghari
– start-page: 197
  year: 1991
  ident: bb0065
  article-title: The Materials Science of Thin Films
  contributor:
    fullname: Ohring
– volume: 37
  start-page: 2775
  year: 1966
  ident: bb0110
  article-title: Optical properties of thin metallic films in island form
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Doremus
– volume: 118
  start-page: 170
  year: 2018
  ident: bb0175
  article-title: Thermal annealing induced the tunable optical properties of silver thin films with linear variable thickness
  publication-title: Superlattice. Microst.
  contributor:
    fullname: Zhang
– volume: 117
  start-page: 184
  year: 2014
  end-page: 187
  ident: bb0100
  article-title: Silver nanowires prepared on PET structured by laser irradiation
  publication-title: Mater. Lett.
  contributor:
    fullname: Švorčík
– year: 2013
  ident: bb0170
  article-title: Effective Optical Constants of Evaporated Silver and Copper Island Ultrathin Films
  contributor:
    fullname: Kaiser
– volume: 137
  start-page: 72
  year: 2014
  ident: 10.1016/j.surfcoat.2019.07.052_bb0105
  article-title: Optical response of anisotropic silver nanostructures on polarized light
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.08.113
  contributor:
    fullname: Krajcar
– volume: 78
  start-page: 107
  year: 2005
  ident: 10.1016/j.surfcoat.2019.07.052_bb0050
  article-title: Layer uniformity of glancing angle deposition
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2004.12.019
  contributor:
    fullname: Wang
– volume: 109
  year: 2011
  ident: 10.1016/j.surfcoat.2019.07.052_bb0045
  article-title: On the uniformity of films fabricated by glancing angle deposition
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3559748
  contributor:
    fullname: Wakefield
– volume: 353
  start-page: 459
  year: 2015
  ident: 10.1016/j.surfcoat.2019.07.052_bb0035
  article-title: Study of hafnium oxide thin films deposited by RF magnetronsputtering under glancing angle deposition at varying target to substrate distance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.06.077
  contributor:
    fullname: Haque
– volume: 70
  start-page: 459
  year: 2009
  ident: 10.1016/j.surfcoat.2019.07.052_bb0020
  article-title: From silver nanoparticles to thin films: evolution of microstructure and electrical conduction on glass substrates
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2008.11.012
  contributor:
    fullname: Wei
– volume: 6
  start-page: 96
  year: 2011
  ident: 10.1016/j.surfcoat.2019.07.052_bb0120
  article-title: Properties of gold nanostructures sputtered on glass
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-96
  contributor:
    fullname: Siegel
– volume: 7
  start-page: 4241
  issue: 12
  year: 2017
  ident: 10.1016/j.surfcoat.2019.07.052_bb0145
  article-title: Spectroscopic ellipsometry study of silver nanospheres and nanocubes in thin film layers
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.7.004241
  contributor:
    fullname: Carlberg
– year: 2013
  ident: 10.1016/j.surfcoat.2019.07.052_bb0170
  contributor:
    fullname: Stenzel
– volume: 37
  start-page: 2775
  year: 1966
  ident: 10.1016/j.surfcoat.2019.07.052_bb0110
  article-title: Optical properties of thin metallic films in island form
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1782121
  contributor:
    fullname: Doremus
– ident: 10.1016/j.surfcoat.2019.07.052_bb0160
  contributor:
    fullname: National Institute of Standard and Technology (NIST)
– start-page: 4
  year: 1988
  ident: 10.1016/j.surfcoat.2019.07.052_bb0010
  contributor:
    fullname: Raether
– year: 1985
  ident: 10.1016/j.surfcoat.2019.07.052_bb0150
  contributor:
    fullname: Rivera
– volume: 319
  start-page: 61
  year: 2017
  ident: 10.1016/j.surfcoat.2019.07.052_bb0060
  article-title: Glancing angle deposition of SiO2 thin films using a novel collimated magnetron sputtering technique
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2017.03.056
  contributor:
    fullname: Maidul Haque
– volume: 32
  issue: 4
  year: 2014
  ident: 10.1016/j.surfcoat.2019.07.052_bb0080
  article-title: Nanocolumnar growth of thin films deposited at oblique angles: beyond the tangent rule
  publication-title: J. Vac. Sci. Technol.
  contributor:
    fullname: Alvarez
– start-page: 354
  year: 1985
  ident: 10.1016/j.surfcoat.2019.07.052_bb0155
  contributor:
    fullname: Palik
– volume: 798
  start-page: 750
  year: 2019
  ident: 10.1016/j.surfcoat.2019.07.052_bb0140
  article-title: Band-gap engineering, conduction and valence band positions of thermally evaporated amorphous Ge15-xSbxSe50Te35 thin films: influences of Sb upon some optical characterizations and physical parameters
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.05.252
  contributor:
    fullname: Hassanien
– volume: 293
  start-page: 124
  year: 1997
  ident: 10.1016/j.surfcoat.2019.07.052_bb0070
  article-title: Experimental and theoretical studies of coating thickness distributions obtained from high rate electron beam evaporation sources
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(96)09123-7
  contributor:
    fullname: Piot
– volume: 37
  start-page: 5271
  issue: 22
  year: 1974
  ident: 10.1016/j.surfcoat.2019.07.052_bb0130
  article-title: “Optical properties of metallic films for vertical-cavity optoelectronic devices”
  publication-title: Appl. Opt.
  doi: 10.1364/AO.37.005271
  contributor:
    fullname: Rakic
– volume: 30
  start-page: 270
  year: 1993
  ident: 10.1016/j.surfcoat.2019.07.052_bb0095
  article-title: Angular distribution of gadolinium vapor produced by Electron beam heating
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.1993.9734481
  contributor:
    fullname: Nishimura
– volume: 258
  start-page: 2766
  year: 2012
  ident: 10.1016/j.surfcoat.2019.07.052_bb0030
  article-title: Photocatalytic properties of TiO2 thin films obtained by glancing angle deposition
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.10.129
  contributor:
    fullname: Li
– start-page: 3
  year: 2007
  ident: 10.1016/j.surfcoat.2019.07.052_bb0015
  contributor:
    fullname: Brongersma
– start-page: 158
  year: 2003
  ident: 10.1016/j.surfcoat.2019.07.052_bb0125
  contributor:
    fullname: Fujiwara
– volume: 201
  start-page: 938
  year: 2006
  ident: 10.1016/j.surfcoat.2019.07.052_bb0040
  article-title: Controlled growth of Fe catalyst film for synthesis of vertically aligned carbon nanotubes by glancing angle deposition
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2006.01.002
  contributor:
    fullname: Liu
– volume: 5
  start-page: 9279
  year: 2015
  ident: 10.1016/j.surfcoat.2019.07.052_bb0165
  article-title: Thickness dispersion of surface Plasmon of ag Nano-thin films: determination by Ellipsometry iterated with transmittance method
  publication-title: Sci. Rep.
  doi: 10.1038/srep09279
  contributor:
    fullname: Gong
– volume: 5
  start-page: 5
  issue: 1
  year: 2005
  ident: 10.1016/j.surfcoat.2019.07.052_bb0005
  article-title: High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate
  publication-title: Nano Lett.
  doi: 10.1021/nl048965u
  contributor:
    fullname: Lu
– volume: 118
  start-page: 170
  year: 2018
  ident: 10.1016/j.surfcoat.2019.07.052_bb0175
  article-title: Thermal annealing induced the tunable optical properties of silver thin films with linear variable thickness
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2018.04.008
  contributor:
    fullname: Hong
– start-page: 197
  year: 1991
  ident: 10.1016/j.surfcoat.2019.07.052_bb0065
  contributor:
    fullname: Ohring
– volume: 10
  start-page: 100
  year: 1973
  ident: 10.1016/j.surfcoat.2019.07.052_bb0085
  article-title: Distribution and apparent source geometry of electron-beam-heated evaporation sources
  publication-title: J. Vac. Technol.
  doi: 10.1116/1.1317914
  contributor:
    fullname: Graper
– year: 1974
  ident: 10.1016/j.surfcoat.2019.07.052_bb0135
  contributor:
    fullname: Tauc
– volume: 9
  start-page: 385
  issue: 6
  year: 2014
  ident: 10.1016/j.surfcoat.2019.07.052_bb0025
  article-title: Synthesis of silver nanoparticles: chemical, physical and biological methods
  publication-title: Res. Pharm. Sci.
  contributor:
    fullname: Iravani
– volume: 343
  start-page: 172
  year: 2018
  ident: 10.1016/j.surfcoat.2019.07.052_bb0055
  article-title: Growth of nanocolumnar porous TiO2 thin films by magnetron sputtering using particle collimators
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2017.09.039
  contributor:
    fullname: Garcia-Valenzuela
– volume: 54
  start-page: 9
  year: 1978
  ident: 10.1016/j.surfcoat.2019.07.052_bb0090
  article-title: Deposition by electron beam evaporation with rates of up to 50 μm s−1
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(78)90272-9
  contributor:
    fullname: Jasch
– volume: 19
  issue: 11
  year: 2010
  ident: 10.1016/j.surfcoat.2019.07.052_bb0115
  article-title: Tunable surface-plasmon-resonance wavelength of silver island films
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/19/11/117310
  contributor:
    fullname: Wang
– volume: 117
  start-page: 184
  year: 2014
  ident: 10.1016/j.surfcoat.2019.07.052_bb0100
  article-title: Silver nanowires prepared on PET structured by laser irradiation
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.11.112
  contributor:
    fullname: Krajcar
– volume: 18
  start-page: 2937
  year: 2000
  ident: 10.1016/j.surfcoat.2019.07.052_bb0075
  article-title: Monte Carlo modeling of electron beam physical vapor deposition of yttrium
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.1310656
  contributor:
    fullname: Fan
SSID ssj0001794
Score 2.3609214
Snippet In glancing angle electron beam evaporation technique, the deposition geometry has been engineered in a novel manner in this work to produce extensive...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 363
SubjectTerms Collimation
Crucibles
Deposition
Electron beam evaporation
Electron beams
Evaporation
Image acquisition
LSPR
Mathematical morphology
Morphology
Nanoislands
Nanostructure
Orifices
SEM
Silver
Spectroellipsometry
Spectrophotometry
Spectroscopic ellipsometry
Substrates
Surface plasmon resonance
Thickness
Thin films
Tunable morphology
Variable transmission attenuator
Title Demonstration of tunable Ag morphology from nanocolumns to discrete nanoislands using novel angle constrained glancing angle EB evaporation technique
URI https://dx.doi.org/10.1016/j.surfcoat.2019.07.052
https://www.proquest.com/docview/2307384166
Volume 375
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3BcigcUEtBpVDkQ6_prhM7H8ftFrRtVS4tEjfLscerRSVZ7QaO_Iv-387kA9FKFYce48RO5Dd582TPjAHex17aIi8xktZjpJzEqNClj0Keo0RXOO053_nbZTq_Ul-u9fUWzIZcGA6r7Lm_4_SWrfuWcT-b49VyOf4-YWvj4jMF2SnplG3YIXcU5yPYmX7-Or98JGS2uXapRRMhU4cnicI3RFHr4GrLYZWy6Op4xv_yUX-xdeuCLl7Cfq8dxbT7vFewhdUBvJgNR7YdwN6T6oKv4dcnvGX112Es6iCauzZTSkwX4ramCW6X1AVnmIjKVrVjpqo2oqkFJ-uuSU-37ctNmxAsOEZ-Iar6Hn8KWy1oINeNT-_0gg8DcfxAd-v8o8B7u-otTDzWij2Eq4vzH7N51J_CELlETRpiIJ_EXqFPUxsQtU-UzQjELHETzLwMpHCkt8HpONOoS1mSqFLk82yax47UxBGMqrrCNyC4sI0OjvjVpkpjadO0zFRAW4QgE6mOYTzMu1l1xTbMEIV2YwakDCNlJpkhpI6hGOAxf5iNIY_wbN_TAU_T_7gbw3HxCW_Fpm__Y-gT2OUr9nFSn8KoWd_hOxIvTXkG2x8e5Flvor8BNCD02Q
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3xcQAOVQtUhdLWh16jXSd2sjlut6ClwF4KEjfLscerRSVZ7Qb-Cf-XmXwgWqnqoVc7diLP-M2TM28M8DX20uajAiNpPUbKSYxyXfgojEYo0eVOe9Y7X83S6Y36catvN2DSa2E4rbLD_hbTG7TuWgbdag6Wi8Xg55C9jYvP5OSnxFM2YZvYQE67c3t8fjGdvQAy-1xz1KIJkGnAK6HwHUHUKrjKclqlzNs6nvHfYtQfaN2EoLO38KbjjmLcft472MByH3Ym_ZVt-7D3qrrgATx9x3tmf62NRRVE_dAopcR4Lu4rWuDmSF2wwkSUtqwcI1W5FnUlWKy7Ij7dtC_WjSBYcI78XJTVI_4StpzTRK6dn97pBV8G4viBtuv0m8BHu-w8TLzUij2Em7PT68k06m5hiFyihjUhkE9ir9CnqQ2I2ifKZmTELHFDzLwMxHCkt8HpONOoC1kQqVIU82w6ih2xifewVVYlfgDBhW10cISvNlUaC5umRaYC2jwEmUh1BIN-3c2yLbZh-iy0O9NbyrClzDAzZKkjyHvzmN_cxlBE-OfYk96eptu4a8N58Qn_ik2P_2PqL7Azvb66NJfns4uPsMs9HO-kPoGtevWAn4jI1MXnzlGfAR_r9s0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demonstration+of+tunable+Ag+morphology+from+nanocolumns+to+discrete+nanoislands+using+novel+angle+constrained+glancing+angle+EB+evaporation+technique&rft.jtitle=Surface+%26+coatings+technology&rft.au=Haque%2C+S.+Maidul&rft.au=De%2C+Rajnarayan&rft.au=Mitra%2C+Arijit&rft.au=Misal%2C+J.S.&rft.date=2019-10-15&rft.issn=0257-8972&rft.volume=375&rft.spage=363&rft.epage=369&rft_id=info:doi/10.1016%2Fj.surfcoat.2019.07.052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfcoat_2019_07_052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon